
On Codes for Multimedia Fingerprinting:
Traceability, Bounds, and Constructions

Graduate School of Systems and Information Engineering

University of Tsukuba

March 2015

Jing Jiang

ON CODES FOR MULTIMEDIA FINGERPRINTING:

TRACEABILITY, BOUNDS, AND CONSTRUCTIONS

Jing Jiang

University of Tsukuba, 2015

Advisor: Ying Miao

Anti-collusion codes can be used to construct �ngerprints resistant to collusion

attacks on multimedia contents, and colluder tracing algorithms can be used to iden-

tify or trace the sources of pirate copies of copyrighted multimedia contents. Cheng

and Miao [17] introduced the notion of an anti-collusion code called separable code

(t-SC) against the averaging collusion attack on multimedia content, and designed

colluder tracing algorithm based on such codes to identify colluders. However, the

power of such codes is limited by some constraints, such as the maximum size of

the code and the computational complexity of the tracing algorithm based on such

a code.

This thesis introduces three new types of anti-collusion codes, called strong sepa-

rable code (t-SSC), multimedia identi�able parent property code (t-MIPPC), strong

multimedia identi�able parent property code (t-SMIPPC), to resist the averaging

collusion attack on multimedia content. We then design the colluder tracing algo-

rithms based on these new codes.

Catch Colluders Complexity

Binary t-SC ([17]) all O(nM t)

Binary t-SSC all O(nM)

Binary t-MIPPC at least one O(nM t)

Binary t-SMIPPC at least one O(nM)

The above table describes the traceability of the four types of codes described in

this thesis including separable codes and our three newly introduced codes. For

example, any binary t-SC can be used to identify all colluders with computational

complexity O(nM t) when the number of colluders in the averaging collusion attack

is at most t, where n is the length of the code and M is the number of authorized

users. In addition, an important point which is not revealed in the table is that the

maximum number of the codewords of a t-MIPPC (or a t-SMIPPC, respectively) is

more than that of a t-SC (or a t-SSC, respectively).

From the above results, we know that these four types of codes can be used in

di�erent scenarios where requirements are di�erent. In this thesis, we also construct

these four types of codes via Combinatorics, Graph Theory, and Finite Geometries

i

such as generalized packings, bipartite graphs, projective planes, generalized quad-

rangles, and di�erence matrices. Furthermore, by investigating the upper bounds

on the size of these codes, we show that some of the codes constructed in this thesis

are optimal.

ii

ACKNOWLEDGMENTS

First of all, I would like to thank my supervisor Prof. Ying Miao for his endless

patience in giving me professional advices on multimedia �ngerprinting and writing

this thesis. I am grateful for his support and all I have learned from him during my

studies at University of Tsukuba.

I am thankful to Prof. Ryoh Fuji-Hara and Prof. Masahiro Hachimori, who

served as the members of my advisory group, for their careful reading and useful

comments to improve the readability of this thesis.

I would like to thank Prof. Kazuo Kishimoto, Prof. Hiroyasu Ando, Prof. Hiroki

Koga and Prof. Masanori Sawa, for serving as my committee menbers. I also want

to thank them for their brilliant comments and suggestions.

I would also like to thank Prof. Dianhua Wu. He had introduced me to the �eld

of combinatorics in my master's course. I am grateful for his kind advices not only

on my study but also on my private life.

I would like to give special thanks to Prof. Hung-Lin Fu and Dr. Yuan-Hsun Lo

for their knowledge and fruitful discussions about bipartite graphs, the main tool

used in Section 2.2. I have learned a lot through joint works with them.

I would further like to thank Dr. Minquan Cheng with whom I've had useful

discussions on topics related to this thesis. I also thank him for his helpful advices

on both of my study and private life. I would like to thank Dr. Xun Wang and all

our laboratory members.

Finally, I wish to express my gratitude to my mother Lianxi Gong, my wife

Fanhua, and her family for their warm supports. Their love, support and patience

were basic source of my encouragement for living and studying in Japan. I could

not have completed this work without their hearty encouragement.

iii

Contents

1 Introduction 1

1.1 Related work . 1

1.2 Multimedia �ngerprinting . 3

1.3 Outline of this thesis . 5

2 Separable Codes 7

2.1 Known results on separable codes . 7

2.2 2-SCs of length 2 . 11

2.2.1 Related combinatorial objects 12

2.2.2 Basic concepts in Graph Theory 13

2.2.3 Upper bound . 17

2.2.4 Lower bound . 20

2.2.5 Summary . 21

2.3 2-SCs of length 4 . 22

3 Strong Separable Codes 29

3.1 Tracing algorithm for strong separable codes 29

3.2 Relationships between strong separable codes and other codes 33

3.3 Constructions for 2-SSCs of length 3 37

4 Multimedia Identi�able Parent Property Codes 45

4.1 Tracing algorithm for multimedia identi�able parent property codes . 45

4.2 Upper bounds . 49

4.2.1 A general upper bound . 49

4.2.2 An upper bound for 3-MIPPCs of length 2 50

4.3 Constructions for 3-MIPPC(2,M, q)s 58

4.3.1 Optimal 3-MIPPC(2,M, q)s 58

4.3.2 Asymptotically optimal 3-MIPPC(2,M, q)s 60

5 Strong Multimedia Identi�able Parent Property Codes 65

5.1 Tracing algorithm for strong multimedia identi�able parent property

codes . 65

5.2 Optimal t-SMIPPC(2,M, q)s with small t 69

5.3 Optimal 2-SMIPPC(3,M, q)s . 71

5.3.1 General idea . 71

5.3.2 The case q ≡ 1, 5 (mod 6) . 76

5.3.3 The case q ≡ 0, 2 (mod 6) . 79

6 Conclusions and Open Problems 89

6.1 Conclusions . 89

6.2 Open problems . 91

Bibliography 93

vi

Chapter 1

Introduction

Multimedia contents, such as video, audio, image, can be copied and distributed

easily, especially in the Internet age. This damages the interests of copyright own-

ers and distributors. It is desired to devise techniques for copyright protection of

multimedia contents.

Cryptographic approaches are such techniques to ensure that only authorized

users are able to use copyrighted contents. Unfortunately, cryptographic approach-

es are limited in that once the content is decrypted, it can potentially be copied and

redistributed freely. Fingerprinting techniques which by providing unique identi�-

cation of data in a certain manner can be used to �ght against illegal redistribution

of copyrighted contents.

The main purpose of this thesis is to construct anti-collusion codes and discuss

their tracing algorithms for multimedia �ngerprinting.

1.1 Related work

Similar to human �ngerprints, which are unique and can be used to identify their

owner in the case of a criminal act, multimedia �ngerprints uniquely identify a

piece of multimedia data and allow the content to be traced to their rightful owner.

If a naive purchaser redistributed his copy illegally, the �ngerprint embedded in

that copy will allow the distributor to identify the malicious user and proceed with

an appropriate legal action. Hence, any authorized user would not like to sent

his/her decrypted content to any unauthorized user. So, nowadays ensuring the

appropriate use of multimedia content is no longer a traditional security issue with

a single adversary. The global nature of the Internet has also brought adversaries

closer to each other, and it is easy for a group of authorized users with di�erently

marked versions of the same content to mount attacks against the �ngerprints.

These attacks, which are known as collusion attacks, can provide a cost-e�ective

approach for attenuating each of the colluders' �ngerprints. An improperly designed

embedding and identi�cation scheme may be vulnerable in the sense that a small

coalition of colluders can successfully produce a new version of the content with no

detectable traces. It is desirable, therefore, to design �ngerprints that can resist

collusion and identify the colluders, thereby discouraging attempts at collusion by

the authorized users.

The problem of designing �ngerprints that can withstand collusion and allow for

the identi�cation of colluders has been studied extensively in recent years. One of

the �rst works on such problem was presented by Boneh and Shaw [12]. This work

considered the problem of �ngerprinting generic data that satis�ed an underlying

principle referred to as the marking assumption. They assumed a �ngerprint to be

a collection of n marks, each mark has q possible values, which are embedded in

some places of the content unknown to users. Given any two �ngerprints, positions

in which the corresponding marks di�er are termed detectable marks and these can

be modi�ed. A feasible set is the set of �ngerprints spanned by a coalition taking

into account all the detectable positions. A coalition of users is capable of creating

a �ngerprint, which could be any �ngerprint from the feasible set.

Under their collusion framework, Boneh and Shaw introduced a frameproof code

which is �ngerprinting code that can be used to prevent any coalition from framing

any user not in the coalition, and proposed a construction of t-frameproof codes with

error-correcting codes in which no coalition of t users can frame someone outside the

group. Frameproof codes and their applications have been then studied extensively,

see for instance, [10, 20, 46, 48]. Boneh and Shaw in their work also showed that it is

not possible to construct totally t-secure codes, which are �ngerprinting codes that

are capable of tracing at least one colluder out of a coalition of at most t colluders.

Instead, they used randomization techniques to construct codes that are able to

capture at least one colluder out of a coalition of at most t colluders with arbitrarily

high probability.

Chor et al. presented a similar work in [18]. This work is concerned with the

distribution of large amounts of contents, such as pay-per-view television broadcast,

CD ROM distribution of data and online databases. The data supplier will encrypt

the data and distribute a decoder which contains a set of keys needed to decrypt

data to each authorized user. A coalition of colluders might create a pirate decoder

that consists of keys from some of the colluders' decoders and redistribute to an

unauthorized user. The authors designed a traitor tracing scheme which will reveal

at least one colluder on the con�scation of a pirate decoder once the unauthorized

user decrypt data using the pirate decoder.

In these cases described above for generic data, the ability to trace a colluder

relied on the marking assumption that the identifying information cannot be blind-

ly altered by coalition. However, Boneh and Shaw's marking assumption is not

well suited for the multimedia domain since there are distinct embedding approach-

es. Engle [24] pointed out whether the marking assumption holds or not depends

on the embedding �ngerprinting approach. Fortunately, the marking assumption

which corresponds to the spread spectrum embedding approach signi�cantly limits

the capability of colluders to conduct attacks. Selectively manipulating parts in

a �ngerprinting code is not directly possible, and instead other forms of attacks,

2

such as the averaging collusion attack, must be used by adversaries to attempt to

subvert a multimedia �ngerprinting. This suggests that by jointly considering the

encoding, embedding, and detection processes involved with �ngerprinting multime-

dia, we have the potential to substantially enhance the performance of multimedia

�ngerprinting.

In order to resist the averaging collusion attack based on spread spectrum em-

bedding technology, Trappe et al. [51, 52] introduced the notion of an AND anti-

collusion code (AND-ACC) where the logical AND operation is exploited to identify

colluders. Furthermore, they constructed AND-ACCs by using the bit complemen-

t of the incidence matrix of a combinatorial structure called balanced incomplete

block design. Projective geometries were used to construct such anti-collusion codes

in [23]. Constructions via other mathematical structures such as cover-free fami-

lies can be found in [38]. Li and Trappe [39] also investigated collusion-resistant

�ngerprints from sequence sets satisfying the Welch bound equality.

Recently, Cheng and Miao [17] introduced a new concept of t-resilient logical

anti-collusion code (LACC), where not only the logical AND operation but also

the logical OR operation is exploited to identify colluders. LACCs have weaker

requirements than AND-ACCs but they have the same traceability as AND-ACCs

do. They also found an equivalence between an LACC and a binary separable code

(SC). Constructions for LACCs and SCs were presented in [16, 17, 27].

1.2 Multimedia �ngerprinting

In this section, we give a brief review on the basic concepts of multimedia �nger-

printing, collusion and detection. The interested reader is referred to [17, 40] for

more detailed information.

Fingerprints for multimedia data can be embedded through a variety of water-

marking techniques prior to their authorized distribution. One of the widely em-

ployed robust embedding techniques is spread-spectrum additive embedding, which

can survive collusion attacks to trace and identify colluders [21, 43]. In spread-

spectrum embedding, a watermarked signal, often represented by a linear combina-

tion of noise-like orthonormal basis signals, is added to the host signal. Let x be the

host multimedia signal, {ui | 1 ≤ i ≤ n} be an orthonormal basis of noise-like sig-

nals, and {wj = (wj(1),wj(2), . . . ,wj(n)) =
∑n

i=1 bijui | 1 ≤ j ≤ M}, bij ∈ {0, 1},
be a family of scaled watermarks to achieve the imperceptibility as well as to control

the energy of the embedded watermark. Each authorized user Uj , 1 ≤ j ≤ M , who

has purchased the rights to access x, is then assigned with a watermarked version

of the content

yj = x+wj . (1.1)

3

The �ngerprint wj assigned to Uj can be represented uniquely by a vector (called

codeword) bj = (b1j , b2j , . . . , bnj)
T ∈ {0, 1}n because of the linear independence of

the basis {ui | 1 ≤ i ≤ n}.
Collusion attacks can be broadly classi�ed into linear and nonlinear attacks un-

derlying spread-spectrum embedding. These two types of collusion attacks were

investigated in [26, 35, 49, 50, 51, 52, 54, 57]. A set of typical nonlinear collision

attacks, such as minimum/maximum/median attack, minmax attack, modi�ed neg-

ative attack, randomized negative attack, were considered in [57]. For the detailed

information, the interested reader is referred to [57]. Furthermore, Wang et al. [54]

showed that all manipulations of nonlinear collusion attacks can be explained by

linear collusion attacks with noise.

Now let us consider linear attacks which is one of the most feasible way to perform

a collusion attack. When t authorized users, say Uj1 , Uj2 , . . . , Ujt , who have the same

host content but distinct �ngerprints come together, we assume that they have no

way of manipulating the individual orthonormal signals, that is, the underlying

codeword needs to be taken and proceeded as a single entity, but they can carry on

a linear collusion attack to generate a pirate copy from their t �ngerprinted contents,

so that the venture traced by the pirate copy can be attenuated. For �ngerprinting

through additive embedding, this is done by linearly combining the t �ngerprinted

contents
∑t

l=1 λjlyjl , where the weights {λjl ∈ R+ | 1 ≤ l ≤ t} satisfy the condition∑t
l=1 λjl = 1 to maintain the average intensity of the original multimedia signal. In

such a collusion attack, the energy of each of the watermarks wjl is reduced by a

factor of λ2
jl
, therefore, the trace of Ujl 's �ngerprint becomes weaker and thus Ujl

is less likely to be caught by the detector. In fact, since normally no colluder is

willing to take more of a risk than any other colluder, the �ngerprinted signals are

typically averaged with an equal weight for each user. Averaging attack choosing

λjl = 1/t, 1 ≤ l ≤ t, is the most fair choice for each colluder to avoid detection,

as claimed in [49, 52]. Furthermore, this attack also makes the pirate copy have

better perceptional quality that it can be more similar to the host signal than the

�ngerprinted signals are.

Any circulated copy of the host multimedia content may experience an additional

distortion z before it is tested for the existence of a �ngerprint. This additional

noise z could be due to the e�ects of unintentional signal processing or from attacks

mounted by adversaries in an attempt to hinder the detection of the watermark.

Based on the averaging attack model, the observed content y after collusion is

y =
1

t

t∑
l=1

yjl + z =
1

t

t∑
l=1

wjl + x+ z =

t∑
l=1

n∑
i=1

bijl
t
ui + x+ z, (1.2)

where z is usually assumed to follow an i.i.d. Gaussian N (0, σ2
z). Then from

the detection theory [44], the optimum detector is the correlation vector T =

4

(T(1),T(2), · · · ,T(n)), where T(i) = 1
σz
⟨y − x,ui⟩, 1 ≤ i ≤ n, and ⟨y − x,ui⟩

is the inner product of y − x and ui. It is straightforward to check that

T =
1

tσz
BΦT +

1

σz
(⟨z,u1⟩, . . . , ⟨z,un⟩), (1.3)

where B = (bij), 1 ≤ i ≤ n, 1 ≤ j ≤ M , and the vectorΦ ∈ {0, 1}M indicates collud-

ers via the location of the coordinates whose value is 1. The parameter σz depends

on the embedded watermark-to-noise ratio (WNR), and is assumed known. Without

loss of generality, let σz = 1, then (⟨z,u1⟩, . . . , ⟨z,un⟩)/σz follows an N (0n,1n/t)

distribution.

Thus, the model (1.2) can be equivalently presented as a null hypothesis testing

H0 : f(T | Φ = 0) = N (0n,1n),

H1 : f(T | Φ) = N (
1

t
BΦT ,1n),

(1.4)

where we refer the reader back to (1.2) and (1.3) to arrive at this result.

Our goal is to e�ciently estimate Φ for any given colluded vector T.

1.3 Outline of this thesis

This thesis focuses on the constructions of anti-collusion codes and the design of

tracing algorithms for multimedia contents under the averaging collusion attack.

The high-level idea of the structure in this thesis is as follows: Chapter 2 consid-

ers the optimality of t-separable codes (t-SCs), which were introduced in [17] to

resist the averaging collusion attack; Chapters 3-5 introduce three types of codes

resistant to the averaging attack for di�erent models, consider the colluder tracing

algorithms based on them, and investigate the optimality of these codes by com-

binatorial methods. Concatenation construction, as mentioned in [1], is a powerful

method to construct in�nite families of codes with a required property and long

length by combining a �seed� code with the property and short length, together

with an appropriate code with long length. This makes the study of �seed� codes

interesting. In fact, the constructions in this thesis are all for �seed� codes with

short length.

In Chapter 2, we investigate 2-SCs of length 2 from the standpoint of graph

theory, and derive an upper bound on the size of a 2-SC of length 2 by considering

the bounds of maximum size of bipartite graphs with girth 6. We then construct

several in�nite series of such codes by projective planes, some of which meet the

derived upper bounds. This means that we construct several in�nite series of optimal

2-SCs of length 2. These results improve the best bounds so far on 2-SCs of length

2 in [16]. We also consider 2-SCs of length 4 in this chapter. The combinatorial

5

properties of 2-SCs of length 4 are investigated, and a construction of such codes is

presented by means of incomplete squares, in which some entries are missing.

In Chapter 3, we want to decrease the computational complexity of the tracing

algorithm based on t-SCs but keep catching all colluders. Rather than devising

better algorithms for t-SCs, we introduce a new notion of a strong separable code

(t-SSC). We show that any binary t-SSC can be used to identify, as a t-SC does, all

colluders when the number of colluders in the averaging attack is at most t. The

computational complexity of such algorithm is O(nM), which is obviously more

e�cient than the computational complexity O(nM t) of the algorithm based on a t-

SC, where n is the length of the code andM is the number of authorized users. Then

we derive optimal 2-SSCs of length 2 by discussing the relationships between SSCs

and SCs. We also investigate 2-SSCs of length 3 from a combinatorial viewpoint,

and give a construction of such codes.

In the next chapter, Chapter 4, we concern with a new model guaranteeing

exact identi�cation of at least one member of the pirate coalition of size at most

t, and introduce a new concept of a multimedia identi�able parent property code

(t-MIPPC). Although t-MIPPCs can not be used to identify all the colluders when

the size of the coalition is at most t, nevertheless they can be used to identify at

least one colluder, thereby helping stop the proliferation of the fraudulent content

in digital marketplace. The advantage of a t-MIPPC is the maximum number of

the codewords, which corresponds to the number of authorized users. We show

that the maximum number of the codewords of a t-MIPPC is more than that of

a t-SC. By considering bipartite graphs with girth at least 8, we derive a tight

bound on the size of a 3-MIPPC of length 2. We also construct several series of

(asymptotically) optimal 3-MIPPCs of length 2 from a geometric structure called

generalized quadrangle.

In Chapter 5, in order to improve the computational complexity of the algorithm

for t-MIPPCs, we introduce a new notion of a strong multimedia identi�able parent

property code (t-SMIPPC). Then we state that any binary t-SMIPPC can be used to

identify, as a t-MIPPC does, at least one colluder when the number of colluders in the

averaging attack is at most t with computational complexity O(nM), which is more

e�cient than the computational complexity O(nM t) of the algorithm based on a t-

MIPPC. According to the relationships between SMIPPCs and other �ngerprinting

codes, such as SCs and MIPPCs, we derive optimal q-ary t-SMIPPCs of length 2

with t = 2, 3. The highlight of this chapter is the constructions of optimal q-ary

2-SMIPPCs of length 3 with q ≡ 0, 1, 2, 5 (mod 6).

Finally, we give a brief summary of this thesis and some interesting open prob-

lems in Chapter 6.

6

Chapter 2

Separable Codes

Separable codes (t-SCs) were introduced in [17] to construct logical anti-collusion

codes (LACCs), which can be used to construct �ngerprints resistant to the averag-

ing collusion attack on multimedia contents. In this chapter, we pay our attention to

the constructions of separable codes. We �rst recall the known results on separable

codes in Section 2.1. In Section 2.2, we provide an improved upper bound on the size

of a 2-SC of length 2 by a graph theoretical approach, and a lower bound on the size

of such a code by deleting suitable points and lines from a projective plane, which

coincides with the improved upper bound in some places. These correspond to the

bounds of maximum size of bipartite graphs with girth 6 and a construction of such

maximal bipartite graphs. In Section 2.3, we show the forbidden con�gurations of

2-SCs of length 4, and then give a construction of 2-SCs of length 4.

2.1 Known results on separable codes

Let n,M and q be positive integers, and Q an alphabet with |Q| = q. A set C =

{c1, c2, . . . , cM} ⊆ Qn is called an (n,M, q) code and each c = (c(1), c(2), . . . , c(n))T

in C is called a codeword. Without loss of generality, we may assume Q = {0, 1, . . . ,
q− 1}. When Q = {0, 1}, we also use the word �binary�. Given an (n,M, q) code C,
the incidence matrix M(C) is the n×M matrix on Q in which the columns are the

M codewords in C. Often, we make no di�erence between an (n,M, q) code and its

incidence matrix unless otherwise stated.

For any code C ⊆ Qn, we de�ne the set of i-th coordinates of C as

C(i) = {c(i) ∈ Q | c = (c(1), c(2), . . . , c(n))T ∈ C}

for any 1 ≤ i ≤ n. For any subset of codewords C′ ⊆ C, we de�ne the descendant

code (or feasible set) of C′
as

desc(C′
) = {(x(1),x(2), . . . ,x(n))T ∈ Qn | x(i) ∈ C′

(i), 1 ≤ i ≤ n}, (2.1)

that is,

desc(C′
) = C′

(1)× C′
(2)× · · · × C′

(n).

The set desc(C′
) consists of the n-tuples that could be produced by a coalition

holding the codewords in C′
.

Example 2.1.1 Consider the following (4, 3, 2) code C:

c1 c2 c3

C =


0 1 0

0 0 0

1 0 0

1 1 1


Obviously,

desc({c1}) = {(0, 0, 1, 1)T } = {c1},

desc({c2}) = {(1, 0, 0, 1)T } = {c2},

desc({c3}) = {(0, 0, 0, 1)T } = {c3}.

Consider the descendant codes of 2-subsets.

{c1, c2}(1) = {0, 1}, {c1, c2}(2) = {0},

{c1, c2}(3) = {0, 1}, {c1, c2}(4) = {1}.

Hence

desc({c1, c2}) = {c1, c2}(1)× {c1, c2}(2)× {c1, c2}(3)× {c1, c2}(4)

= {0, 1} × {0} × {0, 1} × {1}

= {(0, 0, 0, 1)T , (0, 0, 1, 1)T , (1, 0, 0, 1)T , (1, 0, 1, 1)T }.

Similarly,

desc({c1, c3}) = {(0, 0, 0, 1)T , (0, 0, 1, 1)T },

desc({c2, c3}) = {(0, 0, 0, 1)T , (1, 0, 0, 1)T }.

De�nition 2.1.2 Let C be an (n,M, 2) code with Q = {0, 1} and t ≥ 2 be an

integer.

(1) C is a t-resilient AND anti-collusion code, or t-AND-ACC(n,M, 2), if for any

two distinct C1, C2 ⊆ C with 1 ≤ |C1| ≤ t and 1 ≤ |C2| ≤ t, we have the

following inequality: ∧
c∈C1

c ̸=
∧
c∈C2

c,

where
∧

is the bitwise logical operator AND.

8

(2) C is a t-resilient logical anti-collusion code, or t-LACC(n,M, 2), if for any two

distinct C1, C2 ⊆ C with 1 ≤ |C1| ≤ t and 1 ≤ |C2| ≤ t, we have at least one of

the following inequalities:∨
c∈C1

c ̸=
∨
c∈C2

c,
∧
c∈C1

c ̸=
∧
c∈C2

c,

where
∨

is the bitwise logical operator OR.

Example 2.1.3 Consider the following (3, 4, 2) code C:

c1 c2 c3 c4

C =

 1 1 0 0

1 0 1 0

0 1 1 0


Then

c1
∨

c2 = (1, 1, 1)T , c1
∨

c3 = (1, 1, 1)T , c1
∨

c4 = (1, 1, 0)T ,

c2
∨

c3 = (1, 1, 1)T , c2
∨

c4 = (1, 0, 1)T , c3
∨

c4 = (0, 1, 1)T .

However,

c1
∧

c2 = (1, 0, 0)T , c1
∧

c3 = (0, 1, 0)T , c2
∧

c3 = (0, 0, 1)T ;

c1
∧

c4 = (0, 0, 0)T ; c2
∧

c4 = (0, 0, 0)T ; c3
∧

c4 = (0, 0, 0)T .

Therefore, by performing these twelve logical operations, we can know that C is a

2-LACC(3, 4, 2), although is not a 2-AND-ACC(3, 4, 2).

The notions of AND-ACCs and LACCs were introduced in [52] and [17], respec-

tively, for protecting multimedia contents, which, with code modulation, can be used

to construct families of �ngerprints with the ability to survive collusion and trace

colluders. From these de�nitions, we immediately know that a t-AND-ACC(n,M, 2)

is also a t-LACC(n,M, 2), and a t-LACC of length n surpasses a t-AND-ACC of

the same length in the number of codewords assigned to distinct authorized users

of the multimedia content. The authors [17] also showed that any t-LACC(n,M, 2)

can be used to identify all colluders when the number of colluders in the averaging

attack is at most t.

We now pay our attention to the colluder tracing algorithm based on a t-LACC.

In the multimedia scenario, for any set of colluders holding codewords C0 ⊆ C and

for any index 1 ≤ i ≤ n, their detection statistics T(i) mentioned in Section 1.2

possesses the whole information on C0(i); namely, we have T(i) = 1 if and only

if C0(i) = {1}, T(i) = 0 if and only if C0(i) = {0}, and 0 < T(i) < 1 if and

only if C0(i) = {0, 1}. Therefore, we can capture a set R = C0(1) × · · · × C0(n) ⊆
C(1)× · · · × C(n) in the multimedia scenario from the detection statistics T.

9

Theorem 2.1.4 ([17]) Under the assumption that the number of colluders in the

averaging attack is at most t, any t-LACC(n,M, 2) can be used to identify all the

colluders with computational complexity O(nM t).

Algorithm 2.1: LACCTraceAlg(R)

Given R;

Find C0 ⊆ C satisfying |C0| ≤ t and R = desc(C0);
output C0 as the set of colluders.

In order to construct LACCs, they introduced the notion of a separable code

de�ned as follows.

De�nition 2.1.5 ([17]) Let C be an (n,M, q) code and t ≥ 2 be an integer. C is

a t-separable code, or t-SC(n,M, q), if for any C1, C2 ⊆ C such that 1 ≤ |C1| ≤ t,

1 ≤ |C2| ≤ t and C1 ̸= C2, we have desc(C1) ̸= desc(C2), that is, there is at least one

coordinate i, 1 ≤ i ≤ n, such that C1(i) ̸= C2(i).

Example 2.1.6 Consider the following (3, 3, 2) code C:

c1 c2 c3

C =

 0 1 0

0 0 1

0 0 0


We can directly obtain that

desc({c1}) = {0} × {0} × {0},
desc({c2}) = {1} × {0} × {0},
desc({c3}) = {0} × {1} × {0},
desc({c1, c2}) = {0, 1} × {0} × {0},
desc({c1, c3}) = {0} × {0, 1} × {0},
desc({c2, c3}) = {0, 1} × {0, 1} × {0}.

Obviously, desc({c1}), desc({c2}), desc({c3}), desc({c1, c2}), desc({c1, c3}) and
desc({c2, c3}) are all distinct. This is su�cient to show that C is a 2-SC(3, 3, 2).

In fact, a t-SC(n,M, 2) and a t-LACC(n,M, 2) are equivalent.

Theorem 2.1.7 ([17]) Let C be an (n,M, 2) code. Then C is a t-LACC if and only

if it is a t-SC(n,M, 2).

10

In other words, any binary t-SC can be used to identify all colluders when the

number of colluders in the averaging attack is at most t from Theorems 2.1.4 and

2.1.7.

Let MSC(t, n, q) = max{M | there exists a t-SC(n,M, q)}. A t-SC(n,M, q) is

said to be optimal ifM = MSC(t, n, q), and asymptotically optimal if lim
q→∞

M
MSC(t,n,q)

= 1. Cheng et al. [16] derived the following upper bound.

Theorem 2.1.8 ([16]) MSC(t, n, q) ≤ qn−1 + q(q−1)
2 holds for any t ≥ 2.

The following concatenation construction can be used to derive SCs with long

length from SCs with short length, and makes the study of SCs with short length

interesting.

Lemma 2.1.9 ([17]) If there exist both a t-SC(n1,M, q) and a t-SC(n2, q, 2), then

there also exists a t-SC(n1n2,M, 2).

Several constructions on separable codes can be found in [16], and we only list

the main results here.

Theorem 2.1.10 ([17]) For any positive integer q, MSC(2, 2, q) ≤ qk + h, where

k = ⌊1+
√
4q−3
2 ⌋, and

h =

{
⌊ q(q−1−k2+k)

2k ⌋, if k2 − k + 1 ≤ q ≤ k2;

⌊ qk
(k+1)2−q

⌋, if k2 + 1 ≤ q ≤ k2 + k.

Furthermore, MSC(2, 2, q) = qk+h if q = k2− k+1 for any prime power k− 1 ≥ 2

and q = k2 + k for any prime power k ≥ 2.

Theorem 2.1.11 ([17]) There exists an optimal 2-SC(3, q2 + q(q−1)
2 , q) for any in-

teger q.

2.2 2-SCs of length 2

In this section, we improve the results in Theorem 2.1.10. In fact, we obtain a tighter

upper bound on MSC(2, 2, q) via graph theoretical approach. By using projective

geometrical terminologies, we also obtain a lower bound on MSC(2, 2, q), parts of

which agree with the new derived upper bound. In other words, we construct several

in�nite series of optimal 2-SC(2,M, q)s.

11

2.2.1 Related combinatorial objects

In this subsection, we recall several combinatorial structures related to 2-SCs of

length 2.

For any (n,M, q) code C on Q = {0, 1, . . . , q− 1}, we de�ne the following short-

ened code Aj
i for i ∈ Q and 1 ≤ j ≤ n:

Aj
i = {(c(1), . . . , c(j − 1), c(j + 1), . . . , c(n))T | (c(1), . . . , c(n))T ∈ C, c(j) = i}.

Obviously, for any (2,M, q) code, A1
i ⊆ Q holds for any i ∈ Q, and |A1

0| + |A1
1| +

· · ·+ |A1
q−1| = M .

De�nition 2.2.1 Let K be a subset of non-negative integers, and v, b be two positive

integers. A generalized (v, b,K, 1) packing is a pair (X,B) where X is a set of v

elements and B is a set of b subsets of X called blocks that satisfy

(1) |B| ∈ K for any B ∈ B;

(2) every pair of distinct elements of X occurs in at most one block of B.

Example 2.2.2 Let X = {0, 1, 2, 3, 4} be the element set. Then (X,B) forms a

generalized (5, 5, {2, 3}, 1) packing, where

B = {{0, 4}, {1, 3}, {3, 4}, {0, 2, 3}, {1, 2, 4}}.

Cheng et al. [16] showed a relationship between separable codes and generalized

packings.

Lemma 2.2.3 ([16]) There exists a 2-SC(2,M, q) de�ned on Q = {0, 1, . . . , q − 1}
if and only if there exists a generalized (q, q,K, 1) packing (Q, {A1

0,A1
1, . . . ,A1

q−1}),
with K = {|A1

0|, |A1
1|, . . . , |A1

q−1|}, and M = |A1
0|+ |A1

1|+ · · ·+ |A1
q−1|.

Example 2.2.4 Construct a 2-SC(2, 13, 5) from the generalized (5, 5, {2, 3}, 1) pack-
ing mentioned in Example 2.2.2. Let

B0 = {0, 4}, B1 = {1, 3}, B2 = {3, 4}, B3 = {0, 2, 3}, B4 = {1, 2, 4}.

