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Abstract  

In retail business, a sales campaign is typically organized in one or two segments of consecutive days 

over a certain period, so as to maximize the expected total sales by organizing a sales campaign in 

such a way that, good-sales-days (GSD) of the previous year would be designated as sales campaign 

days in the future period with the expectation that the campaign effect could enhance the potential of 

GSDs further. However, there is no theoretical foundation to claim that it would be better to organize 

a sales campaign in such a way. This thesis challenges these common practices, based on the 

Marketing Flexibility concept, the results show that it could be more profitable to assign sales 

campaign days in a more flexible manner rather than in segments of consecutive days. To the best 

knowledge of the researcher, the problem of optimally allocating sales campaign days over a certain 

period, e.g. the winter and fall seasons, has not been addressed in the literature. The purpose of this 

thesis is to fill this gap by developing a mathematical model to optimize returns in an SC by optimally 

reallocating sales campaign days based on the marketing flexibility concept.  

In the business practice of a Shopping Center (SC), one year is decomposed into 4 seasons: 

Spring (March through May), Summer (June through August), Fall (September through November) 

and Winter (December through February). Researchers usually study one or more seasons, as in 

(Pauwels, 2007; Poel et al., 2004; Arnold et al., 1983). In examining the performance of a sales 

campaign for an SC, the literature guides one to consider two main elements: the total sales and the 

number of the purchase transactions for the entire SC, as in Oliver and Swan (1989), Noordewier et al. 

(1990), and Parsons (2003).  

In this thesis, a machine learning technique is employed to estimate whether or not a day is a 

GSD, this indicator function is composed from total sales and number of purchase transactions. For 

notational convenience, the set of days involved in the learning dataset (LD) is denoted by 𝐷𝐿𝐷, and in 

the testing dataset (TD) is denoted by 𝐷𝑇𝐷. The datasets LD and TD comprise the following elements; 

1) the total sales of the 𝑖 − 𝑡ℎ day, denoted by 𝑠(𝑖), 𝑖 ∈ 𝐷𝐿𝐷 ∪ 𝐷𝑇𝐷, for the entire SC, 2) the number 

of purchase transactions of the 𝑖 − 𝑡ℎ day, denoted by 𝑡(𝑖), for the entire SC, and 3) the campaign 

flag indicating if the 𝑖 − 𝑡ℎ  day was under the sales campaign, denoted by   𝐼𝐶𝐴𝑀𝑃(𝑖)= 1, 

or  𝐼𝐶𝐴𝑀𝑃(𝑖) = 0, otherwise.  
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We consider the optimization problem of maximizing the total expected sales over a certain 

future period, by optimally reallocating N sales campaign days over a future period of M days. This 

optimization problem consists of four stages, succinctly described as follows; in Stage I, for 

day  𝑖 ∈ 𝐷𝐿𝐷 , one determines the two indicator functions, 𝐼𝐶𝐴𝑀𝑃(𝑖)  for the sales campaign days, and 

𝐼𝐺𝑂𝑂𝐷:𝑆0𝑇0(𝑖) for the GSDs, where 𝑆0 is a numerical threshold level or the decile cut-off point in 

𝑠(𝑖) and  𝑇0 is defined similarly for 𝑡(𝑖). The numerical threshold levels 𝑆0 and  𝑇0 obtained from 

LD, are used to similarly determine  𝐼𝐺𝑂𝑂𝐷:𝑆0𝑇0:𝑇𝐷 (𝑗), for  𝑗 ∈  𝐷𝑇𝐷.  

In Stage II, a logistic regression model is developed, given the campaign day assignment vector, 

denoted by 𝑑 =  [𝑑(1),⋯ , 𝑑(𝑗),⋯ , 𝑑(𝑀)]  ∈ {0,1}𝑀  for   𝑗 ∈ 𝐷𝑇𝐷 , where  𝑑(𝑗) = 1 if day 𝑗 is 

selected to be a sales campaign day, and 𝑑(𝑗) = 0, otherwise, and by using the estimated coefficients 

of the explanatory variables of the logistic regression equation, one can estimate the likelihood value 

for day   𝑗 ∈ 𝐷𝑇𝐷  to be a GSD, denoted by   𝜌𝐺𝑂𝑂𝐷(𝑗) . The corresponding confusion matrix is 

employed to find the threshold level, denoted by 𝜌𝐺𝑂𝑂𝐷, so as 𝐼𝐺𝑂𝑂𝐷(𝑗) = 1 when 𝜌𝐺𝑂𝑂𝐷(𝑗) ≥

𝜌𝐺𝑂𝑂𝐷 and  𝐼𝐺𝑂𝑂𝐷(𝑗) = 0, otherwise. Consequently, one can determine whether or not a day is a GSD 

by specifying  𝜌∗𝐺𝑂𝑂𝐷 associated with maximum Precision subject to Recall ≥ 0.75 obtained from 

the confusion matrix of the best logistic regression model.  

The logistic regression models for both the winter and fall seasons contain the following 

significant variables in common: 1) Weekend flag: Saturday and Sunday, 2) Week_1: the first week (7 

days) of the month, 3) LY_Transactions: the number of purchase transactions of the same day of the 

month of the last year, 4) Non-national and national holidays for winter and fall, respectively, in 

addition to, 5) Campaign flags for each season. The common measures for assessing the 

appropriateness of the likelihood value to estimate whether or not a day is a GSD is obtained from the 

confusion matrix, and given by Recall, Precision and Accuracy. This value is determined by 

considering the optimization problem of maximizing Precision subject to Recall ≥ 0.75.  

In Stage III, we turn our attention to the issue of how to estimate the expected total sales for 

day 𝑗 ∈ 𝐷𝑇𝐷 , given 𝑑 and 𝐼𝐺𝑂𝑂𝐷(𝑗) = 1 or 0. Based on 𝐼𝐶𝐴𝑀𝑃(𝑖) and 𝐼𝐺𝑂𝑂𝐷:𝑆0𝑇0(𝑖) for 𝑖 ∈ 𝐷𝐿𝐷 , 

four values of average total sales are computed from LD, denoted by �̂�(𝑚,𝑛), where 𝑚 = 𝐼𝐶𝐴𝑀𝑃(𝑖) 

and  𝑛 = 𝐼𝐺𝑂𝑂𝐷:𝑆0𝑇0 (𝑖),  𝑚, 𝑛 ∈ {0,1}. Based on  �̂�(𝑚,𝑛), one can estimate the expected total sales for 

day 𝑗 , denoted by �̂�(𝑚,𝑛) where 𝑚 = 𝑑(𝑗) and 𝑛 =  𝐼𝐺𝑂𝑂𝐷 (𝑗), 𝑚, 𝑛 ∈ {0,1}. Subsequently, the total 

expected sales over the entire future period, denoted by  �̂�(𝑑) can then be computed. In order to test 
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the validity of this approach, one computes the relative accuracy of the total expected sales, �̂�(𝑑), and 

the actual aggregate total sales over that period, denoted by 𝑅(𝐼𝐶𝐴𝑀𝑃).  

In order to test the validity of this systematic approach for estimating expected total sales per day, 

the formula for computing total expected sales is used with actual campaign days in TD, and then 

compared with the actual total sales of that period, achieving a relative accuracy of less than 2% in 

both seasons (1.72% and 1.40% for winter and fall, respectively).  

In Stage IV, given  �̂�(𝑚,𝑛), we formulate the problem of optimally reallocating sales campaign 

days, specified by the campaign day assignment vector,   𝑑 subject to  ∑ 𝑑(𝑗) ≤ 𝑁 𝑀
𝑗=1 so as to 

maximize the total expected sales. To assess the impact of this flexibility approach, one compares the 

optimal solution, �̂�(𝑑∗)  against the actual total sales,  𝑅(𝐼𝐶𝐴𝑀𝑃) , obtained from traditionally 

organizing sales campaign days in segments of consecutive days. 

Two extensions of this optimization problem are further considered and treated separately. In the 

first extension, by introducing the campaign cost per day 𝐵0, the objective function is modified to 

maximize the expected profit, denoted by �̂�(𝑑), rather than the total expected sales. This is achieved 

by optimally reallocating sales campaign days, specified by 𝑑  subject to  ∑ 𝑑(𝑗) ≤ 𝑁𝑀
𝑗=1 . In the 

second extension, the campaign budget per day is enhanced to  𝐵 = 𝐵0 + ∆𝐵, where ∆𝐵  is the 

campaign budget increase. The optimal expected profit for this extension is achieved by incorporating 

both the campaign budget increase and the campaign day assignment vector as decision variables of 

the optimization problem. The campaign day assignment vector is specified here 

by 𝑑∆𝐵 = [𝑑∆𝐵(1),⋯ , 𝑑∆𝐵(𝑗),⋯ , 𝑑∆𝐵(𝑀)] ∈ {0,1}
𝑀. In order to formulate this optimization problem, 

the expected total sales per day should be estimated. For this purpose, one determines whether or not a 

day is a GSD, denoted in this extension by 𝐼𝐺𝑂𝑂𝐷:∆𝐵(𝑗), and defined similarly as 𝐼𝐺𝑂𝑂𝐷(𝑗).  

For the second extension, a new model for estimating expected total sales per day is developed. 

Under the effect of the campaign budget increase, it is natural to assume that the expected total sales 

per day would be increased with the effect of diminishing returns. Accordingly, one defines the 

function 𝑔(𝑥) to be an increasing concave function of  𝑥 expressing the strengthening effect of ∆𝐵 

on the expected total sales per day, where 𝑔(0) = 1, and 𝑙𝑖𝑚∆𝐵→∞ 𝑔(𝑥) = 1 + 
𝑎

𝑏
. This strengthening 

effect is subject to the following conditions: 1) whether the sales campaign day 𝑑∗(𝑗) = 0 under 

∆𝐵= 0 with  �̂�(0,𝑙) , 𝑙 =  𝐼𝐺𝑂𝑂𝐷(𝑗), switches to 𝑑∆𝐵
∗(𝑗) = 1 under  ∆𝐵> 0. In such case, the expected 

total sales, denoted by  �̂�(0,𝑙)→(1,𝑛) , is estimated by  �̂�(0,𝑙) + {( �̂�(1,𝑛) − �̂�(0,𝑙)) × 𝑔𝑠(∆𝐵)}, where  𝑛 =
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𝐼𝐺𝑂𝑂𝐷:∆𝐵(𝑗). It is also subject to 2) whether  𝑑∗(𝑗) = 𝑑∆𝐵
∗(𝑗) = 1, in which the expected total sales 

per day, denoted by �̂�(1,𝑙)→(1,𝑛) , would be estimated by  �̂�(1,𝑛) × 𝑔¬𝑠(∆𝐵), and finally, 3) it is natural 

to assume no effect of the campaign budget increase on day  𝑑∆𝐵
∗(𝑗) = 0.  

In order to solve the optimization problem for maximizing expected profit, �̂�( 𝑑∆𝐵
∗, ∆𝐵

∗), one 

needs to estimate the values of the parameters (𝑎𝑠, 𝑏𝑠)  and (𝑎¬𝑠, 𝑏¬𝑠) defining the functions 

𝑔𝑠(∆𝐵) and  𝑔¬𝑠(∆𝐵), respectively. For this purpose the partial derivative approach of sensitivity 

analysis is employed to examine the behavior of the system with different increments of the 

parameters 𝑎 and 𝑏. By estimating the values of the parameters (𝑎𝑠, 𝑏𝑠) and (𝑎¬𝑠, 𝑏¬𝑠), the optimal 

expected profit, denoted by �̂�( 𝑑∆𝐵
∗, ∆𝐵

∗), can then be achieved by the optimal allocation of sales 

campaign days and the campaign budget. Finally, In order to assess the impact of the optimal 

allocation of sales campaign days against that of the optimal campaign budget decision, one compares 

the optimal expected profit �̂�(𝑑∗) under ∆𝐵= 0 against �̂�( 𝑑∆𝐵
∗, ∆𝐵

∗) with  ∆𝐵> 0. 

Through numerical examples, the proposed model demonstrated the power of marketing 

flexibility. The optimization problem for maximizing total expected sales for the winter season 

yielded an optimal total expected sales of ¥ 385.78 million amounting to 7% increase from actual total 

sales over the future winter period. This optimal value is achieved by reallocating 36 sales campaign 

days over that period. In respect to the fall season, the optimization problem yielded ¥ 355.16 million 

amounting to 4.47% increase from actual total sales by optimally reallocating 19 sales campaign days. 

We note here that, actual sales campaign days were 36 and 19 for the winter and fall seasons, 

respectively. The results imply that, by mere reorganization of sales campaign days freely rather than 

in segments of consecutive days, the total expected sales is expected to increase with no additional 

cost.  