For any i ∈ X = {0, 1, 2, 3, 4} and any element x ∈ Bi, we construct a codeword

(i, x)T . Then we can obtain a code

C =

(
0 0 1 1 2 2 3 3 3 4 4 4

0 4 1 3 3 4 0 2 3 1 2 4

)
.

We can directly check that C is a 2-SC(2, 13, 5).

12

Note that balanced incomplete block designs [52] and packing designs [38] which

were used to construct AND-ACC are special classes of generalized packings, so they

can only be used to construct some special classes of 2-SCs of length 2.

A generalized (q, q, {k}, 1) packing can be constructed by developing a near dif-

ference set. A (q, k, 1) near di�erence set de�ned on an additively written group G of

order |G| = q is a k-subset F of G such that the di�erences {x− y | x, y ∈ F, x ̸= y}
contains k(k − 1) distinct elements of G.

Example 2.2.5 Let F = {0, 1, 3} be a subset of Z7. Then the di�erences {x −
y | x, y ∈ F, x ̸= y} = {0, 1, 2, 3, 4, 5, 6}. This implies that F is a (7, 3, 1) near

di�erence set de�ned on Z7.

Lemma 2.2.6 For any integer k ≥ 2, let q ≥ k2 − k + 1. If there exists a (q, k, 1)

near di�erence set, then there exists a generalized (q, q, {k}, 1) packing.

Proof: Let F be a (q, k, 1) near di�erence set de�ned on an additively written group

G. For any g ∈ G, de�ne F + g = {x+ g | x ∈ F} and B = {F + g | g ∈ G}. Then
(G,B) is the desired generalized (q, q, {k}, 1) packing. �

Near di�erence sets are not easy to construct. However, a (k2 + k+1, k, 1) near

di�erence set always exists [45] for any prime power k. This Singer di�erence set

generates a generalized (k2 + k + 1, k2 + k + 1, {k}, 1) packing, which corresponds

to an optimal 2-SC(2, (k + 1)(k2 + k + 1), k2 + k + 1) described in Theorem 2.1.10.

2.2.2 Basic concepts in Graph Theory

In order to investigate 2-SCs of length 2, we need some basic concepts in Graph

Theory.

Let V be a �nite set, and E(V) = {{u, v} | u, v ∈ V, u ̸= v}.

De�nition 2.2.7 A pair G = (V,E) with E ⊆ E(V) is called a (simple) graph (on

V). The elements of V are the vertices of G and those of E the edges of G. Given

a graph G, the vertex set of G is denoted by V (G) and its edge set by E(G). The

number |V (G)| is called the order of G, and |E(G)| is the size of G.

A graph H is a subgraph of a graph G, if V (H) ⊆ V (G) and E(H) ⊆ E(G).

Example 2.2.8 Consider the following graphs:

13

Figure 2.1: Graphs

Then V (G) = {v1, v2, v3, v4} and E(G) = {{v1, v2}, {v1, v3}, {v2, v3}, {v2, v4}}.
The order and the size of G are |V (G)| = 4 and |E(G)| = 4, respectively. H1 and

H2 are subgraphs of G.

De�nition 2.2.9 For a graph G = (V,E), vertices u and v are adjacent if {u, v} ∈
E. The neighbourhood of a vertex v ∈ V is the set

NG(v) = {u ∈ G | {u, v} ∈ E}.

The degree of v, denoted by degG(v), is the number of its neighbours, that is,

degG(v) = |NG(v)|.

From the above de�nition and Example 2.2.8, it is easy to see that degG(v1) =

degG(v3) = 2, degG(v2) = 3 and degG(v4) = 1.

De�nition 2.2.10 Given a graph G, we call (v1, v2, . . . , vh) a cycle of length h ≥ 3,

denoted by Ch, if {vi, vi+1} ∈ E(G) for all 1 ≤ i ≤ h − 1, {v1, vh} ∈ E(G), and

vj ̸= vk for 1 ≤ j < k ≤ h.

Figure 2.2: Cycles

De�nition 2.2.11 Two graphs G and H are isomorphic if there exists a bijection

Let f : V (G) → V (H) such that

{u, v} ∈ E(G) ⇔ {f(u), f(v)} ∈ E(H)

for all u, v ∈ V (G).

14

In fact, two isomorphic graphs enjoy the same graph theoretical properties.

Example 2.2.12 The following graphs are isomorphic.

Figure 2.3: Isomorphic graphs

Indeed, the required isomorphism is given by v1 → u1, v2 → u3, v3 → u4,

v4 → u2, v5 → u5.

The graph G is the complete graph, if every two vertices are adjacent. All

complete graphs of order n are isomorphic with each other, and they will be denoted

by Kn. A clique in a graph G is a subgraph of G such that every two vertices are

adjacent, that is, a complete subgraph of G.

Figure 2.4: Complete graphs

De�nition 2.2.13 A graph G is called bipartite, denoted by GX,Y , if V (G) has a

partition to two subsets X and Y such that each edge in E(G) connects a vertex of

X and a vertex of Y .

A bipartite graph G is a complete (m, k)-bipartite graph, if |X| = m, |Y | = k,

and {u, v} ∈ E(G) for all u ∈ X and v ∈ Y . All complete (m, k)-bipartite graphs

are isomorphic. Let Km,k denote such a graph.

15

Figure 2.5: Complete bipartite graphs

Given a generalized (v, b,K, 1) packing (Q,B), we can de�ne its associated

element-block graph as the bipartite graph GQ,B with vertex partition Q and B
such that x ∈ Q is adjacent to B ∈ B if and only if x ∈ B. It is clear that the

corresponding element-block graph of a generalized (v, b,K, 1) packing (Q,B) is a
C4-free subgraph (that is, a subgraph containing no C4) of the complete bipartite

graph Kv,b, because any pair of distinct elements of Q can occur in at most one

block of B. In other words, the girth of this bipartite graph is at least 6, where the

girth of a graph is the length of a shortest cycle contained in the graph.

Example 2.2.14 Consider the generalized (5, 5, {2, 3}, 1) packing mentioned in Ex-

ample 2.2.2. Let

B0 = {0, 4}, B1 = {1, 3}, B2 = {3, 4}, B3 = {0, 2, 3}, B4 = {1, 2, 4}.

Then its associated element-block graph is as follows.

Figure 2.6: GX,B

Zarankiewicz numbers [56] involve bounds on the maximum number of edges in

a bipartite graph without a particular subgraph. We denote by z(m,n; s, t), m ≤ n

and s ≤ t, the maximum number of edges in a subgraph of Km,n that does not

contain a subgraph isomorphic to Ks,t. In particular, when m = n and s = t,

simply put z(n; t) = z(n, n; t, t). It is clear that z(q; 2), which is the maximum size

of a C4-free bipartite subgraph of Kq,q, is equal to MSC(2, 2, q) by Lemma 2.2.3.

16

Meanwhile, García-Vázquez et al. [28] stated that any C4-free bipartite subgraph

of Kq,q with size z(q; 2) must have girth 6. Therefore, our problem is equivalent to

�nding the maximum size of bipartite graphs with girth 6, and constructing such

maximal bipartite graphs.

We can see our problem in one more way. Given a generalized (q, q,K, 1) packing

(Q,B), if we de�ne two elements of Q are adjacent in B ∈ B if they occur in the

same block B, then each block can be seen as a clique of order |B| belonging to K.

Since each pair of distinct elements of Q occurs in a block of B at most once, this

generalized (q, q,K, 1) packing can be viewed as a packing of the complete graph

Kq by q cliques of orders belonging to K, where a packing of a graph G is a set of

subgraphs of G such that their edge sets are pairwise disjoint. Therefore, in order

to evaluate z(q; 2) = MSC(2, 2, q), it is su�cient to pack Kq by q cliques so that the

sum of order of the q cliques is maximum.

It is well known [11] that z(q; 2) ≤ q+q
√
4q−3
2 and the equality holds when q =

k2 + k + 1 for any prime power k. Goddard et al. [29] found the exact values of

z(q; 2) for q ≤ 10. Theorem 2.1.10 is an improvement of the results made by Cheng

et al. [16]. It is also known [11] that if q is su�ciently large then

q3/2 − q4/3 < z(q; 2) ≤ q + q
√
4q − 3

2
;

In particular, lim
q→∞

z(q;2)

q3/2
= 1.

2.2.3 Upper bound

Bipartite graphs with high girth and their related graphs have been extensively

investigated, see, e.g., [7, 14, 25, 28, 30, 33, 37, 36, 41, 42, 55]. We start this section

with the following lemma.

Lemma 2.2.15 ([13]) Suppose (X,B) is a generalized (v, b, {k, k + 1}, 1) packing,
for some k, with B = {B1, B2, . . . , Bb}. If

(
v
2

)
−
∑b

i=1

(|Bi|
2

)
< k, then GX,B, the

element-block graph of (X,B), is a C4-free subgraph of Kv,b with maximum size.

If Kq can be packed by q cliques Kx1 ,Kx2 , . . . ,Kxq with leave L (a set of the

edges which are not covered by the q cliques), where xi ≤ xj for 1 ≤ i < j ≤ q, then

we say Kq admits a feasible (x1, x2, . . . , xq) packing with leave L. For convenience,

we replace (x1, x2, . . . , xq) packing by (kq−h, (k + 1)h) packing when

k = x1 = · · · = xq−h and xq−h+1 = · · · = xq = k + 1

for some k ∈ N and 1 ≤ h ≤ q. For any (kq−h, (k + 1)h) packing P of Kq, we have

q

(
k

2

)
≤ (q − h)

(
k

2

)
+ h

(
k + 1

2

)
≤
(
q

2

)
,

17

which implies k ≤ 1+
√
4q−3
2 . In order to maximize

∑q
i=1 xi which subjects to an

(x1, x2, . . . , xq) packing, Lemma 2.2.15 promises to consider a feasible (kq−h, (k+1)h)

packing with k = ⌊1+
√
4q−3
2 ⌋ and |L| < k. Therefore, our objective is to �nd the

maximum index h. Note that k = ⌊1+
√
4q−3
2 ⌋ implies k2 − k + 1 ≤ q < k2 + k + 1.

In this subsection, we investigate z(q; 2) by �xing the index k and then classifying

q, from k2 − k + 1 to k2 + k, into several cases. The following Theorem 2.2.16 is

contained in Theorem 2.1.10.

Theorem 2.2.16 ([11, 16]) For any prime power k − 1 ≥ 2, z(k2 − k + 1; 2) =

k3 − k2 + k. For any prime power k ≥ 2, z(k2 + k; 2) = k3 + 2k2.

Theorem 2.2.17 For any k2 + 1 ≤ q ≤ k2 + k − 2 and k ≥ 2, we have

z(q; 2) ≤ qk +

⌊
(k − 1)q

(k + 1)2 − (q + 1)

⌋
.

Proof: Let q = k2+k−s, s = 2, 3, . . . , k−1. Assume P is a (kq−h, (k+1)h) packing

of Kq, where 0 ≤ h ≤ q − 1. We claim by contradiction that h ≤ ⌊ (k−1)q
(k+1)2−(q+1)

⌋.
That is, suppose h > ⌊ (k−1)q

(k+1)2−(q+1)
⌋.

For i ≥ 0, let ri be the number of vertices that is contained in exactly i cliques of

order k+1 in P. Since the degree of each vertex is k2+k−s−1, trivially ri = 0 for all

i > k. We now claim rk = 0. Suppose not, that is, there exists a vertex v contained in

exactly k cliques of order k+1, say C(1), C(2), . . . , C(k). Let A = {v}∪
∪k

i=1 V (C(i))

and B = V (Kq) \A. Since there is no other subgraph isomorphic to Kk+1 out of A

except C(1), C(2), . . . , C(k), each of the remaining cliques of order k+1 must contain

at least one vertex in B. That is, each of such cliques needs at least k edges between

A and B. Therefore, we have at most k + ⌊ (k
2+1)(k−s−1)

k ⌋ cliques of order k + 1.

Thus,

k(k − s) ≥ k + ⌊(k
2 + 1)(k − s− 1)

k
⌋ ≥ h > ⌊ (k − 1)q

(k + 1)2 − (q + 1)
⌋.

This implies ks2 − ks − k + s < 0, so ks(s − 1) ≤ k − s < k, that is, s(s − 1) < 1,

which contradicts 2 ≤ s ≤ k − 1. So rk = 0.

Consider the number of ordered pairs (v, C), where v is a vertex in the clique

C of order k + 1 in P. Under our assumption, there are exactly h cliques of order

k + 1, then

h(k + 1) = (k − 1)rk−1 + (k − 2)rk−2 + · · ·+ (k − s)rk−s + · · ·+ r1. (2.2)

This implies that

h(k + 1) ≤ (k − 1)(rk−1 + · · ·+ rk−s+1) + (k − s)(q − (rk−1 + · · ·+ rk−s+1)),

18

so
h(k + 1)− q(k − s)

s− 1
≤ rk−1 + · · ·+ rk−s+1. (2.3)

Now, we delete all the h cliques of order k + 1 from Kq. Denote by G the

remaining subgraph. We again consider the number of ordered pairs (v′, C ′), where

v′ is a vertex in the clique C ′ of order k in P. On one hand there are exactly q − h

cliques of order k, and on the other hand there are exactly ri vertices of degree

q − 1 − ki, for i = 0, 1, . . . , k − 1. Since the vertex of degree q − 1 − ki can be

contained in at most q−1−ki
k−1 cliques of order k, we have

(q− h)k ≤ rk−1 +2rk−2 + · · ·+ (s− 1)rk−s+1 + (s+1)rk−s + · · ·+ (k+1)r0. (2.4)

Combining (2.2) and (2.4) we have

h(k + 1) + (q − h)k ≤ k(rk−1 + · · ·+ rk−s+1) + (k + 1)(q − (rk−1 + · · ·+ rk−s+1)),

and thus

rk−1 + · · ·+ rk−s+1 ≤ q − h. (2.5)

Finally, (2.3) and (2.5) imply that h ≤ q(k−1)
k+s = (k−1)q

(k+1)2−(q+1)
, a contradiction to

the hypothesis. Thus we complete the proof. �

Theorem 2.2.18 For any q = k2 with k ≥ 2, we have

z(q; 2) ≤ qk + ⌊(3k
2 + k − 1)−

√
5k4 + 6k3 − k2 − 2k + 1

2
⌋.

Proof: Assume P is a (kq−h, (k + 1)h) packing of Kq. For i ≥ 0, let ri be the

number of vertices that is contained in exactly i cliques of order k + 1 in P. Since
q = k2, we have ri = 0 for all i ≥ k. Similar to the proof of Theorem 2.2.17, we �rst

consider the number of ordered pairs (v, C), where v is a vertex in the clique C of

order k + 1 in P. Then after deleting those cliques of order k + 1, we consider the

number of ordered pairs (v′, C ′), where v′ is a vertex in the clique C ′ of order k in

P. Note that in the remaining graph after deleting h cliques of order k + 1, there

are exactly ri vertices of degree k2 − ik − 1. Then we have{
h(k + 1) = (k − 1)rk−1 + · · ·+ 2r2 + r1

(q − h)k ≤ rk−1 + · · ·+ (k − 2)r2 + (k − 1)r1 + (k + 1)r0

which implies h ≤ r0. This concludes that the h cliques of order k + 1 are out of at

most k2 − h vertices somewhere in P. We immediately have

h

(
k + 1

2

)
≤
(
k2 − h

2

)
.

That is,

h2 + (1− k − 3k2)h+ (k4 − k2) ≥ 0.

Since h ≤ k2, we have h ≤ (3k2+k−1)−
√
5k4+6k3−k2−2k+1
2 . Hence we complete the

proof. �

19

Theorem 2.2.19 For any k2−k+2 ≤ q ≤ k2−1 and k ≥ 2, we have z(q; 2) ≤ qk.

Proof: Let q = k2 − s, where s = 1, 2, . . . , k − 2. Assume P is a (kq−h, (k + 1)h)

packing of Kq. Suppose h ≥ 1. De�ne G to be the graph by deleting one of the

cliques of order k + 1, say K̂, from Kq. Let A ⊆ V (G) be the collection of vertices

whose degree is equal to q − 1 − k, and B = V (G) \ A. Note that |A| = k + 1

and |B| = q − k − 1. Now, consider the number of ordered pairs (v, C), where v

is a vertex in the clique C in P di�erent from K̂. Notice that for each v ∈ A,

degG(v) = k2 − s− 1− k = (k − 1)2 + (k − s− 2). Then v is contained in at most

k − 1 cliques di�erent from K̂. Similarly, each vertex in B can be contained in at

most k cliques. By counting the number of pairs (v, C), we have

(h− 1)(k + 1) + (q − h)k ≤ (k + 1)(k − 1) + (q − k − 1)k.

This implies that h ≤ 0, a contradiction occurs. Thus the result follows. �

2.2.4 Lower bound

Now we derive a lower bound on z(q; 2) = MSC(2, 2, q) via projective planes. A

projective plane P consists of a set of lines, a set of points, and a relation between

points and lines called incidence, having the following properties:

(1) Given any two distinct points, there is exactly one line incident with both of

them.

(2) Given any two distinct lines, there is exactly one point incident with both of

them.

(3) There are four points such that no line is incident with more than two of them.

For a projective plane P , there is a positive integer k such that any line of P has

exactly k + 1 points. This number k is the order of P . Clearly, a projective plane

of order k is a generalized (k2 + k + 1, k2 + k + 1, {k + 1}, 1) packing (X,B) in

which every pair of distinct elements of X occurs in exactly one block of B. It is

well-known [31] that a projective plane of order k always exists for any prime power

k.

Theorem 2.2.20 For any prime power k ≥ 2, let k2 − 1 ≤ q ≤ k2 + k − 1. Then

there exists a generalized (q, q, {k, k + 1}, 1) packing, (X ′,B′), with |X ′| = |B′| = q

such that exactly k3 − k2 − k − qk + 2q + 1 blocks out of B′ are of size k. That is,

z(q; 2) ≥ 2qk − k3 + k2 + k − q − 1.

20

Proof: We start from a projective plane of order k, (X,B). Note that |X| = |B| =
k2 + k + 1, and for any B ∈ B, |B| = k + 1. Pick an arbitrary point a ∈ X and

an arbitrary line B∗ = {x1, x2, . . . , xk+1} ∈ B which does not contain the point a.

For each i = 1, . . . , k + 1, let Bi ∈ B be the line containing the points a and xi.

Let 2 ≤ s ≤ k + 2. Deleting s lines B∗, B1, . . . , Bs−1 and s points a, x1, . . . , xs−1

from (X,B), we obtain a generalized (q, q, {k, k + 1}, 1) packing, (X ′,B′), with q =

k2 + k + 1 − s, X ′ = X \ {a, x1, . . . , xs−1}, B′ = B \ {B∗, B1, . . . , Bs−1}, having
∆ = (s− 1)(k− 1)+ (k+1− s+1) = k3 − k2 − k− qk+2q+1 blocks of size k and

k2 + k + 1−∆− s blocks of size k + 1. Therefore, z(q; 2) ≥ k∆+ (k + 1)(k2 + k +

1−∆− s) = 2qk − k3 + k2 + k − q − 1. �

Applying Theorems 2.1.10, 2.2.17 and 2.2.19, we immediately have the following

result.

Corollary 2.2.21 For any prime power k ≥ 2, z(k2 − 1; 2) = k3 − k, z(k2 + k −
2; 2) = k3 + 2k2 − 4k + 1, z(k2 + k − 1; 2) = k3 + 2k2 − 2k.

In Corollary 2.2.21, when q = k2 + k − 2, k2 + k − 1, the same results are also

obtained independently by G. Damaásdi et al. [22]. It is also easy to verify that

the corresponding 2-SC(2,M, q)s constructed in Theorem 2.2.20 are asymptotically

optimal for all k2 − 1 ≤ q ≤ k2 + k − 1 with prime power k. The lower bound

described in Theorem 2.2.20 is better than q3/2 − q4/3 described in [11] for any

prime power k.

2.2.5 Summary

The main results in the previous subsections can be summarized in the following

theorem.

Theorem 2.2.22 For any positive integer q, MSC(2, 2, q) ≤ qk + h, where k =

⌊1+
√
4q−3
2 ⌋, and

h =



0 if k2 − k + 1 ≤ q ≤ k2 − 1;

⌊ (3k
2+k−1)−

√
5k4+6k3−k2−2k+1
2 ⌋ if q = k2;

⌊ (k−1)q
(k+1)2−(q+1)

⌋ if k2 + 1 ≤ q ≤ k2 + k − 2;

k2 − k if q = k2 + k − 1;

k2 if q = k2 + k.

Furthermore, MSC(2, 2, q) = qk+h if q ∈ {k2−1, k2+k−2, k2+k−1, k2+k, k2+k+1}
for any prime power k ≥ 2.

This is in fact the main results of this section. The following Figures 2.7 and 2.8

illustrate our improvement on the upper bound of MSC(2, 2, q). Figure 2.7 depicts

21

the known upper bound given in [16] and the new upper bound given in Theorem

2.2.22 when k = 12, while Figure 2.8 depicts those upper bounds when q = k2. It

can be seen that our new upper bound is much tighter than the known upper bound.

Figure 2.7: Bounds for k = 12

Figure 2.8: Bounds for q = k2

2.3 2-SCs of length 4

Theorem 2.1.11 shows that optimal 2-SCs of length 3 always exit, and thus we

investigate 2-SCs of length 4 in this section. We in fact derive the forbidden con�g-

urations of 2-SCs of length 4, and construct an in�nite family of such codes, which

are asymptotically optimal.

For any (n,M, q) code C with n > 2 over Q = {0, 1, . . . , q−1}, we de�ne another
shortened code Aj1,j2

i,k for i, k ∈ Q and 1 ≤ j1 < j2 ≤ n as follows:

Aj1,j2
i,k = {(c(1), . . . , c(j1−1), c(j1+1), . . . , c(j2−1), c(j2+1), . . . , c(n))T |

(c(1), . . . , c(n))T ∈ C, c(j1) = i, c(j2) = k}.

22

Obviously, Aj1,j2
i,k ⊆ Qn−2 and |Aj1,j2

0,0 | + |Aj1,j2
0,1 | + . . . + |Aj1,j2

q−1,q−1| = M always

hold for any integers j1, j2, where 1 ≤ j1 < j2 ≤ n.

Theorem 2.3.1 A (4,M, q) code C is a 2-SC(4,M, q) on Q if and only if the fol-

lowing two conditions hold.

(1) |Aj1
i1

∩
Aj1

i2
| ≤ 1 holds for any positive integers j1 ∈ {1, 2, 3, 4} and distinct

i1, i2 ∈ Q.

(2) |Aj1,j2
i1,k1

∩
Aj1,j2

i2,k2
| ≤ 1 holds for any vector (j1, j2) ∈ {(1, 2), (1, 3), (1, 4)} and

i1, i2, k1, k2 ∈ Q, where i1 ̸= i2 and k1 ̸= k2.

Proof: First, let C be a 2-SC(4,M, q).

(I) Suppose that there exist j1 ∈ {1, 2, 3, 4} and distinct i1, i2 ∈ Q, such that

|Aj1
i1

∩
Aj1

i2
| ≥ 2. Without loss of generality, we may assume j1 = 1. Let aT1

and aT2 be two distinct elements of A1
i1
∩A1

i2
, then desc({(i1,a1)T , (i2,a2)T }) =

desc({(i1,a2)T , (i2,a1)T }), which is a contradiction to the de�nition of a t-SC

with t = 2.

(II) Suppose that there exist (j1, j2) ∈ {(1, 2), (1, 3), (1, 4)} and i1, i2, k1, k2 ∈ Q,

where i1 ̸= i2 and k1 ̸= k2, such that |Aj1,j2
i1,k1

∩
Aj1,j2

i2,k2
| ≥ 2. Without loss of

generality, we may assume (j1, j2) = (1, 2). Let {bT
1 ,b

T
2 } ⊆ A1,2

i1,k1
∩A1,2

i2,k2
, then

desc({(i1, k1,b1)
T , (i2, k2,b2)

T }) = desc({(i1, k1,b2)
T , (i2, k2,b1)

T }), which
is a contradiction to the de�nition of a t-SC with t = 2.

Conversely, suppose that conditions (1) and (2) always hold. We want to show that

C is a 2-SC(4,M, q). Assume that C is not a 2-SC(4,M, q). Then at least one of the

following cases should occur. However, we can prove none of them is possible.

(I) There exist two distinct codewords of C, say a = (a1, a2, a3, a4)
T and b =

(b1, b2, b3, b4)
T , such that desc({a}) = desc({b}). Then a1 = b1, a2 = b2,

a3 = b3 and a4 = b4, which implies that a = b, a contradiction. So this case

is impossible.

(II) There exist two distinct codewords of C, say a = (a1, a2, a3, a4)
T and b =

(b1, b2, b3, b4)
T , such that desc({a,b}) = desc({a}). Then {a1, b1} = {a1},

{a2, b2} = {a2}, {a3, b3} = {a3} and {a4, b4} = {a4}, that is, a1 = b1, a2 = b2,

a3 = b3 and a4 = b4, which implies that a = b, a contradiction. So this case

is also impossible.

(III) There exist three distinct codewords of C, say a = (a1, a2, a3, a4)
T , b =

(b1, b2, b3, b4)
T and c = (c1, c2, c3, c4)

T , such that desc({a,b}) = desc({c}).
Then {a1, b1} = {c1}, {a2, b2} = {c2}, {a3, b3} = {c3} and {a4, b4} = {c4},
that is, a1 = b1 = c1, a2 = b2 = c2, a3 = b3 = c3 and a4 = b4 = c4, which

implies that a = b = c, a contradiction. So this case is also impossible.

23

(IV) There exist three distinct codewords of C, say a = (a1, a2, a3, a4)
T , b =

(b1, b2, b3, b4)
T and c = (c1, c2, c3, c4)

T , such that desc({a,b}) = desc({b, c}).
Then {a1, b1} = {b1, c1}, {a2, b2} = {b2, c2}, {a3, b3} = {b3, c3} and {a4, b4} =

{b4, c4}, that is, a1 = c1, a2 = c2, a3 = c3 and a4 = c4, which implies that

a = c, a contradiction. This case is again impossible.

(V) There exist four distinct codewords of C, say a = (a1, a2, a3, a4)
T , b = (b1, b2,

b3, b4)
T , c = (c1, c2, c3, c4)

T and d = (d1, d2, d3, d4)
T , such that desc({a,b}) =

desc({c,d}). Then {a1, b1} = {c1, d1}, {a2, b2} = {c2, d2}, {a3, b3} = {c3, d3}
and {a4, b4} = {c4, d4}. This can be divided into the following subcases:

(1) {a1, b1} = {c1, d1}:

(11) a1 = b1 = c1 = d1; (12) a1 ̸= b1, a1 = c1, b1 = d1;

(13) a1 ̸= b1, a1 = d1, b1 = c1.

(2) {a2, b2} = {c2, d2}:

(21) a2 = b2 = c2 = d2; (22) a2 ̸= b2, a2 = c2, b2 = d2;

(23) a2 ̸= b2, a2 = d2, b2 = c2.

(3) {a3, b3} = {c3, d3}:

(31) a3 = b3 = c3 = d3; (32) a3 ̸= b3, a3 = c3, b3 = d3;

(33) a3 ̸= b3, a3 = d3, b3 = c3.

(4) {a4, b4} = {c4, d4}:

(41) a4 = b4 = c4 = d4; (42) a4 ̸= b4, a4 = c4, b4 = d4;

(43) a4 ̸= b4, a4 = d4, b4 = c4.

So at least one of 81 subcases {(1i1), (2i2), (3i3), (4i4)}, i1, i2, i3, i4 ∈ {1, 2, 3, 4},
should occur for a, b, c and d. It is readily checked that none of these 81

subcases is possible. For example, consider the subcase {(11), (21), (32), (43)},
that is,

(11) a1 = b1 = c1 = d1; (21) a2 = b2 = c2 = d2;

(32) a3 ̸= b3, a3 = c3, b3 = d3; (43) a4 ̸= b4, a4 = d4, c4 = b4.

Then {(a1, a2, a3)T , (a1, a2, b3)T } ⊆ A4
a4 ∩A4

b4
, a contradiction to the assump-

tion that |A4
a4 ∩ A4

b4
| ≤ 1, which means that this subcase is impossible. For

another example, consider the subcase {(12), (22), (33), (43)}, that is,

(12) a1 ̸= b1, a1 = c1, b1 = d1; (22) a2 ̸= b2, a2 = c2, b2 = d2;

(33) a3 ̸= b3, a3 = d3, c3 = b3; (43) a4 ̸= b4, a4 = d4, c4 = b4.

Then {(a3, a4)T , (b3, b4)T } ⊆ A1,2
a1,a2∩A

1,2
b1,b2

, a contradiction to the assumption

that |A1,2
a1,a2 ∩ A1,2

b1,b2
| ≤ 1, which means that this subcase is impossible.

24

Therefore, C is a 2-SC(4,M, q). �
Next, we are going to construct 2-SC(4,M, q)s by means of incomplete squares,

in which some entries are missing. Let s ≤ q, and Bij = (a
(ij)
kx), 1 ≤ j ≤ s, be

incomplete squares, where ij , k, x, a
(ij)
kx ∈ Q. For each entry a

(ij)
kx ∈ Q of the s

incomplete squares, we construct a codeword c = (ij , k, x, a
(ij)
kx)T ∈ C, then we can

derive a (4,M, q) code C, where M is the number of nonempty entries of the s

incomplete squares.

Lemma 2.3.2 If there exist s incomplete squares satisfying the following conditions

(a) − (g), then there exists a 2-SC(4,M, q), where M is the number of nonempty

entries of the s incomplete squares.

(a) There exists at most one element in each position of each incomplete square.

(b) For any i, k, x1 ̸= x2 ∈ Q, a
(i)
kx1

̸= a
(i)
kx2

.

(c) For any i, k1 ̸= k2, x ∈ Q, a
(i)
k1x

̸= a
(i)
k2x

.

(d) For any i1 ̸= i2, k, x ∈ Q, a
(i1)
kx ̸= a

(i2)
kx .

(e) For any i1 ̸= i2, k1 ̸= k2 ∈ Q, there exists at most one x ∈ Q such that

a
(i1)
k1x

= a
(i2)
k2x

.

(f) For any i1 ̸= i2, x1 ̸= x2 ∈ Q, there exists at most one k ∈ Q such that

a
(i1)
kx1

= a
(i2)
kx2

.

(g) For any i1 ̸= i2 ∈ Q and any (k1, x1) ̸= (k2, x2) ∈ Q2, (a
(i1)
k1x1

, a
(i2)
k1x1

) ̸=
(a

(i1)
k2x2

, a
(i2)
k2x2

).

Proof: We construct a (4,M, q) code as described above and show it is a 2-

SC(4,M, q) by Theorem 2.3.1.

(1) Suppose there exist distinct i1, i2 ∈ Q, such that |A1
i1

∩
A1

i2
| ≥ 2. Let

(k, x, y)T ∈ A1
i1

∩
A1

i2
. Then (i1, k, x, y)

T , (i2, k, x, y)
T ∈ C, so a

(i1)
kx = a

(i2)
kx =

y. This is a contradiction to condition (d).

(2) Suppose there exist distinct k1, k2 ∈ Q, such that |A2
k1

∩
A2

k2
| ≥ 2. Let

(i, x, y)T ∈ A2
k1

∩
A2

k2
. Then (i, k1, x, y)

T , (i, k2, x, y)
T ∈ C, so a

(i)
k1x

= a
(i)
k2x

=

y. This is a contradiction to condition (c).

(3) Suppose there exist distinct x1, x2 ∈ Q, such that |A3
x1

∩
A3

x2
| ≥ 2. Let

(i, k, y)T ∈ A3
x1

∩
A3

x2
. Then (i, k, x1, y)

T , (i, k, x2, y)
T ∈ C, so a

(i)
kx1

= a
(i)
kx2

=

y. This is a contradiction to condition (b).

25

(4) Suppose there exist distinct y1, y2 ∈ Q, such that |A4
y1

∩
A4

y2 | ≥ 2. Let

(i, k, x)T ∈ A4
y1

∩
A4

y2 . Then (i, k, x, y1)
T , (i, k, x, y2)

T ∈ C. So there exist

two elements y1 and y2 in the k-th row and the x-th column of Bi, a contra-

diction to condition (a).