Furthermore, we compare the effect of the optimal allocation of sales campaign days only 

against that of reallocating both sales campaign days and the campaign budget on expected profit. The 

results of the winter season indicated that, optimal expected profit increased by 7.84% from actual 

profit by optimally reallocating sales campaign days only. However, by optimally reallocating both 

sales campaign days and the campaign budget, optimal expected profit increased by 9.95% from 

actual profit. This implies that, the optimal campaign budget is responsible for only (9.95 – 7.84 = 

2.26%) of the improvement in optimal expected profit. The numerical example of the fall season 

provided similar evidence. By optimally reallocating both sales campaign days and the campaign 
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budget, optimal expected profit increased by 6.58% from actual profit. Comparing this result with the 

4.79% increase rate from actual profit, achieved by optimally reallocating sales campaign days only, 

the optimal campaign budget would be responsible for only (6.58 – 4.79 = 1.79%).  

In both numerical examples, the optimal campaign budget was responsible for about 2% only of 

the improvement in optimal expected profit, while the optimal allocation of sales campaign days was 

responsible for about double this amount in the fall season (4.79%) and more than triple this amount 

in the winter season (7.84%). This result is consistent with that reported by Fischer et al., (2011), they 

state that, profit improvement from better allocation across products or regions is much higher than 

that from improving the overall budget. Similarly, one can state that, optimal allocation of sales 

campaign days achieves better improvement in optimal expected profit than that achieved by only 

improving the overall budget.  

The proposed approach would be quite useful for the management of an SC, where different 

stores in one place can organize common sales campaigns to share the advantages of implementing a 

marketing flexibility-based strategy. To effectively allocate resources, optimal allocation of sales 

campaign days is recommended to maximize returns. For further improvement, the campaign budget 

could be optimally allocated along with the sales campaign days. These recommendations challenge 

the common business practices of improving the overall budget of a sales campaign to further boost 

its effectiveness. For this approach to be implemented efficiently, it is recommended for the 

management of the SC to share the timetable of scheduled campaign days with its customers. With the 

advent of smart phones, reaching out to customers has never been easier. Visitors of the SC can be 

kept informed through traditional channels of communication and advertising as well. 

The structure of this thesis is as follows. Chapter 1 states the purpose of this thesis and provides a 

succinct summary of the prevalent literature revolving around the topic of SCs and the concept of 

flexibility. It focuses on three different perspectives: the evolution of SCs, the evolution of research on 

SC, and the flexibility concept. To summarize the literature review, we focus on three different 

perspectives: the evolution of SCs, the evolution of research on SC, and the flexibility concept. In the 

evolution of SCs, the history of the development of SCs, and the context of their advancements were 

described. The history of the birth of the western-style SC in Japan was also discussed following the 

line of research in Tsutsui (2009). In the evolution of research on SC, the common business practices 

prevalent in the management of sales campaigns in SCs were discussed. One of the most crucial 

points noted in this connection, was the use of data accumulated through the POS system for analysis 
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to develop marketing strategies and to achieve business excellence. In this regard, and because of the 

complexities involved in the management of the SC business in comparison to that of a single store, 

much more flexibility would be needed to enhance the profitability of an SC. The three main concepts 

of flexibility which were discussed here are: economic, organizational and business process flexibility. 

Understanding these different types of flexibility can facilitate the achievement of flexibility in the 

context of the management of SCs. 

In Chapter 2, the dataset is described and the outliers are cleaned. Next, the mathematical model 

for the optimization problem of maximizing total expected sales is formulated and implemented on 

the winter season. Two main issues are addressed in this chapter as part of the mathematical model:1) 

how to determine whether or not a day is a GSD, and 2) how to estimate the expected total sales for 

that day, provided that, an allocation of N campaign days over that future period is decided. Two 

further extensions of this optimization problem are considered and treated separately in the next 

chapter.  

Chapter 3 is devoted to the optimization problems of maximizing expected profit. By introducing 

the standard campaign budget, the optimization problem is modified to maximize expected profit 

rather than total expected sales and implemented on the winter season. In the second extension of the 

optimization problem; by enhancing the campaign budget per day, the campaign budget increase 

along with the campaign day assignment vector are both considered as decision variables of the 

optimization problem. In order to express the effect of the campaign budget increase over the 

expected total sales per day, a strictly increasing concave function is defined to express the campaign 

effect under an enhanced campaign budget. The chapter also contains general properties of the formal 

concave function and the total expected sales. 

In Chapter 4, the mathematical models described in Chapter 2 and 3 are implemented on the fall 

season. And finally, Chapter 5 contains the conclusion and discussion. This chapter also covers 

limitations and possible future work.  
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Notation 

𝑫𝑳𝑫   The set of days in the Learning Dataset (LD)  

𝑫𝑻𝑫   The set of days in the Testing Dataset (TD) 

𝒊   The 𝑖 − 𝑡ℎ day, where 𝑖 ∈ 𝐷𝐿𝐷 

𝒋   The 𝑗 − 𝑡ℎ day, where 𝑗 ∈ 𝐷𝑇𝐷 

𝒔(𝒊)   The total sales of the 𝑖 − 𝑡ℎ day, 𝑖 ∈ 𝐷𝐿𝐷 ∪ 𝐷𝑇𝐷, for the entire SC 

𝒕(𝒊)   The number of purchase transactions of the 𝑖 − 𝑡ℎ day, 𝑖 ∈ 𝐷𝐿𝐷 ∪ 𝐷𝑇𝐷 for the 

entire SC 

𝑰𝑪𝑨𝑴𝑷(𝒊)        The campaign flag indicating if the 𝑖 − 𝑡ℎ day was under the sales campaign, 

denoted by  𝐼𝐶𝐴𝑀𝑃(𝑖) = 1, or 𝐼𝐶𝐴𝑀𝑃(𝑖) = 0, otherwise. 

𝑵   The number of sales campaign days organized over a certain period  

𝑴   The total number of days in a certain period  

𝑺𝟎   The numerical threshold level, or the decile cut-off point, in total sales  𝑠(𝑖) 

𝑻𝟎  The numerical threshold level, or the decile cut-off point, in the number of 

purchase transactions  𝑡(𝑖)  

𝑮𝑺𝑫           Good-Sales-Day 

�̂�𝑮𝑶𝑶𝑫:𝑺𝟎𝑻𝟎(𝒊)    The indicator function for the GSD of 𝑖 ∈ 𝐷𝑇𝐷 based on  𝑆0  and  𝑇0 , where 

𝐼𝐺𝑂𝑂𝐷:𝑆0𝑇0(𝑖) = 1  when 𝑠(𝑖) ≥ 𝑆0  and 𝑡(𝑖) ≥ 𝑇0 , and 𝐼𝐺𝑂𝑂𝐷:𝑆0𝑇0(𝑖) = 0 , 

otherwise 

�̂�𝑮𝑶𝑶𝑫:𝑺𝟎𝑻𝟎:𝑻𝑫(𝒋)  The indicator function for the GSD of 𝑗 ∈ 𝐷𝑇𝐷 based on 𝑆0 and  𝑇0 obtained 

from LD, where 𝐼𝐺𝑂𝑂𝐷:𝑆0𝑇0:𝑇𝐷(𝑗) = 1  when  𝑠(𝑗) ≥ 𝑆0  and  𝑡(𝑗) ≥ 𝑇0 , 

and 𝐼𝐺𝑂𝑂𝐷:𝑆0𝑇0:𝑇𝐷(𝑗) = 0, otherwise   

�̂�𝑮𝑶𝑶𝑫 (𝒋)       The indicator function for GSD, estimated by the logistic regression model and the 

confusion matrix for day  𝑗 ∈ 𝐷𝑇𝐷 , where 𝐼𝐺𝑂𝑂𝐷 (𝑗) = 1  when day 

𝐼𝐺𝑂𝑂𝐷:𝑆0𝑇0:𝑇𝐷(𝑗) = 𝐼𝐺𝑂𝑂𝐷 (𝑗) = 1 and 𝐼𝐺𝑂𝑂𝐷 (𝑗) = 0, otherwise 

𝑩   The sales campaign budget per day  

𝑩𝟎   The standard sales campaign budget per day as provided from the management of 

the SC  

∆𝑩   The campaign budget increase per day, where  ∆𝐵=  𝐵 − 𝐵0 

𝒅   The campaign day assignment vector, under  ∆𝐵= 0 , specified by 

𝑑 =  [𝑑(1),⋯ , 𝑑(𝑗),⋯ , 𝑑(𝑀)]  ∈ {0,1}𝑀  for   𝑗 ∈ 𝐷𝑇𝐷 , where  𝑑(𝑗) = 1 if day 

𝑗 is selected to be a sales campaign day, and 𝑑(𝑗) = 0, otherwise 
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𝒅∆𝑩(𝒋)  The campaign day assignment vector, under ∆B> 0 , specified by 𝑑∆𝐵 =

 [𝑑∆𝐵(1),⋯ , 𝑑∆𝐵(𝑗),⋯ , 𝑑∆𝐵(𝑀)] ∈ {0,1}
𝑀 for 𝑗 ∈ 𝐷𝑇𝐷, where 𝑑∆𝐵(𝑗) = 1 if day 

𝑗 is selected to be a sales campaign day, and 𝑑∆𝐵(𝑗) = 0, otherwise 

�̂�(𝒎,𝒏)    The average total sales subject to 𝑚 = 𝐼𝐶𝐴𝑀𝑃(𝑖) and  𝑛 =  𝐼𝐺𝑂𝑂𝐷:𝑆0𝑇0 (𝑖) ,𝑚, 𝑛 ∈

{0,1} obtained from LD 

�̂�(𝒎,𝒏)   The expected total sales per day of the future period under ∆𝐵= 0 , subject to 

𝑚 = 𝑑(𝑗) and 𝑛 =  𝐼𝐺𝑂𝑂𝐷 (𝑗), 𝑚, 𝑛 ∈ {0,1}, estimated based on �̂�(𝑚,𝑛) obtained 

from LD 

�̂�(𝒌,𝒍)→(𝒎,𝒏)   The expected total sales per day under ∆𝐵> 0, subject to 𝑘 = 𝑑∗(𝑗), 𝑙 = 𝐼𝐺𝑂𝑂𝐷(𝑗),

𝑚 = 𝑑∆𝐵(𝑗), and 𝑛 = 𝐼𝐺𝑂𝑂𝐷:∆𝐵(𝑗), 𝑘, 𝑙,𝑚, 𝑛 ∈ {0,1} 

�̂�(𝒅)   The total expected sales (aggregate total sales per day) over a certain future period, 

subject to the campaign day assignment vector 𝑑 when ∆𝐵= 0 

�̂�(𝒅∆𝑩 , ∆𝑩)   The total expected sales (aggregate total sales per day) over a certain future period, 

subject to the campaign day assignment vector 𝑑∆𝐵 and the campaign budget 

increase ∆𝐵 

�̂�(𝒅)  The expected profit over a certain future period, subject to the campaign day 

assignment vector 𝑑 when ∆𝐵= 0 

�̂�(𝒅∆𝑩 , ∆𝑩)  The expected profit over a certain future period, subject to the campaign day 

assignment vector 𝑑∆𝐵  and the campaign budget increase ∆𝐵 
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1 Introduction and Literature Review  

1.1  Purpose of the Thesis   

In examining the performance of a sales campaign for a Shopping Center (denoted by SC, hereafter), 

the literature guides one to consider two main elements: the total sales and the number of the purchase 

transactions for the entire SC for each season, as in Oliver and Swan (1989), Noordewier et al. (1990), 

and Parsons (2003). A sales campaign is typically organized in segments of consecutive days over a 

certain period where a sales campaign is organized in such a way that, good-sales-days ( denoted by 

GSD, hereafter) of the previous year would be designated as sales campaign days in the future period, 

with the expectation that the campaign effect could enhance the potential of good-sales-days further. 

However, there is no theoretical foundation to support such business practices. Real data obtained 

from an SC in Tokyo revealed that such common business practices do not necessarily yield better 

performance for the period of the subsequent year. Tables 1.1.1 and 1.1.2 below exhibit the data of fall 

2008 and 2009, and winter 2009 and 2010. One sees that scheduling sales campaign days in the same 

manner as the previous year did not yield improvement in the total sales or the number of the 

purchase transactions for all the periods across the three years. The purpose of this thesis is to 

challenge this common practice of scheduling sales campaign days in segments of consecutive days. It 

will be shown that mere reorganization of campaign days with flexibility could increase the 

profitability of the SC significantly.  