(5) Suppose there exist i1 ̸= i2, k1 ̸= k2 ∈ Q, such that |A1,2
i1,k1

∩
A1,2

i2,k2
| ≥ 2. Let

(x1, y1)
T ̸= (x2, y2)

T ∈ A1,2
i1,k1

∩
A1,2

i2,k2
. Then (i1, k1, x1, y1)

T , (i1, k1, x2, y2)
T ,

(i2, k2, x1, y1)
T , (i2, k2, x2, y2)

T ∈ C, so a
(i1)
k1x1

= a
(i2)
k2x1

= y1, a
(i1)
k1x2

= a
(i2)
k2x2

= y2.

1) If x1 = x2, according to a
(i1)
k1x1

= y1 and a
(i1)
k1x2

= y2, we can derive

y1 = y2, which implies (x1, y1)
T = (x2, y2)

T , a contradiction.

2) If x1 ̸= x2, then a
(i1)
k1x1

= a
(i2)
k2x1

= y1 and a
(i1)
k1x2

= a
(i2)
k2x2

= y2, a contra-

diction to condition (e)

(6) Suppose there exist i1 ̸= i2, x1 ̸= x2 ∈ Q, such that |A1,3
i1,x1

∩
A1,3

i2,x2
| ≥ 2. Let

(k1, y1)
T ̸= (k2, y2)

T ∈ A1,3
i1,x1

∩
A1,3

i2,x2
. Then (i1, k1, x1, y1)

T , (i1, k2, x1, y2)
T ,

(i2, k1, x2, y1)
T , (i2, k2, x2, y2)

T ∈ C, so a
(i1)
k1x1

= a
(i2)
k1x2

= y1, a
(i1)
k2x1

= a
(i2)
k2x2

= y2.

1) If k1 = k2, according to a
(i1)
k1x1

= y1, a
(i1)
k2x1

= y2, we can derive y1 = y2,

which implies (k1, y1)
T = (k2, y2)

T , a contradiction.

2) If k1 ̸= k2, then a
(i1)
k1x1

= a
(i2)
k1x2

= y1, a
(i1)
k2x1

= a
(i2)
k2x2

= y2, a contradiction

to condition (f).

(7) Suppose there exist i1 ̸= i2, y1 ̸= y2 ∈ Q, such that |A1,4
i1,y1

∩
A1,4

i2,y2
| ≥ 2. Let

(k1, x1)
T ̸= (k2, x2)

T ∈ A1,4
i1,y1

∩
A1,4

i2,y2
. Then (i1, k1, x1, y1)

T , (i1, k2, x2, y1)
T ,

(i2, k1, x1, y2)
T , (i2, k2, x2, y2)

T ∈ C, so (a(i1)k1x1
, a

(i2)
k1x1

) = (a
(i1)
k2x2

, a
(i2)
k2x2

) = (y1, y2),

a contradiction to condition (g)

According to Theorem 2.3.1, C is a 2-SC(4,M, q). This completes the proof. �

Lemma 2.3.3 There exist q − 2 incomplete squares satisfying conditions (a)− (g)

in Lemma 2.3.2 for any prime power q > 2 and M = (q − 2)(q2 − q).

Proof: Let Q = GF(q). We do the construction as follows. Let

Bi = (a
(i)
kx), where a

(i)
kx = (x− k)i+ k, x ̸= k ∈ GF(q), i ∈ GF(q) \ {0, 1}.

Then we check conditions (a)− (g) in Lemma 2.3.2.

(a) Obviously, condition (a) is satis�ed.

(b) Suppose there exist i ∈ GF(q) \ {0, 1}, k, x1 ̸= x2 ∈ GF(q), such that k ̸=
x1, k ̸= x2, and a

(i)
kx1

= a
(i)
kx2

. Then (x1−k)i+k = (x2−k)i+k. So (x1−x2)i =

0. Since x1 ̸= x2, i ̸= 0, then (x1 − x2)i ̸= 0. This is a contradiction.

26

(c) Suppose there exist i ∈ GF(q) \ {0, 1}, k1 ̸= k2, x ∈ GF(q), such that k1 ̸=
x, k2 ̸= x, and a

(i)
k1x

= a
(i)
k2x

. Then (x − k1)i + k1 = (x − k2)i + k2. So

(k1 − k2)(i− 1) = 0. Since k1 ̸= k2, i ̸= 1, then (k1 − k2)(i− 1) ̸= 0. This is a

contradiction.

(d) Suppose there exist i1 ̸= i2 ∈ GF(q) \ {0, 1}, k, x ∈ GF(q), such that k ̸= x

and a
(i1)
kx = a

(i2)
kx . Then (x−k)i1+k = (x−k)i2+k, that is (x−k)(i1−i2) = 0.

Since x ̸= k, i1 ̸= i2, then (x− k)(i1 − i2) ̸= 0. This is a contradiction.

(e) Suppose there exist i1 ̸= i2 ∈ GF(q)\{0, 1}, k1 ̸= k2 ∈ GF(q), such that there

exist x1 ̸= x2 ∈ GF(q) satisfying kh ̸= xl, 1 ≤ h, l ≤ 2 , a
(i1)
k1x1

= a
(i2)
k2x1

and

a
(i1)
k1x2

= a
(i2)
k2x2

. Then (x1− k1)i1+ k1 = (x1− k2)i2+ k2 and (x2− k1)i1+ k1 =

(x2 − k2)i2 + k2, which imply (x1 − x2)(i1 − i2) = 0. Since x1 ̸= x2, i1 ̸= i2,

then (x1 − x2)(i1 − i2) ̸= 0. This is a contradiction.

(f) Suppose there exist i1 ̸= i2 ∈ GF(q) \ {0, 1}, x1 ̸= x2 ∈ GF(q), such that

there exist k1 ̸= k2 ∈ GF(q) satisfying kh ̸= xl, 1 ≤ h, l ≤ 2, a
(i1)
k1x1

= a
(i2)
k1x2

and

a
(i1)
k2x1

= a
(i2)
k2x2

. Then (x1− k1)i1+ k1 = (x2− k1)i2+ k1 and (x1− k2)i1+ k2 =

(x2 − k2)i2 + k2, which imply (k1 − k2)(i1 − i2) = 0. Since k1 ̸= k2, i1 ̸= i2,

then (k1 − k2)(i1 − i2) ̸= 0. This is a contradiction.

(g) Suppose there exist i1 ̸= i2 ∈ GF(q) \ {0, 1}, (k1, x1) ̸= (k2, x2) ∈ GF(q) ×
GF(q), such that kh ̸= xl, 1 ≤ h, l ≤ 2, and (a

(i1)
k1x1

, a
(i2)
k1x1

) = (a
(i1)
k2x2

, a
(i2)
k2x2

).

Then a
(i1)
k1x1

= a
(i1)
k2x2

and a
(i2)
k1x1

= a
(i2)
k2x2

. Then (x1−k1)i1+k1 = (x2−k2)i1+k2

and (x1 − k1)i2 + k1 = (x2 − k2)i2 + k2, that is, ((x1 − x2) + (k2 − k1))i1 +

(k1 − k2) = 0 and ((x1 − x2) + (k2 − k1))i2 + (k1 − k2) = 0. Let f(X) =

((x1 − x2) + (k2 − k1))X + (k1 − k2) ∈ GF(q)[X], then deg(f(X)) ≤ 1. But

f(i1) = f(i2) = 0 and i1 ̸= i2, so f(X) ≡ 0. Then (x1 − x2) + (k2 − k1) = 0

and (k1 − k2) = 0. So k1 = k2 and x1 = x2, then (k1, x1) = (k2, x2). This is a

contradiction.

This completes the proof. �

Theorem 2.3.4 There exists a 2-SC(4, (q−2)(q2−q), q) for any prime power q > 2.

Proof: The result comes from Lemmas 2.3.2 and 2.3.3. �
Applying Theorem 2.1.8 with n = 4, we can derive MSC(2, 4, q) ≤ q3 + q(q−1)

2 .

The 2-SC(4, q3−3q2+2q, q)s constructed above are not optimal, but asymptotically

optimal, for

lim
prime q→∞

(q − 2)(q2 − q)

q3 + q(q−1)
2

= lim
prime q→∞

2q3 − 6q2 + 4q

2q3 + q2 − q
= 1.

27

Chapter 3

Strong Separable Codes

As we can see from Theorem 2.1.4, the computational complexity O(nM t) of al-

gorithm LACCTraceAlg(R) based on t-LACCs (or binary t-SCs) is not e�cient for

practical use, where n is the length of the code and M is the number of autho-

rized users. Therefore, it is desirable to �nd some special SCs with e�cient tracing

algorithm. This is the main reason that we introduce the new notion of a strong sep-

arable code (t-SSC) in this chapter. In fact, from Theorem 3.1.3, we know that any

binary t-SSC can be used to identify all colluders with computational complexity

O(nM) when the number of colluders in the averaging attack is at most t.

In Section 3.1, we introduce the concept of an SSC, and describe a colluder trac-

ing algorithm based on a binary SSC. We also show a concatenation construction

for binary SSCs from q-ary SSCs, which makes the study of q-ary SSCs with short

length important. In Section 3.2, we discuss the relationships between strong sep-

arable codes and other �ngerprinting codes. We also derive several in�nite series

of optimal q-ary 2-SSCs of length 2 from the fact that a q-ary 2-SSC of length 2 is

equivalent to a q-ary 2-SC of length 2 in Section 3.2. Finally, combinatorial proper-

ties of q-ary 2-SSCs of length 3 are investigated and a construction for q-ary 2-SSCs

of length 3 is also presented in Section 3.3.

3.1 Tracing algorithm for strong separable codes

In this section, we �rst introduce the concept of a strong separable code (t-SSC),

then we present a tracing algorithm based on a binary t-SSC with computational

complexity O(nM), which is more e�cient than that of a t-SC, and �nally we

describe a concatenation construction for binary SSCs from q-ary SSCs.

De�nition 3.1.1 Let C be an (n,M, q) code and t ≥ 2 be an integer. C is a strong

t-separable code, or t-SSC(n,M, q), if for any C0 ⊆ C, 1 ≤ |C0| ≤ t, we have∩
C′∈S(C0) C

′
= C0, where S(C0) = {C′ ⊆ C | desc(C′

) = desc(C0)}.

From the de�nition above, it is clear that for any C′ ∈ S(C0) and C′ ̸= C0, we
have C0 ⊆ C′

and |C′ | ≥ t+ 1.

Example 3.1.2 Consider the following (3, 4, 2) code C:

c1 c2 c3 c4

C =

 0 1 0 0

0 0 1 0

0 0 0 1


Then

desc({c1}) = {0} × {0} × {0},
desc({c2}) = {1} × {0} × {0},
desc({c3}) = {0} × {1} × {0},
desc({c4}) = {0} × {0} × {1},
desc({c1, c2}) = {0, 1} × {0} × {0},
desc({c1, c3}) = {0} × {0, 1} × {0},
desc({c1, c4}) = {0} × {0} × {0, 1},
desc({c2, c3}) = {0, 1} × {0, 1} × {0},
desc({c2, c4}) = {0, 1} × {0} × {0, 1},
desc({c3, c4}) = {0} × {0, 1} × {0, 1},
desc({c1, c2, c3}) = {0, 1} × {0, 1} × {0},
desc({c1, c2, c4}) = {0, 1} × {0} × {0, 1},
desc({c1, c3, c4}) = {0} × {0, 1} × {0, 1},
desc({c2, c3, c4}) = {0, 1} × {0, 1} × {0, 1},
desc({c1, c2, c3, c4}) = {0, 1} × {0, 1} × {0, 1}.

It is easy to check that

S({c1}) = {{c1}} and
∩

C′∈S({c1}) C
′
= {c1},

S({c2}) = {{c2}} and
∩

C′∈S({c2}) C
′
= {c2},

S({c3}) = {{c3}} and
∩

C′∈S({c3}) C
′
= {c3},

S({c4}) = {{c4}} and
∩

C′∈S({c4}) C
′
= {c4},

S({c1, c2}) = {{c1, c2}} and
∩

C′∈S({c1,c2}) C
′
= {c1, c2},

S({c1, c3}) = {{c1, c3}} and
∩

C′∈S({c1,c3}) C
′
= {c1, c3},

S({c1, c4}) = {{c1, c4}} and
∩

C′∈S({c1,c4}) C
′
= {c1, c4},

S({c2, c3}) = {{c2, c3}, {c1, c2, c3}} and
∩

C′∈S({c2,c3}) C
′
= {c2, c3},

S({c2, c4}) = {{c2, c4}, {c1, c2, c4}} and
∩

C′∈S({c2,c4}) C
′
= {c2, c4},

S({c3, c4}) = {{c3, c4}, {c1, c3, c4}} and
∩

C′∈S({c3,c4}) C
′
= {c3, c4}.

30

So the code C is a 2-SSC(3, 4, 2).

We now pay our attention to the tracing algorithm based on a binary strong

separable code.

Theorem 3.1.3 Under the assumption that the number of colluders in the averaging

attack is at most t, any t-SSC(n,M, 2) can be used to identify all the colluders with

computational complexity O(nM) by applying Algorithm 3.1.

Proof: Let C be the t-SSC(n,M, 2), and R be the descendant code derived from

the detection statistics T. Then by applying Algorithm 3.1, one can identify all the

colluders. The computational complexity is clearly O(nM).

According to Algorithm 3.1, by deleting all columns {c ∈ C | ∃ 1 ≤ i ≤ n,R(i) =

{1}, c(i) = 0, or R(i) = {0}, c(i) = 1}, we obtain a sub-matrix CL of C. Suppose

that C0 = {u1, u2, . . . , ur}, 1 ≤ r ≤ t, is the set of colluders, and the codeword

ci is assigned to the colluder ui, 1 ≤ i ≤ r, and C0 = {c1, c2, . . . , cr}. It is not

di�cult to see that C0 ⊆ CL. According to the de�nition of a t-SSC, we have∩
C′∈S(C0) C

′
= C0 ̸= ∅, where S(C0) = {C′ ⊆ C | desc(C′

) = desc(C0) = R}. We prove

this theorem in three steps.

(1) CL ∈ S(C0), that is, desc(CL) = R. For any 1 ≤ j ≤ n, we consider the

following cases.

(1.1) R(j) = {1}. For any c ∈ CL, c(j) = 1 according to the processes deriving

CL. So CL(j) = {1} = R(j).

(1.2) R(j) = {0}. For any c ∈ CL, c(j) = 0 according to the processes deriving

CL. So CL(j) = {0} = R(j).

(1.3) R(j) = {0, 1}. Since desc(C0) = R, we know that there exist c1, c2 ∈ C0 ⊆
CL such that c1(j) = 0 and c2(j) = 1, respectively. This implies CL(j) = {0, 1} =

R(j).

According to (1.1)-(1.3) above, for any 1 ≤ j ≤ n, we have CL(j) = R(j), which

implies desc(CL) = R.

(2) We want to show that for any x ∈ C0 =
∩

C′∈S(C0) C
′
, there exists 1 ≤ j ≤ n,

such that x(j) = 1 and c(j) = 0 for any c ∈ CL \ {x}, or x(j) = 0 and c(j) = 1

for any c ∈ CL \ {x}. Assume not. Then for any 1 ≤ j ≤ n, x(j) = 1 implies that

there exists c1 ∈ CL \ {x} such that c1(j) = 1, and x(j) = 0 implies that there

exists c2 ∈ CL \ {x} such that c2(j) = 0. Then we have desc(CL) = desc(CL \ {x}).
Since CL ∈ S(C0) by (1), we can have CL \ {x} ∈ S(C0), and x /∈

∩
C′∈S(C0) C

′
, a

contradiction.

(3) At last, according to Algorithm 3.1 and (2), it su�ces to show that any user

u assigned with a codeword x ∈ C0 =
∩

C′∈S(C0) C
′
is a colluder. Assume that u is

not a colluder. Then for any C′ ∈ S(C0), we have C′ \ {x} ∈ S(C0), which implies

x /∈
∩

C′∈S(C0) C
′
, a contradiction.

31

Algorithm 3.1: SSCTraceAlg(R)

De�ne Ja, Jo to be the sets of indices where R(j) = {1}, R(j) = {0},
respectively, and Ja = (Ja(1), . . . ,Ja(|Ja|))T , Jo = (Jo(1), . . . ,Jo(|Jo|))T to

be the vector representing R's coordinates where R(j) = {1} and R(j) = {0},
respectively;

Φ = 1;

Ua = ∅;
Uo = ∅;
U = ∅;
for k = 1 to |Ja| do

j = Ja(k);

de�ne ej to be the jth row of C;
Φ = Φ · ej ;

for k = 1 to |Jo| do
j = Jo(k);

Φ = Φ · ej ;

for k = 1 to n do

Φa = Φ · ek;
Φo = Φ · ek;
for i = 1 to M do

if Φa(i) = 1 then

Ua = {i}
∪

Ua;

if |Ua| = 1 then

U = U
∪

Ua;

for i = 1 to M do

if Φo(i) = 1 then

Uo = {i}
∪
Uo;

if |Uo| = 1 then

U = U
∪

Uo;

if |U | ≤ t then

output U ;

else
output �The set of colluders has size at least t+ 1."

32

This completes the proof. �
Note that any user holding c ∈ CL \ C0 is not a colluder. In fact, if such c cor-

responds to a colluder, then according to the hypothesis in Theorem 3.1.3, we have

|C0
∪
{c}| ≤ t. In this case, desc(C0

∪
{c}) = desc(C0). Then C0 ∈ S(C0

∪
{c}),

while C0
∪
{c} ̸⊆ C0, a contradiction to the de�nition of t-SSC.

A close look at the proof also shows an important fact that this tracing algorithm

is also valid for any linear attack, because the detection statistics T(i), 1 ≤ i ≤ n,

for C0 possess the whole information on C0.
At the end of this section, we show a concatenation construction for binary t-

SSCs from q-ary t-SSCs, which makes the study of q-ary t-SSCs with short length,

say n = 2, 3, important.

Lemma 3.1.4 If there exists a t-SSC(n,M, q), then there exists a t-SSC(nq,M, 2).

Proof: Let C = {c1, c2, . . . , cM} be a t-SSC(n,M, q) on Q = {0, 1, . . . , q − 1},
and E = {e1, e2, . . . , eq}, where ei is the i-th identity vector of length q. Let

f : Q → E be a bijective mapping such that f(i) = ei+1. For any codeword

c = (c(1), c(2), . . . , c(n))T ∈ C, we de�ne f(c) = (f(c(1)), f(c(2)), . . . , f(c(n)))T .

Obviously, f(c) is a binary vector of length nq. We de�ne a new (nq,M, 2) code

F = {f(c1), f(c2), . . . , f(cM)}. We can show that F is a t-SSC.

For any F0 ⊆ F , |F0| ≤ t, we only need to show that for any F1 ⊆ F , desc(F0) =

desc(F1) implies F0 ⊆ F1. Suppose F0, F1 correspond to two codeword sets C0, C1 ⊆
C, respectively, such that |C0| = |F0| ≤ t, where F0 = {f(c) | c ∈ C0} and F1 =

{f(c) | c ∈ C1}. Since desc(F0) = desc(F1), we have desc(C0) = desc(C1). Then

C0 ⊆ C1, because C is a t-SSC(n,M, q). So, F0 ⊆ F1.

This completes the proof. �

3.2 Relationships between strong separable codes and

other codes

In this section, we investigate the relationships between strong separable codes and

other �ngerprinting codes, and derive several in�nite series of optimal q-ary 2-SSCs

of length 2.

Recall that, in any t-SSC(n,M, q) C, for any C0 ⊆ C, 1 ≤ |C0| ≤ t, and any

C′ ∈ S(C0), C
′ ̸= C0, we have C0 ⊆ C′

and |C′ | ≥ t + 1. In other words, there

are no distinct subsets C1, C2 ⊆ C with 1 ≤ |C1| ≤ t, 1 ≤ |C2| ≤ t, such that

desc(C1) = desc(C2). This implies the following lemma.

Lemma 3.2.1 Any t-SSC(n,M, q) is a t-SC(n,M, q).

The following example shows that the converse of Lemma 3.2.1 does not always

hold.

33

Example 3.2.2 Consider the following (3, 5, 2) code C:

c1 c2 c3 c4 c5

C =

 0 1 0 0 1

0 0 1 0 1

0 0 0 1 1


We can directly check that C is a 2-SC(3, 5, 2). Now, we show that C is not a 2-SSC.

Let C0 = {c1, c5} and C′
= {c2, c3, c4}, then desc(C0) = desc(C′

), while C0 ̸⊆ C′
.

This implies that C is not a 2-SSC(3, 5, 2).

However, the following result shows that a 2-SSC(2,M, q) is always a 2-SC(2,M, q).

Theorem 3.2.3 Let C be a (2,M, q) code. Then C is a 2-SSC(2,M, q) if and only

if it is a 2-SC(2,M, q).

Proof: By Lemma 3.2.1, it su�ces to consider the su�ciency. Let C be a 2-

SC(2,M, q). Assume that C is not a 2-SSC(2,M, q). Then there exist C0, C
′ ⊆ C,

|C0| ≤ 2, such that desc(C0) = desc(C′
) but C0 ̸⊆ C′

. If |C0| = 1, then it is clear that

C0 = C′
, a contradiction. So |C0| = 2. Let C0 = {c1, c2}, ci = (ai, bi)

T , where i =

1, 2. Since C is a 2-SC(2,M, q) and desc(C0) = desc(C′
), we have C′ ⊆ desc(C0)

∩
C

and |C′ | ≥ 3. We now consider the Hamming distance d(c1, c2) of c1 and c2, where

the Hamming distance of c1 and c2 is the number of positions where c1 and c2 have

di�erent symbols.

(1) If d(c1, c2) = 1, without loss of generality, we may assume a1 = a2, b1 ̸= b2.

Then |desc(C0)| = 2. So |C′ | ≤ |desc(C0)| = 2, a contradiction.

(2) If d(c1, c2) = 2, then a1 ̸= a2, b1 ̸= b2, and desc(C0) = {c1, c2, c3, c4},
where c3 = (a1, b2)

T and c4 = (a2, b1)
T . Then |desc(C0)

∩
C| ≤ 3. Otherwise,

if |desc(C0)
∩

C| = 4, i.e., desc(C0)
∩

C = {c1, c2, c3, c4}, then desc({c1, c2}) =

desc({c3, c4}), a contradiction to the de�nition of a 2-SC. Since C′ ⊆ desc(C0)
∩

C
and |C′ | ≥ 3, we have |C′ | = 3. So we may assume, without loss of generality, that

C′
= {c1, c2, c3}, which implies C0 ⊆ C′

, a contradiction.

This completes the proof. �
Therefore, the optimal SCs in Theorem 2.2.22 are, in fact, optimal SSCs from

the equivalence stated in Theorem 3.2.3.

Corollary 3.2.4 Let k ≥ 2 be a prime power. Then there is an optimal 2-SSC(2,M,

q) for any q ∈ {k2 − 1, k2 + k − 2, k2 + k − 1, k2 + k, k2 + k + 1}.

Finally, we consider the relationship between strong separable codes and frame-

proof codes de�ned below.

34

De�nition 3.2.5 Let C be an (n,M, q) code and t ≥ 2 be an integer. C is a t-

frameproof code, or t-FPC(n,M, q), if for any C′ ⊆ C such that |C′| ≤ t, we have

desc(C′)
∩

C = C′, that is, for any c = (c(1), . . . , c(n))T ∈ C \ C′, there is at least

one coordinate i, 1 ≤ i ≤ n, such that c(i) ̸∈ C′(i).

Intuitively, an (n,M, q) code is a t-FPC if no coalition of size at most t can

frame another user not in the coalition in generic digital �ngerprinting. Frameproof

codes were �rst introduced to prevent a coalition from framing a user not in the

coalition in [12], but were widely considered as having no traceability for generic

digital data (see for example [48]). However, Cheng and Miao [17] showed that

frameproof codes actually have traceability for multimedia contents. This greatly

strengthens the importance of frameproof codes in �ngerprinting.

Lemma 3.2.6 ([17]) Under the assumption that the number of colluders in the aver-

aging attack is at most t, any t-FPC(n,M, 2) can be used to identify all the colluders

with computational complexity O(nM) by using Algorithm 3.2 described in [17].

Lemma 3.2.7 Any t-FPC(n,M, q) is a t-SSC(n,M, q).

Proof: Let C be a t-FPC(n,M, q). We are going to show that for any C0 ⊆ C,
|C0| ≤ t, S(C0) = {C′ ⊆ C | desc(C′

) = desc(C0)} = {C0}. Assume that there exists

C′ ∈ S(C0) such that C′ ̸= C0.
(1) If |C′ | ≥ |C0|, then there exists c ∈ C′ ⊆ C such that c /∈ C0. Since

desc(C′
) = desc(C0), we have c ∈ desc(C0)

∩
C, while |C0| ≤ t, a contradiction to the

de�nition of a t-FPC.

(2) If |C′ | < |C0| ≤ t, then there exists c ∈ C0 ⊆ C such that c /∈ C′
. Since

desc(C′
) = desc(C0), we have c ∈ desc(C′

)
∩

C, while |C′ | < t, a contradiction to the

de�nition of a t-FPC.

According to the discussions above, we have S(C0) = {C0}. This implies that∩
C′∈S(C0) C

′
= C0. �

The following example shows that the converse of Lemma 3.2.7 does not always

hold.

Example 3.2.8 Consider the following (3, 4, 2) code C:

c1 c2 c3 c4

C =

 0 1 0 0

0 0 1 0

0 0 0 1


From Example 3.1.2, we know that C is a 2-SSC(3, 4, 2). Now, we show that C is not

a 2-FPC. For C′
= {c2, c3}, desc(C′)

∩
C = {c1, c2, c3} ̸= C′. This is a contradiction

to the de�nition of a 2-FPC.

35

Algorithm 3.2: FPCIdenAlg(R)

De�ne Ja, Jo to be the sets of indices where R(j) = {1}, R(j) = {0},
respectively, and Ja = (Ja(1), . . . ,Ja(|Ja|))T , Jo = (Jo(1), . . . ,Jo(|Jo|))T to

be the vector representing R's coordinates where R(j) = {1} and R(j) = {0},
respectively;

Φ = 1;

U1 = ∅;
for k = 1 to |Ja| do

j = Ja(k);

de�ne ej to be the jth row of C;
Φ = Φ · ej ;

for i = 1 to M do

if Φ(i) = 1 then

U1 = {i}
∪

U1;

Φ = 1;

U2 = ∅;
for k = 1 to |Jo| do

j = Jo(k);

Φ = Φ · ej ;

for i = 1 to M do

if Φ(i) = 1 then

U2 = {i}
∪

U2;

U = U1
∩

U2;

if |U | ≤ t then

output U ;

else
output �The set of colluders has size at least t+ 1."

36

We would like to make some remarks here. The multimedia �ngerprinting scheme

based on a t-FPC(n,M, 2) can have at most r · 2⌈
n
t
⌉ +O(2⌈

n
t
⌉−1) authorized users,

where r is the unique integer such that r ∈ {1, 2, . . . , t} and r = n (mod t) [10]. In

the case of large t, this number of users is too small to be of practical use. We can use

t-SSCs to overcome this shortcoming. On one hand, we know that t-SSC(n,M, 2)s

have the same traceability as t-FPC(n,M, 2)s from Theorem 3.1.3 and Lemma 3.2.6.

On the other hand, t-SSC(n,M, 2)s have weaker requirements than t-FPC(n,M, 2)s

from Lemma 3.2.7. Therefore, we can say that in some sense, the signi�cance of

t-SSC(n,M, 2)s relies on their maximum size.

3.3 Constructions for 2-SSCs of length 3

In this section, we investigate combinatorial properties of q-ary 2-SSCs of length 3,

and construct an in�nite series of such codes.

From Lemma 3.2.1, we know that any 2-SSC(3,M, q) is a 2-SC(3,M, q). There-

fore, we can start from 2-SC(3,M, q)s to investigate 2-SSC(3,M, q)s. At �rst, we

derive forbidden con�gurations of a 2-SSC(3,M, q).

Lemma 3.3.1 Let C be a 2-SC(3,M, q). If there exist C0, C
′ ⊆ C, |C0| ≤ 2 such

that desc(C0) = desc(C′
) and C0 ̸⊆ C′

, then C0 = {c1, c2} and the Hamming distance

d(c1, c2) /∈ {0, 1, 2}.

Proof: If |C0| = 1, then it is clear that C0 = C′
, a contradiction. So |C0| = 2. Let

C0 = {c1, c2}, ci = (ai, bi, ei), c1 ̸= c2. Since C is a 2-SC(3,M, q) and desc(C0) =
desc(C′

), we have C′ ⊆ desc(C0)
∩

C and |C′ | ≥ 3.

(1) If d(c1, c2) = 1, we may assume, without loss of generality, that a1 = a2,

b1 = b2, e1 ̸= e2. Then |desc(C0)| = 2. So |C′ | ≤ |desc(C0)| = 2, a contradiction.

(2) If d(c1, c2) = 2, we may assume, without loss of generality, a1 = a2,

b1 ̸= b2, e1 ̸= e2. Then desc(C0) = {c1, c2, c3, c4}, where c3 = (a1, b1, e2)
T and

c4 = (a1, b2, e1)
T . Then |desc(C0)

∩
C| ≤ 3. Otherwise, if |desc(C0)

∩
C| = 4, i.e.,

desc(C0)
∩

C = {c1, c2, c3, c4}, then desc({c1, c2}) = desc({c3, c4}), a contradiction

to the de�nition of a 2-SC. Since C′ ⊆ desc(C0)
∩

C and |C′ | ≥ 3, we have |C′ | = 3.

So, we may assume, without loss of generality, that C′
= {c1, c2, c3}. This implies

C0 ⊆ C′
, a contradiction.

This completes the proof. �

Lemma 3.3.2 Let C be a 2-SC(3,M, q). If there exist C0, C
′ ⊆ C, |C0| ≤ 2, such

that desc(C0) = desc(C′
) and C0 ̸⊆ C′

, then desc(C0)
∩

C is of one of the following

37

four types:

Type I: Type II: a1 a2 a1 a1

b1 b2 b1 b2

e1 e2 e2 e1

 ,

 a1 a2 a1 a2

b1 b2 b1 b1

e1 e2 e2 e1

 ,

Type III: Type IV: a1 a2 a1 a2

b1 b2 b2 b1

e1 e2 e1 e1

 ,

 a1 a2 a1 a1 a2

b1 b2 b1 b2 b1

e1 e2 e2 e1 e1

 ,

where C0 = {c1, c2}, ci = (ai, bi, ei), i = 1, 2, and a1 ̸= a2, b1 ̸= b2, e1 ̸= e2.

Proof: According to Lemma 3.3.1, we can only have C0 = {c1, c2}, ci = (ai, bi, ei)
T ,

where i = 1, 2, a1 ̸= a2, b1 ̸= b2, and e1 ̸= e2. Then desc(C0) = {c1, c2, c3, c4, c5, c6,
c7, c8}, where c3 = (a1, b1, e2)

T , c4 = (a1, b2, e1)
T , c5 = (a2, b1, e1)

T , c6 = (a2, b2, e1)
T ,

c7 = (a2, b1, e2)
T , c8 = (a1, b2, e2)

T .

c1 c2 c3 c4 c5 c6 c7 c8

desc(C0) =

 a1 a2 a1 a1 a2 a2 a2 a1

b1 b2 b1 b2 b1 b2 b1 b2

e1 e2 e2 e1 e1 e1 e2 e2


Let Bi = {ci+2, ci+5}, where 1 ≤ i ≤ 3. Then for any 1 ≤ i ≤ 3, we have Bi ̸⊆
desc(C0)

∩
C. Otherwise, desc(C0) = desc(Bi), a contradiction to the de�nition of a

2-SC. Since C is a 2-SC(3,M, q) and desc(C0) = desc(C′
), we have C′ ⊆ desc(C0)

∩
C

and |C′ | ≥ 3.

If desc(C0)
∩

C = C0, then C′ ⊆ C0, and thus |C′ | ≤ |C0| = 2, a contradiction.

So desc(C0)
∩

C contains at least one of the words c3, c4, c5, c6, c7, c8. Without

loss of generality, we may assume c3 ∈ desc(C0)
∩

C. Then c6 /∈ desc(C0)
∩

C. If

desc(C0)
∩

C = {c1, c2, c3}, since C′ ⊆ desc(C0)
∩

C and |C′ | ≥ 3, we have C′
=

{c1, c2, c3}, which implies C0 ⊆ C′
, a contradiction. So desc(C0)

∩
C should contain

at least one of the words c4, c5, c7, c8.