Table 1.1.1   Comparison of Sales Campaign Performance in Winter 2009 and 2010 

 
Winter 2009 Winter 2010 

 

Entire 

Period  
Win_1 Win_2 

Entire  

Period 
Win_1 Win_2 

Start Date 12/01/2009 12/01/2009 01/04/2010 12/01/2010 12/01/2010 01/04/2011 

End Date 28/02/2010 12/25/2009 01/12/2010 02/28/2011 12/28/2010 01/11/2011 

Total Number of Days 88 28 7 88 28 8 

Average Total Sales 

(¥ Million) 
4.34 4.59 4.59 4.29 4.41 3.99 

Average of Purchase 

Transactions 
3,043 3,141 3,114 2,971 3,055 2,967 
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Table 1.1.2   Comparison of Sales Campaign Performance in Fall 2008 and 2009  

 
Fall 2008 Fall 2009 

 

Entire 

Period  
Fall_1 Fall_2 

Entire 

Period 
Fall_1 Fall_2 

Start Date 09/01/2008 10/23/2008 11/21/2008 09/01/2009 10/23/2009 11/21/2009 

End Date 11/30/2008 11/03/2008 11/30/2008 11/30/2009 11/03/2009 11/30/2009 

Total Number of Days 90 7 11 90 7 12 

Average Total Sales 

(¥ Million) 
4.35 4.48 4.48 4.01 4.14 4.12 

Average Purchase 

Transactions 
3,120 3,140 3,139 2,919 2,971 2,999 

The key concept of this thesis is Marketing Flexibility, which enables one to alter the business 

process for allocating sales campaign days so as to achieve improvement. In the SC example 

introduced in this thesis, sales campaign days are optimally allocated freely based on marketing 

flexibility in order to optimize returns (aggregate total sales and profit) in the SC. More specifically, 

given a set of data over the past periods and a future period for which campaign days should be 

scheduled, the main steps toward this goal are summarized below.  

1. We first estimate whether or not a day in the future period is a GSD, denoted by GSD, based 

on the logistic regression and the confusion matrix for a tentatively given campaign 

assignment vector.  

2. Depending on whether or not a future day is chosen as a campaign day and whether or not it 

is a GSD, we next estimate the expected total sales for that future day based on the past data.  

3. Finally, an optimization problem is formulated where the optimal campaign assignment vector 

is determined so as to maximize the expected total sales.  

4. In order to maximize the expected total profit rather than the expected total sales, a new 

model is developed where the expected total sales of a day under sales campaign can be 

increased as a concave function of the campaign budget. Here, the optimal campaign 

assignment vector and the optimal campaign budget would be determined simultaneously. 

The remainder of this chapter is devoted to the literature review. Section 1.2 provides a succinct 

summary of the entire literature. In Section 1.3, a general history of the shopping centers in the U.S. 

and Japan is discussed. Section 1.4 summarizes the evolution of the research on shopping centers. In 
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Section 1.5, different concepts of flexibility are introduced, enabling one to position Marketing 

Flexibility in an appropriate perspective.  

1.2  Summary of the Literature Review  

To summarize the literature review, we focus on three different perspectives: the evolution of SCs, the 

evolution of research on SC, and the flexibility concept. In the evolution of SCs, the history of the 

development of SCs, and the context of their advancements were described. The history of the birth of 

the western-style SC in Japan was also discussed following the line of research in Tsutsui (2009). In 

the evolution of research on SC, the common business practices prevalent in the management of sales 

campaigns in SCs were discussed. One of the most crucial points noted in this connection was the use 

of data accumulated through the POS system for analysis to develop marketing strategies and to 

achieve business excellence. In this regard, and because of the complexities involved in the 

management of the SC business in comparison to that of a single store, much more flexibility would 

be needed to enhance the profitability of an SC. The three main concepts of flexibility which were 

discussed here are: economic, organizational and business process flexibility. Understanding these 

different types of flexibility can facilitate the achievement of flexibility in the context of the 

management of SCs. 

1.3  Evolution of the Shopping Centers  

In the first half of this section, a succinct summary of the evolution of SCs in the U.S. is provided 

based on Gruen and Smith (1967). A similar summary is given in the second half regarding SCs in 

Japan based on Tsutsui (2009).  

The 1888 electric street car, made possible to establish “street car suburbs” and decentralized 

commercial centers. In 1891 Edward Bouton built Roland Park near Baltimore that included a “store 

block” arranged in a linear pattern along a street to serve the commercial needs of a planned 

residential community. Similar store blocks were built in Los Angeles in 1908 for the College Tract on 

West 48th street in New York City (Howard and Spencer, 1953 p. 113). The industrial revolution of 

the nineteenth century produced the department store but made cities crowded and dirty, and the 

desire to improve life by moving away from the city gave birth to the suburb shopping centers 

(Macfadyen, 1970). 
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The early history of shopping places dates back to the city square. In ancient Greece, the “Agora”, 

which is a Latin word meaning “assembly” or “gathering point”, was built for people to gather and 

shop. This concept inspired a famous architect, Victor Gruen, to adopt its model. The first SC 

designed by Victor Gruen was built in Kansas City, Kansas, U.S. in 1922 and was named Country 

Club Plaza. Victor Gruen built another shopping center, the Northland Shopping Center, in the U.S. 

which became the largest in the world in 1954. Later in 1956, Victor Gruen designed Southdale 

Center Mall located in Edina, MN, near Minneapolis in the U.S. It was the first fully enclosed 

shopping center with a constant climate-controlled temperature.  

According to Tsutsui (2009), in early 1920s to 1930s, Japan had witnessed urbanization of SCs. 

The destruction caused by the Kanto earthquake in 1923 made businesses and their employees move 

away from the central downtown toward the southern suburbs in Tokyo. Even after the reconstruction 

of downtown Tokyo, companies kept operating in their bases near Marunouchi area away from the 

center. This was made possible by the new private railway lines constructed by private railway 

companies, which also constructed department stores and shopping centers near terminals, stations, 

and transfer points, such as Shinjuku. As a response to this competition, department stores in Ginza, 

which had previously specialized in imported expensive goods and specialty items, started to display 

more everyday goods for consumption. Most people, especially those who belonged to middle-class, 

could not afford to buy many of the fashion and goods displayed in department stores in Ginza, but 

browsing and window shopping became a popular leisure pastime in Tokyo. Tamagawa Takashimaya 

Shopping Center in Tokyo, opened in 1969, is considered to be the first fully established SC in Japan. 

In North America, the largest SC registered in Guinness Book is West Edmonton Mall in 

Edmonton, Alberta, Canada, founded by Ghermezian brothers who immigrated to Canada from Iran. 

It was opened in 1981 and completed in 1998 over 4 different development stages. This SC contains 

more than 800 stores with an amusement park, hotels and even an aquarium, attracting more than 20 

million people per year (Emporis, 2012). Currently, the world’s largest shopping mall is The Dubai 

Mall, located in Dubai, United Arab Emirates U.A.E. It is part of the 20-billion-dollar downtown 

Dubai complex, and includes 1,200 shops. Dubai Mall was opened in November 2008, with about 635 

retailers, marking the world’s largest-ever mall opening in retail history. In 2012, Dubai Mall 

continued to hold the title of the world’s most-visited shopping and leisure destination, and attracted 

more than 65 million visitors in that year. It has an aquarium and under water zoo, ice rink, and a 

theme park. 
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1.4  Evolution of the Research on Shopping Centers  

The competitive edge of SCs over individual independent retail stores may be found in that, they have 

a variety of stores and services in one place for the convenience of consumers. Furthermore, they can 

provide the cost-performance efficiency for their business partners by allowing them to share parking 

lots, loading and unloading depots, and other related facilities.  

Research on the retail industry has evolved over the years. One of the earliest publications of 

literature addressing marketing issues related to SCs is (Christaller, 1966), which focused on Central 

Place Theory. Walter Christaller originally proposed the Central Place Theory (CPT) in 1933, 

explained using geometric shapes, such as hexagons and triangles. Similar to other location theories 

propounded by (Weber and Von Thunen, 1969), the locations are assumed to be located in a Euclidean, 

isotropic plain with similar purchasing power in all locations. A Central Place is a settlement, or a hub, 

that serves the area around it with goods and services. Christaller’s model was based on three 

assumptions: first, that all goods and services were purchased by consumers from the nearest possible 

central place; second, the demands placed on all central places in the plain were similar, and thus 

could be compared; and third, none of the central places made any excessive profit. 

Eppli and Benjamin (1994) summarized the array of critical opinion on SC, and they discussed 

the benefits of locating anchor and non-anchor shops in the same location in order to create positive 

externalities. The authors analyzed Christaller’s initial economic modeling of Central Place Theory, 

which he created before the first enclosed SC. The theory posits that shoppers will travel the 

minimum distance possible to purchase a good, and this was deemed reasonable by Eppli and 

Benjamin due to the high cost of transportation. They describe the evolution of the theory as different 

variables and assumptions are added, for instance, the assumption that people rarely went to the shops 

for just one item. This led to the research of multipurpose shopping behavior and to the realization 

that people often travelled further than the closest shopping center. In summary, Eppli and Benjamin 

found that shopping center research methods evolved with people’s shopping patterns.  

Although central place theory was appropriate in the 1930s, the subsequent popularization of the 

motor vehicle and the increasing ease of transportation meant that central place theory had to evolve. 

For example, similar shops in the same location was once deemed not to work, but it was later found 

to be the ideal setting for comparative shopping. Since then, this line of research had been expanded 
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to different directions, including complex consumer shopping patterns and retailer behavior in 

agglomerated SCs. For example, Kumar, Shah and Venkatesan (2006) addressed themselves to issues 

surrounding how to evaluate customer lifetime value at individual customer level so as to maximize 

profitability. In addition, the analytic network process approach was employed in (Cheng, Li and Yu, 

2005) in order to find the best location of an SC from a set of alternative locations.  

The understanding of the spatial configuration of a shopping center, and the gradual 

commodification of the space, in itself, has also received critical attention. (Goss, 1993) examined the 

SC strategies in building and designing the space and of a symbolic landscape; in order to understand 

how the retail built environment would work (Goss, 1993). He examined the physical space of the 

retail environment as an object of value; that is, a private space designed for efficient circulation of 

commodities which itself is a commodity produced for profit. This presents an interesting dilemma; 

that is to say, even though the SCs are profit-oriented private properties, it would be possible for a 

potential consumer to spend an entire day in it without engaging in any shopping. 

Accordingly, recent studies have shifted focus to assessing promotional techniques and loyalty 

programs as tools to optimize profits. The main goal of such tools is to stimulate higher sales by 

providing rewards, or incentives, to customers (Kivetz and Simonson 2002) and (Sharp and Sharp, 

1997). In a traditional approach, a sales campaign is typically organized over segments of consecutive 

days, and two or three campaigns are organized in each season. Total sales is normally used as a 

key-performance-indicator for the effectiveness of sales campaigns. This is because it is a 

high-priority objective and because of its high impact (Parsons, 2003; Noordewier et al., 1990). The 

number of purchase transactions is also used in performance metrics because of its high control on 

inventory (Noordewier et al., 1990; Oliver and Swan, 1989). Accordingly, in examining the 

performance of sales campaigns in an SC, the literature guides one to consider both: the total sales 

and the number of the purchase transactions. This thesis follows this general framework. 

A study of an SC in Iran, discussed in Balaghar, Majidazar and Niromand (2012), examined and 

assessed the effectiveness of promotional tools, such as advertisement, sales promotion, public 

relations and direct selling. Kahn and McAlister found that the reliance on sales promotions, 

especially monetary promotions, were often a short run driver of sales and profits, and that, in their 

argument, explained why so many were unprofitable (Kahn and McAlister, 1997), as the effects of 

monetary promotions eroded their capacity over time (Lal and Rao, 1997). 

Perhaps the most singular finding from the many instances discussed in the literature is that sales 
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campaigns that provide rewards to consumers tend to be successful in motivating behaviors of repeat 

purchases and customer loyalty (Hilgard and Bower, 1997), (Latham and Locke, 1991). These 

rewards vary in their nature; they may be stores-wide low prices and discounts, or they may assume 

the form of one of the more common promotional tools (Sharp and Sharp, 1997). Parsons (2003) 

examined the effects of common promotional activities measured by sales and visits based on a 

survey and actual data of an SC for three months. He suggested that wide sales strategies such as sales 

campaigns, is the preferred technique that encourages visits and spending over traditional promotional 

tools of individual stores. 

It is now possible to collect and accumulate massive data from the market via a point of sale 

system (POS) and to utilize it so as to develop effective marketing strategies aim at enhancing sales. 

The data correlate information on actual consumer purchases (available from universal-product-code 

scanners used in shops) with information on the frequency and type of sales campaigns. An extensive 

literature exists, for analyzing consumer purchasing behaviors based on POS data, represented by 

(Ishigaki et al., 2011; Taguchi, 2010 ; Yada et al., 2006; Eugene, 1997) to name only a few. However, 

little research has been done concerning how to utilize POS data solely for management of the SC 

business.  