(1) If c4 ∈ desc(C0)
∩

C, then c7 /∈ desc(C0)
∩

C. We also have c8 /∈ desc(C0)
∩

C,
otherwise, desc({c1, c8}) = desc({c3, c4}), a contradiction. So, if c5 /∈ desc(C0)

∩
C,

then desc(C0)
∩

C is of Type I, and if c5 ∈ desc(C0)
∩

C, then desc(C0)
∩
C is of Type

IV.

(2) If c5 ∈ desc(C0)
∩

C, then c8 /∈ desc(C0)
∩

C. We also have c7 /∈ desc(C0)
∩

C,
otherwise, desc({c1, c7}) = desc({c3, c5}), a contradiction. So, if c4 /∈ desc(C0)

∩
C,

then desc(C0)
∩

C is of Type II, and if c4 ∈ desc(C0)
∩

C, then desc(C0)
∩

C is of

Type IV.

38

(3) If c7 ∈ desc(C0)
∩

C, then c4 /∈ desc(C0)
∩
C. Also, c5 /∈ desc(C0)

∩
C,

otherwise, desc({c1, c7}) = desc({c3, c5}), a contradiction. We further have c8 /∈
desc(C0)

∩
C, otherwise, desc({c2, c3}) = desc({c7, c8}), a contradiction. So, in this

case, desc(C0)
∩

C = {c1, c2, c3, c7}.

c1 c2 c3 c7

desc(C0)
∩

C =

 a1 a2 a1 a2

b1 b2 b1 b1

e1 e2 e2 e2


If c1 /∈ C′

(or c2 /∈ C′
), then e1 /∈ C′

(3) (or b2 /∈ C′
(2)), which implies desc(C′

) ̸=
desc(C0). Hence c1, c2 ∈ C′

, which implies C0 ⊆ C′
, a contradiction. So this case is

impossible.

(4) If c8 ∈ desc(C0)
∩

C, then c5 /∈ desc(C0)
∩
C. Also, c4 /∈ desc(C0)

∩
C,

otherwise, desc({c1, c8}) = desc({c3, c4}), a contradiction. We further have c7 /∈
desc(C0)

∩
C, otherwise, desc({c2, c3}) = desc({c7, c8}), a contradiction. So, in this

case, desc(C0)
∩

C = {c1, c2, c3, c8}.

c1 c2 c3 c8

desc(C0)
∩

C =

 a1 a2 a1 a1

b1 b2 b1 b2

e1 e2 e2 e2


If c1 /∈ C′

(or c2 /∈ C′
), then e1 /∈ C′

(3) (or a2 /∈ C′
(1)), which implies desc(C′

) ̸=
desc(C0). Hence c1, c2 ∈ C′

, which implies C0 ⊆ C′
, a contradiction. So this case is

impossible.

This completes the proof. �

Theorem 3.3.3 Let C be a 2-SC(3,M, q). Then C is a 2-SSC(3,M, q) if and only

if for any C0 = {c1, c2} = {(a1, b1, e1)T , (a2, b2, e2)T } ⊆ C, where a1 ̸= a2, b1 ̸= b2,

and e1 ̸= e2, we have that desc(C0)
∩
C is not of one of the following four types:

Type I: Type II: a1 a2 a1 a1

b1 b2 b1 b2

e1 e2 e2 e1

 ,

 a1 a2 a1 a2

b1 b2 b1 b1

e1 e2 e2 e1

 ,

Type III: Type IV: a1 a2 a1 a2

b1 b2 b2 b1

e1 e2 e1 e1

 ,

 a1 a2 a1 a1 a2

b1 b2 b1 b2 b1

e1 e2 e2 e1 e1

 .

39

Proof: Suppose that C is a 2-SSC(3,M, q). Assume that there exists C0 = {c1, c2} =

{(a1, b1, e1)T , (a2, b2, e2)T } ⊆ C, where a1 ̸= a2, b1 ̸= b2, and e1 ̸= e2, such that

desc(C0)
∩

C is of one of the four types. For convenience, let c3 = (a1, b1, e2)
T ,

c4 = (a1, b2, e1)
T , c5 = (a2, b1, e1)

T .

(1) If desc(C0)
∩

C is of type I, then desc({c1, c2}) = desc({c2, c3, c4}), while
{c1, c2} ̸⊆ {c2, c3, c4}, a contradiction to the de�nition of a 2-SSC. So this case is

impossible.

(2) If desc(C0)
∩

C is of type II, then desc({c1, c2}) = desc({c2, c3, c5}), while
{c1, c2} ̸⊆ {c2, c3, c5}, a contradiction to the de�nition of a 2-SSC. So this case is

impossible.

(3) If desc(C0)
∩

C is of type III, then desc({c1, c2}) = desc({c2, c4, c5}), while
{c1, c2} ̸⊆ {c2, c4, c5}, a contradiction to the de�nition of a 2-SSC. So this case is

impossible.

(4) If desc(C0)
∩

C is of type IV, then desc({c1, c2}) = desc({c3, c4, c5}), while
{c1, c2} ̸⊆ {c3, c4, c5}, a contradiction to the de�nition of a 2-SSC. So this case is

impossible.

So, desc(C0)
∩

C is not of one of the four types described above.

Conversely, suppose that C is a 2-SC(3,M, q), and for any C0 = {c1, c2} =

{(a1, b1, e1)T , (a2, b2, e2)T } ⊆ C, where a1 ̸= a2, b1 ̸= b2, and e1 ̸= e2, we have that

desc(C0)
∩

C is not of one of the four types. If C is not a 2-SSC(3,M, q), then there

exist C1 ⊆ C, |C1| ≤ 2, and C′ ∈ S(C1) = {C′ ⊆ C | desc(C′
) = desc(C1)}, such that

C1 ̸⊆ C′
. According to Lemma 3.3.2, C1 = {c′

1, c
′
2} = {(a′

1, b
′
1, e

′
1)

T , (a
′
2, b

′
2, e

′
2)

T } ⊆
C, where a

′
1 ̸= a

′
2, b

′
1 ̸= b

′
2, and e

′
1 ̸= e

′
2, such that desc(C1)

∩
C is of one of the four

types, a contradiction. So C is a 2-SSC(3,M, q). �
Now, we pay our attention to the construction of 2-SSCs of length 3 via the

discussion above. In order to describe our construction, we need s new elements

∞i /∈ Zq−s, i ∈ {0, 1, . . . , s − 1} ⊆ Zq−s, such that for any g ∈ Zq−s and any

i ∈ {0, 1, . . . , s− 1},

g +∞i = ∞i + g = g · ∞i = ∞i · g = ∞i.

Lemma 3.3.4 ([16]) A (3,M, q) code is a 2-SC(3,M, q) on Q if and only if

|Aj
g1

∩
Aj

g2 | ≤ 1 holds for any 1 ≤ j ≤ 3, and any distinct g1, g2 ∈ Q.

Lemma 3.3.5 Let C be a (3,M, q) code on Q. If for any C0 ⊆ C, |C0| ≤ 2, we have

|desc(C0)
∩

C| ≤ 3, then C is a 2-SSC(3,M, q).

Proof: We �rst show that C is a 2-SC(3,M, q). Assume not. According to Lemma

3.3.4, we may assume, without loss of generality, that there exist two distinct g1, g2 ∈
Q such that |A1

g1

∩
A1

g2 | ≥ 2. Suppose (b1, e1)
T , (b2, e2)

T ∈ A1
g1

∩
A1

g2 , where

(b1, e1)
T ̸= (b2, e2)

T . Then (g1, b1, e1)
T , (g2, b1, e1)

T , (g1, b2, e2)
T , (g2, b2, e2)

T ∈ C,

40

which imply |desc({(g1, b1, e1)T , (g2, b2, e2)T })
∩

C| ≥ 4, a contradiction to the hy-

pothesis. So C is a 2-SC(3,M, q). Next, we prove it is in fact a 2-SSC. Since for any

C0 ⊆ C, |C0| ≤ 2, |desc(C0)
∩

C| ≤ 3 always holds, we know that desc(C0)
∩

C can not

be of any of the four types mentioned in Theorem 3.3.3. So C is a 2-SSC(3,M, q)

from Theorem 3.3.3. �
Based on Lemma 3.3.5, we can construct 2-SSCs as follows.

Lemma 3.3.6 Suppose that q is a positive integer, s is a non-negative integer, where

0 ≤ s ≤ q
2 and q − s is odd. Then there exists a 2-SSC(3, q2 + sq − 2s2, q).

Proof: Since q − s is odd and 0 ≤ s ≤ q
2 , we can construct a code C on Q =

{∞0,∞1, . . . ,∞s−1}
∪

Zq−s as follows. Let

Ms =

 0 0 · · · 0

0 1 · · · q − s− 1

0 2 · · · 2(q − s− 1)

 , Mi =

 ∞i i 0

0 ∞i i

i 0 ∞i

 ,

i ∈ {0, 1, . . . , s− 1}. De�ne Dj = {c+ g | c ∈ Mj , g ∈ Zq−s}, where 0 ≤ j ≤ s, and

C =
∪s

j=0Dj . Then C is a (3, q2 + sq − 2s2, q) code on Q.

According to Lemma 3.3.5, in order to prove that C is a 2-SSC(3, q2+sq−2s2, q),

it su�ces to check that |desc(C0)
∩

C| ≤ 3 always holds for any C0 ⊆ C, |C0| ≤ 2. We

prove this lemma in two steps.

(1) At �rst, we will prove that for any distinct g1, g2 ∈ Q, (g1, g2) ∈ {∞0,∞1, . . . ,

∞s−1}2
∪

Z2
q−s, |Ai

g1

∩
Ai

g2 | = 0 always holds for any 1 ≤ i ≤ 3. We only need to

consider the case |A1
g1

∩
A1

g2 | = 0, because we can consider the other two cases in a

similar way.

(1.1) For any 0 ≤ i < j ≤ s − 1, we have A1
∞i

∩
A1

∞j
= ∅. Assume that

(b, e)T ∈ A1
∞i

∩
A1

∞j
. Then there exist b1, b2 ∈ Zq−s, such that (b, e)T = (b1, b1 +

i)T = (b2, b2 + j)T , which implies b1 = b2 = b, and i = j, a contradiction.

(1.2) For any distinct i, j ∈ Zq−s, we have A1
i

∩
A1

j = ∅. Assume that (b, e)T ∈
A1

i

∩
A1

j .

(1.2.A) If there exists 0 ≤ k ≤ s − 1 such that b = ∞k, then (b, e)T = (∞k, i −
k)T = (∞k, j − k)T , which implies i = j, a contradiction.

(1.2.B) If there exists 0 ≤ k ≤ s − 1 such that e = ∞k, then (b, e)T = (i +

k,∞k)
T = (j + k,∞k)

T , which implies i = j, a contradiction.

(1.2.C) If b, e /∈ {∞0,∞1, . . . ,∞s−1}, then there exist b1, b2 ∈ Zq−s, such that

(b, e)T = (i+b1, i+2b1)
T = (j+b2, j+2b2)

T . Hence i+b1 = j+b2 and i+2b1 = j+2b2,

which imply b1 = b2 and i = j, a contradiction.

(2) According to (1), we know that for any distinct g1, g2 ∈ Q and any 1 ≤ i ≤ 3,

|Ai
g1

∩
Ai

g2 | ≥ 1 implies (g1, g2) ∈ Zq−s×{∞0,∞1, . . . ,∞s−1}. We are going to show

that |desc(C0)
∩

C| ≤ 3 always holds for any C0 ⊆ C, |C0| ≤ 2. If |C0| = 1, then it is

41

clear that |desc(C0)
∩

C| = |C0| = 1. Now, we consider the case |C0| = 2. Suppose

C0 = {c1, c2} = {(a1, b1, e1)T , (a2, b2, e2)T } ⊆ C, where c1 ̸= c2. Consider the

Hamming distance of c1 and c2.

(2.1) If d(c1, c2) = 1, then it is clear that |desc(C0)
∩

C| = |C0| = 2.

(2.2) If d(c1, c2) = 2, without loss of generality, we may assume that a1 = a2,

b1 ̸= b2, e1 ̸= e2. Then desc(C0) = {c1, c2, c3, c4}, where c3 = (a1, b1, e2)
T and

c4 = (a1, b2, e1)
T .

c1 c2 c3 c4

desc(C0) =

 a1 a1 a1 a1

b1 b2 b1 b2

e1 e2 e2 e1


Assume that |desc(C0)

∩
C| = 4, i.e. desc(C0)

∩
C = {c1, c2, c3, c4}. Then |A3

e1

∩
A3

e2 |
≥ 1, which implies that exactly one of e1 and e2 is ∞i for some 0 ≤ i ≤ s− 1.

(2.2.A) If e1 = ∞i, then c1 = c4, which implies |desc(C0)
∩

C| ≤ 3, a contradic-

tion.

(2.2.B) If e2 = ∞i, then c2 = c3, which implies |desc(C0)
∩

C| ≤ 3, a contradic-

tion.

So, if d(c1, c2) = 2, |desc(C0)
∩

C| ≤ 3 always holds.

(2.3) If d(c1, c2) = 3, then a1 ̸= a2, b1 ̸= b2, e1 ̸= e2, and desc(C0) =

{c1, c2, c3, c4, c5, c6, c7, c8}, where c3 = (a1, b1, e2)
T , c4 = (a1, b2, e1)

T , c5 = (a2, b1,

e1)
T , c6 = (a2, b2, e1)

T , c7 = (a2, b1, e2)
T , c8 = (a1, b2, e2)

T .

c1 c2 c3 c4 c5 c6 c7 c8

desc(C0) =

 a1 a2 a1 a1 a2 a2 a2 a1

b1 b2 b1 b2 b1 b2 b1 b2

e1 e2 e2 e1 e1 e1 e2 e2


We are going to show that desc(C0)

∩
C contains at most one element of the set B =

{c3, c4, c5, c6, c7, c8}. Assume not. Then there exist two elements c′, c′′ of B con-

tained in desc(C0)
∩

C, where {c′, c′′} ∈ {{c3, c4}, {c3, c5}, {c3, c6}, {c3, c7}, {c3, c8},
{c4, c5}, {c4, c6}, {c4, c7}, {c4, c8}, {c5, c6}, {c5, c7}, {c5, c8}, {c6, c7}, {c6, c8}, {c7,
c8}}. However, we can prove none of them is possible.

(2.3.A) If {c′, c′′} = {c3, c4}, then we have {c1, c2, c3, c4} ⊆ desc(C0)
∩

C.

c1 c2 c3 c4 a1 a2 a1 a1

b1 b2 b1 b2

e1 e2 e2 e1


Then |A3

e1

∩
A3

e2 | ≥ 1 (from c1 and c3) and |A2
b1

∩
A2

b2
| ≥ 1 (from c1 and c4). Hence

there exist 0 ≤ i, j ≤ s − 1 such that exactly one of e1 and e2 is ∞i, and exactly

one of b1 and b2 is ∞j .

42

(2.3.A.a) If e1 = ∞i, then ∞j /∈ {b1, b2} from c1 and c4, a contradiction. So,

this case is impossible.

(2.3.A.b) If e2 = ∞i, then ∞j /∈ {b1, b2} from c2 and c3, a contradiction. So,

this case is impossible.

Similarly, we can know that it is impossible for {c′, c′′} ∈ {{c3, c5}, {c4, c5}, {c6,
c7}, {c6, c8}, {c7, c8}}.

(2.3.B) If {c′, c′′} = {c3, c6}, then we have {c1, c2, c3, c6} ⊆ desc(C0)
∩

C.

c1 c2 c3 c6 a1 a2 a1 a2

b1 b2 b1 b2

e1 e2 e2 e1


Then |A3

e1

∩
A3

e2 | ≥ 1 (from c1 and c3). Hence, without loss of generality, we may

assume that e1 ∈ Zq−s and there exists 0 ≤ i ≤ s− 1 such that e2 = ∞i. Then we

can derive that a1, a2, b1 = a1 + i, b2 = a2 + i ∈ Zq−s, which imply c1, c6 ∈ Ds. So

we can derive e1 = a1 + 2i = a2 + 2i, which implies a1 = a2, a contradiction. So

this case is impossible.

Similarly, it is impossible that {c′, c′′} ∈ {{c4, c7}, {c5, c8}}.
(2.3.C) If {c′, c′′} = {c3, c7}, then we have {c1, c2, c3, c7} ⊆ desc(C0)

∩
C.

c1 c2 c3 c7 a1 a2 a1 a2

b1 b2 b1 b1

e1 e2 e2 e2


Then |A3

e1

∩
A3

e2 | ≥ 1 (from c1 and c3), |A2
b1

∩
A2

b2
| ≥ 1 (from c2 and c7), and

|A1
a1

∩
A1

a2 | ≥ 1 (from c3 and c7). Hence there exists 0 ≤ i, j, k ≤ s − 1 such

that exactly one of e1 and e2 is ∞i, and ∞j ∈ {b1, b2}, ∞k ∈ {a1, a2}. Then at

least one of (a1, b1, e1)
T and (a2, b2, e2)

T contains at least two components from

{∞0,∞1, . . . ,∞s−1}, a contradiction. So this case is impossible.

Similarly, it is impossible that {c′, c′′} ∈ {{c3, c8}, {c4, c6}, {c4, c8}, {c5, c6},
{c5, c7}}.

The conclusion then comes from Lemma 3.3.5. �

Theorem 3.3.7 There exists a 2-SSC(3, 18(9q
2 −w2), q) for any positive integer q,

with m being the residue of q modulo 8, and

w =

{
4−m, if m ≡ 0 (mod 4),

min{m, 8−m}, otherwise.

Proof: According to Lemma 3.3.6, there exists a 2-SSC(3, q2 + sq − 2s2, q) for any

positive integer q, where 0 ≤ s ≤ q
2 , and q − s is odd. Let q = 8r +m, where r is

43

a non-negative integer, and f(s) = q2 + sq − 2s2 = −2(s− q
4)

2 + 9
8q

2. Now, we are

going to �nd the maximum value of f(s), where 0 ≤ s ≤ q
2 and q − s is odd.

(1) If m = 0, then q is even. Since q
4 = 2r is even, s = 2r − 1 = q−4

4 is odd, we

can know q − s is odd, and f(q−4
4) = 1

8(9q
2 − 42) is the maximum value of f(s).

(2) If m = 1, then q is odd and q
4 = 2r + 1

4 . Since s = 2r = q−1
4 is even, we can

know q − s is odd, and f(q−1
4) = 1

8(9q
2 − 1) is the maximum value of f(s).

(3) If m = 2, then q is even and q
4 = 2r + 2

4 . Since s = 2r + 1 = q+2
4 is odd, we

can know q − s is odd, and f(q+2
4) = 1

8(9q
2 − 22) is the maximum value of f(s).

(4) If m = 3, then q is odd and q
4 = 2r + 3

4 . Since s = 2r = q−3
4 is even, we can

know q − s is odd, and f(q−3
4) = 1

8(9q
2 − 32) is the maximum value of f(s).

(5) If m = 4, then q is even. Since s = 2r + 1 = q
4 is odd, we can know q − s is

odd, and f(q4) =
9
8q

2 is the maximum value of f(s).

(6) If m = 5, then q is odd and q
4 = 2r + 5

4 . Since s = 2r + 2 = q+3
4 is even, we

can know q − s is odd, and f(q+3
4) = 1

8(9q
2 − 32) is the maximum value of f(s).

(7) If m = 6, then q is even and q
4 = 2r + 6

4 . Since s = 2r + 1 = q−2
4 is odd, we

can know q − s is odd, and f(q−2
4) = 1

8(9q
2 − 22) is the maximum value of f(s).

(8) If m = 7, then q is odd and q
4 = 2r + 7

4 . Since s = 2r + 2 = q+1
4 is even, we

can know q − s is odd, and f(q+1
4) = 1

8(9q
2 − 1) is the maximum value of f(s).

We can summarize the results obtained in (1)-(8) into the following table, from

which the conclusion comes.

m w s f(s)

0 4 1
4(q − 4) 1

8(9q
2 − 42)

1 1 1
4(q − 1) 1

8(9q
2 − 12)

2 2 1
4(q + 2) 1

8(9q
2 − 22)

3 3 1
4(q − 3) 1

8(9q
2 − 32)

4 0 q
4

9
8q

2

5 3 1
4(q + 3) 1

8(9q
2 − 32)

6 2 1
4(q − 2) 1

8(9q
2 − 22)

7 1 1
4(q + 1) 1

8(9q
2 − 12)

�
As is well-known, for any 2-FPC(3,M, q), we have M ≤ q2 (see for example [6]).

Theorem 3.3.7 shows that there is an in�nite series of 2-SSC(3,M
′
, q)s which have

more than 12.5% codewords than 2-FPC(3,M, q)s could have.

44

Chapter 4

Multimedia Identi�able Parent

Property Codes

In Chapter 2, we know that any binary t-SC can be used to identify all colluders

when the number of colluders in the averaging attack is at most t. However, in most

cases, the number of codewords in a t-SC which is corresponding to the number of

authorized users is still too small to be of practical use. Meanwhile, guaranteeing

exact identi�cation of at least one member of the pirate coalition of size at most t

would bring enough pressure to bear on malicious authorized users to give up their

attempts at collusion.

In this chapter, we introduce a new anti-collusion code called multimedia identi-

�able parent property code (t-MIPPC) to resist the averaging attack on multimedia

contents in a �ngerprinting system with number of users beyond a t-SC could pro-

vide. Although t-MIPPCs can not be used to identify all the colluders when the size

of the coalition is at most t, nevertheless they can be used to identify at least one

colluder, thereby helping stop the proliferation of the fraudulent content in digital

marketplace.

In Section 4.1, we introduce the notion of an MIPPC, describe a colluder tracing

algorithm based on a binary MIPPC, and show a concatenation construction for

binary MIPPCs from q-ary MIPPCs. In Section 4.2, some upper bounds on the

size of an MIPPC are derived. We also investigate combinatorial properties of a

3-MIPPC of length 2, characterize such a code in terms of a bipartite graph, and

derive a tight upper bound on a 3-MIPPC of length 2 in Section 4.2. In Section

4.3, we characterize a 3-MIPPC of length 2 in terms of a generalized packing, and

construct several in�nite series of (asymptotically) optimal 3-MIPPCs of length 2.

4.1 Tracing algorithm for multimedia identi�able parent

property codes

In this section, we �rst introduce the notion of a multimedia identi�able parent

property code (MIPPC). We then show a tracing algorithm based on this new code,

and present a concatenation construction for binary MIPPCs from q-ary MIPPCs.

De�nition 4.1.1 Let C be an (n,M, q) code, and for any R ⊆ C(1)× C(2)× · · · ×
C(n), de�ne the set of parent sets of R as

Pt(R) = {C′ ⊆ C | |C′ | ≤ t, R = desc(C′
)}.

We say that C is a code with the identi�able parent property (IPP) for multimedia

�ngerprinting, or a multimedia IPP code, denoted t-MIPPC(n,M, q), if∩
C′∈Pt(R)

C′ ̸= ∅

is satis�ed for any R ⊆ C(1)× C(2)× · · · × C(n) with Pt(R) ̸= ∅.

Intuitively, Pt(R) consists of all the sub-codes of C with size at most t that could

have produced all the words in R, and an (n,M, q) code C is a t-MIPPC(n,M, q) if

the following condition is satis�ed: even if there are distinct sub-codes of C, each of

size at most t, could produce the same set R of words, we can track down at least

one parent of R which is contained in each parent set of R. In fact, any codeword

in
∩

C′∈Pt(R) C
′
is a parent of R.

Example 4.1.2 Consider the following (3, 4, 2) code C:

c1 c2 c3 c4

C =

 0 1 1 1

1 0 1 0

1 0 0 1


Obviously

C(1)× C(2)× C(3) = {0, 1} × {0, 1} × {0, 1}.

There are exactly two cases satisfying |P3(R)| ≥ 2, that is, R = {1} × {0, 1} ×
{0, 1}, {0, 1} × {0, 1} × {0, 1}. In the �rst case,

P3({1} × {0, 1} × {0, 1}) = {{c3, c4}, {c2, c3, c4}},

and

{c3, c4}
∩

{c2, c3, c4} = {c3, c4} ̸= ∅.

In the second case,

P3({0, 1} × {0, 1} × {0, 1}) = {{c1, c2}, {c1, c2, c3}, {c1, c2, c4}, {c1, c3, c4}},

and

{c1, c2}
∩

{c1, c2, c3}
∩

{c1, c2, c4}
∩

{c1, c3, c4} = {c1} ̸= ∅.

So the code C is a 3-MIPPC(3, 4, 2)

46

MIPPCs are a variation of IPP codes, which were introduced for the purpose

of protecting copyrighted digital contents, and a generalization of separable codes.

The notion of an IPP code was �rst introduced in a special case in [32], investigated

in full generality in [2, 4, 5, 8, 46, 53], and surveyed in [9].

In De�nition 4.1.1, if R is set to be a singleton set {d}, and the set of parent

sets be modi�ed as

Pt(R) = {C′ ⊆ C | |C′ | ≤ t,d ∈ desc(C′
)},

then we obtain a t-IPP code, while if we require that |Pt(R)| = 1 for any R ⊆
C(1)× C(2)× · · · × C(n) with Pt(R) ̸= ∅, then we obtain a t-separable code.

Lemma 4.1.3 Any t-SC(n,M, q) is a t-MIPPC(n,M, q).

Using the tracing algorithm MIPPCTraceAlg(R) described in Theorem 4.1.5, we

know that by means of a binary MIPPC, we can capture a set R ⊆ C(1)×· · ·×C(n) in
the multimedia scenario instead of an element d ∈ R in the generic digital scenario,

and although binary t-MIPPCs can not identify all malicious users as binary t-

separable codes do when the size of the coalition is at most t, they can identify,

as IPP codes do in the generic digital scenario [3, 32], at least one such malicious

authorized user, thereby helping stop the proliferation of the fraudulent content in

digital marketplace.

Therefore, we can say that in some sense, the signi�cance of t-MIPPCs re-

lies on their maximum sizes. For t = 2, we will show in Lemma 4.1.4 that a

t-MIPPC(n,M, q) is in fact a t-SC(n,M, q), so they have the same maximum size.

For t > 2, the maximum size of a t-SC(n,M, q) is O(q⌈n/(t−1)⌉) (see [16]), while

the maximum size of a t-MIPPC(n,M, q) will be shown in Theorem 4.2.2 to be

O(q(t+1)n/(2t)), except for the case that t is even and n is odd, where the value is

O(q((t+1)n+1)/(2t)). This is a signi�cant improvement on the number of codewords,

which makes the notion of MIPPCs useful.

Lemma 4.1.4 Let C be an (n,M, q) code. Then C is a 2-MIPPC(n,M, q) if and

only if it is a 2-SC(n,M, q).

Proof: From Lemma 4.1.3, we only need to consider its necessity. Assume that

C is a 2-MIPPC(n,M, q) such that C1, C2 ⊆ C, |C1| ≤ 2, |C2| ≤ 2, C1 ̸= C2, and
desc(C1) = desc(C2). Then C1

∩
C2 ̸= ∅. Let a ∈ C1

∩
C2. There are two cases to be

considered.

(1) C1 = {a}, C2 = {a,b}: Since desc(C1) = desc(C2), we have a = b, which

implies C1 = C2.

47

(2) C1 = {a,b}, C2 = {a, c}: Let a = (a(1), . . . ,a(n))T , b = (b(1), . . . ,b(n))T

and c = (c(1), . . . , c(n))T . Since desc(C1) = desc(C2), we have {a(i),b(i)} =

{a(i), c(i)} for any 1 ≤ i ≤ n. Now, if b(i) = a(i), then c(i) = b(i). On the

other hand, if b(i) ̸= a(i), then c(i) = b(i) since {a(i),b(i)} = {a(i), c(i)}.
Hence, c(i) = b(i) holds for any 1 ≤ i ≤ n. This implies b = c and thus

C1 = C2.

So for any distinct C1, C2 ⊆ C such that 1 ≤ |C1| ≤ 2, 1 ≤ |C2| ≤ 2, it always holds

that desc(C1) ̸= desc(C2). This means that C is a 2-SC(n,M, q). �
Now we describe a tracing algorithm based on a binary MIPPC. The following

theorem shows that binary t-MIPPCs can be used to identify at least one colluder

in the averaging attack.

Theorem 4.1.5 Under the assumption that the number of colluders in the averaging

attack is at most t, any t-MIPPC(n,M, 2) can be used to identify at least one colluder

with computational complexity O(nM t) by applying Algorithm 4.1 described below.

Proof: Let C be the t-MIPPC(n,M, 2), and R ⊆ C(1)× · · · × C(n) be the captured
descendant code derived from the detection statistics T. Then by applying the

following tracing algorithm, Algorithm 4.1, we can identify at least one colluder.

Algorithm 4.1: MIPPCTraceAlg(R)

Given R;

Find Pt(R) = {C′ ⊆ C | |C′ | ≤ t, R = desc(C′
)};

Compute C0 =
∩

C′∈Pt(R)

C′
;

if |C0| ≤ t then

output C0 as the set of colluders;

else

output �the set of colluders has size at least t+ 1";

The computational complexity is obvious. We need only to show that any user

u assigned with a codeword c ∈ C0 is a colluder. Since R is the captured descendant

code derived from the detection statistics T, it is clear that Pt(R) ̸= ∅. Therefore,

C0 =
∩

C′∈Pt(R)

C′ ̸= ∅

by the de�nition of a t-MIPPC. Assume that u is not a colluder. Then for any

C′ ∈ Pt(R), we have C′ \ {c} ∈ Pt(R), which implies c /∈ C0, a contradiction. �
The following theorem is a simple concatenation construction for binary t-MIPPCs

from q-ary t-MIPPCs, which stimulates us to investigate q-ary t-MIPPCs with short

length.

48

Lemma 4.1.6 If there exists a t-MIPPC(n,M, q), then there exists a t-MIPPC(nq,

M, 2).

Proof: Let C = {c1, c2, . . . , cM} be the t-MIPPC(n,M, q) de�ned on Q = {0, 1, . . . ,
q−1}, and E = {e1, e2, . . . , eq}, where ei is the i-th column identity vector, i.e., all its

coordinates are 0 except the i-th one being 1. Let f : Q −→ E be the bijective map-

ping such that f(i) = ei+1. For any codeword c = (c(1), c(2), . . . , c(n))T ∈ C, we
de�ne f(c) = (f(c(1)), f(c(2)), . . . , f(c(n)))T . Obviously, f(c) is a binary column

vector of length nq. We de�ne a new (nq,M, 2) code F = {f(c1), f(c2), . . . , f(cM)}.
We are going to show that F is in fact a t-MIPPC.

Consider any S ⊆ F(1)× · · · × F(nq) with Pt(S) = {F1, . . . ,Fr} ̸= ∅. Each Fi

corresponds to a subcode Ci ⊆ C such that |Ci| ≤ t, where Fi = {f(c) | c ∈ Ci}.
Since desc(F1) = desc(F2) = · · · = desc(Fr), we immediately have desc(C1) =

desc(C2) = · · · = desc(Cr). Since C is a t-MIPPC(n,M, q), we have
∩r

i=1 Ci ̸= ∅.
Let c ∈

∩r
i=1 Ci, then c ∈ Ci for any 1 ≤ i ≤ r, which implies f(c) ∈ Fi for any

1 ≤ i ≤ r, and thus f(c) ∈
∩r

i=1Fi. Therefore,
∩r

i=1Fi ̸= ∅. This completes the

proof. �

4.2 Upper bounds

In this section, we discuss the upper bound on the size of an MIPPC. We �rst derive

a general upper bound on the size of a t-MIPPC(n,M, q), and then investigate 3-

MIPPCs in more detail. By investigating the combinatorial properties of 3-MIPPCs

of length 2, we further derive a tight upper bound for 3-MIPPCs of length 2.

4.2.1 A general upper bound

Let MMIPPC(t, n, q) = max{M | there exists a t-MIPPC(n,M, q)}. A t-MIPPC(n,

M, q) is said to be optimal if M = MMIPPC(t, n, q), and asymptotically optimal if

lim
q→∞

M
MMIPPC(t,n,q) = 1. Let GX,Y = G(u, v) be a bipartite graph on u vertices in

the class X and v vertices in the class Y . Without loss of generality, we may assume

that u ≥ v. Let e(G) denote the number of edges of G, that is, the size of G.

Lemma 4.2.1 ([37, 36]) If a bipartite graph G(u, v) contains no cycle of length less

than or equal to 2l, where u ≥ v, then

e(G) ≤

 (uv)
l+1
2l + c(u+ v), l is odd,

v
1
2u

l+2
2l + c(u+ v), l is even,

where c is a constant depending only on l.

An application of Lemma 4.2.1 is the following theorem.

49

Theorem 4.2.2 MMIPPC(t, n, q) ≤ q
n
2 (q

n
2t + 2c) if n is even, and

MMIPPC(t, n, q) ≤

{
q

n
2 (q

n+1
2t + c(q

1
2 + q−

1
2)), t is even,

q
n
2 (q

n
2t + c(q

1
2 + q−

1
2)), t is odd

if n is odd, where c is a constant depending only on t.

Proof: Let C be a t-MIPPC(n,M, q) de�ned on Q. We prove this theorem in two

cases.

If n is even, we construct a bipartite graph G(q
n
2 , q

n
2) as follows. Let X = Y =

Q
n
2 . An edge connects a ∈ X and b ∈ Y if and only if (a,b)T ∈ C. Obviously,

M = e(G). Suppose that there exists a 2t0-cycle in G, where 2 ≤ t0 ≤ t. Let

(a1,b1,a2,b2, . . . , at0 ,bt0) be the 2t0-cycle, where ai, 1 ≤ i ≤ t0, are distinct ver-

tices in X, and bi, 1 ≤ i ≤ t0, are distinct vertices in Y . Then (ai,bi)
T ∈ C for

1 ≤ i ≤ t0, and (a1,bt0)
T , (ai,bi−1)

T ∈ C for 2 ≤ i ≤ t0. Let C1 = {(ai,bi)
T | 1 ≤

i ≤ t0}, C2 = {(a1,bt0)
T }
∪
{(ai,bi−1)

T | 2 ≤ i ≤ t0}. Then desc(C1) = desc(C2),
but C1

∩
C2 = ∅, a contradiction to the fact that C is a t-MIPPC(n,M, q). So G

contains no cycle of length less than or equal to 2t. The conclusion then comes from

Lemma 4.2.1.

If n is odd, we construct a bipartite graph G(q
n+1
2 , q

n−1
2) with X = Q

n+1
2 , Y =

Q
n−1
2 . Similarly, we can show that G contains no cycle of length less than or equal

to 2t, and the conclusion follows by Lemma 4.2.1. �

4.2.2 An upper bound for 3-MIPPCs of length 2

In order to derive a tight upper bound on the size of a 3-MIPPC of length 2, we

present a combinatorial characterization of 3-MIPPCs. We �rst prove the following

lemma on 2-separable codes.

Lemma 4.2.3 Let C be a (2,M, q) code on Q. Then C is a 2-SC(2,M, q) if and

only if |A1
a1

∩
A1

a2 | ≤ 1 holds in C for any distinct elements a1, a2 ∈ Q.

Proof: Let C be a 2-SC(2,M, q). Assume that there exist distinct elements a1, a2 ∈
Q satisfying |A1

a1

∩
A1

a2 | ≥ 2. Suppose b1, b2 ∈ A1
a1

∩
A1

a2 , b1 ̸= b2. Then (a1, b1)
T ,

(a1, b2)
T , (a2, b1)

T , (a2, b2)
T ∈ C. Let C1 = {(a1, b1)T , (a2, b2)T } and C2 = {(a1, b2)T ,

(a2, b1)
T }. Then C1 ̸= C2 and desc(C1) = desc(C2), a contradiction to the de�nition

of a 2-SC(2,M, q).

Now we consider its su�ciency. Suppose that |A1
a1

∩
A1

a2 | ≤ 1 holds in C for

any distinct elements a1, a2 ∈ Q, but C is not a 2-SC(2,M, q). This implies that

there exist C1, C2 ⊆ C, C1 ̸= C2, 1 ≤ |C1| ≤ 2 and 1 ≤ |C2| ≤ 2, such that desc(C1) =
desc(C2).

50

Let C1 = {c1, c2}, C2 = {c3, c4}, C1 ̸= C2, and ci = (ai, bi)
T for 1 ≤ i ≤ 4. We

remark here that we allow c1 = c2 or c3 = c4. Since desc(C1) = desc(C2), then
C1(1) = C2(1) and C1(2) = C2(2). This implies that a1 = a2 (or a3 = a4) if and only

if a1 = a2 = a3 = a4, and b1 = b2 (or b3 = b4) if and only if b1 = b2 = b3 = b4.

Now, if a1 = a2, then a1 = a2 = a3 = a4. Since C1 ̸= C2, we have b1 ̸= b2.

By the fact that C1(2) = C2(2), we have {b1, b2} = {b3, b4}, and therefore C1 = C2,
a contradiction. On the other hand, if a1 ̸= a2, then a3 ̸= a4. Clearly, b1 ̸=
b2, otherwise we can use a similar argument to conclude that C1 = C2. Now, we

have {a1, a2} = {a3, a4} and {b1, b2} = {b3, b4} as set equalities. Without loss of

generality, we may assume a1 = a3 and a2 = a4. In this case, if b1 = b3, then

b2 = b4, and thus C1 = C2, a contradiction. Therefore, b1 = b4 and b2 = b3, which

implies that A1
a1

∩
A1

a2 = {b1, b2}, a contradiction. This completes the proof. �
Now we turn our attention to 3-MIPPCs.

Lemma 4.2.4 Let C be a 3-MIPPC(n,M, q) de�ned on Q. Then

(I) |A1
a1

∩
A1

a2 | ≤ 1 always holds for any distinct elements a1, a2 ∈ Q;

(II) There do not exist distinct elements a1, a2, a3 ∈ Q and distinct vectors b1,b2,

b3 ∈ Qn−1 such that b1,b2 ∈ A1
a1, b2,b3 ∈ A1

a2, b1,b3 ∈ A1
a3.

Proof: (I) If there exist distinct elements a1, a2 ∈ Q satisfying that |A1
a1

∩
A1

a2 | ≥
2, say b1 ̸= b2 ∈ A1

a1

∩
A1

a2 , then (a1,b1)
T , (a1,b2)

T , (a2,b1)
T , (a2,b2)

T ∈ C.
Let C1 = {(a1,b1)

T , (a2,b2)
T } and C2 = {(a1,b2)

T , (a2,b1)
T }. Then desc(C1) =

desc(C2), but C1
∩

C2 = ∅, a contradiction to the de�nition of a 3-MIPPC(n,M, q).

(II) If there exist distinct elements a1, a2, a3 ∈ Q and distinct vectors b1,b2,b3 ∈
Qn−1 such that b1,b2 ∈ A1

a1 , b2,b3 ∈ A1
a2 , b1,b3 ∈ A1

a3 , then (a1,b1)
T , (a1,b2)

T ,

(a2,b2)
T , (a2,b3)

T , (a3,b1)
T , (a3,b3)

T ∈ C. Let C1 = {(a1,b1)
T , (a2,b2)

T ,

(a3,b3)
T }, C2 = {(a1,b2)

T , (a2,b3)
T , (a3,b1)

T }. Then desc(C1) = desc(C2), but
C1
∩

C2 = ∅, a contradiction to the de�nition of a 3-MIPPC(n,M, q). �
It is of interest to see that the converse of Lemma 4.2.4 is true when n = 2.

Lemma 4.2.5 Let C be a (2,M, q) code de�ned on Q. If C satis�es the following

two conditions:

(I) |A1
a1

∩
A1

a2 | ≤ 1 always holds for any distinct elements a1, a2 ∈ Q;

(II) There do not exist distinct elements a1, a2, a3 ∈ Q and distinct elements

b1, b2, b3 ∈ Q, such that b1, b2 ∈ A1
a1, b2, b3 ∈ A1

a2, b1, b3 ∈ A1
a3.

Then C is a 3-MIPPC(2,M, q).

51

Proof: Suppose C satis�es conditions (I) and (II). We prove this lemma in three

steps.

(1) At �rst, we prove that if there exist C1, C2 ⊆ C, C1 ̸= C2, |C1| ≤ 3, |C2| ≤ 3,

satisfying desc(C1) = desc(C2), then C1 and C2 should be of one of the following three

types:

Type I:

c1 c2 c3(
a1 a2 a1

b1 b2 b2

)
,

where C1 = {c1, c2}, C2 = {c1, c2, c3}, a1 ̸= a2, b1 ̸= b2;

Type II:

c1 c2 c3 c4(
a1 a2 a3 a1

b1 b1 b3 b3

)
,

where C1 = {c1, c2, c3}, C2 = {c2, c3, c4}, ak1 ̸= ak2 , 1 ≤ k1 < k2 ≤ 3, b1 ̸= b3;

Type III:

c1 c2 c3 c4(
a1 a1 a3 a3

b1 b2 b3 b1

)
,

where C1 = {c1, c2, c3}, C2 = {c2, c3, c4}, a1 ̸= a3, bk1 ̸= bk2 , 1 ≤ k1 < k2 ≤ 3.

(1.1) If |C1| ≤ 2, |C2| ≤ 2, then C is not a 2-SC(2,M, q). However, according to

condition (I) and Lemma 4.2.3, C is a 2-SC(2,M, q), a contradiction. So this case

is impossible.

(1.2) If |C1| = 1, |C2| = 3, let C1 = {c1}, C2 = {c2, c3, c4}, where ci = (ai, bi)
T ,

1 ≤ i ≤ 4. Then a1 = a2 = a3 = a4 and b1 = b2 = b3 = b4 according to

desc(C1) = desc(C2), which implies c1 = c2 = c3 = c4, a contradiction. So this case

is not possible either.

(1.3) Consider the case |C1| = 2, |C2| = 3. Let |C1| = {c1, c2}, |C2| = {c3, c4, c5},
where ci = (ai, bi)

T , 1 ≤ i ≤ 5.

(1.3.A) If a1 = a2, then a3 = a4 = a5 = a1. Since {b1, b2} = {b3, b4, b5}, there
must be two identical elements in {b3, b4, b5}. We may assume b3 = b4. Then

c3 = c4, a contradiction. So this case is impossible.

(1.3.B) If a1 ̸= a2, since desc(C1) = desc(C2), then a3, a4, a5 ∈ {a1, a2} and

b3, b4, b5 ∈ {b1, b2}. Without loss of generality, we may assume that a3 = a4 = a1 and

a5 = a2. Then b3 ̸= b4, otherwise, c3 = c4, a contradiction. Since b3, b4 ∈ {b1, b2},
then b1 ̸= b2 and we may assume that b3 = b1 and b4 = b2.

c1 c2
∣∣ c3 c4 c5(

a1 a2 a1 a1 a2

b1 b2 b1 b2

)

52

If b5 = b1, then b1, b2 ∈ A1
a1

∩
A1

a2 , that is, |A
1
a1

∩
A1

a2 | ≥ 2, a contradiction to

condition (I). So this case is impossible.

If b5 = b2, then

c1 c2
∣∣ c3 c4 c5(

a1 a2 a1 a1 a2

b1 b2 b1 b2 b2

)
,

that is,

c1(c3) c2(c5) c4(
a1 a2 a1

b1 b2 b2

)
.

So C1 and C2 are of type I.

(1.4) Consider the case |C1| = 3, |C2| = 3. Let C1 = {c1, c2, c3}, C2 = {c4, c5, c6},
where ci = (ai, bi)

T , 1 ≤ i ≤ 6.

(1.4.A) If a1 = a2 = a3 or b1 = b2 = b3, then C1 = C2, a contradiction. So this

case is impossible.

(1.4.B) Consider the case a1 = a2 and a3 ̸= a1. Then b1 ̸= b2, otherwise, c1 = c2,

a contradiction.

(1.4.B.a) Suppose b1 = b3. Since a3 ∈ {a4, a5, a6}, we may assume a4 = a3.

Then b4 = b1, otherwise, b4 = b2, which implies b1, b2 ∈ A1
a1

∩
A1

a3 , a contradiction

to condition (I).

c1 c2 c3
∣∣ c4 c5 c6(

a1 a1 a3 a3

b1 b2 b1 b1

)
Now we consider c5 and c6. If a5 = a3 or a6 = a3, similarly, we can show that

b5 = b1 or b6 = b1, respectively, which implies c5 = c4 or c6 = c4, respectively, a

contradiction. So a5 = a6 = a1. Then b5 ̸= b6, otherwise, c5 = c6, a contradiction.

Since b5, b6 ∈ {b1, b2}, we may assume that b5 = b1, b6 = b2.

c1 c2 c3
∣∣ c4 c5 c6(

a1 a1 a3 a3 a1 a1

b1 b2 b1 b1 b1 b2

)
Then C1 = C2, a contradiction. So this case is impossible.

(1.4.B.b) Suppose bi ̸= bj , 1 ≤ i < j ≤ 3. Since {b1, b2, b3} = {b4, b5, b6}, we
may assume that b4 = b1, b5 = b2, b6 = b3.

c1 c2 c3
∣∣ c4 c5 c6(

a1 a1 a3

b1 b2 b3 b1 b2 b3

)

53

It is impossible that (a4, a5) = (a1, a1). Otherwise, a6 = a3, which implies

C1 = C2, a contradiction.

It is not possible either that (a4, a5) = (a3, a3). Otherwise, b1, b2 ∈ A1
a1

∩
A1

a3 ,

a contradiction to condition (I).

If (a4, a5) = (a1, a3), then

c1 c2 c3
∣∣ c4 c5 c6(

a1 a1 a3 a1 a3

b1 b2 b3 b1 b2 b3

)
.

We should have a6 = a3. Otherwise, a6 = a1, then b2, b3 ∈ A1
a1

∩
A1

a3 , a contradic-

tion to condition (I). So

c2 c1(c4) c3(c6) c5(
a1 a1 a3 a3

b2 b1 b3 b2

)
,

and therefore, C1 and C2 are of type III.

Similarly, if (a4, a5) = (a3, a1), we can show that C1 and C2 are of type III.

(1.4.C) Consider the case ai ̸= aj , 1 ≤ i < j ≤ 3. Since {a1, a2, a3} =

{a4, a5, a6}, we may assume that a4 = a1, a5 = a2, a6 = a3.

(1.4.C.a) Suppose b1 = b2 and b3 ̸= b1.

c1 c2 c3
∣∣ c4 c5 c6(

a1 a2 a3 a1 a2 a3

b1 b1 b3

)

It is impossible that (b4, b5) = (b1, b1). Otherwise, b6 = b3, which implies C1 =

C2, a contradiction.

It is not possible either that (b4, b5) = (b3, b3). Otherwise, b1, b3 ∈ A1
a1

∩
A1

a2 , a

contradiction to condition (I).

Suppose (b4, b5) = (b1, b3).

c1 c2 c3
∣∣ c4 c5 c6(

a1 a2 a3 a1 a2 a3

b1 b1 b3 b1 b3

)

Then b6 = b3. Otherwise, b6 = b1, then b1, b3 ∈ A1
a2

∩
A1

a3 , a contradiction to

condition (I). So

c2 c1(c4) c3(c6) c5(
a2 a1 a3 a2

b1 b1 b3 b3

)

54

and thus C1 and C2 are of type II.

Similarly, if (b4, b5) = (b3, b1), we can derive that C1 and C2 are of type II.

(1.4.C.b) Suppose bi ̸= bj , 1 ≤ i < j ≤ 3.

c1 c2 c3
∣∣ c4 c5 c6(

a1 a2 a3 a1 a2 a3

b1 b2 b3

)
It is impossible that (b4, b5, b6) = (b1, b2, b3). Otherwise, C1 = C2, a contradic-

tion.

It is impossible that (b4, b5, b6) = (b1, b3, b2). Otherwise, b2, b3 ∈ A1
a2

∩
A1

a3 , a

contradiction to condition (I).

It is impossible that (b4, b5, b6) = (b2, b1, b3). Otherwise, b1, b2 ∈ A1
a1

∩
A1

a2 , a

contradiction to condition (I).

It is impossible that (b4, b5, b6) = (b2, b3, b1). Otherwise, b1, b2 ∈ A1
a1 , b2, b3 ∈

A1
a2 , b1, b3 ∈ A1

a3 , a contradiction to condition (II).

It is impossible that (b4, b5, b6) = (b3, b1, b2). Otherwise, b1, b3 ∈ A1
a1 , b1, b2 ∈

A1
a2 , b2, b3 ∈ A1

a3 , a contradiction to condition (II).

Finally, it is not possible either that (b4, b5, b6) = (b3, b2, b1). Otherwise, b1, b3 ∈
A1

a1

∩
A1

a3 , a contradiction to condition (I).

(2) Now we prove that |P3(R)| ≤ 2 for any R ⊆ C(1)×C(2). Assume that there

exists R ⊆ C(1) × C(2) such that |P3(R)| ≥ 3. Let C1, C2, C3 ∈ P3(R) be three

distinct sub-codes of C. According to (1), desc(Ci) = desc(Cj) implies Ci and Cj are
of one of the three types described in (1), where 1 ≤ i < j ≤ 3.

(2.1) If there exists an index i, 1 ≤ i ≤ 3, such that |Ci| = 2, without loss of

generality, we may assume |C1| = 2. Then C1 and C2 are of type I, C1 and C3 are of

type I. We may assume that C1 = {c1, c2}, C2 = {c1, c2, c3}, and C3 = {c1, c2, c4},
where ci = (ai, bi)

T , 1 ≤ i ≤ 4. According to type I, c3, c4 ∈ {(a1, b2)T , (a2, b1)T }.
Clearly c3 ̸= c4, otherwise C2 = C3, a contradiction. Therefore, b1, b2 ∈ A1

a1

∩
A1

a2 ,

which implies |A1
a1

∩
A1

a2 | ≥ 2, a contradiction to condition (I). So this case is

impossible.

(2.2) Consider the case |Ci| = 3 for all 1 ≤ i ≤ 3.

(2.2.A) Suppose C1 and C2 are of type II, C1 and C3 are of type II. Let C1 =

{c1, c2, c3}, C2 = {c2, c3, c4}, and C3 = {c5, c6, c7}, where ci = (ai, bi)
T , 1 ≤ i ≤ 7.

According to type II, ak1 ̸= ak2 , 1 ≤ k1 < k2 ≤ 3, b1 ̸= b3.

c1 c2 c3 c4 c5 c6 c7(
a1 a2 a3 a1

b1 b1 b3 b3

)
Since C1 and C3 are of type II, we have |C1

∩
C3| = 2. Furthermore, because we

require b1 ̸= b3, we know C1
∩
C3 ̸= {c1, c2}.

55

If C1
∩

C3 = {c1, c3}, we may assume c5 = c1, c6 = c3. Then we should have

c7 = (a2, b3)
T , and

c2 c1(c5) c3(c6) c7 c4(
a2 a1 a3 a2 a1

b1 b1 b3 b3 b3

)
,

which implies b1, b3 ∈ A1
a1

∩
A1

a2 , i.e., |A
1
a1

∩
A1

a2 | ≥ 2, a contradiction to condition

(I). So this case is impossible.

If C1
∩

C3 = {c2, c3}, we may assume c5 = c2, c6 = c3. Then c7 = (a1, b3)
T = c4,

which implies C2 = C3, a contradiction. So this case is not possible either.

(2.2.B) Suppose C1 and C2 are of type III, C1 and C3 are of type III. Similar to

(2.2.A), we can prove this case is impossible.

(2.2.C) Suppose C1 and C2 are of type II, C1 and C3 are of type III. Let C1 =

{c1, c2, c3}, C2 = {c2, c3, c4}.

c1 c2 c3 c4(
a1 a2 a3 a1

b1 b1 b3 b3

)

Since ak1 ̸= ak2 , 1 ≤ k1 < k2 ≤ 3, it is impossible that C1 and C3 are of type III. So
this case is not possible either.

Therefore, as we claimed earlier, |P3(R)| ≤ 2 for any R ⊆ C(1)× C(2).
(3) Finally, the conclusion comes from (1), (2), and the fact that C1

∩
C2 ̸= ∅

whenever C1 and C2 are of type I, II, or III. �
Combining Lemma 4.2.4 with Lemma 4.2.5, we derive an important result as

follows.

Theorem 4.2.6 Let C be a (2,M, q) code de�ned on Q. Then C is a 3-MIPPC(2,M,

q) if and only if it satis�es the following two conditions:

(I) |A1
a1

∩
A1

a2 | ≤ 1 always holds for any distinct elements a1, a2 ∈ Q;

(II) There do not exist distinct elements a1, a2, a3 ∈ Q and distinct elements

b1, b2, b3 ∈ Q such that b1, b2 ∈ A1
a1, b2, b3 ∈ A1

a2, b1, b3 ∈ A1
a3.

Now, we are going to derive a tight upper bound on the size of a 3-MIPPC(2,M, q)

based on Theorem 4.2.6.

Lemma 4.2.7 There exists a 3-MIPPC(2,M, q) if and only if there exists a bipartite

graph G(q, q) of girth at least 8 with e(G) = M .

56

Proof: Suppose that there exists a 3-MIPPC(2,M, q), C, de�ned on Q. We con-

struct a bipartite graph G(q, q) as follows. Let X = Q × {1} and Y = Q × {2}.
An edge is incident to (a, 1) ∈ X and (b, 2) ∈ Y if and only if (a, b)T ∈ C. Then

e(G) = M . We are going to show that G has girth at least 8.

Assume G(q, q) contains a 4-cycle, say ((a1, 1), (b1, 2), (a2, 1), (b2, 2)), where

(ai, 1), 1 ≤ i ≤ 2, are distinct elements of X, and (bi, 2), 1 ≤ i ≤ 2, are distinct

elements of Y . Then (a1, b1)
T , (a2, b1)

T , (a2, b2)
T , (a1, b2)

T ∈ C, and thus b1, b2 ∈
A1

a1

∩
A1

a2 , a contradiction to Theorem 4.2.6. So this case is impossible.

Assume G(q, q) contains a 6-cycle, say ((a1, 1), (b1, 2), (a2, 1), (b2, 2), (a3, 1),

(b3, 2)), where (ai, 1), 1 ≤ i ≤ 3, are distinct elements of X, and (bi, 2), 1 ≤ i ≤ 3,

are distinct elements of Y . Then (a1, b1)
T , (a2, b1)

T , (a2, b2)
T , (a3, b2)

T , (a3, b3)
T ,

(a1, b3)
T ∈ C, and thus b1, b3 ∈ A1

a1 , b1, b1 ∈ A1
a2 , b2, b3 ∈ A1

a3 , a contradiction to

Theorem 4.2.6. So this case is not possible either.

Therefore, the bipartite graph G(q, q) constructed above has girth at least 8,

with e(G) = M .

Conversely, for any bipartite graph G(q, q) = GX,Y with girth at least 8, we

construct a (2,M, q) code C. Let Q = X and f : Y −→ X be a bijective mapping.

A vector (x, f(y))T ∈ C if and only if {x, y} is an edge of G, where x ∈ X and

y ∈ Y . Obviously, C is a (2,M, q) code de�ned on Q and M = e(G). Suppose that

C is not a 3-MIPPC(2,M, q). Then by Theorem 4.2.6, at least one of the following

cases should happen.

(1) There exist distinct elements x1, x2 ∈ Q such that |A1
x1

∩
A1

x2
| ≥ 2. In this

case, we may assume f(y1) ̸= f(y2) ∈ A1
x1

∩
A1

x2
. Then y1 ̸= y2, and (x1, f(y1))

T ,

(x1, f(y2))
T , (x2, f(y1))

T , (x2, f(y2))
T ∈ C. Hence {x1, y1}, {x1, y2}, {x2, y1},

{x2, y2} are edges of G forming a 4-cycle, a contradiction. So this case is impossible.

(2) There exist distinct elements x1, x2, x3 ∈ Q and distinct elements f(y1), f(y2),

f(y3) ∈ Q such that f(y1), f(y2) ∈ A1
x1
, f(y2), f(y3) ∈ A1

x2
, f(y1), f(y3) ∈ A1

x3
. In

this case, yi, 1 ≤ i ≤ 3, are all distinct, and (x1, f(y1))
T , (x1, f(y2))

T , (x2, f(y2))
T ,

(x2, f(y3))
T , (x3, f(y3))

T , (x3, f(y1))
T ∈ C. Hence {x1, y1}, {x1, y2}, {x2, y2},

{x2, y3}, {x3, y3}, {x3, y1} are edges of G forming a 6-cycle, a contradiction. So this

case is not possible either.

Therefore, the (2,M, q) code C constructed above is a 3-MIPPC(2,M, q) with

M = e(G).

This completes the proof. �
García-Vázquez et al. [28] stated that any maximum bipartite graph G(q, q)

with size MMIPPC(3, 2, q) must have girth 8, for q ≥ 6 or q = 4. Therefore, we have

the following corollary.

Corollary 4.2.8 Let q ≥ 6 or q = 4. There exists a 3-MIPPC(2,M, q) if and only

if there exists a bipartite graph G(q, q) of girth 8 with e(G) = M .

57

Lemma 4.2.9 ([42]) If G(u, v) contains no cycle of length 4 and 6, then its size e

satis�es the following inequality

e3 − (u+ v)e2 + 2uve− u2v2 ≤ 0.

Then the size of a 3-MIPPC(2,M, q) can be derived from Lemmas 4.2.7 and

4.2.9.

Corollary 4.2.10 For any 3-MIPPC(2,M, q), M3 − 2qM2 + 2q2M − q4 ≤ 0.

4.3 Constructions for 3-MIPPC(2,M, q)s

In this section, an in�nite series of optimal 3-MIPPCs of length 2 are derived by

generalized quadrangles. Several in�nite series of asymptotically optimal 3-MIPPCs

of length 2 are also constructed by deleting suitable points and lines from generalized

quadrangles.

4.3.1 Optimal 3-MIPPC(2,M, q)s

MIPPCs are also closely related with generalized packings de�ned in De�nition

2.2.1. A generalized packing (X,B) is called △-free if for any three distinct elements

P1, P2, P3 ∈ X, if there are two blocks containing P1, P2 and P1, P3 respectively,

then there is no block containing P2, P3.

Theorem 4.3.1 There exists a 3-MIPPC(2,M, q) de�ned on Q = {0, 1, . . . , q−1} if
and only if there exists a △-free generalized (q, q,K, 1) packing (Q, {A1

0, . . . ,A1
q−1})

with K = {|A1
0|, . . . , |A1

q−1|}, and M = |A1
0|+ · · ·+ |A1

q−1|.

Proof: Suppose C is a 3-MIPPC(2,M, q) de�ned on Q, and A1
i = {b ∈ Q | (i, b)T ∈

C} for any i ∈ Q. Then by Theorem 4.2.6, we know that (Q, {A1
0, . . . ,A1

q−1}) is a
△-free generalized (q, q, {|A1

0|, . . ., |A1
q−1|}, 1) packing, and M = |A1

0|+ · · ·+ |A1
q−1|.

Conversely, for any △-free generalized (q, q,K, 1) packing (Q,B) with B =

{B0, . . . , Bq−1} and M = |B0| + · · · + |Bq−1|, we de�ne a set of vectors B1 =

{B1
0 , . . . , B

1
q−1}, with B1

i = {(i, b)T | b ∈ Bi} if Bi ̸= ∅ and B1
i = ∅ if Bi = ∅,

0 ≤ i ≤ q−1. By Theorem 4.2.6, it is readily checked that B1 is a 3-MIPPC(2,M, q)

de�ned on Q and A1
i = Bi for any i ∈ Q.

This completes the proof. �

Corollary 4.3.2 There exists an optimal 3-MIPPC(2,M, q) on Q = {0, 1, . . . , q−1}
if and only if there exists a △-free generalized (q, q,K, 1) packing with maximum

M = |A1
0|+ · · ·+ |A1

q−1|, where K = {|A1
0|, . . . , |A1

q−1|},

58

Now we show that some optimal 3-MIPPC(2,M, q)s can be constructed by means

of generalized quadrangles.

De�nition 4.3.3 A �nite generalized quadrangle (GQ) is an incidence structure

S = (X,B, I) with point-set X and line-set B satisfying the following conditions:

(1) Each point is incident with 1 + t lines (t ≥ 1) and two distinct points are

incident with at most one line;

(2) Each line is incident with 1 + s points (s ≥ 1) and two distinct lines are

incident with at most one point;

(3) If x is a point and L is a line not incident with x, then there is a unique pair

(y,N) ∈ X × B for which xINIyIL.

The integers s and t are the parameters of the GQ and S has order (s, t); if s = t,

S has order s.

From the de�nition, any generalized quadrangle has no triangles. It is known

(see [19]) that in a generalized quadrangle, |X| = (1+s)(1+st), |B| = (1+t)(1+st),

and s+ t divides st(1 + s)(1 + t).

Lemma 4.3.4 If there exits a GQ(s, t), then there exists a △-free generalized (v, b,

{1 + s}, 1) packing, where v = (1 + s)(1 + st), b = (1 + t)(1 + st).

Proof: Suppose S = (X,B, I) is a GQ(s, t). By regarding the lines of S as blocks

and the points of S as elements, we easily obtain a△-free generalized (v, b, {1+s}, 1)
packing (X,B). �

Lemma 4.3.5 ([19]) Let k be a prime power and s ≤ t be two positive integers.

Then there exist GQ(s, t)s for (s, t) ∈ {(k − 1, k + 1), (k, k), (k, k2), (k2, k3)}.

If there exists a GQ(s, t) with s ≤ t, then Lemma 4.3.4 gives a△-free generalized

(v, b, {1 + s}, 1) packing with v = (1 + s)(1 + st) ≤ (1 + t)(1 + st) = b. Deleting

b− v blocks, we obtain a △-free generalized (v, v, {1 + s}, 1) packing.

Corollary 4.3.6 For any prime power k, there exist 3-MIPPC(2,M, q)s for (M, q) ∈
{(k4, k3), ((k2+1)(k+1)2, (k2+1)(k+1)), ((k3+1)(k+1)2, (k3+1)(k+1)), ((k5+

1)(k2 + 1)2, (k5 + 1)(k2 + 1))}.

Proof: Apply Theorem 4.3.1 with Lemmas 4.3.4, 4.3.5. �

Lemma 4.3.7 Let a, d be two positive integers with d2 − 2d+ 2− a = 0. Then for

any 3-MIPPC(2,M, ad), we have M ≤ ad2.

59

Proof: For any 3-MIPPC(2,M, q), by Corollary 4.2.10, we know that M3−2qM2+

2q2M − q4 ≤ 0. Let f(M) = M3 − 2qM2 +2q2M − q4, then the derivative of f(M)

is
df

dM
(M) = 3M2 − 4qM + 2q2 = 3(M − 2q

3
)2 +

2q2

3
> 0.

Therefore, f is a strictly increasing function on M . Let q = ad, where a and d are

positive integers such that d2 − 2d+ 2− a = 0. Then

f(ad2) = (ad2)3 − 2(ad)(ad2)2 + 2(ad)2(ad2)− (ad)4

= a3d6 − 2a3d5 + 2a3d4 − a4d4

= a3d4(d2 − 2d+ 2− a)

= 0.

For any M
′
> ad2, we have f(M

′
) > 0. So ad2 is the greatest integer which satis�es

the inequality M3 − 2qM2 + 2q2M − q4 ≤ 0. This completes the proof. �
Therefore, we can derive optimal 3-MIPPCs.

Theorem 4.3.8 There exists an optimal 3-MIPPC(2, (k2+1)(k+1)2, (k2+1)(k+1))

for any prime power k.

Proof: A 3-MIPPC(2, (k2 +1)(k+1)2, (k2 +1)(k+1)) exists from Corollary 4.3.6.

Let a = k2 + 1, d = k + 1, then d2 − 2d+ 2− a = 0. Apply Lemma 4.3.7. �

4.3.2 Asymptotically optimal 3-MIPPC(2,M, q)s

Corollaries 4.2.8 and 4.3.2 inspire us to construct optimal 3-MIPPC(2,M, q)s via

bipartite graphs with girth 8 or maximum △-free generalized (q, q,K, 1) packings.

Unfortunately, except for the result in Theorem 4.3.8, we do not know other in�nite

families of optimal 3-MIPPC(2,M, q)s. However, we can construct several in�nite

families of asymptotically optimal 3-MIPPC(2,M, q)s by deleting points and lines

from generalized quadrangles.

Theorem 4.3.9 There exists a 3-MIPPC(2, k4 + 2k3 + 2k2 + 2k − 2sk, k3 + k2 +

k + 1− s) for every prime power k, where 1 ≤ s ≤ k2 + k + 1.

Proof: If we can construct a △-free generalized (k3 + k2 + k+ 1− s, k3 + k2 + k+

1− s, {k, k+1}, 1) packing with k3 + k2 + k− sk blocks of size k+1 and sk− s+1

blocks of size k, then the conclusion would follow from Theorem 4.3.1. According to

Lemma 4.3.5, there exists a GQ(k, k), say S = (X,B, I), for every prime power k.