1.5 Flexibility  

The term flexibility could be loosely defined as the capacity to quickly and cost-effectively respond to a 

changing environment within a limited range and timeframe (Upton, 1994). Dwivedi and Momaya 

(2003) defined flexibility as, “having more options, an increased freedom of choice, and change 

mechanism.” Johns and Ostroy (1984) similarly argued that the analysis of choices rely on the manner 

in which flexibility is used to exploit expected information. Substantial literature exists dealing with the 

concept of flexibility from various perspectives, such as economic flexibility, organizational flexibility, 

and business process flexibility, to name only a few. For any organization to succeed there is an 

essential necessity to acknowledge the notion of flexibility to some degree (Birkinshaw, 2004). 

Therefore, understanding what flexibility is, and the types of flexibility, can facilitate the path towards 

achieving it in a specific setting. 

When studying flexibility from an economic point of view; core concepts commonly discussed, 

include: cost, pricing, demand, product, and supply. For example, Stigler (1939) developed his own 
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theory on cost analysis, which differed from classical cost analysis in that, he characterized the 

flexibility of two alternative manufacturing plants using the second derivative of their total cost curves. 

Stigler’s theory was later extended by Marschak and Nelson (1962), by recognizing flexibility as good 

current actions that would permit good later responses to later observations. As reported by Sethi and 

Sethi (1990), one of the earliest discussions revolving around economic flexibility was featured in 

Lavington’s book, “The English Capital Market,” (1921) which discussed the importance of 

considering the risk arising from the immobility of invested resources.  

From the organizational point of view, March and Simon (1958) argued that, the resources of an 

organization would be necessary to cope with internal as well as environmental uncertainties. 

According to Harrington (1991), flexibility in a business process is necessary to increase the 

organization’s ability to adapt to changing circumstances and to compete effectively. Feibleman and 

Friend (1945) defined organizational flexibility as the ability of an organization to suffer a limited 

change without severe disorganization. Amram and Kulatilaka (1999) compared flexibility to owning 

an option, but not the obligation to take an action in the future. According to the real-options paradigm, 

uncertainty can increase the value of a project, as long as flexibility is preserved and resources are not 

irreversibly committed. Recent research has argued that organizational flexibility is not only dynamic; 

it is also inherently paradoxical by nature. Flexibility is said to require managerial action, balancing 

dialectical forces of control and autonomy (Bahrami, 1992), juxtapositioning capabilities (Evans, 

1991), and ultimately building a constructive friction between change and preservation. In recent 

literature, flexible organizational forms are those that are simultaneously able to explore new 

possibilities and exploit old certainties (March, 1991).  

From the perspective of business process flexibility, Nelson and Nelson (1997) considered two 

fundamental aspects in defining flexibility, emphasizing structural and process flexibility. They 

characterized the contemporary business environment as one that requires dynamic, flexible business 

processes. Davenport (1992) defined a business process as: “A structured set of activities designed to 

produce a specified output for a particular customer or market.” (Davenport, 1992 p.5). The definition 

of a business process ranges from Harrington’s (1991) version of being a set of logically coherent and 

connected tasks that use the resources of the organization with the goal of producing results, to the 

version of Nelson and Nelson (1997) which described the tasks involved in the business process as 

interdependent, and that a process would be orientated towards a specified output to achieve 
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optimization. Nelson and Nelson (1997) stated that: “Adaptability characterizes revolutionary changes 

in the business process environment, adaptation, as defined by Huber (1984), is the optimization of a 

particular niche or business process.” (Nelson and Nelson, 1997). 

Revolutionary changes, therefore, go hand in hand with the desire for optimization. Kusiak (1986) 

argued that system flexibility is measured by its adaptability to changing its functions or business 

processes. Sorescu et al. (2011) also argued that researchers could achieve desirable outcomes by 

examining different managerial common practices. However, as constraints and specifications 

inevitably influence the process design, a critical challenge, according to Halemane and Janszen (2004) 

would be how to restructure the constraints and specifications of a business process so as to achieve 

optimization. They defined specifications as the description of the requirements of a business process, 

whereas the constraints are the restrictions and limitations of the business process design. 

Shankar and Yadav (2011) argued that, in retail businesses, modifications in process design could 

spur innovations. A similar argument was put forth by Sorescu et al. (2011), who clearly stated that 

altering the constraints and specifications of a business process would influence the process design and 

these changes could yield improvements and innovation.  

To the best knowledge of the author, marketing flexibility was not clearly defined in the literature. 

In order to fill this absence; this thesis proposes a definition of marketing flexibility that overlaps with 

the main points describing economic, organizational and process flexibility. In the context of retail 

business, marketing flexibility could be defined as “a management approach that aims at optimizing the 

outcome of a business process by exploring possible options for reconfiguring the specifications and or 

the constraints of the business process that controls them.” 
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2 Optimization Problem –I: Total Expected Sales 

2.1  Introduction  

This Chapter is devoted to the mathematical model for optimizing total expected sales by optimally 

reallocating sales campaign days freely rather than in segments of consecutive days. In Section 2.2 the 

data of the winter season is described. Section 2.3 is the model specification and the numerical results 

of implementing the model on the winter season.  

2.2  Data Description of the Winter Period 

We work on a set of real data obtained from an SC operating in Tokyo, Japan, for the winter period of 

2009 and that of 2010, that is, December 2009, January 2010, and February 2010 for the winter period 

2009, and December 2010, January 2011 and February 2011 for the winter period 2011. For the 

𝑖 − 𝑡ℎ day of a winter period, the dataset comprises the following main elements  

𝐼𝐶𝐴𝑀𝑃(𝑖)   :  The campaign flag indicating if the 𝑖 − 𝑡ℎ day was under the sales campaign  

         [  𝐼𝐶𝐴𝑀𝑃(𝑖)=1 ] or not [  𝐼𝐶𝐴𝑀𝑃(𝑖)=0 ] 

𝑠(𝑖)      :  The total sales of the 𝑖 − 𝑡ℎ day in ¥ in the entire SC                  (2.2.1) 

𝑡(𝑖)      :  The number of purchase transactions of the 𝑖 − 𝑡ℎ day in the entire SC 

Two sales campaigns are organized in each winter period, that is Win_1 and Win_2 

where  𝐼𝐶𝐴𝑀𝑃(𝑖) = Win_1 +Win_2. Table 2.2.1 shows the organization of the sales campaigns days 

over the winter periods 2009 and 2010.  

Table 2.2.1   The Organization of Sales Campaign days over the Winter Periods 2009 and 2010 

as Obtained from the SC  

Start Date End Date Campaign # of Days 

Winter 2009 

01/12/2009 27/12/2009 Win_1 27 

28/12/2009 01/03/2010 No campaign  6 

01/04/2010 01/11/2010 Win_2 8 

01/12/2010 02/28/2010 No campaign 47 

Winter 2010 

01/12/2010 28/12/2010 Win_1 28 

29/12/2010 01/03/2011 No campaign 5 

01/04/2011 01/11/2011 Win_2 8 

01/12/2010 02/28/2010 No campaign 47 
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Figure 2.2.1 displays 𝑠(𝑖) and 𝑡(𝑖) as obtained from the SC for the winter periods 2009 and 

2010 in a histogram format. The size and number of bins of the histogram are selected based on the 

Freedman Diaconis method (Freedman and Diaconis, 1981), the general equation for the rule is 

Bin size = 2 IQR(x) n−1/3    ,  

where IQR(x) is the interquartile range of the data and  n  is the number of observations in the 

sample x .  

 

Figure 2.2.1   Total Sales and Number of Purchase Transactions for the Winter Periods 2009 

and 2010 Before Cleaning Outliers 

Throughout the year, the administration of the SC organizes some activities or special events that 

attract more visitors, consequently, these activities cause upsurges in 𝑠(𝑖) and  𝑡(𝑖),  which we call 

outliers, hereafter. In order to achieve a better analysis quality, such outliers need to be normalized. 

More specifically, let  𝜇𝑆 and  𝜎𝑆 be the mean and the standard deviation of total sales over the period 

under consideration, and  𝜇𝑇 and 𝜎𝑇 similarly defined for the number of purchase transactions over 

that period. Then we define  

 

http://en.wikipedia.org/wiki/David_Freedman_(statistician)
http://en.wikipedia.org/wiki/Persi_Diaconis
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𝑠(𝑖) is an outlier    ⟺     𝑠(𝑖) ≥  𝜇𝑆 + 2𝜎𝑆       ,                

𝑡(𝑖) is an outlier   ⟺      𝑡(𝑖) ≥  𝜇𝑇 + 2𝜎𝑇       .                                      (2.2.2) 

If the normal distribution is assumed, this boundary value would represent the 95% level. In 

order to investigate the assumption of normality, we rely on the Quantile−Quantile plot or Q−Q plot. 

According to Neil Salkind (2007), the normal Q−Q plot is used to visually see the deviation from 

normality in a dataset. Based on the Q−Q plots, shown in Figure 2.2.2 below, by comparing the 

distributions against the diagonal line representing the expected normal one; it can be said that, 

despite the presence of some outliers, the distributions are sufficient to assume normality. 

 

Figure 2.2.2   Q−Q Plots of the Total Sales and the Number of Purchase Transactions  

for the Winter Periods 2009 and 2010 

Let 𝜇𝑆:¬𝑜𝑢𝑡𝑙𝑖𝑒𝑟 and 𝜇𝑆:𝑜𝑢𝑡𝑙𝑖𝑒𝑟 be the average total sales of non-outlier days and that of outlier 

days, respectively. 𝜇𝑇:¬𝑜𝑢𝑡𝑙𝑖𝑒𝑟  and   𝜇𝑇:𝑜𝑢𝑡𝑙𝑖𝑒𝑟  are defined similarly for the number of purchase 

transactions. Then 𝑠(𝑖) and 𝑡(𝑖), judged to be outliers, are adjusted based on the following formula  

𝑠(𝑖)  ← 𝑠(𝑖) ×  𝜇𝑆:¬𝑜𝑢𝑡𝑙𝑖𝑒𝑟/ 𝜇𝑆:𝑜𝑢𝑡𝑙𝑖𝑒𝑟      ;         𝑡(𝑖)  ← 𝑡(𝑖) ×  𝜇𝑇:¬𝑜𝑢𝑡𝑙𝑖𝑒𝑟/ 𝜇𝑇:𝑜𝑢𝑡𝑙𝑖𝑒𝑟  .     (2.2.3) 
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Outliers may result from other reasons; for example, in this case, the SC under the study provides 

facilities for cultural classes, e.g. flower arrangement and piano. Monthly fees of such classes may be 

paid on a fixed date of the month which result on outliers in 𝑠(𝑖) and  𝑡(𝑖). In the winter season, only 

one store referred to as the Music Store, hereafter, caused such outliers. Outliers of this sort are 

adjusted by eliminating the total sales and the number of purchase transactions of such classes rather 

than using (2.2.3). Table 2.2.2 shows the adjusted outliers of the Music Store, whereas adjusted 

outliers, detected by the standard deviation as in (2.2.2), are shown in Table 2.2.3. 

Table 2.2.2   Adjusted Outliers for the Winter Periods 2009 and 2010 of the Music Store 

Winter 2009  

Total Sales 
 

Num. of Purchase Transactions 

Date Entire SC 
Music 

Store 
Adjusted  

 
Date 

Entire 

SC 

Music 

Store  
Adjusted  

12/24/2008 ¥ 9,667,621 ¥ 4,112,600 ¥ 5,555,021  12/24/2008 4,239 439 3,800 

01/24/2009 ¥ 9,794,751 ¥ 4,053,000 ¥ 5,741,751  01/24/2009 4,070 432 3,638 

02/25/2009 ¥ 7,901,727 ¥ 4,044,500 ¥ 3,857,227  02/25/2009 3,275 432 2,843 

Winter 2010  

Total Sales 
 

Num. of Purchase Transactions 

Date Entire SC 
Music 

Store 
Adjusted  

 
Date 

Entire 

SC 

Music 

Store 
Adjusted  

12/24/2009 ¥ 8,737,528 ¥ 3,907,800 ¥ 4,829,728  12/24/2009 4,099 409 3,690 

01/25/2010 ¥ 7,808,626 ¥ 3,853,300 ¥ 3,955,326,  01/25/2010 3,222 405 2,817 

02/25/2010 ¥ 10,523,905 ¥ 3,841,000 ¥ 6,682,905  02/25/2010 3,481 406 3,075 

Table 2.2.3   Adjusted Outliers for the Winter Periods 2009 and 2010, Detected by the 

Standard Deviation Method 

Winter 2009   Winter 2010 

Date 
Purchase 

Transactions  

Adjusted 

Transactions 
 Date 

Purchase 

Transactions  

Adjusted  

Transactions 

12/23/2008 4,177 3,221 12/23/2009 3, 360 3,140 

12/25/2008 3,863 2,979 12/20/2009 3,210 2,934 

12/24/2008 3,800 2,931 
   

Date Total Sales 
Adjusted 

Total Sales 
Date Total Sales 

Adjusted  

Total Sales 

12/6/2008 ¥ 6,842,642 ¥ 4,526,458 12/20/2009 ¥ 6,289,894 ¥ 4,115,768 

12/25/2008 ¥ 6,434,730 ¥ 4,256,621 12/23/2009 ¥ 6,682,905 ¥ 4,372,933 

02/26/2009 ¥ 6,175,360 ¥ 4,085,046 12/24/2009 ¥ 6,235,075 ¥ 4,079,898 

02/28/2009 ¥ 6,847,974 ¥ 4,529,985 12/26/2009 ¥ 6,052,768 ¥ 3,960,606 
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The number of outliers in the dataset ranges from 5 − 7 outliers in a sample size of 88, 

corresponding to around 6  − 8 %, respectively. From Hampel et al.’s (1986) classical book on robust 

statistics, it is claimed that a routine dataset typically contains about 1 − 10% outliers. One also notes 

that, no minimum extremes were detected in the winter periods 2009 and 2010. Accordingly, the 

datasets are ready for analysis and no further cleaning would be needed. The mean, variance, kurtosis, 

and skewness for the winter periods 2009 and 2010 before and after cleaning are summarized in Table 

2.2.4 below. One sees that, upon adjusting the outliers of   𝑠(𝑖)  and  𝑡(𝑖) , the variance drops 

significantly.  