Choose an arbitrary point x0,0 ∈ X. Let L0,j = {x0,0, x1,j , . . . , xk,j}, 0 ≤ j ≤ k, be

the k+1 distinct lines incident with x0,0, and Li,1, . . . , Li,k, 1 ≤ i ≤ k, be the other

k distinct lines incident with xi,0 ∈ X. Let s1 = ⌊ s−1
k ⌋ and s2 = s− 1− ks1. Then

60

the desired △-free generalized packing can be constructed by deleting s points x0,0,

x1,0, . . ., xk,0, x1,1, . . ., xk,1, . . ., x1,s1−1, . . ., xk,s1−1, x1,s1 , . . ., xs2,s1 and s lines

L0,0, L0,1, . . . , L0,k, L1,1, . . ., L1,k, . . ., Ls1−1,1, . . ., Ls1−1,k, Ls1,1, . . ., Ls1,s2 , where

the size of each line after deletion is k+1 or k because of the △-freeness of the GQ.

�

Theorem 4.3.10 There exists a 3-MIPPC(2, k4−sk, k3−s) for every prime power

k, where 0 ≤ s ≤ 2k − 1.

Proof: Similar to Theorem 4.3.9, we want to construct a △-free generalized (k3 −
s, k3−s, {k}, 1) packing. According to Lemma 4.3.5, there exists a GQ(k−1, k+1),

say S = (X,B, I), for any prime power k. Then |X| = k3 and |B| = k3 + 2k2.

Let x0 ∈ X and X0 = {x ∈ X \ {x0} | x0 and x are incident with a line}. Then

|X0| = k2 + k − 2. Let Xs = {x0, x1, . . . , xs−1} ⊆ {x0} ∪ X0 and Bs = {L ∈
B | L is incident with a point x ∈ Xs}. By a simple counting argument, we know

that |Bs| = (k + 2) + (s − 1)(k + 1) = s + sk + 1. Then we can obtain a △-free

generalized (v, b, k, 1) packing by deleting the s points in Xs and the s+sk+1 lines

in Bs from the GQ(k−1, k+1), S, where v = k3−s and b = k3−s+(2k2−sk−1).

Since 0 ≤ s ≤ 2k − 1, we have b ≥ v. Therefore the desired △-free generalized

packing exists by further deleting b − v blocks of the △-free generalized (v, b, k, 1)

packing. �

Theorem 4.3.11 There exists a 3-MIPPC(2, k4 +2k3 +2k2 − sk− s+ ⌊ s−1
k+1⌋, k

3 +

2k2 − s) for every prime power k, where 1 ≤ s ≤ k2 + k + 1.

Proof: According to Lemma 4.3.5 and the point-line duality of GQs (see, for ex-

ample, [19]), there exists a GQ(k + 1, k − 1) for any prime power k. Suppose that

S is a GQ(k+1, k− 1). Then |X| = k3 +2k2 and |B| = k3. Pick an arbitrary point

x ∈ X. Suppose Li = {x, xi,1, . . . , xi,k+1}, 1 ≤ i ≤ k, are k distinct lines containing

x, and each Pi is the point-set of Li. Let s1 = ⌊ s−1
k+1⌋, s2 = s− 1− s1(k + 1), and

Ps =


{x}, if s = 1,

{x}
∪
(
s1∪
i=1

Pi), if s ̸= 1 and s ≡ 1 (mod k + 1),

{x}
∪
(
s1∪
i=1

Pi)
∪
{xs1+1,1, · · · , xs1+1,s2}, otherwise.

For a given s, we can delete the point-set Ps and derive a △-free generalized

(v, b, {k+1− s2, k+1, k+2}, 1) packing with (s− 1)(k− 1)+ k− s1 − h(s2) blocks

of size k + 1, k3 − k − (s − 1)(k − 1) blocks of size k + 2, and h(s2) block of size

k + 1− s2, where v = k3 + 2k2 − s, b = k3 − s1, and

h(s2) =

{
0, if s2 = 0,

1, otherwise.

61

Then v−b = 2k2−s+s1 > 0. So, the desired generalized packing can be constructed

by adding v − b blocks containing exactly one point belonging to X \ Ps. Now we

compute the value M .

M = [(s− 1)(k − 1) + k − s1 − h(s2)](k + 1)

+ [k3 − k − (s− 1)(k − 1)](k + 2)

+ h(s2)(k + 1− s2) + 2k2 − s+ s1

= k4 + 2k3 + 2k2 − sk − s1k − 1− h(s2)s2.

If s2 ̸= 0, then h(s2)s2 = s2; if s2 = 0, then h(s2)s2 = 0 = s2. So

M = k4 + 2k3 + 2k2 − sk − s1k − 1− s2

= k4 + 2k3 + 2k2 − sk − s1k − 1− (s− 1− s1(k + 1))

= k4 + 2k3 + 2k2 − sk − s− s1

= k4 + 2k3 + 2k2 − sk − s− ⌊ s− 1

k + 1
⌋.

This completes the proof. �

Theorem 4.3.12 The 3-MIPPC(2,M, q)s constructed in Theorems 4.3.9, 4.3.10

and 4.3.11 are asymptotically optimal.

Proof: Here, we only prove that the 3-MIPPC(2,M, q)s constructed in Theorem

4.3.10 are asymptotically optimal. The other two cases can be proved in a similar

way. Note that in Theorem 4.3.10, q = k3 − s, M = k4 − sk, where k is a prime

power and 0 ≤ s ≤ 2k − 1.

Just as in the proof of Lemma 4.3.7, we consider the strictly increasing function

f(M) = M3 − 2qM2 + 2q2M − q4, and also the cubic equation f(M) = 0. Let

a = 1, b = −2q, c = 2q2, d = −q4. Then the discriminant of the above-mentioned

cubic equation is D = 18abcd− 4b3d+ b2c2− 4ac3− 27a2d2 = q6(40q− 16− 27q2) <

0, which implies that this cubic equation has one real root M0 and two complex

conjugate roots (see, for example, [34], and also [42]), where

M0 = − b

3a
− 1

3a
3

√
1

2
[2b3 − 9abc+ 27a2d+

√
−27a2D]

− 1

3a
3

√
1

2
[2b3 − 9abc+ 27a2d−

√
−27a2D]

=
2q

3
− q

3
3

√
1

2
[20− 27q +

√
27(27q2 − 40q + 16)]

− q

3
3

√
1

2
[20− 27q −

√
27(27q2 − 40q + 16)].

62

Noting that f(0) = −q4 < 0, we haveM0 > 0. By Corollary 4.2.10,MMIPPC(3, 2, q)

≤ M0, and then 0 < M
M0

≤ M
MMIPPC(3,2,q) ≤ 1. Therefore it is su�cient to prove that

lim
q→∞

M
M0

= 1 holds.

Since q = k3 − s, we have

lim
q→∞

M0

k4
= lim

k→∞

M0

k4

= lim
k→∞

2q

3k4
− lim

k→∞

q

3k4
3

√
1

2
[20− 27q +

√
27(27q2 − 40q + 16)]

− lim
k→∞

q

3k4
3

√
1

2
[20− 27q −

√
27(27q2 − 40q + 16)]

= 0− 0− (−1)

= 1,

then

lim
q→∞

M

M0
= lim

k→∞

M

M0
=

lim
k→∞

M
k4

lim
k→∞

M0
k4

=
1

1
= 1.

This completes the proof. �

63

Chapter 5

Strong Multimedia Identi�able

Parent Property Codes

From what has been discussed in Chapter 4, we know that any binary t-MIPPC can

capture at least one colluder by applying Algorithm 4.1 if the number of colluders is

less than or equal to t with computational complexity O(nM t), where n is the length

of the code and M is the number of authorized users. Obviously, the computational

complexity O(nM t) is not e�cient for practical use. Therefore, we introduce the

notion of a strong multimedia identi�able parent property code (t-SMIPPC) in this

chapter. We show that any binary t-SMIPPC can be used to identify at least

one colluder in the averaging attack by applying Algorithm 3.1 with computational

complexity O(nM), which is clearly more e�cient than that of a t-MIPPC.

In Section 5.1, we introduce the notion of an SMIPPC, describe a colluder trac-

ing algorithm based on a binary SMIPPC, and present a concatenation construction

for binary SMIPPCs from q-ary SMIPPCs. In Section 5.2, we discuss the relation-

ships between t-SMIPPCs and other �ngerprinting codes, and derive several in�nite

series of optimal q-ary t-SMIPPCs of length 2 with t = 2, 3. In Section 5.3, we

investigate combinatorial properties of q-ary 2-SMIPPCs of length 3, and optimal

q-ary 2-SMIPPCs of length 3 with q ≡ 0, 1, 2, 5 (mod 6) are constructed by means

of di�erence matrices.

5.1 Tracing algorithm for strong multimedia identi�able

parent property codes

In this section, we introduce a notion of an SMIPPC, describe a tracing algorith-

m based on a binary SMIPPC, and show a concatenation construction for binary

SMIPPCs from q-ary SMIPPCs.

De�nition 5.1.1 Let C be an (n,M, q) code, and t ≥ 2 be an integer. C is a

strong multimedia identi�able parent property code, or t-SMIPPC(n,M, q), if for any

C0 ⊆ C, 1 ≤ |C0| ≤ t, we have
∩

C′∈S(C0) C
′ ̸= ∅, where S(C0) = {C′ ⊆ C | desc(C′

) =

desc(C0)}.

Example 5.1.2 Consider the following (3, 4, 2) code C:

c1 c2 c3 c4

C =

 1 0 0 0

0 1 0 1

0 1 1 0


Then

desc({c1}) = {1} × {0} × {0},
desc({c2}) = {0} × {1} × {1},
desc({c3}) = {0} × {0} × {1},
desc({c4}) = {0} × {1} × {0},
desc({c1, c2}) = {0, 1} × {0, 1} × {0, 1},
desc({c1, c3}) = {0, 1} × {0} × {0, 1},
desc({c1, c4}) = {0, 1} × {0, 1} × {0},
desc({c2, c3}) = {0} × {0, 1} × {1},
desc({c2, c4}) = {0} × {1} × {0, 1},
desc({c3, c4}) = {0} × {0, 1} × {0, 1},
desc({c1, c2, c3}) = {0, 1} × {0, 1} × {0, 1},
desc({c1, c2, c4}) = {0, 1} × {0, 1} × {0, 1},
desc({c1, c3, c4}) = {0, 1} × {0, 1} × {0, 1},
desc({c2, c3, c4}) = {0} × {0, 1} × {0, 1},
desc({c1, c2, c3, c4}) = {0, 1} × {0, 1} × {0, 1}.

It is easy to check that

S({c1}) = {{c1}} and
∩

C′∈S({c1}) C
′
= {c1} ̸= ∅,

S({c2}) = {{c2}} and
∩

C′∈S({c2}) C
′
= {c2} ̸= ∅,

S({c3}) = {{c3}} and
∩

C′∈S({c3}) C
′
= {c3} ̸= ∅,

S({c4}) = {{c4}} and
∩

C′∈S({c4}) C
′
= {c4} ̸= ∅,

S({c1, c2}) = {{c1, c2}, {c1, c2, c3}, {c1, c2, c4}, {c1, c3, c4}, {c1, c2, c3, c4}} and∩
C′∈S({c1,c2}) C

′
= {c1} ̸= ∅,

S({c1, c3}) = {{c1, c3}} and
∩

C′∈S({c1,c3}) C
′
= {c1, c3} ̸= ∅,

S({c1, c4}) = {{c1, c4}} and
∩

C′∈S({c1,c4}) C
′
= {c1, c4} ̸= ∅,

S({c2, c3}) = {{c2, c3}} and
∩

C′∈S({c2,c3}) C
′
= {c2, c3} ̸= ∅,

S({c2, c4}) = {{c2, c4}} and
∩

C′∈S({c2,c4}) C
′
= {c2, c4} ̸= ∅,

S({c3, c4}) = {{c3, c4}, {c2, c3, c4}} and
∩

C′∈S({c3,c4}) C
′
= {c3, c4} ̸= ∅.

66

So the code C is a 2-SMIPPC(3, 4, 2).

The following relationship immediately comes from De�nitions 3.1.1 and 5.1.1.

Lemma 5.1.3 Any t-SSC(n,M, q) is a t-SMIPPC(n,M, q).

The following is an equivalent de�nition of an SMIPPC.

De�nition 5.1.4 Let C be an (n,M, q) code, and t ≥ 2 be an integer. For any

R ⊆ C(1)× · · · × C(n), de�ne the set of parent sets of R as

P(R) = {C′ ⊆ C | desc(C′
) = R}.

We say C is a strong multimedia identi�able parent property code, or t-SMIPPC(n,M,

q), if
∩

C′∈P(R) C
′ ̸= ∅ is satis�ed for all R ⊆ C(1)×· · ·×C(n) with Pt(R) ̸= ∅, where

Pt(R) = {C′ ⊆ C | |C′ | ≤ t, desc(C′
) = R}.

We can also derive the following relationship from De�nitions 4.1.1 and 5.1.4.

Lemma 5.1.5 Any t-SMIPPC(n,M, q) is a t-MIPPC(n,M, q).

The following theorem shows that a t-SMIPPC(n,M, 2) can be used to identify

at least one colluder in the averaging attack with computational complexity O(nM),

which is more e�cient than that of a t-MIPPC(n,M, 2). We in fact use Algorithm

3.1 in Section 3.1.

Theorem 5.1.6 Under the assumption that the number of colluders in the averaging

attack is at most t, any t-SMIPPC(n,M, 2) can be used to identify at least one

colluder with computational complexity O(nM) by applying Algorithm 3.1.

Proof: Let C be the t-SMIPPC(n,M, 2), and R be the descendant code derived

from the detection statistics T. Then by applying Algorithm 3.1, one can identify

at least one colluder. The computational complexity is clearly O(nM).

According to Algorithm 3.1, by deleting all columns {c ∈ C | ∃ 1 ≤ i ≤ n,R(i) =

{1}, c(i) = 0, or R(i) = {0}, c(i) = 1}, we obtain a sub-matrix CL of C. Suppose

that C0 = {u1, u2, . . . , ur}, 1 ≤ r ≤ t, is the set of colluders, the codeword ci

is assigned to the colluder ui, 1 ≤ i ≤ r, and C0 = {c1, c2, . . . , cr}. It is not

di�cult to see that C0 ⊆ CL. According to the de�nition of a t-SMIPPC, we have∩
C′∈S(C0) C

′ ̸= ∅, where S(C0) = {C′ ⊆ C | desc(C′
) = desc(C0) = R}. We prove this

theorem in three steps.

(1) CL ∈ S(C0), that is desc(CL) = R. For any 1 ≤ j ≤ n, we consider the

following cases.

67

(1.1) R(j) = {1}. For any c ∈ CL, c(j) = 1 according to the processes deriving

CL. So, CL(j) = {1} = R(j).

(1.2) R(j) = {0}. For any c ∈ CL, c(j) = 0 according to the processes deriving

CL. So, CL(j) = {0} = R(j).

(1.3) R(j) = {0, 1}. Since desc(C0) = R, we know that there exist c1, c2 ∈ C0 ⊆
CL such that c1(j) = 0 and c2(j) = 1, respectively. This implies CL(j) = {0, 1} =

R(j).

According to (1.1)-(1.3) above, for any 1 ≤ j ≤ n, we have CL(j) = R(j), which

implies desc(CL) = R.

(2) We want to show that for any x ∈
∩

C′∈S(C0) C
′
, there exists 1 ≤ j ≤ n, such

that x(j) = 1 and c(j) = 0 for any c ∈ CL \ {x}, or x(j) = 0 and c(j) = 1 for

any c ∈ CL \ {x}. Assume not. Then for any 1 ≤ j ≤ n, x(j) = 1 implies that

there exists c1 ∈ CL \ {x} such that c1(j) = 1, and x(j) = 0 implies that there

exists c2 ∈ CL \ {x} such that c2(j) = 0. Then we have desc(CL) = desc(CL \ {x}).
Since CL ∈ S(C0) by (1), we can have CL \ {x} ∈ S(C0), and x /∈

∩
C′∈S(C0) C

′
, a

contradiction.

(3) At last, according to Algorithm 3.1 and (2), it su�ces to show that any

user u assigned with a codeword x ∈
∩

C′∈S(C0) C
′
is a colluder. Assume that u is

not a colluder. Then for any C′ ∈ S(C0), we have C′ \ {x} ∈ S(C0), which implies

x /∈
∩

C′∈S(C0) C
′
, a contradiction.

This completes the proof. �
The following is a concatenation construction for binary t-SMIPPCs from q-ary

t-SMIPPCs, which makes the research of q-ary t-SMIPPCs interesting.

Lemma 5.1.7 If there exists a t-SMIPPC(n,M, q), then there exists a t-SMIPPC(nq,

M, 2).

Proof: Let C = {c1, c2, . . . , cM} be a t-SMIPPC(n,M, q) de�ned on Q = {0, 1, . . . ,
q−1}, and E = {e1, e2, . . . , eq}, where ei is the i-th column identity vector, i.e., all its

coordinates are 0 except the i-th one being 1. Let f : Q −→ E be the bijective map-

ping such that f(i) = ei+1. For any codeword c = (c(1), c(2), . . . , c(n))T ∈ C, we
de�ne f(c) = (f(c(1)), f(c(2)), . . . , f(c(n)))T . Obviously, f(c) is a binary column

vector of length nq. We de�ne a new (nq,M, 2) code F = {f(c1), f(c2), . . . , f(cM)}.
We are going to show that F is in fact a t-SMIPPC.

Consider any F0 ⊆ F with |F0| ≤ t, and S(F0) = {F ′ ⊆ F | desc(F ′
) =

desc(F0)} = {F0,F1, . . . ,Fr}. Each Fi corresponds to a subcode Ci ⊆ C such that

|Ci| = |Fi|, where Fi = {f(c) | c ∈ Ci}. Since desc(F0) = desc(F1) = · · · =

desc(Fr), we immediately have desc(C0) = desc(C1) = · · · = desc(Cr). Since C is a

t-SMIPPC(n,M, q) and |C0| = |F0| ≤ t, we have
∩r

i=0 Ci ̸= ∅. Let c ∈
∩r

i=0 Ci, then
c ∈ Ci for any 0 ≤ i ≤ r, which implies f(c) ∈ Fi for any 0 ≤ i ≤ r, and thus

f(c) ∈
∩r

i=0Fi. Therefore,
∩r

i=0Fi ̸= ∅. This completes the proof. �

68

5.2 Optimal t-SMIPPC(2,M, q)s with small t

Similar to the de�nition of optimal SCs, we can de�ne optimal t-SMIPPCs. Let

MSMIPPC(t, n, q) = max{M | there exists a t-SMIPPC(n,M, q)}. A t-SMIPPC(n,

M, q) is said to be optimal if M = MSMIPPC(t, n, q). In this section, we establish

two equivalences in Corollary 5.2.2 and Theorem 5.2.4, respectively. Based on these

two relationships and the known results in Theorems 2.2.22 and 4.3.8, several in�nite

series of optimal t-SMIPPC(2,M, q)s with t = 2, 3 are derived.

Theorem 5.2.1 Let C be a (2,M, q) code. Then C is a 2-SMIPPC(2,M, q) if and

only if it is a 2-MIPPC(2,M, q).

Proof: According to Lemma 5.1.5, it su�ces to consider the su�ciency. Let C
be a 2-MIPPC(2,M, q), which implies that C is a 2-SC(2,M, q) from Lemma 4.1.4.

Assume that C is not a 2-SMIPPC(2,M, q). Then there exists C0 ⊆ C, 1 ≤ |C0| ≤ 2,

such that
∩

C′∈S(C0) C
′
= ∅, where S(C0) = {C′ ⊆ C | desc(C′

) = desc(C0)}. If

|C0| = 1, then it is clear that S(C0) = {C0}, which implies
∩

C′∈S(C0) C
′
= C0 ̸= ∅,

a contradiction. So |C0| = 2. Let C0 = {c1, c2}, ci = (ai, bi)
T , where i = 1, 2.

Obviously, for any C′ ∈ S(C0), we have C′ ⊆ desc(C0)
∩

C. We now consider the

Hamming distance d(c1, c2) of c1 and c2.

(1) If d(c1, c2) = 1, we may assume a1 = a2, b1 ̸= b2. We can easily see that

S(C0) = {C0}, which implies
∩

C′∈S(C0) C
′
= C0 ̸= ∅, a contradiction. So this case is

impossible.

(2) If d(c1, c2) = 2, then a1 ̸= a2, b1 ̸= b2, and desc(C0) = {c1, c2, c3, c4},
where c3 = (a1, b2)

T and c4 = (a2, b1)
T . Then |desc(C0)

∩
C| ≤ 3. Otherwise,

if |desc(C0)
∩
C| = 4, i.e., desc(C0)

∩
C = {c1, c2, c3, c4}, then desc({c1, c2}) =

desc({c3, c4}), a contradiction to the fact that C is a 2-SC. Since C is a 2-SC(2,M, q),

for any C′ ∈ S(C0), C′ ̸= C0, we have |C′ | ≥ 3. Together with the facts C′ ⊆
desc(C0)

∩
C and |desc(C0)

∩
C| ≤ 3, one can derive C′

= desc(C0)
∩

C. Hence

C0 ⊆ desc(C0)
∩

C = C′
, which implies

∩
C′∈S(C0) C

′
= C0 ̸= ∅, a contradiction.

So this case is impossible.

This completes the proof. �
The following result comes from Lemma 4.1.4 and Theorem 5.2.1.

Corollary 5.2.2 Let C be an (n,M, q) code. Then C is a 2-SMIPPC(2,M, q) if and

only if it is a 2-SC(2,M, q).

Thus, according to Theorem 2.2.22 and Corollary 5.2.2, one can obtain optimal

2-SMIPPC(2,M, q)s.

Corollary 5.2.3 Let k ≥ 2 be a prime power. Then there is an optimal 2-SMIPPC(2,

M, q) for any q ∈ {k2 − 1, k2 + k − 2, k2 + k − 1, k2 + k, k2 + k + 1}.

69

Similarly, we also �nd an equivalence between a 3-SMIPPC(2,M, q) and a 3-

MIPPC(2,M, q) as follows.

Theorem 5.2.4 Let C be an (2,M, q) code. Then C is a 3-SMIPPC(2,M, q) if and

only if it is a 3-MIPPC(2,M, q).

Proof: By Lemma 5.1.5, it su�ces to consider the su�ciency. Suppose that C is a

3-MIPPC(2,M, q). Then C is also a 2-MIPPC(2,M, q), which implies that C is a 2-

SMIPPC(2,M, q) from Theorem 5.2.1. Assume that C is not a 3-SMIPPC(2,M, q).

Then there exists C0 ⊆ C, 1 ≤ |C0| ≤ 3, such that
∩

C′∈S(C0) C
′
= ∅, where S(C0) =

{C′ ⊆ C | desc(C′
) = desc(C0)}. Obviously, for any C′ ∈ S(C0), we have C′ ⊆

desc(C0)
∩

C. Then, at least one of the following cases should occur. However, we

can prove none of them is possible.

(1) 1 ≤ |C0| ≤ 2. Since C is a 2-SMIPPC(2,M, q),
∩

C′∈S(C0) C
′ ̸= ∅, a contradic-

tion. So this case is impossible.

(2) If |C0| = 3, then let C0 = {c1, c2, c3}, where ci = (ai, bi)
T , 1 ≤ i ≤ 3.

(2.1) If a1 = a2 = a3, then bi ̸= bj , 1 ≤ i < j ≤ 3. We can easily see that

S(C0) = {C0}, which implies
∩

C′∈S(C0) C
′
= C0 ̸= ∅, a contradiction. So this case is

impossible.

(2.2) If a1 = a2 ̸= a3, then b1 ̸= b2. Let C1 = (desc(C0)
∩

C)\C0. Then b1 /∈ C1(2)
or b2 /∈ C1(2). Otherwise, b1, b2 ∈ C1(2), which implies that (a3, b1)

T , (a3, b2)
T ∈ C.

Then we have desc({c1, (a3, b2)T }) = desc({c2, (a3, b1)T }), and {c1, (a3, b2)T }
∩
{c2,

(a3, b1)
T } = ∅, a contradiction to the de�nition of a 3-MIPPC.

(2.2.A) If b1 /∈ C1(2), then c1 is the only codeword such that c1 ∈ desc(C0)
∩

C
and c1(2) = b1. Since C′ ⊆ desc(C0)

∩
C, we should have c1 ∈ C′

for any C′ ∈
S(C0). Otherwise, if c1 /∈ C′

, then b1 /∈ C′
(2), which implies desc(C′

) ̸= desc(C0)
as b1 ∈ C0(2), a contradiction. So, in this case, c1 ∈

∩
C′∈S(C0) C

′
, which implies∩

C′∈S(C0) C
′ ̸= ∅, a contradiction to the assumption. So this case is impossible.

(2.2.B) If b2 /∈ C1(2), similar to (2.2.A), we can have c2 ∈
∩

C′∈S(C0) C
′
, which

implies
∩

C′∈S(C0) C
′ ̸= ∅, a contradiction to the assumption. So this case is impos-

sible.

(2.3) If ai ̸= aj , 1 ≤ i < j ≤ 3, we only need to consider the case bi ̸= bj ,

1 ≤ i < j ≤ 3, because we can consider the other two cases in a similar way with

(2.1) and (2.2). In this case, we have

c1 c2 c3 c4 c5 c6 c7 c8 c9

desc(C0) =

(
a1 a2 a3 a1 a1 a2 a2 a3 a3

b1 b2 b3 b2 b3 b1 b3 b1 b2

)
If desc(C0)

∩
C = C0, we can check that for any C′ ∈ S(C0), C

′ ⊆ desc(C′
)
∩
C =

desc(C0)
∩

C = C0, then |C′ | ≤ |C0| = 3, and hence
∩

C′∈S(C0) C
′ ̸= ∅ as C is a 3-

MIPPC, a contradiction to the assumption. So desc(C0)
∩

C contains at least one of

70

the words c4, c5, c6, c7, c8, c9. Without loss of generality, we only need to consider

the case c4 ∈ desc(C0)
∩

C. Then c6 /∈ desc(C0)
∩
C, otherwise, desc({c1, c2}) =

desc({c4, c6}), and {c1, c2}
∩
{c4, c6} = ∅, a contradiction to the de�nition of a

3-MIPPC. We are going to show that c7, c8 ∈ desc(C0)
∩

C. If c7 /∈ desc(C0)
∩

C
(or c8 /∈ desc(C0)

∩
C), then for any C′ ∈ S(C0), we have c2 ∈ C′

(or c1 ∈ C′
),

otherwise, a2 /∈ C′
(1) (or b1 /∈ C′

(2)), which implies desc(C′
) ̸= desc(C0) as a2 ∈ C0(1)

(or b1 ∈ C0(2)). Hence c2 ∈
∩

C′∈S(C0) C
′
(or c1 ∈

∩
C′∈S(C0) C

′
), which implies∩

C′∈S(C0) C
′ ̸= ∅, a contradiction to the assumption. So, c4, c7, c8 ∈ desc(C0)

∩
C.

Then desc({c1, c2, c3}) = desc({c4, c7, c8}), while {c1, c2, c3}
∩
{c4, c7, c8} = ∅, a

contradiction to the de�nition of a 3-MIPPC. So this case is impossible.

This completes the proof. �
The above theorem shows that the optimal 3-MIPPCs of length 2 in Theorem

4.3.8 are in fact optimal 3-SMIPPCs of length 2.

Corollary 5.2.5 There exists an optimal 3-SMIPPC(2, (k2+1)(k+1)2, (k2+1)(k+

1)) for any prime power k.

5.3 Optimal 2-SMIPPC(3,M, q)s

In this section, we will investigate combinatorial properties of a 2-SMIPPC(3,M,

q), and then derive forbidden con�gurations of a 2-SMIPPC(3,M, q). Optimal 2-

SMIPPC(3,M, q)s are also constructed for each q ≡ 0, 1, 2, 5 (mod 6).

5.3.1 General idea

At �rst, one can easily derive the following result from Lemmas 5.1.5 and 4.1.4.

Corollary 5.3.1 Any 2-SMIPPC(n,M, q) is a 2-SC(n,M, q).

Lemma 5.3.2 ([16]) For any 2-SC(3,M, q), we have M ≤ q2 + q(q−1)
2 .

Then an upper bound on the size of a 2-SMIPPC(3,M, q) can be derived by

Corollary 5.3.1 and Lemma 5.3.2.

Theorem 5.3.3 For any 2-SMIPPC(3,M, q), we have M ≤ q2 + q(q−1)
2 .

Next, we try to �nd out forbidden con�gurations of a 2-SMIPPC(3,M, q).

Theorem 5.3.4 Let C be a 2-SC(3,M, q). Then C is a 2-SMIPPC(3,M, q) if and

only if for any C0 = {c1, c2} = {(a1, b1, e1)T , (a2, b2, e2)T } ⊆ C, where a1 ̸= a2,

71

b1 ̸= b2, and e1 ̸= e2, we have desc(C0)
∩

C is not of type IV mentioned in Lemma

3.3.2:  a1 a2 a1 a1 a2

b1 b2 b1 b2 b1

e1 e2 e2 e1 e1


Proof: Suppose that C is a 2-SMIPPC(3,M, q). If there exists C0 = {c1, c2} =

{(a1, b1, e1)T , (a2, b2, e2)T } ⊆ C, where a1 ̸= a2, b1 ̸= b2, and e1 ̸= e2, such that

desc(C0)
∩

C is of type IV, then we can derive that desc({c1, c2}) = desc({(a1, b1, e2)T ,
(a1, b2, e1)

T , (a2, b1, e1)
T }), while {c1, c2}

∩
{(a1, b1, e2)T , (a1, b2, e1)T , (a2, b1, e1)T } =

∅, a contradiction to the de�nition of a 2-SMIPPC.

Conversely, suppose that C is a 2-SC(3,M, q), and for any C0 = {c1, c2} =

{(a1, b1, e1)T , (a2, b2, e2)T } ⊆ C, where a1 ̸= a2, b1 ̸= b2, and e1 ̸= e2, we have

desc(C0)
∩

C is not of type IV. We will show
∩

C′∈S(C0) C
′ ̸= ∅.

(1) If for any C′ ∈ S(C0), we have C0 ⊆ C′
, then

∩
C′∈S(C0) C

′
= C0 ̸= ∅.

(2) If there exists C′′ ∈ S(C0) such that C0 ̸⊆ C′′
, then by Lemma 3.3.2, we

know that desc(C0)
∩

C is of one of the four types mentioned in Lemma 3.3.2. Since

desc(C0)
∩

C is not of type IV, we know that desc(C0)
∩

C is of one of the types I,

II, III.

(2.1) If desc(C0)
∩

C is of type I, then for any C′ ∈ S(C0), we have C′ ⊆
desc(C0)

∩
C, and thus c2 ∈ C′

, otherwise, a2 /∈ C′
(1), which implies desc(C′

) ̸=
desc(C0), that is C′

/∈ S(C0), a contradiction. So we have c2 ∈
∩

C′∈S(C0) C
′
, which

implies
∩

C′∈S(C0) C
′ ̸= ∅.

(2.2) If desc(C0)
∩

C is of type II, then for any C′ ∈ S(C0), we have C′ ⊆
desc(C0)

∩
C, and thus c2 ∈ C′

, otherwise, b2 /∈ C′
(2), which implies desc(C′

) ̸=
desc(C0), that is C′

/∈ S(C0), a contradiction. So we have c2 ∈
∩

C′∈S(C0) C
′
, which

implies
∩

C′∈S(C0) C
′ ̸= ∅.

(2.3) If desc(C0)
∩

C is of type III, then for any C′ ∈ S(C0), we have C′ ⊆
desc(C0)

∩
C, and thus c2 ∈ C′

, otherwise, e2 /∈ C′
(3), which implies desc(C′

) ̸=
desc(C0), that is C′

/∈ S(C0), a contradiction. So we have c2 ∈
∩

C′∈S(C0) C
′
, which

implies
∩

C′∈S(C0) C
′ ̸= ∅.

Therefore, C is a 2-SMIPPC(3,M, q). �
Now we turn our attention to the constructions of 2-SMIPPC(3,M, q)s. Let us

start from the de�nition of a di�erence matrix.

De�nition 5.3.5 A cyclic di�erence matrix (q, k, 1)-CDM is a k × q matrix D =

(dij) with dij ∈ Zq such that for any 1 ≤ i1 ̸= i2 ≤ k, the di�erences di1j − di2j,

1 ≤ j ≤ q, comprise all the elements of Zq.

Similar to [16], suppose that there exists a (q, 3, 1)-CDM D. Without loss of

generality, we may assume that

72

D =

 0 0 · · · 0

0 1 · · · q − 1

x0 x1 · · · xq−1

 . (5.1)

Let S be a 3× w matrix on Zq as follows.