Table 2.2.4   The Effect of Data Cleaning on Total Sales and Number of Purchase Transactions 

for the Winter Periods 2009 and 2010  

 

Winter 2009 Winter 2010 

Before  

cleaning 

After 

Cleaning 

Before 

 cleaning 

After 

 Cleaning 

Total Sales 

Mean 4,589,445 4,349,528 4,363,364 4,231,522 

Variance 1,147,588 613,325 1,156,849 770,962 

Skewness 2.75 0.95 2.91 0.38 

Kurtosis 10.74 0.73 11.23 -0.48 

Purchase  

Transactions 

Mean 3,089 3,044 3,069 3,037 

Variance 357 288 336 297 

Skewness 0.52 0.20 0.62 0.05 

Kurtosis 0.34 -0.41 1.03 0.81 

 

Figure 2.2.2 below shows the effect of cleaning all outliers of 𝑠(𝑖) and 𝑡(𝑖) for the winter 

periods 2009 and 2010, one notes that, all spikes are smoothed. 
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Figure 2.2.3   Before and After Cleaning of Total Sales and Number of Purchase Transactions 

for the Winter Periods 2009 and 2010  
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2.3  Model Specification: Optimizing Total Expected Sales  

We consider a sales campaign to be organized so as to maximize the total expected sales over a given 

period of M days subject to the number of campaign days being N days, where 𝑁 < 𝑀 . A machine 

learning technique is employed where two datasets are considered: winter 2009 for Learning Data 

(LD) and winter 2010 for Testing Data (TD). For notational convenience, the set of days involved in 

LD is denoted by 𝐷𝐿𝐷 , and  𝐷𝑇𝐷 are defined similarly.  

The model consists of four stages. In Stage I, we specify the two indicator functions;  𝐼𝐶𝐴𝑀𝑃(𝑖) 

for a sales campaign day, and 𝐼𝐺𝑂𝑂𝐷:𝑆0𝑇0(𝑖) for a GSD, where 𝑆0 and 𝑇0 are numerical threshold 

levels of 𝑠(𝑖) and 𝑡(𝑖) to be defined through the following procedure. All days in 𝐷𝐿𝐷 are first 

ordered in descending order by  𝑠(𝑖) and  𝑡(𝑖), separately. The decile points are then marked, yielding 

a two-dimensional matrix as shown in Figure 2.3.1. The decile points are summarized in Table 2.3.1.  

 

Figure 2.3.1   Two-dimensional Matrix for the Decile Points of Total Sales and Number of 

Purchase Transactions 

Table 2.3.1   Decile Points in Total Sales and Number of Purchase Transactions of the 

Winter Period 2009 (LD) 

Deciles Total Sales 
Number of  

Purchase Transactions 

10% ¥ 5,517,359 3,502 

20% ¥ 5,187,521 3,391 

30% ¥ 4,671,986 3,233 

40% ¥ 4,511,894 3,140 

50% ¥ 4,226,882 3,014 

60% ¥ 4,021,595 2,946 

70% ¥ 3,876,067 2,884 

80% ¥ 3,591,585 2,803 

90% ¥ 3,459,930 2,733 

100% ¥ 3,093,096 2,227 
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Given two threshold levels 𝑆0 for 𝑠(𝑖) and 𝑇0 for  𝑡(𝑖), the indicator function 𝐼𝐺𝑂𝑂𝐷:𝑆0𝑇0(𝑖) 

for 𝑖 ∈  𝐷𝐿𝐷 is defined as  

𝐼𝐺𝑂𝑂𝐷:𝑆0𝑇0(𝑖) = {
1  ,         𝑖𝑓    𝑠(𝑖) ≥  𝑆0 and   𝑡 (𝑖) ≥  𝑇0
0  ,         𝑒𝑙𝑠𝑒                                                 

  .                                     (2.3.1) 

The numerical threshold levels 𝑆0  and 𝑇0  obtained from LD are similarly used to determine 

 𝐼𝐺𝑂𝑂𝐷:𝑆0𝑇0:𝑇𝐷(𝑗) = 1, for 𝑗 ∈ 𝐷𝑇𝐷 and  𝐼𝐺𝑂𝑂𝐷:𝑆0𝑇0:𝑇𝐷(𝑗) = 0, otherwise. For a sales campaign of N 

days organized over a future winter period of M days, the key decision variable of the optimization 

problem is represented by the campaign day assignment vector, denoted 

by 𝑑 =  [𝑑(1),⋯ , 𝑑(𝑗),⋯ , 𝑑(𝑀)]  ∈ {0,1}𝑀, where  

𝑑(𝑗) = {
1  ,         𝑖𝑓 𝑑𝑎𝑦 𝑗 𝑖𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 𝑏𝑒 𝑎 𝑐𝑎𝑚𝑝𝑎𝑖𝑔𝑛 𝑑𝑎𝑦        
0  ,         𝑒𝑙𝑠𝑒                                                                                   

  ,            (2.3.2) 

subject to the constraint that  ∑ 𝑑(𝑗)𝑀
𝑗=1 ≤ 𝑁 = ∑ 𝐼𝐶𝐴𝑀𝑃(𝑖)

𝑀
𝑖=1  where N < M. In order to establish a 

mathematical model to assign N campaign days over a future period of M days for maximizing the 

total expected sales, one has to deal with two issues: 1) how to determine whether or not a day is a 

GSD, this is addressed in Stage II; and 2) how to estimate the expected total sales for that day, given 

an allocation of N campaign days over M days is decided, addressed in Stage III. 

In Stage II, a logistic regression model is developed for estimating whether or not a day is a GSD 

in the future winter period. For this purpose, we consider a set of explanatory variables given in Table 

2.3.2. Following the standard procedure for eliminating multi-collinearity, the correlation structure of 

these variables is given in Table 2.3.3. In this case, it happened that the correlation of every pair is less 

than 0.5 and no variables are eliminated because of multi-collinearity.  
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Table 2.3.2   Variables Considered for Logistic Regression for the Winter Period 2010 

Labels  Description 

Week_k (𝒊) , 

k = 1, 2, 3, 4 . 

Each month has four weeks, labeled as: Week_1, Week_2, Week_3, and Week_4. Any week 

consists of seven days, except that Week_4 may include extra days until the end of the month. 

Week_k(𝑖) =1 if day 𝑖 belongs to week k, and 0 otherwise.  

Weekday_k (i ) ,  

k = 1 , ⋯ , 5 . 

This binary variable takes the value of 1 when WeekDay_𝑘 (𝑖) is a weekday and 0 otherwise. 

Each week has five weekdays, Mon, Tue, Wed, Thu, and Fri, labeled as Weekday_1, 

Weekday_2, Weekday_3, Weekday_4, and Weekday_5, respectively.  

Weekend (𝒊) This binary variable takes the value of 1 when day 𝑖 is Saturday or Sunday, and 0 otherwise.  

National Holiday (i) This binary flag indicates that day 𝑖 is an official national holiday in Japan.  

Non-national 

Holiday(𝒊) 
This binary flag indicates that day 𝑖 is not an official national holiday but is likely to be very 

passive in business in Japan, e.g. Dec 28, 29, 30, 31 during which offices are typically closed.  

Win_1 (𝒊) 
This binary variable takes the value of 1 only if day 𝑖 is in December, 𝐼𝐶𝐴𝑀𝑃(𝑖)=1, and 0 

otherwise. 

Win_2 (𝒊) 
This binary variable takes the value of 1 only if day 𝑖 is in January or February, 𝐼𝐶𝐴𝑀𝑃(𝑖)=1, 

and 0 otherwise. 

LY_Transactions(𝒊) 
This integer variable describes the number of purchase transactions of the same day of the 

month of the last year.  

 

Table 2.3.3   The Correlation Matrix of Variables Tested for Multi-collinearity for Winter 

Period 2010 

 

 
Week 

_1 

Week 

_2 

Week 

_3 

Week 

_4 
Mon Tue Wed Thu Fri Weekend 

National 

Holiday 

Non- 

National 

Holiday 

Win_1 Win_2 
LY_ 

Trans 

Week_1 1 
              

Week_2 -0.304 1 
             

Week_3 -0.294 -0.304 1 
            

Week_4 -0.361 -0.372 -0.361 1 
           

Mon 0.022 0.011 0.022 -0.049 1 
          

Tue 0.003 -0.008 0.003 0.001 -0.165 1 
         

Wed 0.022 0.011 -0.057 0.023 -0.158 -0.165 1 
        

Thu 0.003 -0.008 0.003 0.001 -0.165 -0.173 -0.165 1 
       

Fri -0.057 0.011 0.022 0.023 -0.158 -0.165 -0.158 -0.165 1 
      

Weekend 0.005 -0.012 0.005 0.001 -0.257 -0.270 -0.257 -0.270 -0.257 1 
     

National 

Holiday 
-0.102 0.189 -0.102 0.011 0.108 -0.078 0.108 0.098 -0.075 -0.122 1 

    

Non-national  

Holiday 
-0.118 -0.122 -0.118 0.328 0.072 0.063 0.072 0.063 -0.087 -0.141 -0.04 1 

   

Win_1 0.051 0.032 0.051 -0.122 -0.049 0.001 0.023 0.001 0.023 0.001 0.01 -0.145 1 
  

Win_2 0.206 0.194 -0.171 -0.210 0.105 -0.020 -0.010 -0.020 -0.010 -0.032 0.16 -0.069 -0.210 1 
 

LY_Trans -0.093 0.078 0.049 -0.032 -0.118 -0.078 -0.155 0.372 0.216 -0.186 0.02 -0.198 0.423 -0.001 1 
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A logistic regression model is developed for estimating the likelihood, 𝜌𝐺𝑂𝑂𝐷(𝑗), of whether or 

not day 𝑗  in the future winter period is a GSD based on LD. Namely, from a set of the explanatory 

variables 𝑥𝑘  (𝑖) for 𝑖 ∈  𝐷𝐿𝐷 and  𝑘 = 1,⋯ ,𝐾, let  𝑥 = [𝑥1(𝑖),⋯ , 𝑥𝑘(𝑖)], and  𝛽 =  [𝛽0, 𝛽1,⋯ , 𝛽𝐾]. 

We define  𝑟 (𝑥, 𝛽) by 

𝑟 (𝑥 , 𝛽) =  𝛽0 + ∑𝛽𝑘  . 𝑥𝑘  (𝑖)

𝐾

𝑘=1

  .                                                     (2.3.3) 

The corresponding logistic regression model then yields the optimal coefficient vector  𝛽∗, given by 

𝛽∗ = min
𝛽

∑ {𝐼𝐺𝑂𝑂𝐷:𝑆0𝑇0(𝑖) −
𝑒𝑟(𝑥

(𝑖),𝛽)

1 + 𝑒𝑟(𝑥
(𝑖),𝛽) 

}

2

𝑖∈𝐷𝐿𝐷

   .                                 (2.3.4)  

If 𝑥 of day 𝑗 in the future winter period can be known, (3.2.4) enables one to assess the likelihood of 

day 𝑗  being a GSD. This measure, denoted by 𝜌𝐺𝑂𝑂𝐷(𝑗), can be computed as 

𝜌𝐺𝑂𝑂𝐷(𝑗) =  
𝑒𝑟(𝑥

(𝑗), 𝛽∗)

1 + 𝑒𝑟(𝑥
(𝑗), 𝛽∗) 

      .                                                         (2.3.5) 

In turn, (2.3.5) enables one to determine whether or not day 𝑗 is judged to be a GSD by specifying a 

threshold level 𝜌𝐺𝑂𝑂𝐷 , where day 𝑗  is judged to be a GSD, denoted by 𝐼𝐺𝑂𝑂𝐷(𝑗) = 1 , if 

𝜌𝐺𝑂𝑂𝐷(𝑗) ≥  𝜌𝐺𝑂𝑂𝐷  , and day 𝑗 is not a GSD, denoted by 𝐼𝐺𝑂𝑂𝐷(𝑗) = 0, otherwise. In order to 

determine the threshold level  𝜌𝐺𝑂𝑂𝐷, we employ the confusion matrix obtained from TD and given in 

Table 2.3.4 below. This approach is widely used in the area of machine learning. Since 𝑥(𝑗) is known 

for  𝑗 ∈ 𝐷𝑇𝐷, and 𝜌𝐺𝑂𝑂𝐷(𝑗) can be computed from (2.3.5) above, furthermore, it is known that day 𝑗 

is a GSD when ( 𝐼𝐺𝑂𝑂𝐷:𝑆0𝑇0:𝑇𝐷(𝑗) = 1 ) or not ( 𝐼𝐺𝑂𝑂𝐷:𝑆0𝑇0:𝑇𝐷(𝑗) = 0 ), consequently, we are in a 

position to see whether or not  𝐼𝐺𝑂𝑂𝐷(𝑗) =  𝐼𝐺𝑂𝑂𝐷:𝑆0𝑇0:𝑇𝐷(𝑗), yielding the confusion matrix.  

Table 2.3.4   General Confusion Matrix 

 
Actual   

 
¬ GSD GSD Total 

Judgment 

¬ GSD 𝑥00 𝑥01 𝑋0  

GSD 𝑥10 𝑥11 𝑋1 𝒙𝟏𝟏/𝑿𝟏 

Total 𝑌0 𝑌1 𝑋  

  𝒙𝟏𝟏/𝒀𝟏  (𝒙𝟎𝟎+𝒙𝟏𝟏)/𝑿 
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The common measures for assessing the appropriateness of the choice of 𝜌𝐺𝑂𝑂𝐷 is given by 

Recall = 𝑥11/𝑌1, Precision = 𝑥11/𝑋1 and Accuracy = (𝑥00+𝑥11)/𝑋. We note that Recall describes the 

portion of actual GSDs which were judged to be a GSD, whereas Precision gives the portion of 

judged GSDs which were actually a GSD, and Accuracy represents the overall correctness of the 

judgment. It is clear that Recall decreases while Precision increases as 𝜌𝐺𝑂𝑂𝐷 increases. In order to 

balance the two conflicting measures, we consider the optimization problem of maximizing Precision 

subject to Recall  ≥ 0.75. This optimization problem is solved by varying 𝜌𝐺𝑂𝑂𝐷 with a stepwise of 

0.01. This process is repeated for every combination of (𝑆0, 𝑇0) obtained from the decile cut-off 

points of 𝑠(𝑖)  and  𝑡(𝑖) , yielding the best model with   𝜌∗𝐺𝑂𝑂𝐷 = 0.64 , 𝑆0
∗ =  3,591,585 

and  𝑇0
∗ =2,870 representing the 80% and 70% levels of total sales and purchase transactions in LD, 

respectively. The estimated regression coefficients and other statistical measures are summarized in 

Table 2.3.5. The corresponding confusion matrix of the best model is shown in Table 2.3.6, yielding 

Precision = 0.81, Recall = 0.76 and Accuracy = 0.82. 

Table 2.3.5   Estimated Coefficients of the Logistic Regression Model for Winter 2010 

 Estimate Std. Error z value Pr(>|z|) Sig 

(Intercept) -11.8941 5.175097 -2.298 0.02154 * 

Weekend 3.588255 1.148712 3.124 0.00179 ** 

Week1 -2.10841 1.006596 -2.095 0.03621 * 

Week2 -2.05983 0.932031 -2.21 0.0271 * 

LY_Transactions 0.003582 0.001751 2.046 0.04078 * 

Non-national Holiday 3.326175 1.598921 2.08 0.0375 * 

Win_1 1.879 0.87049 2.159 0.03088 * 

Win_2 3.13367 1.26512 2.477 0.01325 * 

                      Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Table 2.3.6   The Confusion Matrix of the Logistic Regression Model for Winter 2010 

 
Actual   

 
¬ 𝑮𝑺𝑫 𝑮𝑺𝑫 Total 

Judgment 

¬ 𝑮𝑺𝑫 43 9 52 Precision 

𝑮𝑺𝑫 7 29 36 80.6% 

Total 50 38 88  

 Recall 76.3% Accuracy 81.8% 
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In Stage III, we turn our attention to the second issue of how to estimate the expected total sales 

for day  𝑗 ∈ 𝐷𝑇𝐷 , given a decision vector 𝑑 specifying campaign days for the future winter period as 

well as the estimated coefficients for the explanatory variables of the logistic regression, one can 

compute 𝜌𝐺𝑂𝑂𝐷(𝑗) from (2.3.5) which in turn enables one to determine 𝐼𝐺𝑂𝑂𝐷(𝑗) under  𝜌∗𝐺𝑂𝑂𝐷. 

The matrix of the average total sales, denoted by  �̂�(𝑚,𝑛) , computed over days 𝑖 ∈  𝐷𝐿𝐷  with 

𝑚 = 𝐼𝐶𝐴𝑀𝑃(𝑖) and 𝑛 =  𝐼𝐺𝑂𝑂𝐷:𝑆0𝑇0 (𝑖), 𝑚, 𝑛 ∈ {0,1} is displayed in Table 2.3.7. The average total 

sales, obtained from LD, is then used to estimate the expected total sales of day 𝑗 ∈ 𝐷𝑇𝐷, denoted by 

�̂�(𝑚,𝑛) with 𝑚 = 𝑑(𝑗) and 𝑛 =  𝐼𝐺𝑂𝑂𝐷(𝑗), 𝑚, 𝑛 ∈ {0,1} .  

Table 2.3.7   Average Total Sales ( ¥ million ) Obtained from Winter 2009 (LD) 

�̂�(𝒎,𝒏) 
𝒏 = 𝑰𝑮𝑶𝑶𝑫:𝑺𝟎𝑻𝟎(𝒊) 

0 1 

𝒎 = 𝑰𝑪𝑨𝑴𝑷(𝒊) 

0 ¥ 3.65 ¥ 4.68 

1 ¥ 3.89 ¥ 4.82 

The total expected sales over the future period of M days, denoted by �̂�(𝑑), can then be estimated as  

�̂�(𝑑) =  ∑ ∑ �̂�(𝑚,𝑛)𝛿{𝑑(𝑗)=𝑚}
𝑚,𝑛∈{0,1}

𝛿{𝐼𝐺𝑂𝑂𝐷(𝑗)=𝑛}      ,                                (2.3.6)

𝑀

𝑗=1

 

where 𝛿{𝑆𝑇𝐴𝑇𝐸𝑀𝐸𝑁𝑇} = 1  if  STATEMENT is true, and 𝛿{𝑆𝑇𝐴𝑇𝐸𝑀𝐸𝑁𝑇} = 0 , otherwise. In order to 

test the validity of this approach, the formula of total expected sales �̂�(𝑑) in (2.3.6) above, is used 

with actual campaign days in TD, and then compared with the actual total sales 𝑅 of TD. More 

specifically, let   𝐼𝐶𝐴𝑀𝑃 = [𝐼𝐶𝐴𝑀𝑃(1),⋯ , 𝐼𝐶𝐴𝑀𝑃(𝑀)] ∈ {0,1}
𝑀  be the sales campaign days in the 

actual practice, then �̂�(𝐼𝐶𝐴𝑀𝑃) based on (2.3.6) is compared against actual total sales 𝑅 of TD, 

achieving a relative accuracy of less than 2 % as shown in Table 2.3.8 below. 

Table 2.3.8   The Validity of the Systematic Approach of Estimating Total Sales for Winter 

2009 (TD)  

 Notation Value 

Total expected sales �̂� (𝐼
𝐶𝐴𝑀𝑃

) ¥ 366.48 

Actual total sales 𝑅 ¥ 360.25 

Relative accuracy |�̂� (𝐼
𝐶𝐴𝑀𝑃

) − 𝑅| × 100/𝑅 1.72 % 
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Finally, in Stage VI, the problem of optimally reallocating sales campaign days, specified by 

𝑑 =  [𝑑(1),⋯ , 𝑑(𝑗),⋯ , 𝑑(𝑀) ] ∈ {0,1}𝑀  subject to  ∑ 𝑑(𝑗)𝑀
𝑗=1 ≤ 𝑁  so as to maximize the total 

expected sales, can be formulated as  

max
𝑑∈{0,1}𝑀

  �̂� (𝑑)     𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜      ∑𝑑(𝑗) = 𝑁

𝑀

𝑗=1

    .                                    (2.3.7) 

To assess the impact of this flexible allocation of sales campaign days, we compare the optimal 

solution against the actual total sales, which was achieved through two separate sales campaigns, each 

consisting of certain segments of consecutive days. For this purpose, we set M = 88 and N = 36 as 

obtained from TD of the winter period with ∑ 𝑑(𝑗) =88
𝑗=1 36. This optimization problem can be readily 

solved, yielding  �̂�(𝑑∗) = ¥ 385.78 million. We note that the difference between the optimal expected 

total sales and the actual total sales is given by  �̂�(𝑑∗)  − 𝑅 =  ¥ 25.53 million, or about 7 % increase.  

Table 2.3.9 demonstrates how the optimal allocation of sales campaign days, 𝑑∗, differs from the 

actual sales campaign days, 𝐼𝐶𝐴𝑀𝑃, obtained from TD. We find that only 13 sales campaign days are 

in common out of 36 sales campaign days. There are 23 days for which sales campaign is assigned 

only in the actual practice, or only by the optimal decision. 

 

Table 2.3.9  Sales Campaign Days (Actual vs. Optimal) of �̂�(𝒅∗) for Winter 2010 (TD) 

 
Optimal 

Total 
1 0 

Actual 
1 13 23 36 

0 23 29 52 

Total  36 52 88 

 

In Table 2.3.10, the effect of the optimal allocation of sales campaign days on GSDs is 

summarized, where 31 GSDs and 24 ￢GSDs are common, amounting to 63% of 88 days in the 

winter period. It should be noted that the optimal decision approach converted 26 ￢GSDs into GSDs, 

while only 7 days were downgraded from GSD in the actual practice to ￢GSD. Consequently, the 

optimal decision approach yielded 57 GSDs or 65% of 88 days. 
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Table 2.3.10  The Effect of the Optimal Decision Approach on GSDs of �̂�(𝒅∗) for  

Winter 2010 (TD) 

# of Days 
Optimal 

Total 
GSD ￢GSD 

Actual 
  GSD 31 7 38 

￢GSD 26 24 50 

Total 57 31 88 

 

Table 2.3.11 below demonstrates how the above improvement by the optimal decision approach 

was achieved in further detail, where GSD vs. ￢GSD are classified according to sales campaign 

days only in the actual practice, those in common (actual and optimal), and those only by the optimal 

decision approach.  

 

Table 2.3.11  GSD vs. ￢GSD Transitions by Optimal Decision Approach of �̂�(𝒅∗)  

for Winter 2010 (TD) 

Actual Only  In Common   Optimal Only 

Campaign Days 
Optimal 

Total  Campaign Days 
Optimal 

Total  Campaign Days 
Optimal 

Total 
GSD ￢GSD 

 
GSD ￢GSD 

 
GSD ￢GSD 

Actual 
GSD 14 3 17 

 Actual 
GSD 3 3 6 

 Actual 
GSD 2 0 2 

￢GSD 0 6 6 
 

￢GSD 1 6 7 
 

￢GSD 20 1 21 

Total 14 9 23 
 

Total 4 9 13 
 

Total 22 1 23 

 

In the actual practice, 17 + 6 = 23 sales campaign days (or 64%) are assigned to GSDs in the 

actual practice, and 6 + 7 = 13 days (or 36%) to ￢GSDs, whereas the optimal decision approach 

allocated only 6 + 2 = 8 days (or 22%) to GSDs in the actual practice, and 7 + 21 = 28 days (or 78%) 

to ￢GSDs. This result supports the original observation that the effect of a sales campaign for 

enhancing the total sales of ￢GSD may exceed that for strengthening the total sales of GSD further.  
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3 Optimization Problem –II: Expected Profit 

3.1  Introduction  

The mathematical model in Chapter 2 described the optimization problem of how to reallocate sales 

campaign days specified by 𝑑 = [𝑑(1),⋯ , 𝑑(𝑗),⋯ , 𝑑(𝑀)] subject to ∑ 𝑑(𝑗) ≤ 𝑁 𝑀
𝑗=1 so as to 

maximize the total expected sales, achieving 7 % increase from the actual total sales for the winter 

period. In this chapter, two further extensions of this optimization problem are considered. Firstly, by 

introducing the standard campaign budget of 𝐵 = 𝐵0  per day, the objective function of the 

optimization problem is modified to maximize the expected profit rather than the total expected sales. 

Secondly, we introduce a campaign budget increase ∆𝐵= 𝐵 − 𝐵0  per day, and examine the optimal 

budget size 𝐵∗ along with the optimal campaign day assignment vector so as to maximize the 

expected profit.  

This chapter is organized in the following manner; the first extension of the optimization problem 

is introduced in Section 3.2. In Section 3.3, the second extension is described, and in Section 3.4, 

basic properties of the expected total sales under the campaign budget increase are examined. Finally, 

in Section 3.5, the results of the optimal solution are reported.  

3.2  Model Specification: Optimizing Expected Profit Under the Standard Campaign 

Budget 𝑩 = 𝑩𝟎  

For the two winter campaigns in LD and those in TD, the campaign cost 𝐵0 per day is estimated to 

be ¥ 0.4 million in the following manner; we were informed by the SC that the total cost per day in 

the winter period would be approximately 20 % of the total sales per day, which turned out to be: 

(¥ 4.36 million / day × 20 % = ¥ 0.872 million / day). We were also told by the SC that the campaign 

cost per day was 46 % of the total cost, yielding 𝐵0 = ¥ 0.4 million.  

In this section, the objective function for optimally reallocating sales campaign days, specified by 

𝑑 =  [𝑑(1),⋯ , 𝑑(𝑗),⋯ , 𝑑(𝑀) ] ∈ {0,1}𝑀  subject to  ∑ 𝑑(𝑗)𝑀
𝑗=1 ≤ 𝑁, so as to maximize the expected 

profit under  𝐵0, is formulated. As described in Chapter 2, the expected total sales per day, �̂�(𝑚,𝑛) 

with 𝑚 = 𝑑(𝑗) and  𝑛 = 𝐼𝐺𝑂𝑂𝐷(𝑗), 𝑚 , 𝑛 ∈ {0 , 1} is estimated based on �̂�(𝑚,𝑛) obtained from LD, 

with 𝑚 = 𝐼𝐶𝐴𝑀𝑃(𝑖)  and   𝑛 =  𝐼𝐺𝑂𝑂𝐷:𝑆0𝑇0(𝑖) ,  𝑚 , 𝑛 ∈ {0 , 1} . Accordingly, the total expected 
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sales,  �̂�(𝑑) for the future period, is computed as in (2.3.6). The optimization problem of expected 

profit, denoted by �̂�(𝑑∗), can then be written as  

max 
𝑑∈{0,1}𝑀

[�̂�(𝑑) − 𝐵0 ×  ∑𝑑(𝑗)

𝑀

𝑗=1

]  , 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   ∑𝑑(𝑗)

𝑀

𝑗=1

≤ 𝑁     .              (3.2.1) 

This optimization problem can be readily solved, yielding an optimal expected profit of 

�̂�(𝑑∗) = ¥ 372.46 by reallocating 26 sales campaign days with total cost of ¥ 10.40 million 

and �̂�(𝑑) = ¥ 383.66 million. This optimal solution amounts to 7.69 % increase rate from actual 

profit, 𝑃(𝐼𝐶𝐴𝑀𝑃) = ¥ 345.85 million, where ∑ 𝐼𝐶𝐴𝑀𝑃(𝑖)
𝑀
𝑖=1 = 36.  

3.3  Model Specification: Optimizing Expected Profit Under the Enhanced Campaign 

Budget 𝑩 = 𝑩𝟎 + ∆𝑩  

In the second extension, the campaign budget is enhanced and the campaign budget increase is 

incorporated as part of the decision variables. More specifically, let 𝐵 = 𝐵0 + ∆𝐵  be the new 

enhanced campaign budget per day, where the campaign budget increase  ∆𝐵 is considered as a 

decision variable along with the campaign day assignment vector, denoted here 

by   𝑑∆𝐵 = [𝑑∆𝐵(1),⋯ , 𝑑∆𝐵(𝑗),⋯ , 𝑑∆𝐵(𝑀)] ∈ {0,1}
𝑀 , and let 𝐼𝐺𝑂𝑂𝐷:∆𝐵(𝑗) = 1  or 0, if day 𝑗  is 

estimated to be a GSD or not under  ∆𝐵 > 0 by following the procedure described in Chapter 2 to 

determine 𝐼𝐺𝑂𝑂𝐷(𝑗).  

Now, we are in a position to estimate the expected total sales per day under  ∆𝐵 > 0. If day j in 

the future winter period under consideration is not chosen for campaign, that is, if 𝑑∆𝐵(𝑗) = 0, the 

campaign budget increase ∆𝐵 would not affect the expected total sales of day j. On the other hand, 

if 𝑑∆𝐵(𝑗) = 1, it is natural to assume that the expected total sales would be increased with the effect of 

diminishing return. Namely, let 𝑔(𝑥) be a strictly increasing concave function of 𝑥 with  𝑔(0) = 1, 

and 𝑙𝑖𝑚∆𝐵→∞ 𝑔(𝑥) = 1 + 
𝑎

𝑏
. If 𝑑∗(𝑗) = 0 and 𝑑∆𝐵(𝑗) = 1, that is, if the optimal decision for day 𝑗 

with ∆𝐵= 0 is not to campaign and day 𝑗 is chosen for campaign with  ∆𝐵 > 0, the expected total 

sales per day would be increased from  �̂�(0,𝑙) to  �̂�(0,𝑙) + (�̂�(1,𝑛) − �̂�(0,𝑙)) × 𝑔𝑠(∆𝐵), where �̂�(0,𝑙) is 

the expected total sales under  ∆𝐵= 0, 𝑙 = 𝐼𝐺𝑂𝑂𝐷(𝑗) and 𝑛 = 𝐼𝐺𝑂𝑂𝐷:∆𝐵(𝑗). This can be reasoned in 

the following manner; if day 𝑗  switched from 𝑑∗(𝑗) = 0  under  ∆𝐵= 0 to campaign 𝑑∆𝐵(𝑗) =

1 under  ∆𝐵 > 0, the expected total sales would be increased by (�̂�(1,𝑛) − �̂�(0,𝑙)), this increase is 
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strengthened by a factor of 𝑔𝑠(∆𝐵)  as a result of increasing the campaign budget from 𝐵0 

to 𝐵0 + ∆𝐵. Whereas, if day 𝑑∗(𝑗) = 1 does not switch to a non-campaign day, that is 𝑑∗(𝑗) =

 𝑑∆𝐵(𝑗) = 1, the expected total sales of day  𝑗  under ∆𝐵= 0 would be increased by  𝑔¬𝑠(∆𝐵). In 

order to describe these assumptions succinctly, we define  �̂�(𝑘,𝑙)→(𝑚,𝑛)(𝑗) to be the expected total 

sales of day 𝑗  with  ∆𝐵> 0, where 𝑘 = 𝑑∗(𝑗), 𝑙 = 𝐼𝐺𝑂𝑂𝐷(𝑗), 𝑚 = 𝑑∆𝐵(𝑗), and 𝑛 = 𝐼𝐺𝑂𝑂𝐷:∆𝐵(𝑗). 

One then has  

     �̂�(𝑘,𝑙)→(0,𝑛)(𝑗)    =     �̂�(0,𝑛)                                                                     𝑘, 𝑙, 𝑛 ∈ {0,1}                            

    �̂�(0,𝑙)→(1,𝑛)(𝑗)     =   �̂�(0,𝑙) + (�̂�(1,𝑛) − �̂�(0,𝑙)) × 𝑔𝑠(∆𝐵)                  𝑙, 𝑛 ∈ {0,1}, 𝑛 ≥ 𝑙       (3.3.1) 

       �̂�(1,𝑙)→(1,𝑛) (𝑗)   =   �̂�(1,𝑛) ×  𝑔¬𝑠(∆𝐵)                                                𝑙, 𝑛 ∈ {0,1}, 𝑛 = 𝑙                     

The total expected sales, denoted by �̂�(𝑑∆𝐵 ,  ∆𝐵), can now be computed as  

�̂� ( 𝑑∆𝐵 , ∆𝐵)

=∑ ∑ ∑ �̂�(𝑘,𝑙)→(𝑚,𝑛)(𝑗)

𝑚,𝑛∈{0,1}𝑘,𝑙∈{0,1}

.

𝑀

𝑗=1

𝛿{𝑘=𝑑∗(𝑗)} 𝛿{𝑙=𝐼𝐺𝑂𝑂𝐷(𝑗)}𝛿{𝑚=𝑑∆𝐵(𝑗)}
𝛿{𝑛=𝐼𝐺𝑂𝑂𝐷:∆𝐵(𝑗)}

  ,         (3.3.2) 

Accordingly, for this extension, the optimization problem of expected profit, denoted by  �̂�( 𝑑∆𝐵 ,  ∆𝐵), 

can then be written as  

𝑚𝑎𝑥 
𝑑∆𝐵 ,∆𝐵

  [�̂�(𝑑∆𝐵 ,  ∆𝐵) − (𝐵0 + ∆𝐵) ×∑𝑑∆𝐵(𝑗)

𝑀

𝑗=1

]    𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   ∑𝑑∆𝐵(𝑗)

𝑀

𝑗=1

≤ 𝑁  .        (3.3.3) 

3.4  Basic Properties of the Total Expected Sales Under 𝑩 = 𝑩𝟎 + ∆𝑩 

Let 𝑔(∆𝐵) be a strictly increasing concave function defined by two parameters, 𝑎 and 𝑏 as 

𝑔(∆𝐵) = 1 + 
𝑎 × ∆𝐵 

1 + 𝑏 × ∆𝐵
        ,                                                        (3.4.1) 

where  𝑙𝑖𝑚∆𝐵→∞ 𝑔(∆𝐵) = 1 + 
𝑎

𝑏
 , and 𝑔(0) = 1. By differentiating 𝑔(∆𝐵)  twice with respect to ∆𝐵, 

one finds 

𝜕

𝜕∆𝐵
 𝑔(∆𝐵) =

𝑎(1 + 𝑏 × ∆𝐵) − 𝑎 × 𝑏 × ∆𝐵 

(1 + 𝑏 × ∆𝐵)
2

= 
𝑎

(1 + 𝑏 × ∆𝐵)
2
  > 0       ,                 (3.4.2) 

(
𝜕

𝜕∆𝐵
)
2

 𝑔( ∆𝐵) =  − 2 × 𝑏 
𝑎  

(1 + 𝑏 × ∆𝐵)
2
     < 0                   ,                    (3.4.3) 

hence, 𝑔(∆𝐵) is concave over ∆𝐵. Similarly, we define the functions; 𝑔𝑠(∆𝐵) and  𝑔¬𝑠(∆𝐵), as 
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𝑔𝑠(∆𝐵) =   1 + 
𝑎𝑠 × ∆𝐵 

1 + 𝑏𝑠 × ∆𝐵
        ;        𝑔¬𝑠(∆𝐵) =   1 + 

𝑎¬𝑠 × ∆𝐵 

1 + 𝑏¬𝑠 × ∆𝐵
  .               (3.4.4) 

One also differentiate  �̂�( 𝑑∆𝐵 , ∆𝐵), defined in (3.3.2), twice with respect to ∆𝐵. In order to describe 

the number of days concisely, we define  𝐷(𝑘,𝑙)→(𝑚,𝑛) to be the sum of days corresponding 

to  �̂�(𝑘,𝑙)→(𝑚,𝑛)(𝑗), as follows  

𝐷(𝑘,𝑙)→(𝑚,𝑛) = 𝐷(𝑘,𝑙)→(0,𝑛) + 𝐷(0,𝑙)→(1,𝑛) + 𝐷(1,𝑙)→(1,𝑛)        ,                       (3.4.5) 

where 𝐷(𝑘,𝑙)→(𝑚,𝑛) = 𝑀 and {𝐷(0,𝑙)→(1,𝑛) + 𝐷(1,𝑙)→(1,𝑛)} = 𝑁 = ∑ 𝑑∆𝐵(𝑗)
𝑀
𝑗=1 . Accordingly, one has 

𝜕

𝜕∆𝐵
�̂� (𝑑∆𝐵 , ∆𝐵) =  

𝜕

𝜕∆𝐵
{

�̂�(𝑘,𝑙)→(0,𝑛)(𝑗) × 𝐷(𝑘,𝑙)→(0,𝑛) +

�̂�(0,𝑙)→(1,𝑛)(𝑗) × 𝐷(0,𝑙)→(1,𝑛) +

�̂�(1,𝑙)→(1,𝑛)(𝑗) × 𝐷(1,𝑙)→(1,𝑛)    

}              ,                                                  (3.4.6) 