S =

 0 0 · · · 0

s1 s2 · · · sw

t1 t2 · · · tw

 . (5.2)

Let

CD = {c+ g | c ∈ D, g ∈ Zq}, CS = {c+ g | c ∈ S, g ∈ Zq}, C = CD
∪

CS . (5.3)

Theorem 5.3.6 ([16]) Suppose that D is a (q, 3, 1)-CDM in the form (5.1) and S

is a 3 × w matrix in the form (5.2), where |{s1, s2, . . . , sw}| = |{t1, t2, . . . , tw}| =
|{t1−s1, t2−s2, . . . , tw−sw}| = w. Then, the following two statements are equivalent:

(1) C in the form (5.3) is a 2-SC(3, q(q + w), q);

(2) For any two columns (0, si, ti)
T and (0, sj , tj)

T in S, 1 ≤ i ̸= j ≤ w, suppose

(0, y, xy)
T , (0, z, xz)

T , (0, yi, xyi)
T , (0, yj , xyj)

T , (0, zi, xzi)
T , (0, zj , xzj)

T ∈ D,

where y, z, yi, yj , zi, zj ∈ Zq, such that

ti − si = xy − y,

tj − sj = xz − z,

ti = xyi ,

tj = xyj ,

si = zi,

sj = zj .

Then we have 0 /∈ {ti − xy, tj − xz, (ti − xy)± (tj − xz), si − yi, sj − yj , (si −
yi)± (sj − yj), ti − xzi , tj − xzj , (ti − xzi)± (tj − xzj)}.

Theorem 5.3.7 Suppose that C is a 2-SC(3, q(q + w), q) in the form (5.3) on Zq,

and E = {(y, xy) | y ∈ Zq}
∪

{(si, ti) | 1 ≤ i ≤ w}. Then C is a 2-SMIPPC(3, q(q+

w), q) provided that the following hold:

(I) There do not exist distinct 1 ≤ i1, i2, i3 ≤ w and y ∈ Zq, such that
y = si1 ,

xy = ti2 ,

xy − y = ti3 − si3 ,

(si2 + ti3 − xy, ti1 + ti3 − xy) ∈ E.

73

(II) There do not exist distinct y1, y2, y3 ∈ Zq and 1 ≤ i ≤ w, such that
si = y1,

ti = xy2 ,

ti − si = xy3 − y3,

(y2 + xy3 − ti, xy1 + xy3 − ti) ∈ E.

Proof: It is not di�cult to check that CD and CS are codes with minimum distance

2, where the minimum distance of a code is the smallest Hamming distance between

two distinct codewords. Assume that C is not a 2-SMIPPC. According to Theorem

5.3.4, there exists C0 = {c1, c2} = {(a1, b1, e1)T , (a2, b2, e2)T } ⊆ C, where a1 ̸= a2,

b1 ̸= b2, and e1 ̸= e2, such that desc(C0)
∩

C is of the following type:

c1 c2 c3 c4 c5

desc(C0)
∩

C =

 a1 a2 a1 a1 a2

b1 b2 b1 b2 b1

e1 e2 e2 e1 e1


For convenience, suppose that c3 = (a1, b1, e2)

T , c4 = (a1, b2, e1)
T , c5 = (a2, b1, e1)

T .

(1) If c1 ∈ CD, then c1 = (k, k + y, k + xy)
T , where k, y ∈ Zq, and

c3 = (k, k + y, e2)
T , c4 = (k, b2, k + xy)

T , c5 = (a2, k + y, k + xy)
T .

It is easy to see that a2 ̸= k. Since CD has minimum distance 2, we have c3, c4, c5 ∈
CS . Then there exist 1 ≤ i1, i2, i3 ≤ w such that

c3 = (k, k+si1 , k+ ti1)
T , c4 = (k, k+si2 , k+ ti2)

T , c5 = (a2, a2+si3 , a2+ ti3)
T .

Since CS has minimum distance 2 and c3, c4, c5 ∈ CS , we have
si1 ̸= si2 ,

ti1 ̸= ti2 ,

k + ti1 ̸= a2 + ti3 (note that k + si1 = k + y = a2 + si3),

k + si2 ̸= a2 + si3 (note that k + ti2 = k + xy = a2 + ti3).

Obviously, i1 ̸= i2. We can also derive i1 ̸= i3, otherwise, if i1 = i3, then k = a2, a

contradiction. Similarly, i2 ̸= i3. So i1, i2 and i3 are all distinct, and we have

k + y = k + si1 ,

e2 = k + ti1 ,

b2 = k + si2 ,

k + xy = k + ti2 ,

k + y = a2 + si3 ,

k + xy = a2 + ti3 ,

⇒



y = si1 ,

xy = ti2 ,

xy − y = ti3 − si3 ,

a2 = k + xy − ti3 ,

b2 = k + si2 ,

e2 = k + ti1 .

74

Then c2 = (a2, b2, e2)
T = (k + xy − ti3 , k + si2 , k + ti1)

T .

(1.1) If c2 ∈ CD, then there exists z ∈ Zq such that c2 = (k + xy − ti3 , k + xy −
ti3 + z, k + xy − ti3 + xz)

T . So we have{
k + si2 = k + xy − ti3 + z,

k + ti1 = k + xy − ti3 + xz,
⇒

{
z = si2 + ti3 − xy,

xz = ti1 + ti3 − xy,

a contradiction to condition (I). So this case is impossible.

(1.2) If c2 ∈ CS , then there exists 1 ≤ i4 ≤ w such that c2 = (k + xy − ti3 , k +

xy − ti3 + si4 , k + xy − ti3 + ti4)
T . So we have{

k + si2 = k + xy − ti3 + si4 ,

k + ti1 = k + xy − ti3 + ti4 ,
⇒

{
si4 = si2 + ti3 − xy,

ti4 = ti1 + ti3 − xy,

a contradiction to condition (I). So this case is impossible.

(2) If c1 ∈ CS , then c1 = (k, k + si, k + ti)
T , where 1 ≤ i ≤ w, and

c3 = (k, k + si, e2)
T , c4 = (k, b2, k + ti)

T , c5 = (a2, k + si, k + ti)
T .

It is easy to see that a2 ̸= k. Since CS has minimum distance 2, we have c3, c4, c5 ∈
CD. Then there exist y1, y2, y3 ∈ Zq such that

c3 = (k, k+y1, k+xy1)
T , c4 = (k, k+y2, k+xy2)

T , c5 = (a2, a2+y3, a2+xy3)
T .

Since CD has minimum distance 2 and c3, c4, c5 ∈ CD, we have
y1 ̸= y2,

xy1 ̸= xy2 ,

k + xy1 ̸= a2 + xy3 (note that k + y1 = k + si = a2 + y3),

k + y2 ̸= a2 + y3 (note that k + xy2 = k + ti = a2 + xy3).

If y1 = y3, then k = a2, a contradiction. So, y1 ̸= y3. Similarly, y2 ̸= y3. So y1, y2

and y3 are all distinct, and we have

k + si = k + y1,

e2 = k + xy1 ,

b2 = k + y2,

k + ti = k + xy2 ,

k + si = a2 + y3,

k + ti = a2 + xy3 ,

⇒



si = y1,

ti = xy2 ,

ti − si = xy3 − y3,

a2 = k + ti − xy3 ,

b2 = k + y2,

e2 = k + xy1 .

Then c2 = (a2, b2, e2)
T = (k + ti − xy3 , k + y2, k + xy1)

T .

75

(2.1) If c2 ∈ CD, then there exists y4 ∈ Zq, such that c2 = (k+ ti − xy3 , k+ ti −
xy3 + y4, k + ti − xy3 + xy4)

T . So we can have{
k + y2 = k + ti − xy3 + y4,

k + xy1 = k + ti − xy3 + xy4 ,
⇒

{
y4 = y2 + xy3 − ti,

xy4 = xy1 + xy3 − ti,

a contradiction to condition (II). So this case is impossible.

(2.2) If c2 ∈ CS , then there exists 1 ≤ j ≤ w, such that c2 = (k + ti − xy3 , k +

ti − xy3 + sj , k + ti − xy3 + tj)
T . So we can have{

k + y2 = k + ti − xy3 + sj ,

k + xy1 = k + ti − xy3 + tj ,
⇒

{
sj = y2 + xy3 − ti,

tj = xy1 + xy3 − ti,

a contradiction to condition (II). So this case is impossible.

Therefore, C is a 2-SMIPPC(3, q(q + w), q). �

5.3.2 The case q ≡ 1, 5 (mod 6)

We now consider the case q ≡ 1, 5 (mod 6). To simplify our discussion, let xi = 2i,

0 ≤ i ≤ q − 1, sj1 ̸= sj2 , 1 ≤ j1 ̸= j2 ≤ w, tj = 3sj , 1 ≤ j ≤ w, in D in the form

(5.1) and S in the form (5.2), respectively. Then we have two new matrices:

D1 =

 0 0 · · · 0

0 1 · · · q − 1

0 2 · · · 2(q − 1)

 , (5.4)

S1 =

 0 0 · · · 0

s1 s2 · · · sw

3s1 3s2 · · · 3sw

 . (5.5)

Let

CD1 = {c+ g | c ∈ D1, g ∈ Zq}, CS1 = {c+ g | c ∈ S1, g ∈ Zq}, C1 = CD1

∪
CS1 .(5.6)

It is easy to check that D1 is a (q, 3, 1)-CDM. Let A1 = {s1, s2, . . . , sw}, A2 =

{2b | b ∈ A1}, and A3 = {−3b | b ∈ A1}. Then for any (a′, b′, e′)T ∈ CS1 , we can

have b′ − a′ ∈ A1, e
′ − b′ ∈ A2, and a′ − e′ ∈ A3.

Theorem 5.3.8 Suppose q ≡ 1, 5 (mod 6). Then C1 in the form (5.6) is a 2-

SC(3, q(q + w), q) on Zq provided that the following hold:

(I) si ̸= 0 for any positive integer 1 ≤ i ≤ w.

(II) si + sj ̸= 0 always holds for any positive integers 1 ≤ i < j ≤ w.

76

Proof: We apply Theorem 5.3.6. It is not di�cult to check that |{s1, s2, . . . , sw}| =
|{3s1, 3s2, . . . , 3sw}| = |{2s1, 2s2, . . . , 2sw}| = w from the fact q ≡ 1, 5 (mod 6) and

sj1 ̸= sj2 , 1 ≤ j1 ̸= j2 ≤ w. For any two columns (0, si, 3si)
T and (0, sj , 3sj)

T in S1,

1 ≤ i ̸= j ≤ w, suppose (0, y, 2y)T , (0, z, 2z)T , (0, yi, 2yi)
T , (0, yj , 2yj)

T , (0, zi, 2zi)
T ,

(0, zj , 2zj)
T ∈ D1, where y, z, yi, yj , zi, zj ∈ Zq, such that

2si = y,

2sj = z,

3si = 2yi,

3sj = 2yj ,

si = zi,

sj = zj .

Then

3si − 2y = 3si − 4si = −si ̸= 0,

3sj − 2z = 3sj − 4sj = −sj ̸= 0,

(3si − 2y)± (3sj − 2z) = −(si ± sj) ̸= 0,

si − yi = si − 3
2si = −1

2si ̸= 0,

sj − yj = sj − 3
2sj = −1

2sj ̸= 0,

(si − yi)± (sj − yj) = −1
2(si ± sj) ̸= 0,

3si − 2zi = 3si − 2si = si ̸= 0,

3sj − 2zj = 3sj − 2sj = sj ̸= 0,

(3si − 2zi)± (3sj − 2zj) = si ± sj ̸= 0.

Then the conclusion comes from Theorem 5.3.6. �

Theorem 5.3.9 Suppose that q ≡ 1, 5 (mod 6). Then C1 in the form (5.6) is a

2-SMIPPC(3, q(q + w), q) on Zq provided that the following hold:

(I) si ̸= 0 for any positive integer 1 ≤ i ≤ w.

(II) si + sj ̸= 0 always holds for any positive integers 1 ≤ i < j ≤ w.

(III) There does not exist an element b ∈ Zq such that b,
2b
3 ,

b
2 ∈ A1 = {s1, s2, . . . , sw}

and 13b = 0.

Proof: According to Theorem 5.3.8, we know that C1 is a 2-SC. Assume that C
is not a 2-SMIPPC, then one of conditions (I) and (II) of Theorem 5.3.7 does not

hold.

(1) Assume that condition (I) of Theorem 5.3.7 does not hold. Then there exist

distinct 1 ≤ i1, i2, i3 ≤ w and y ∈ Zq such that
y = si1 ,

2y = 3si2 ,

y = 2si3 ,

(si2 + 3si3 − 2y, 3si1 + 3si3 − 2y) ∈ E,

⇒


y = si1 ,
2
3y = si2 ,
1
2y = si3 ,

(16y,
5
2y) ∈ E,

77

where E = {(y′, 2y′) | y′ ∈ Zq}
∪

{(s′, 3s′) | s′ ∈ A1}. This means that y, 2y3 ,
y
2 ∈ A1,

and (16y,
5
2y) ∈ E.

(1.1) If (16y,
5
2y) ∈ {(y′, 2y′) | y′ ∈ Zq}, then 2

6y = 5
2y, which implies 13y = 0, a

contradiction to condition (III).

(1.2) If (16y,
5
2y) ∈ {(s′, 3s′) | s′ ∈ A1}, then 3

6y = 5
2y, which implies y = 0, a

contradiction to 0 /∈ A1.

(2) Assume that condition (II) of Theorem 5.3.7 does not hold. Then there exist

distinct y1, y2, y3 ∈ Zq and 1 ≤ i ≤ w such that
si = y1,

3si = 2y2,

2si = y3,

(y2 + 2y3 − 3si, 2y1 + 2y3 − 3si) ∈ E,

⇒


y1 = si,
2
3y2 = si,
1
2y3 = si,

(52si, 3si) ∈ E.

(2.1) If (52si, 3si) ∈ {(y′, 2y′) | y′ ∈ Zq}, then 5si = 3si, which implies si = 0, a

contradiction to condition (I).

(2.2) If (52si, 3si) ∈ {(s′, 3s′) | s′ ∈ A1}, then 15
2 si = 3si, which implies si = 0, a

contradiction to condition (I).

The above (1) and (2) show that conditions (I) and (II) of Theorem 5.3.7 always

hold, which implies that C1 is a 2-SMIPPC from Theorem 5.3.7. �
We will use Theorem 5.3.9 to construct optimal 2-SMIPPC(3,M, q)s for q ≡ 1, 5

(mod 6).

Lemma 5.3.10 If q ≡ 1, 5 (mod 6) and q ̸≡ 0 (mod 13), then there exists a 2-

SMIPPC(3, q2 + q(q−1)
2 , q).

Proof: Let C1 be in the form (5.6) and A1 = {1, 2, . . . , q−1
2 }. The conclusion comes

from Theorem 5.3.9. �

Lemma 5.3.11 If q ≡ 13, 65 (mod 78), then there exists a 2-SMIPPC(3, q2 +
q(q−1)

2 , q).

Proof: Let q = 13r. Suppose that C1 is in the form (5.6) and A1 = {1, . . . , 4r −
1, 4r + 1, . . . , q−1

2 , 9r}. We want to show that conditions (I), (II), (III) in Theorem

5.3.9 are satis�ed. Obviously, conditions (I) and (II) hold. Assume that there exists

an element b ∈ Zq such that b, 2b3 ,
b
2 ∈ A1 and 13b = 0. Then b should be a multiple

of r and thus we have b ∈ {r, 2r, 3r, 5r, 6r, 9r}. Then

b r 2r 3r 5r 6r 9r
2b
3 5r 10r 2r 12r 4r 6r
b
2 7r r 8r 9r 3r 11r

Table 5.1

78

From Table 5.1, we know that for any b ∈ {r, 2r, 3r, 5r, 6r, 9r}, one of the el-

ements 2b
3 and b

2 is not contained in A1, a contradiction to b, 2b3 ,
b
2 ∈ A1. Hence,

condition (III) is satis�ed.

The conclusion then comes from Theorem 5.3.9. �
Combining Theorem 5.3.3, Lemmas 5.3.10 and 5.3.11, we have

Theorem 5.3.12 There exists an optimal 2-SMIPPC(3, q2 + q(q−1)
2 , q) for any q ≡

1, 5 (mod 6).

5.3.3 The case q ≡ 0, 2 (mod 6)

Next, we deal with the case q ≡ 0, 2 (mod 6). Let s = q− 1, then s ≡ 1, 5 (mod 6).

In order to describe our constructions, we introduce a new element ∞ /∈ Zs, and

for any a ∈ Zs, we de�ne

a+∞ = ∞+ a = a · ∞ = ∞ · a = ∞.

We now de�ne a code

C′
2 = C2

∪
CT2

∪
{(∞,∞,∞)T } (5.7)

on Q = Zs
∪
{∞}, where s1, s2, . . . , sw,m ∈ Zs,

D2 =

 0 0 · · · 0

0 1 · · · s− 1

0 2 · · · 2(s− 1)

 , S2 =

 0 0 · · · 0

s1 s2 · · · sw

3s1 3s2 · · · 3sw

 ,

T2 =

 ∞ m 0

0 ∞ m

m 0 ∞

 ,

CD2 = {c+ g | c ∈ D2, g ∈ Zs}, CS2 = {c + g | c ∈ S2, g ∈ Zs}, CT2 = {c+ g | c ∈
T2, g ∈ Zs}, and C2 = CD2

∪
CS2 .

Theorem 5.3.13 C′
2 in the form (5.7) is a 2-SC(3, s(s+w+3)+1, q) provided that

the following hold:

(I) si ̸= 0 for any positive integer 1 ≤ i ≤ w.

(II) si + sj ̸= 0 always holds for any positive integers 1 ≤ i < j ≤ w.

(III) m /∈
∪3

i=1Ai.

Proof: According to Theorem 5.3.8, we know that C2 = CD2

∪
CS2 is a 2-SC(3, s(s+

w), s) de�ned on Zs. Hence, in C2, |Aj
g1

∩
Aj

g2 | ≤ 1 holds for any positive integer

79

1 ≤ j ≤ 3 and any distinct g1, g2 ∈ Zs from Lemma 3.3.4. Now we de�ne

Bj
g =


Aj

g
∪
{(∞, g −m)T , (g +m,∞)T }, if g ∈ Zs, j = 1, 3,

Aj
g
∪
{(∞, g +m)T , (g −m,∞)T }, if g ∈ Zs, j = 2,

{(i, i+m)T | i ∈ Zs}
∪
{(∞,∞)T }, if g = ∞, j = 1, 3,

{(i+m, i)T | i ∈ Zs}
∪
{(∞,∞)T }, if g = ∞, j = 2.

According to Lemma 3.3.4, in order to prove that C′
2 is a 2-SC, it su�ces to show

that |Bj
g1

∩
Bj
g2 | ≤ 1 holds for any positive integer 1 ≤ j ≤ 3, and any distinct

g1, g2 ∈ Zs
∪
{∞}.

Since for any distinct g1, g2 ∈ Zs, {(∞, g1 − m)T , (g1 + m,∞)T }
∩
{(∞, g2 −

m)T , (g2 +m,∞)T } = ∅, and {(∞, g1 +m)T , (g1 −m,∞)T }
∩
{(∞, g2 +m)T , (g2 −

m,∞)T } = ∅, we have Bj
g1

∩
Bj
g2 = Aj

g1

∩
Aj

g2 for any integer 1 ≤ j ≤ 3, which

implies |Bj
g1

∩
Bj
g2 | ≤ 1.

Next, since m /∈
∪3

i=1Ai, we know that for any g ∈ Zs,

B1
g

∩
B1
∞ = {(g +m, g + 2m)T },

B2
g

∩
B2
∞ = {(g + m

2 , g −
m
2)

T },
B3
g

∩
B3
∞ = {(g − 2m, g −m)T }.

Then |Bj
g
∩

Bj
∞| = 1 holds for any integer 1 ≤ j ≤ 3.

This completes the proof. �

Theorem 5.3.14 C′
2 in the form (5.7) is a 2-SMIPPC(3, s(s+w+3)+1, q) provided

that the following hold:

(I) si ̸= 0 for any positive integer 1 ≤ i ≤ w.

(II) si + sj ̸= 0 always holds for any positive integers 1 ≤ i < j ≤ w.

(III) There does not exist an element b ∈ Zs such that b, 2b3 ,
b
2 ∈ A1 and 13b = 0.

(IV) m /∈
∪3

i=1Ai, −m
2 /∈ A2, −2m /∈ A3, m ̸= 0.

Proof: It is clear that C′
2 is a 2-SC from Theorem 5.3.13. Assume that C′

2 is not a 2-

SMIPPC. According to Theorem 5.3.4, there exists C0 = {c1, c2} = {(a1, b1, e1)T , (a2,
b2, e2)

T } ⊆ C′
2, where a1 ̸= a2, b1 ̸= b2, and e1 ̸= e2, such that desc(C0)

∩
C′
2 is of

the following type:

c1 c2 c3 c4 c5

desc(C0)
∩

C′
2 =

 a1 a2 a1 a1 a2

b1 b2 b1 b2 b1

e1 e2 e2 e1 e1

 .

For convenience, suppose that c3 = (a1, b1, e2)
T , c4 = (a1, b2, e1)

T , c5 = (a2, b1, e1)
T .

(1) If c1 ∈ CD2 , then c1 = (k, k + b, k + 2b)T , where k, b ∈ Zs.

80

(1.1) If b /∈ {m,−m
2 }, then c3, c4, c5 ∈ C2 = CD2

∪
CS2 , and also c2 ∈ C2.

According to the proofs of Theorems 5.3.7 and 5.3.9, this case is impossible.

(1.2) If b = m, then c4 = (k, b2, k + 2m)T . Since s ≡ 1, 5 (mod 6) and m ̸= 0,

we have −2m ̸= m, which implies c4 /∈ CT2 . Since −2m /∈ A3, we can derive that

c4 /∈ CS2 . Hence c4 ∈ CD2 , which, together with the fact that CD2 has minimum

distance 2, implies c4 = c1, a contradiction. So this case is impossible.

(1.3) If b = −m
2 , then c5 = (a2, k − m

2 , k − m)T . Since s ≡ 1, 5 (mod 6) and

m ̸= 0, we have −m
2 ̸= m, which implies c5 /∈ CT2 . Since −m

2 /∈ A2, we can derive

that c5 /∈ CS2 . Hence c5 ∈ CD2 , which implies c5 = c1, a contradiction. So this case

is impossible.

(2) If c1 ∈ CS2 , then c1 = (k, k + b, k + 3b)T , where k ∈ Zs, b ∈ A1 ⊆ Zs.

Since m /∈
∪3

i=1Ai, we know that c3, c4, c5 /∈ CT2 , which implies c3, c4, c5 ∈ C2 =

CD2

∪
CS2 , and also c2 ∈ C2. According to the proofs of Theorems 5.3.7 and 5.3.9,

this case is impossible.

(3) If c1 ∈ CT2 , without loss of generality, we may assume that c1 = (∞, b, b +

m)T . Then c3 = c1, a contradiction. So this case is impossible.

(4) If c1 = (∞,∞,∞)T , then c3 = c1, a contradiction. So this case is impossible.

According to (1)-(4), we know that C′
2 is a 2-SMIPPC(3, s(s+w+ 3) + 1, q). �

Lemma 5.3.15 If q ≡ 0 (mod 6) ≥ 12 and q ̸≡ 1 (mod 13), then there exists a

2-SMIPPC(3, q2 + q(q−1)
2 , q).

Proof: Let C′
2 be in the form (5.7), A1 = {1, 2, . . . , s−1

2 }, and m = −2. Obviously,

conditions (I) and (II) of Theorem 5.3.14 are satis�ed. Since q ̸≡ 1 (mod 13),

s = q − 1 ̸≡ 0 (mod 13). Then, except the element 0 ∈ Zs, there is no element

b ∈ Zs, such that 13b = 0, but 0 /∈ A1. This implies that condition (III) of Theorem

5.3.14 is satis�ed. Now consider condition (IV) of Theorem 5.3.14. Remember that

A2 = {2b | b ∈ A1}, A3 = {−3b | b ∈ A1}.
(1) Obviously, m ̸= 0, and −m

2 = 1 /∈ A2.

(2) −2m = 4 /∈ A3. Assume not. Then there exists b ∈ A1, such that 4 = −3b.

Then b = −4
3 . Since s = q − 1 ≡ 5 (mod 6), we write s = 6h + 5 for some integer

h ≥ 1. Then b = 4h + 2 and A1 = {1, 2, . . . , 3h + 2}, which implies b /∈ A1, a

contradiction.

(3) Obviously, m = −2 /∈ A1
∪

A2. It su�ces to show that m = −2 /∈ A3.

Assume not. Then there exists b ∈ A1, such that −2 = −3b. Then b = 2
3 = 4h+ 4,

which implies b /∈ A1, a contradiction.

The conclusion then comes from Theorem 5.3.14. �

Lemma 5.3.16 If q ≡ 66 (mod 78), then there exists a 2-SMIPPC(3, q2+ q(q−1)
2 , q).

Proof: Let s = q − 1 = 13r, C′
2 be in the form (5.7), A1 = {1, . . . , 4r − 1, 4r +

1, . . . , s−1
2 , 9r}, and m = −2. Obviously, conditions (I) and (II) of Theorem 5.3.14

81

are satis�ed. Since q ≡ 66 (mod 78), s = q − 1 ≡ 65 (mod 78), then we can know

condition (III) of Theorem 5.3.14 is satis�ed from the proof of Lemma 5.3.11. Now

consider condition (IV) of Theorem 5.3.14. Remember that A2 = {2b | b ∈ A1},
A3 = {−3b | b ∈ A1}.

(1) Obviously, m ̸= 0, and −m
2 = 1 /∈ A2.

(2) −2m = 4 /∈ A3. Assume not. Then there exists b ∈ A1, such that 4 = −3b.

Write s = 78h+65. Then r = 6h+5 and b = −4
3 = 52h+42. Since s−1

2 = 39h+32,

it should hold that b = 9r, that is, 2h+ 3 = 0, which is impossible.

(3) Since s ≥ 65, we have r ≥ 5. Then s − 2 = 13r − 2 > 9r, which implies

m = −2 /∈ A1. Also, s− 2 = 13r − 2 ̸= 5r, which implies m = −2 /∈ A2. It su�ces

to show that m = −2 /∈ A3. Assume not. Then there exists b ∈ A1, such that

−2 = −3b. Then b = 2
3 = 52h + 44. Since s−1

2 = 39h + 32, it should hold that

b = 9r, that is, 2h+ 1 = 0, which is impossible.

The conclusion then comes from Theorem 5.3.14. �

Lemma 5.3.17 If q ≡ 2 (mod 6) ≥ 44 and q ̸≡ 1 (mod 13), then there exists a

2-SMIPPC(3, q2 + q(q−1)
2 , q).

Proof: Let C′
2 be in the form (5.7), A1 = {1, 2, . . . , s−1

2 }, and m = −10. Obviously,

conditions (I) and (II) of Theorem 5.3.14 are satis�ed. Since q ̸≡ 1 (mod 13),

s = q − 1 ̸≡ 0 (mod 13). Then, except the element 0 ∈ Zs, there is no element

b ∈ Zs, such that 13b = 0, but 0 /∈ A1. This implies that condition (III) of Theorem

5.3.14 is satis�ed. Now consider condition (IV) of Theorem 5.3.14. Remember that

A2 = {2b | b ∈ A1}, A3 = {−3b | b ∈ A1}.
(1) Obviously, m ̸= 0, and −m

2 = 5 /∈ A2.

(2) −2m = 20 /∈ A3. Assume not. Then there exists b ∈ A1, such that 20 = −3b.

Then b = −20
3 . Write s = 6h + 1 for some integer h ≥ 7. Then b = 4h − 6 and

A1 = {1, 2, . . . , 3h}, which implies b /∈ A1, a contradiction.

(3) Since s ≥ 43, we have s − 10 = 6h − 9, and s−1
2 = 3h, which implies

m = −10 /∈ A1. It is also clear that m = −10 /∈ A2. We show that m = −10 /∈ A3.

Assume not. Then there exists b ∈ A1, such that −10 = −3b. Then b = 10
3 = 4h+4,

which implies b /∈ A1, a contradiction.

So, the conclusion comes from Theorem 5.3.14. �

Lemma 5.3.18 If q ≡ 14 (mod 78) ≥ 92, then there exists a 2-SMIPPC(3, q2 +
q(q−1)

2 , q).

Proof: Let s = q − 1 = 13r, C′
2 be in the form (5.7), A1 = {1, . . . , 4r − 1, 4r +

1, . . . , s−1
2 , 9r}, and m = −10. Obviously, conditions (I) and (II) of Theorem 5.3.14

are satis�ed. Since q ≡ 14 (mod 78), s = q − 1 ≡ 13 (mod 78), then we can know

that condition (III) of Theorem 5.3.14 is satis�ed from the proof of Lemma 5.3.11.

Now we consider condition (IV) of Theorem 5.3.14.

82

(1) Obviously, m ̸= 0, and −m
2 = 5 /∈ A2.

(2) −2m = 20 /∈ A3. Assume not. Then there exists b ∈ A1, such that 20 = −3b.

Write s = 78h+13. Then r = 6h+1, and b = −20
3 = 52h+2. Since s−1

2 = 39h+6,

it should hold that b = 9r, that is, 2h+ 7 = 0, which is impossible.

(3) Since s ≥ 91, we can have r ≥ 7. Then s−10 = 13r−10 > 9r, which implies

m = −10 /∈ A1.

m = −10 /∈ A2. Assume not. Then there exists b ∈ A1, such that −10 = 2b,

which implies b = −5 = s − 5. Since s ≥ 91, we have s − 5 > s−1
2 , which implies

b = 9r, that is, −10 = 2 · 9r = 18r = 5r. Hence r = −2 = s − 2 ≡ 5 (mod 6), a

contradiction.

It su�ces to show that m = −10 /∈ A3. Assume not. Then there exists b ∈ A1,

such that −10 = −3b. Then b = 10
3 = 52h + 12. Since s−1

2 = 39h + 6, it should

hold that b = 9r, then −10 = −3 · 9r = −r, r ≡ 10 (mod s) ≡ 10 (mod 13r), and

r = 10 ̸≡ 1 (mod 6), a contradiction.

So the conclusion comes from Theorem 5.3.14. �

Lemma 5.3.19 There exists a 2-SMIPPC(3, q2+ q(q−1)
2 , q) for any q ∈ {20, 26, 32, 38}.

Proof: Let

A(20) = {1, 2, 3, 4, 5, 7, 8, 10, 13}, m(20) = 9,

A(26) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13}, m(26) = 24,

A(32) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 17}, m(32) = 21,

A(38) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19}, m(38) = 27.

For any q ∈ {20, 26, 32, 38}, let s = q − 1, C(q) be in the form (5.7), A1 = A(q),

and m = m(q). Then the conclusion comes from Theorem 5.3.14. �
The following result comes from Lemmas 5.3.15-5.3.19 and Theorem 5.3.3.

Theorem 5.3.20 Suppose that q ≡ 0, 2 (mod 6), and q /∈ {2, 6, 8, 14}, then there

exists an optimal 2-SMIPPC(3, q2 + q(q−1)
2 , q).

For each q ∈ {6, 8}, we want to �nd the set A1 and the element m satisfying the

conditions (I)-(IV) of Theorem 5.3.14. Unfortunately, we fail to do this. However,

we can construct a 2-SMIPPC(3, q2 + q(q−1)
2 , q) for each q ∈ {6, 8} by making a

detailed analysis of the proof of Theorem 5.3.14.

Lemma 5.3.21 There exists a 2-SMIPPC(3, 51, 6).

Proof: Let s = 5, C′
2 be in the form (5.7), A1 = {1, 2}, and m = 3. Then A2 =

A3 = {2, 4}. It is not di�cult to check that m ̸= 0, −m
2 = 1 /∈ A2, m /∈

∪3
i=1Ai,

and conditions (I), (II), (III) of Theorem 5.3.14 are satis�ed. According to the proof

of Theorem 5.3.14, it su�ces to prove the following assertion:

83

There does not exist C0 = {c1, c2} = {(k, k + 3, k + 1)T , (a2, b2, e2)
T } ⊆ C′

2,

where k ∈ Z5, a2, b2, e2 ∈ Z5
∪
{∞}, a2 ̸= k, b2 ̸= k + 3, and e2 ̸= k + 1, such that

desc(C0)
∩

C′
2 is of the following type:

c1 c2 c3 c4 c5

desc(C0)
∩
C′
2 =

 k a2 k k a2

k + 3 b2 k + 3 b2 k + 3

k + 1 e2 e2 k + 1 k + 1

 ,

where c3 = (k, k + 3, e2)
T , c4 = (k, b2, k + 1)T , c5 = (a2, k + 3, k + 1)T .