Substituting for �̂�(𝑘,𝑙)→(𝑚,𝑛)(𝑗) as defined in (3.3.1), one sees that 

𝜕

𝜕∆𝐵
�̂� (𝑑∆𝐵 , ∆𝐵) =

𝜕

𝜕∆𝐵
{
 

 
  �̂�(0,𝑛) ×𝐷(𝑘,𝑙)→(0,𝑛)   +                                                       

 (�̂�(0,𝑙) + ((�̂�(1,𝑛) − �̂�(0,𝑙)) × 𝑔𝑠(∆𝐵))) × 𝐷(0,𝑙)→(1,𝑛)  +

�̂�(1,𝑛)  ×  𝑔¬𝑠(∆𝐵) × 𝐷(1,𝑙)→(1,𝑛)                                      }
 

 
    ,             (3.4.7) 

yielding  

𝜕

𝜕∆𝐵
�̂�(𝑑∆𝐵 , ∆𝐵) = (�̂�(1,𝑛) − �̂�(0,𝑙)) ×

𝜕

𝜕∆𝐵
𝑔𝑠(∆𝐵)  × 𝐷(0,𝑙)→(1,𝑛) +                                                                 

                                  �̂�(1,𝑛) × 
𝜕

𝜕∆𝐵
𝑔¬𝑠(∆𝐵) × 𝐷(1,𝑙)→(1,𝑛)           > 0       ,                                           (3.4.8) 

(
𝜕

𝜕∆𝐵
)
2

�̂� (𝑑∆𝐵 , ∆𝐵) = (�̂�(1,𝑛) − �̂�(0,𝑙)) × (
𝜕

𝜕∆𝐵
)
2

𝑔𝑠(∆𝐵)  × 𝐷(0,𝑙)→(1,𝑛) +                                                 

                                           �̂�(1,𝑛)  × (
𝜕

𝜕∆𝐵
)
2

𝑔¬𝑠(∆𝐵)  × 𝐷(1,𝑙)→(1,𝑛)    < 0    .                                       (3.4.9) 

Hence, �̂�( 𝑑∆𝐵 , ∆𝐵) is concave over ∆𝐵. As for expected profit, one has  

�̂�(𝑑∆𝐵 , ∆𝐵) =

[
 
 
 

�̂�(0,𝑛) × 𝐷(𝑘,𝑙)→(0,𝑛)   +                                                    

(  �̂�(0,𝑙) + ((�̂�(1,𝑛) − �̂�(0,𝑙)) × 𝑔𝑠(∆𝐵))) × 𝐷(0,𝑙)→(1,𝑛)   +

�̂�(1,𝑛) × 𝑔¬𝑠(∆𝐵) × 𝐷(1,𝑙)→(1,𝑛)                                       ]
 
 
 
− (𝐵0 + ∆𝐵) ×∑𝑑∆𝐵(𝑗)

𝑀

𝑗=1

 

                                                                                                                                                                         (3.4.10) 

In order to determine the optimal campaign budget increase  ∆𝐵
∗ that yields the optimal expected 

profit �̂�(𝑑∆𝐵
∗, ∆𝐵

∗), one differentiate �̂�(𝑑∆𝐵 , ∆𝐵) with respect to  ∆𝐵 as  
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𝜕

𝜕∆𝐵
�̂�(𝑑∆𝐵 , ∆𝐵) =

𝜕

𝜕∆𝐵
[
(�̂�(1,𝑛) − �̂�(0,𝑙)) × 𝑔𝑠(∆𝐵) × 𝐷(0,𝑙)→(1,𝑛) +

 �̂�(1,𝑛) × 𝑔¬𝑠(∆𝐵) × 𝐷(1,𝑙)→(1,𝑛)                  
] −∑𝑑∆𝐵(𝑗)

𝑀

𝑗=1

         ,         (3.4.11) 

The first derivative of the optimal expected profit diminishes in the optimal budget increase  ∆𝐵
∗, this 

yield 

∑𝑑∆𝐵(𝑗)

𝑀

𝑗=1

=
𝜕

𝜕∆𝐵
𝑔𝑠(∆𝐵

∗ ) × (�̂�(1,𝑛) − �̂�(0,𝑙)) × 𝐷(0,𝑙)→(1,𝑛) + 
𝜕

𝜕∆𝐵
𝑔¬𝑠(∆𝐵

∗ ) × �̂�(1,𝑛) × 𝐷(1,𝑙)→(1,𝑛), 

                                                                                                                                                                          (3.4.12) 

Similarly written as 

∑ 𝑑∆𝐵(𝑗) 
𝑀
𝑗=1

(�̂�(1,𝑛) − �̂�(0,𝑙)) × 𝐷(0,𝑙)→(1,𝑛)
=

𝜕

𝜕∆𝐵
𝑔𝑠(∆𝐵

∗ ) + 
𝜕

𝜕∆𝐵
𝑔¬𝑠(∆𝐵

∗ ) × 
�̂�(1,𝑛) × 𝐷(1,𝑙)→(1,𝑛)

(�̂�(1,𝑛) − �̂�(0,𝑙)) × 𝐷(0,𝑙)→(1,𝑛)
   , 

                                                                                                                                                                          (3.4.13) 

For convenience, the expression 
�̂�(1,𝑛)×𝐷(1,𝑙)→(1,𝑛)

(�̂�(1,𝑛)−�̂�(0,𝑙))×𝐷(0,𝑙)→(1,𝑛)
 will be referred to as 𝐶  

𝜕

𝜕∆𝐵
𝑔𝑠(∆𝐵

∗ ) + 
𝜕

𝜕∆𝐵
𝑔¬𝑠(∆𝐵

∗ ) ×  𝐶 =
∑ 𝑑∆𝐵(𝑗) 
𝑀
𝑗=1

(�̂�(1,𝑛) − �̂�(0,𝑙)) × 𝐷(0,𝑙)→(1,𝑛)
             ,           (3.4.14) 

Substituting for  
𝜕

𝜕∆𝐵
𝑔𝑠(∆𝐵

∗ ) and 
𝜕

𝜕∆𝐵
𝑔¬𝑠(∆𝐵

∗ ), and by taking the square root of both sides, one finds  

√𝑎𝑠
(1 + 𝑏𝑠 ∆𝐵

∗ )
+

√𝑎¬𝑠
(1 + 𝑏¬𝑠  ∆𝐵

∗ )
× √𝐶 = √

∑ 𝑑∆𝐵(𝑗) 
𝑀
𝑗=1

(�̂�(1,𝑛) − �̂�(0,𝑙)) × 𝐷(0,𝑙)→(1,𝑛)
            ,          (3.4.15) 

√𝑎𝑠(1 + 𝑏¬𝑠 ∆𝐵
∗ ) + √𝐶√𝑎¬𝑠 × (1 + 𝑏𝑠 ∆𝐵

∗ )

(1 + 𝑏𝑠 ∆𝐵
∗ )(1 + 𝑏¬𝑠 ∆𝐵

∗ )
= √

∑ 𝑑∆𝐵(𝑗) 
𝑀
𝑗=1

(�̂�(1,𝑛) − �̂�(0,𝑙)) × 𝐷(0,𝑙)→(1,𝑛)
     ,      (3.4.16) 

as 𝑏𝑠 = 𝑏¬𝑠, one has 

(1 + 𝑏𝑠 ∆𝐵
∗ )(√𝑎𝑠 + √𝐶√𝑎¬𝑠)

(1 + 𝑏𝑠 ∆𝐵
∗ )(1 + 𝑏𝑠 ∆𝐵

∗)
= √

∑ 𝑑∆𝐵(𝑗) 
𝑀
𝑗=1

(�̂�(1,𝑛) − �̂�(0,𝑙)) × 𝐷(0,𝑙)→(1,𝑛)
     ,               (3.4.17) 

∆𝐵
∗= (√

(𝑎𝑠 + 𝐶𝑎¬𝑠) × (�̂�(1,𝑛) − �̂�(0,𝑙)) × 𝐷(0,𝑙)→(1,𝑛)

∑ 𝑑∆𝐵(𝑗) 
𝑀
𝑗=1

− 1 )   𝑏𝑠
−1       ,            (3.4.18) 
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Finally, substituting for  𝐶 , the optimal campaign budget increase can be expressed by   

∆𝐵
∗= (√

(𝑎𝑠 × (�̂�(1,𝑛) − �̂�(0,𝑙)) × 𝐷(0,𝑙)→(1,𝑛)) + (𝑎¬𝑠 × �̂�(1,𝑛) × 𝐷(1,𝑙)→(1,𝑛))

∑ 𝑑∆𝐵(𝑗) 
𝑀
𝑗=1

− 1) 𝑏𝑠
−1  .   (3.4.19) 

One can easily see that, the value of the optimal campaign budget increase ∆𝐵
∗ can be determined 

only through numerical exploration. This is because the number of the sales campaign days is part of 

the formula 3.4.19 above.  

3.5  The Optimal Solution of Expected Profit �̂�(𝒅∆𝑩
∗ , ∆𝑩

∗)  

In order to solve the optimization problem of expected profit, �̂�(𝑑∆𝐵
∗ , ∆𝐵

∗), the best-bet values of the 

parameters of functions 𝑔𝑠(∆𝐵) and 𝑔¬𝑠(∆𝐵) should be estimated. For this purpose, sensitivity 

analysis is conducted. Based on the partial approach of sensitivity analysis, the sensitivity of the 

function 𝑔(∆𝐵) with respect to the parameters a , b is equal to the partial derivative of ∆𝐵 with 

respect to the parameters a , b. Assuming that the campaign budget increase would be an increment of 

10 % of the standard campaign budget per day 𝐵 = 𝐵0 = ¥ 0.4 million, accordingly, the campaign 

budget increment amount is estimated to be ¥ 0.04 million.  

Sensitivity analysis of 𝑔(∆𝐵) is conducted by holding parameter 𝑎  fixed while varying 

parameter 𝑏 with respect to  ∆𝐵= 0.04. Namely, we define 𝑎 ∈ {1,⋯ , 10} and  𝑏 ∈ {1,⋯ , 10} 

with 0.1 and 1.0 stepwise increments to investigate the sensitivity of the system under such conditions. 

Figure 3.5.1 below, shows the first derivative of 𝑔(∆𝐵) with parameter 𝑎 = 5 and 𝑎 =  0.5 and 

varying parameter  𝑏 in such a way that  𝑎 > 𝑏 and  𝑎 < 𝑏 within the range ∆𝐵= { 0.04 ,⋯ , 0.8 } . 

One finds that, the slope is flat when  𝑏 = 0 , and decreases as 𝑏 increases. Although the curves do 

not look exactly the same, the general mode of the behavior of the system does not change. When 

parameter  𝑏  varies, the first derivative decreases until the system stabilizes. It is clear that the 

stability of the system occurs at a later point in case of  𝑎 >  𝑏 than that of  𝑎 < 𝑏. Moreover, with 

0.1 stepwise increments as  𝑎 >  𝑏, the slop tends to be linear within the range  ∆𝐵= {0.04 ,⋯ , 0.8 }. 

Accordingly, within the range of   ∆𝐵 = { 0.04 ,⋯ , 0.8 }, it is feasible to consider a 1.0 stepwise 

increment of the parameters 𝑎 , 𝑏 for 𝑔𝑠(∆𝐵) and  𝑔¬𝑠(∆𝐵).  
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Figure 3.5.1   The First Derivative of the Function 𝒈(∆𝑩) with ∆𝑩 =  𝟎. 𝟎𝟒   

Now, one can estimate the values of the parameters of 𝑔𝑠(∆𝐵) and  𝑔¬𝑠(∆𝐵). In order to do so, 

the effect of the sales campaign to enhance total sales from  𝑑(𝑗) = 0  to  𝑑(𝑗) = 1 is first considered 

under  ∆B =  0. Based on this, the strengthening effect of the sales campaign under ∆𝐵> 0, expressed 

by (�̂�(1,𝑛) − �̂�(0,𝑙)) × 𝑔𝑠(∆𝐵) , 𝑛 ≥ 𝑙, is estimated. This can be reasoned in the following manner; the 

strengthening factor of  ∆B >  0  expressed by   𝑔𝑠(∆𝐵) on (�̂�(1,𝑛) − �̂�(0,𝑙)) where   𝑛 ≥ 𝑙 , results 

when 𝑑∗(𝑗) = 0  switches to  𝑑∆𝐵
∗ (𝑗) = 1 . When  𝑛 ≥ 𝑙 , three possibilities are conceived, that 

is (�̂�(1,0) − �̂�(0,0)), (�̂�(1,1) − �̂�(0,1)), and (�̂�(1,1) − �̂�(0,0)). Accordingly, as shown in Table 3.5.1 below, 

the average increase rate of such effect is estimated to be 0.14 as shown below 

 

(�̂�(𝟏,𝟎)−�̂�(𝟎,𝟎))

�̂�(𝟎,𝟎)
+  

(�̂