Assume not. Obviously, c3, c4, c5 /∈ CD2 , because of the fact that CD2 has

minimum distance 2 and c1 ∈ CD2 . It is not di�cult to see that c3, c5 /∈ CS2 s-

ince 3 /∈ A1
∪

A2, which implies c3, c5 ∈ CT2 . Hence c3 = (k, k + 3,∞)T , c5 =

(∞, k+3, k+1)T , and c2 = (∞,∞,∞)T , which implies c4 = (k,∞, k+1)T . Clear-

ly, since m = 3 ̸= −1, we know that c4 = (k,∞, k + 1)T /∈ C′
2, a contradiction.

So, C′
2 is a 2-SMIPPC(3, 51, 6). �

Lemma 5.3.22 There exists a 2-SMIPPC(3, 92, 8).

Proof: Let s = 7, C′
2 be in the form (5.7), A1 = {1, 2, 4}, and m = 3. Then

A2 = A3 = {1, 2, 4}. It is not di�cult to check that m ̸= 0, m /∈
∪3

i=1Ai and

conditions (I), (II), (III) of Theorem 5.3.14 are satis�ed. According to the proof of

Theorem 5.3.14, it su�ces to prove the following assertion:

There does not exist C0 = {c1, c2} = {(k, k + b, k + 2b)T , (a2, b2, e2)
T } ⊆ C′

2,

where k ∈ Z7, b ∈ {2, 3}, a2, b2, e2 ∈ Z7
∪
{∞}, a2 ̸= k, b2 ̸= k+ b, and e2 ̸= k+ 2b,

such that desc(C0)
∩

C′
2 is of the following type:

c1 c2 c3 c4 c5

desc(C0)
∩

C′
2 =

 k a2 k k a2

k + b b2 k + b b2 k + b

k + 2b e2 e2 k + 2b k + 2b

 ,

where c3 = (k, k + b, e2)
T , c4 = (k, b2, k + 2b)T , c5 = (a2, k + b, k + 2b)T .

Assume not. Since CD2 has minimum distance 2 and c1 ∈ CD2 , we know that

c3, c4, c5 /∈ CD2 .

(1) The case b = 2. We can directly check that c3, c5 /∈ CT2 and c4 /∈ CS2 ,

which implies c3, c5 ∈ CS2 and c4 ∈ CT2 . Hence c3 = (k, k + 2, k + 6)T , c5 =

(k+1, k+2, k+4)T and c4 = (k,∞, k+4)T , which implies c2 = (k+1,∞, k+6)T .

Obviously, since m = 3 ̸= −5, we know that c2 = (k + 1,∞, k + 6)T /∈ C′
2, a

contradiction.

(2) The case b = 3. It is not di�cult to see that c3, c5 /∈ CS2 , which implies

c3, c5 ∈ CT2 . Hence c3 = (k, k + 3,∞)T , c5 = (∞, k + 3, k + 6)T , and c2 =

84

(∞,∞,∞)T , which implies c4 = (k,∞, k + 6)T . Obviously, since m = 3 ̸= 1, we

know that c4 = (k,∞, k + 6)T /∈ C′
2, a contradiction.

So, C′
2 is a 2-SMIPPC(3, 92, 8). �

Lemma 5.3.23 There exists a 2-SMIPPC(3, 287, 14).

Proof: We construct a (3, 287, 14) code C′
3 on Z13

∪
{∞} as follows. Let

D3 =

 0 0 · · · 0

0 1 · · · 12

0 2 · · · 2× 12

 , S3 =

 0 0 0 0 0 0

1 2 3 5 6 9

3 6 9 2 5 1

 ,

T3 =

 ∞ 6 0

0 ∞ 4

7 0 ∞

 ,

CD3 = {c + g | c ∈ D3, g ∈ Z13}, CS3 = {c + g | c ∈ S3, g ∈ Z13}, CT3 = {c +

g | c ∈ T3, g ∈ Z13}, C3 = CD3

∪
CS3 , C

′
3 = C3

∪
CT3

∪
{(∞,∞,∞)T }. Let A1 =

{1, 2, 3, 5, 6, 9}, A2 = {2b | b ∈ A1}, and A3 = {−3b | b ∈ A1}.
According to the proof of Lemma 5.3.11, we know that C3 is a 2-SMIPPC de�ned

on Z13. We �rst prove that C′
3 is a 2-SC de�ned on Z13

∪
{∞}.

According to Theorem 5.3.8, we know that C3 = CD3

∪
CS3 is a 2-SC(3, 247, 13)

de�ned on Z13. Hence, |Aj
g1

∩
Aj

g2 | ≤ 1 holds for any positive integers 1 ≤ j ≤ 3

and any distinct g1, g2 ∈ Z13 from Lemma 3.3.4. Now we de�ne

Bj
g =



Aj
g
∪
{(∞, g − 6)T , (g + 4,∞)T }, if g ∈ Z13, j = 1,

Aj
g
∪
{(∞, g + 7)T , (g − 4,∞)T }, if g ∈ Z13, j = 2,

Aj
g
∪
{(∞, g − 7)T , (g + 6,∞)T }, if g ∈ Z13, j = 3,

{(i, i+ 7)T | i ∈ Z13}
∪
{(∞,∞)T }, if g = ∞, j = 1,

{(i+ 6, i)T | i ∈ Z13}
∪
{(∞,∞)T }, if g = ∞, j = 2,

{(i, i+ 4)T | i ∈ Z13}
∪
{(∞,∞)T }, if g = ∞, j = 3.

According to Lemma 3.3.4, in order to prove that C′
3 is a 2-SC, it su�ces to show

that |Bj
g1

∩
Bj
g2 | ≤ 1 holds for any positive integer 1 ≤ j ≤ 3, and any distinct

g1, g2 ∈ Z13
∪
{∞}.

For any distinct g1, g2 ∈ Z13, we have

{(∞, g1 − 6)T , (g1 + 4,∞)T }
∩
{(∞, g2 − 6)T , (g2 + 4,∞)T } = ∅,

{(∞, g1 + 7)T , (g1 − 4,∞)T }
∩
{(∞, g2 + 7)T , (g2 − 4,∞)T } = ∅,

{(∞, g1 − 7)T , (g1 + 6,∞)T }
∩
{(∞, g2 − 7)T , (g2 + 6,∞)T } = ∅.

Then Bj
g1

∩
Bj
g2 = Aj

g1

∩
Aj

g2 for any integer 1 ≤ j ≤ 3, which implies |Bj
g1

∩
Bj
g2 | ≤

1. For any g ∈ Z13, we can also have

85

B1
g

∩
B1
∞ = {(g + 7, g + 1)T },

B2
g

∩
B2
∞ = {(g + 3, g − 3)T },

B3
g

∩
B3
∞ = {(g − 8, g − 4)T }.

Then |Bj
g
∩

Bj
∞| = 1 for any integer 1 ≤ j ≤ 3. This implies C′

3 is a 2-SC.

Now assume that C′
3 is not a 2-SMIPPC. According to Theorem 5.3.4, there

exists C0 = {c1, c2} = {(a1, b1, e1)T , (a2, b2, e2)T } ⊆ C′
3, where a1 ̸= a2, b1 ̸= b2, and

e1 ̸= e2, such that desc(C0)
∩

C′
3 is of the following type:

c1 c2 c3 c4 c5

desc(C0)
∩

C′
3 =

 a1 a2 a1 a1 a2

b1 b2 b1 b2 b1

e1 e2 e2 e1 e1

 ,

where c3 = (a1, b1, e2)
T , c4 = (a1, b2, e1)

T , c5 = (a2, b1, e1)
T .

(1) If c1 ∈ CD3 , then c1 = (k, k + b, k + 2b)T , where k, b ∈ Z13. Since CD3 has

minimum distance 2, we have c3, c4, c5 /∈ CD3 .

(1.1) If b /∈ {4, 7, 10}, then c3, c4, c5 ∈ C3, and also c2 ∈ C3, which contradict to

the fact that C3 is a 2-SMIPPC. So this case is impossible.

(1.2) If b = 4, noting that −2b = 5 /∈ A3
∪
{6}, we have c4 /∈ CS3

∪
CT3 , which

implies c4 /∈ C′
3, a contradiction. So this case is impossible.

(1.3) If b = 7 or 10, noting that b /∈ A1
∪
{4}, we have c3 /∈ CS3

∪
CT3 , which

implies c3 /∈ C′
3, a contradiction. So this case is impossible.

(2) If c1 ∈ CS3 , then c1 = (k, k + b, k + 3b)T , where k ∈ Z13, b ∈ {1, 2, 3, 5, 6, 9}.
We can check that c3, c4, c5 /∈ CT3 , which implies c3, c4, c5 ∈ C3 and also c2 ∈ C3.
This is a contradiction to the fact that C3 is a 2-SMIPPC. So this case is impossible.

(3) c1 ∈ CT3 . If c1 = (∞, k, k + 7)T (or c1 = (k,∞, k − 6)T), k ∈ Z13, then

c3 = c1, a contradiction. Similarly, if c1 = (k, k + 4,∞)T , k ∈ Z13, then c4 = c1, a

contradiction. So this case is impossible.

(4) If c1 = (∞,∞,∞)T , then c3 = c1, a contradiction. So this case is impossible.

According to (1)-(4), we know that c1 /∈ C′
3, a contradiction.

So, C′
3 is a 2-SMIPPC(3, 287, 14). �

Finally, we can also construct an optimal binary 2-SMIPPC of length 3.

Lemma 5.3.24 There exists an optimal 2-SMIPPC(3, 4, 2).

Proof: The following code C is a 2-SMIPPC(3, 4, 2) from Example 5.1.2.

C =

 1 0 0 0

0 1 0 1

0 1 1 0


In order to show that the code C above is optimal, we only need to prove

that there is no 2-SMIPPC(3,M, 2) for M ≥ 5. Assume not. Suppose C′
is a

86

2-SMIPPC(3,M, 2) with M ≥ 5. Noting that q = 2, we know that M ≤ 8. Choose

arbitrary 5 codewords ci = (ai, bi, ei) ∈ C′
, 1 ≤ i ≤ 5. Then there must be two

codewords ci and cj , 1 ≤ i ̸= j ≤ 5, such that d(ci, cj) = 3. We may assume that

d(c1, c2) = 3, a1 = 0 and a2 = 1. Hence desc({c1, c2}) = {0, 1} × {0, 1} × {0, 1}.
Now, we are going to show that desc({c3, c4, c5}) = {0, 1}×{0, 1}×{0, 1}. If a3 =

a4 = a5 = 0, then {c1, c3, c4, c5} = {(0, 0, 0)T , (0, 0, 1)T , (0, 1, 0)T , (0, 1, 1)T }. Hence
desc({(0, 0, 0)T , (0, 1, 1)T })= desc({(0, 0, 1)T , (0, 1, 0)T }), while {(0, 0, 0)T , (0, 1, 1)T }∩
{(0, 0, 1)T , (0, 1, 0)T } = ∅, a contradiction to the de�nition of a 2-SMIPPC. So, it is

impossible that a3 = a4 = a5 = 0. Similarly, it is impossible that a3 = a4 = a5 = 1.

This means that {a3, a4, a5} = {0, 1}. Similarly, we can prove that {b3, b4, b5} =

{0, 1} and {e3, e4, e5} = {0, 1}. So, desc({c3, c4, c5}) = {0, 1} × {0, 1} × {0, 1},
which implies desc({c3, c4, c5}) = desc({c1, c2}), while {c3, c4, c5}

∩
{c1, c2} = ∅, a

contradiction to the de�nition of a 2-SMIPPC.

So, there does not exist a 2-SMIPPC(3,M, 2) with M ≥ 5. �
According to Theorems 5.3.3 and 5.3.20, and Lemmas 5.3.21-5.3.24, we can

derive the following result.

Theorem 5.3.25 There exists an optimal q-ary 2-SMIPPC of length 3 for any

positive integer q ≡ 0, 2 (mod 6).

We would like to make some remarks here. Although the values of parameter

n of the codes in this thesis are small, these codes are of practical use because

of the concatenation constructions. For example, in the famous Baboon picture,

n = 19497. We constructed a 2-SMIPPC(3, q2+ q(q−1)
2 , q) for any positive integer q ≡

0, 1, 2, 5 (mod 6) and q ̸= 2 in Section 5.3. Then, by using the concatenation con-

struction (Lemma 5.1.7), we can derive a 2-SMIPPC(19497, 63352252, 2) from a 2-

SMIPPC(3, 63352252, 6499). Now, the codewords of the 2-SMIPPC(19497, 63352252,

2) can be embedded into the Baboon picture, and, in this case, we can identify at

least one colluder when the number of colluders in the averaging attack is at most

2.

87

Chapter 6

Conclusions and Open Problems

We now give a brief summary of new results obtained in this thesis, and some

interesting open problems.

6.1 Conclusions

In this thesis, we introduced three new types of anti-collusion codes to construct

�ngerprints resistant to the averaging collusion attack on multimedia contents. We

also designed the colluder tracing algorithms for these codes. Moreover, we paid

much attention to the constructions of four types of anti-collusion codes including

separable codes and our new codes. We brie�y list the main results of these codes

in this thesis as follows.

Traceability of di�erent types of codes

Catch Colluders Complexity

t-SC(n,M, 2) all O(nM t)

t-SSC(n,M, 2) all O(nM)

t-MIPPC(n,M, 2) at least one O(nM t)

t-SMIPPC(n,M, 2) at least one O(nM)

Relationships among di�erent types of codes and hash families

Relationships among di�erent types of codes and hash families were summarized

by Stinson et al. [46], and was extended by Cheng and Miao [17]. Now it can be

extended again to include the newly introduced SSCs, MIPPCs and SMIPPCs. The

relationships among FPCs, SCs, SSCs, MIPPCs and SMIPPCs come from Lemmas

3.2.1, 3.2.7, 4.1.3, 5.1.3 and 5.1.5. Here we omit the de�nitions of di�erent types

of codes and hash families. The interested reader is referred to [17], [46] for more

details.

PHF(n;M, q, ⌊ (t+2)2

4 ⌋) =⇒

SHF(n;M, q, {t, t}) ⇐⇒

=⇒ PHF(n;M, q, t+ 1)

⇓

⇐⇒ SHF(n;M, q, {t, 1})t-CFF(nq,M) ⇐=

t-SMIPPC(n,M, q) ⇐=

⇓
t-MIPPC(n,M, q) ⇐=

q=2⇐⇒ t-LACC(n,M, 2)

(n,M, q) code with dmin > n(1− 1/t2)

⇓
(t, 1− 1/t)-CFC(n,M, q)

⇓
t-TAC(n,M, q)

⇓
t-IPPC(n,M, q)

⇓
t-SFPC(n,M, q)

⇓
t-FPC(n,M, q)

⇓
t-SSC(n,M, q)

⇓
t-SC(n,M, q)

⇓ q = 2⇓
t-AND-ACC(2n,M, 2)

⇓
t-LACC(2n,M, 2)

Key

dmin minimum distance of the code
CFC cover-free code
TAC traceability code
IPPC identi�able parent property code
SFPC secure frameproof code
FPC frameproof code
SSC strong separable code
SMIPPC strong multimedia identi�able parent property code
SC separable code
MIPPC multimedia identi�able parent property code
AND-ACC AND anti-collusion code

LACC logical anti-collusion code

PHF perfect hash family
SHF separating hash family
CFF cover-free family

Figure 6.1: Relationships among di�erent types of codes and hash families

90

Separable codes

• We gave an upper bound for 2-SC(2,M, q)s by a graph theoretical approach,

and constructed such codes from projective planes, some of which are in fact

optimal.

• We derived asymptotically optimal 2-SC(4,M, q)s for any prime power q > 2.

Strong separable codes

• We derived optimal 2-SSC(2,M, q)s for any q ∈ {k2 − 1, k2 + k − 2, k2 + k −
1, k2 + k, k2 + k + 1}, where k ≥ 2 is a prime power.

• We presented a construction of 2-SSC(3,M, q)s.

Multimedia identi�able parent property codes

• We gave an upper bound for t-MIPPC(n,M, q)s.

• We derived a tight upper bound for 3-MIPPC(2,M, q)s by using bipartite

graphs.

• We constructed optimal 3-MIPPC(2, (k2 + 1)(k + 1)2, (k2 + 1)(k + 1))s for

any prime power k, and several in�nite series of asymptotically optimal 3-

MIPPC(2,M, q)s by using generalized quadrangles.

Strong multimedia identi�able parent property codes

• We derived optimal 2-SMIPPC(2,M, q)s for any q ∈ {k2 − 1, k2 + k − 2, k2 +

k − 1, k2 + k, k2 + k + 1}, where k ≥ 2 is a prime power.

• We derived optimal 3-SMIPPC(2, (k2 + 1)(k + 1)2, (k2 + 1)(k + 1))s for any

prime power k.

• We constructed optimal 2-SMIPPC(3,M, q)s for each q ≡ 0, 1, 2, 5 (mod 6)

by using cyclic di�erence matrices.

6.2 Open problems

Now, we gather some open problems arising from this thesis.

91

1. As we mentioned, in order to reduce the computational complexity of the

tracing algorithm based on a t-SC (or a t-MIPPC, respectively), we intro-

duced the notion of a t-SSC (or a t-SMIPPC, respectively). Can we �nd some

other kinds of codes with more e�cient tracing algorithm, for example, with

computational complexity O(tn logM)?

2. We only derived asymptotically optimal 2-SC(4,M, q)s for any prime power

q > 2 in Section 2.3. Can we give a tight bound on such codes? Furthermore,

how to construct optimal 2-SC(4,M, q)s for each positive integer q?

3. In Section 3.3, we gave a construction for 2-SSC(3,M, q)s. We do not know

whether these 2-SSC(3,M, q)s are optimal, even asymptotically optimal. So,

it is desired to derive an upper bound for 2-SSC(3,M, q)s.

4. We derived a tight upper bound for 3-MIPPC(2,M, q)s by considering bipar-

tite graphs with girth at least 8. However, we only constructed an in�nite

series of optimal 3-MIPPC(2,M, q)s. Is it possible to consider such codes in a

way similar to the way used in Section 2.2?

5. How can one construct optimal 2-SMIPPC(3,M, q)s for q ≡ 3, 4 (mod 6).

6. It would be of interest to characterize and construct these four types of codes

with large parameters, that is,

(1) t-SC(n,M, q)s

(i) t = 2, n ≥ 5.

(ii) t ≥ 3, n ≥ t.

(2) t-SSC(n,M, q)s

(i) t = 2, n ≥ 4.

(ii) t ≥ 3, n ≥ t.

(3) t-MIPPC(n,M, q)s

(i) t = 3, n ≥ 3.

(ii) t ≥ 4, n ≥ 2.

(4) t-SMIPPC(n,M, q)s

(i) t = 2, n ≥ 3.

(ii) t = 3, n ≥ 3.

(iii) t ≥ 4, n ≥ 2.

92

Bibliography

[1] N. Alon, G. Cohen, M. Krivelevich and S. Litsyn, Generalized hashing and

parent-identifying codes, Journal of Combinatorial Theory, Series A, vol. 104,

no. 1, pp. 207-215, 2003.

[2] N. Alon and U. Stav, New bounds on parent-identifying codes: The case of

multiple parents, Combinatorics, Probability and Computing, vol. 13, no. 6, pp.

795-807, 2004.

[3] A. Barg, G. R. Blakley and G. A. Kabatiansky, Digital �ngerprinting codes:

problem statements, constructions, identi�cation of traitors, IEEE Transac-

tions on Information Theory, vol. 49, no. 4, pp. 852-865, 2003.

[4] A. Barg, G. Cohen, S. Encheva, G. Kabatiansky and G. Zémor, A hypergraph

approach to the identifying parent property: The case of multiple parents,

SIAM Journal on Discrete Mathematics, vol. 14, no. 3, pp. 423-431, 2001.

[5] A. Barg and G. Kabatiansky, A class of I.P.P. codes with e�cient identi�cation,

Journal of Complexity, vol. 20, no. 2-3, pp. 137-147, 2004.

[6] M. Bazrafshan and T. V. Trung, On optimal bounds for separating hash fam-

ilies, Germany-Africa Workshop on Information and Communication Technol-

ogy, Essen, Germany, 2008.

[7] C. T. Benson, Minimal regular graphs of girths eight and twelve, Canadian

Journal of Mathematics, vol. 18, pp. 1091-1094, 1966.

[8] S. R. Blackburn, An upper bound on the size of a code with the k-identi�able

parent property, Journal of Combinatorial Theory, Series A, vol. 102, no. 1,

pp. 179-185, 2003.

[9] S. R. Blackburn, Combinatorial schemes for protecting digital content, Surveys

in Combinatorics, 2003 (Bangor), London Mathematical Society Lecture Note

Series, vol. 307, pp. 43-78, Cambridge University Press, Cambridge, 2003.

[10] S. R. Blackburn, Frameproof codes, SIAM Journal on Discrete Mathematics,

vol. 16, no. 3, pp. 499-510, 2003.

[11] B. Bollobás, Extremal Graph Theory, Academic Press, New York, 1978.

[12] D. Boneh and J. Shaw, Collusion-secure �ngerprinting for digital data, IEEE

Transactions on Information Theory, vol. 44, no. 5, pp. 1897-1905, 1998.

[13] D. E. Bryant and H. L. Fu, C4-saturated bipartite graphs, Discrete Mathemat-

ics, vol. 259, pp. 263-268, 2002.

[14] D. de Caen and L. A. Székely, On dense bipartite graphs of girth eight and

upper bounds for certain con�gurations in planar point-line systems, Journal

of Combinatorial Theory, Series A, vol. 77, no. 2, pp. 268-278, 1997.

[15] B. Chen and G. W. Wornell, Quantization index modulation: a class of prov-

ably good methods for digital watermarking and information embedding, IEEE

Transactions on Information Theory, vol. 47, no. 4, pp. 1423-1443, 2001.

[16] M. Cheng, L. Ji and Y. Miao, Separable codes, IEEE Transactions on Infor-

mation Theory, vol. 58, no. 3, pp. 1791-1803, 2012.

[17] M. Cheng and Y. Miao, On anti-collusion codes and detection algorithms for

multimedia �ngerprinting, IEEE Transactions on Information Theory, vol. 57,

no. 7, pp. 4843-4851, 2011.

[18] B. Chor, A. Fiat, M. Naor and B. Pinkas, Tracing traitors, IEEE Transactions

on Information Theory, vol. 46, no. 3, pp. 893-910, 2000.

[19] C. J. Colbourn and J. H. Dinitz (eds.), The CRC Handbook of Combinatorial

Designs, Second Edition, Chapman & Hall/CRC, Boca Raton, Florida, 2007.

[20] C. J. Colbourn, D. Horsley and V. R. Syrotiuk, Frameproof codes and com-

pressive sensing, Forty-Eighth Annual Allerton Conference, pp. 985-990, Illinois,

USA, 2010.

[21] I. J. Cox, J. Kilian, F. T. Leighton and T. G. Shamoon, Secure spread spectrum

watermarking for multimedia, IEEE Transactions on Image Processing, vol. 6,

no. 12, pp. 1673-1687, 1997.

[22] G. Damásdi, H. Héger and T. Sz®nyi, The Zarankiewicz problem, cages,

and geometries, Annales Universitatis Scientiarum Budapestinensis de Rolando

E®tv®s Nominatae. Sectio Mathematica, vol. 56, pp. 3-37, 2013.

[23] J. Dittmann, P. Schmitt, E. Saar, J. Schwenk and J. Ueberberg, Combining

digital watermarks and collusion secure �ngerprints for digital images, Journal

of Electronic Imaging, vol. 9, no. 4, pp. 456-467, 2000.

[24] S. Engle, Fingerprinting and the marking assumption, Ecs228 Cryptography for

E-commerce, 2005.

[25] P. Erd®s, A. Sárk®zy and V. T. Sós, On product representations of powers, I,

European Journal of Combinatorics, vol. 16, no. 6, pp. 567-588, 1995.

94

[26] F. Ergun, J. Kilian and R. Kumar, A note on the limits of collusion-resistant

watermarks, Cryptology (Eurocrypt' 99), vol. 1592 of Lecture Notes in Com-

puter Science, pp. 140-149, 1999.

[27] F. Gao and G. Ge, New bounds on separable codes for multimedia �ngerprint-

ing, IEEE Transactions on Information Theory, vol. 60, no. 9, pp. 5257-5262,

2014.

[28] P. García-Vázquez, C. Balbuena, X. Marcote and J. C. Valenzuela, On extremal

bipartite graphs with high girth, Electronic Notes in Discrete Mathematics, vol.

26, pp. 67-73, 2006.

[29] W. Goddard, M. A. Henning and O. R. Oellermann, Bipartite Ramsey numbers

and Zarankiewicz numbers, Discrete Mathematics, vol. 219, pp. 85-95, 2000.

[30] E. Györi, C6-free bipartite graphs and product representations of squares, Dis-

crete Mathematics, vol. 165/166, pp. 371-375, 1997.

[31] J. W. P. Hirschfeld, Projective Geometries over Finite Fields, Second Edition,

Oxford Science, Oxford, 1998.

[32] H. D. L. Hollmann, J. H. van Lint, J.-P. Linnartz and L. M. G. M. Tolhuizen, On

codes with the identi�able parent property, Journal of Combinatorial Theory,

Series A, vol. 82, no. 1, pp. 121-133, 1998.

[33] S. Hoory, The size of bipartite graphs with a given girth, Journal of Combina-

torial Theory, Series B, vol. 86, no. 2, pp. 215-220, 2002.

[34] R. S. Irving, Integers, Polynomials, and Rings: A Course in Algebera, Springer-

Verlag, New York, 2004.

[35] J. Kilian, F. T. Leighton, L. R. Matheson, T. G. Shamoon, R. E. Tarjan and

F. Zane, Resistance of digital watermarks to collusive attacks, Technical Report

TR-585-98, Computer Science Department, Princeton University, 1998.

[36] T. Lam, A result on 2k-cycle-free bipartite graphs, Australasian Journal of

Combinatorics, vol. 32, pp. 163-170, 2005.

[37] T. Lam, Graphs without cycles of even length, Bulletin of the Australian Math-

ematical Society, vol. 63, no. 3, pp. 435-440, 2001.

[38] Q. Li, X. Wang, Y. Li, Y. Pan and P. Fan, Construction of anti-collusion

codes based on cover-free families, 6th International Conference on Information

Technology: New Generations, pp. 362-365, Las Vegas, USA, 2009.

95

[39] Z. Li and W. Trappe, Collusion-resistant �ngerprints from WBE sequence sets,

IEEE International Conference on Communications (ICC' 05), Seoul, Korea,

2005.

[40] K. J. R. Liu, W. Trappe, Z. J. Wang, M. Wu and H. Zhao, Multimedia Finger-

printing Forensics for Traitor Tracing, Hindawi Publishing Corporation, New

York, 2005.

[41] A. Naor and J. Verstraëthe, A note on bipartite graphs without 2k-cycles,

Combinatorics, Probability and Computing, vol. 14, no. 5-6, pp. 845-849, 2005.

[42] S. Neuwirth, The size of bipartite graphs with girth eight, arXiv:math/0102210,

2001.

[43] C. I. Podilchuk and W. Zeng, Image-adaptive watermarking using visual mod-

els, IEEE Journal on Selected Areas in Communications, vol. 16, no. 4, pp.

525-539, 1998.

[44] H. V. Poor, An Introduction to Signal Detection and Estimation, Second edi-

tion, Springer, New York, 1999.

[45] J. Singer, A theorem in �nite projective geometry and some applications to

number theory, Transactions of the American Mathematical Society, vol. 43,

no. 3, pp. 377-385, 1938.

[46] J. N. Staddon, D. R. Stinson and R. Wei, Combinatorial properties of frame-

proof and traceability codes, IEEE Transactions on Information Theory, vol.

47, no. 3, pp. 1042-1049, 2001.

[47] D. R. Stinson, Combinatorial Designs: Constructions and Analysis, Springer,

New York, 2004.

[48] D. R. Stinson, T. V. Trung and R. Wei, Secure frameproof codes, key distri-

bution patterns, group testing algorithms and related structures, Journal of

Statistical Planning and Inference, vol. 86, no. 2, pp. 595-617, 2000.

[49] H. S. Stone, Analysis of attacks on image watermarks with randomized coe�-

cients, NEC Research Institute, Technical Report, Princeton, 1996.

[50] J. K. Su, J. J. Eggers and B. Girod, Capacity of digital watermarks subjected to

an optimal collusion attack, European Signal Processing Conference, Tampere,

Finland, 2000.

[51] W. Trappe, M. Wu and K. J. R. Liu, Anti-collusion codes: multi-user and mul-

timedia perspectives, Proceedings of IEEE International Conference on Image

Processing, vol. 2, pp. 981-984, Rochester, USA, 2002.

96

[52] W. Trappe, M. Wu, Z. J. Wang and K. J. R. Liu, Anti-collusion �ngerprinting

for multimedia, IEEE Transactions on Signal Processing, vol. 51, no. 4, pp.

1069-1087, 2003.

[53] Tran van Trung and S. Martirosyan, New constructions for IPP codes, Designs,

Codes and Cryptography, vol. 35, no. 2, pp. 227-239, 2005.

[54] Z. J. Wang, M. Wu, H. Zhao, W. Trappe and K. J. R. Liu, Resistance of

orthogonal gaussian �ngerprints to collusion attacks, Proceedings of IEEE In-

ternational Conference on Acoustics, Speech and Signal Processing (ICASSP'

03), vol. 1, pp. 724-727, 2003.

[55] R. Wenger, Extremal graphs with no C4's, C6's, or C10's, Journal of Combi-

natorial Theory, Series B, vol. 52, no. 1, pp. 113-116, 1991.

[56] K. Zarankiewicz, Problem of P101, Colloquium Mathematicum, vol. 2, pp. 301,

1951.

[57] H. Zhao, M. Wu, Z. J. Wang and K. J. R. Liu, Nonlinear collusion attacks

on independent �ngerprints for multimedia, Proceedings of IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP' 03), vol. 5,

pp. 664-667, Hong Kong, 2003.

97

List of Publications

Papers related to this thesis

1. M. Cheng, H. L. Fu, J. Jiang, Y. H. Lo and Y. Miao, New bounds on 2-

separable codes of length 2, Designs, Codes and Cryptography,

DOI: 10.1007/s10623-013-9849-9. (Section 2.2)

2. M. Cheng, J. Jiang and Y. Miao, 2-Separable codes of length 4, in preparation.

(Section 2.3)

3. J. Jiang, M. Cheng and Y. Miao, Strong separable codes, submitted.

(Chapter 3)

4. M. Cheng, H. L. Fu, J. Jiang, Y. H. Lo and Y. Miao, Codes with the identi�able

parent property for multimedia �ngerprinting, submitted. (Chapter 4)

5. J. Jiang, M. Cheng, Y. Miao and D. Wu, Multimedia IPP codes with e�cient

tracing, submitted. (Chapter 5)

Papers not related to this thesis

1. J. Jiang, D. Wu and P. Fan, General constructions of optimal variable-weight

optical orthogonal codes, IEEE Transactions on Information Theory, 57(7),

pp. 4488-4496, 2011.

2. J. Jiang, D. Wu and P. Fan, More results on optimal optical orthogonal codes

with weight four, Proceedings of The Fifth International Workshop on Signal

Design and Its Applications in Communications, pp. 122-125, Guilin, China,

2011.

3. J. Jiang, D. Wu and P. Fan, General constructions for (v, 4, 1) optical or-

thogonal codes via perfect di�erence families, IEICE Transactions on Funda-

mentals of Electronics, Communications and Computer Sciences E95-A(11):

1921-1925, 2012.

4. J. Jiang, D. Wu and M. H. Lee, Some in�nite classes of optimal (v, {3, 4}, 1, Q)-

OOCs with Q = {(1/3, 2/3), (2/3, 1/3)}, Graphs and Combinatorics, 29(6),

pp. 1795-1811, 2013.

5. M. Cheng, J. Jiang and D. Wu, Bounds and constructions for two-dimensional

variable-weight optical orthogonal codes, Journal of Combinatorial Designs,

22(9), pp. 391-408, 2014.

6. M. Cheng, J. Jiang, Y. Miao and H. Li, Bounds and constructions for 3-

separable codes of length 3, in preparation.

100

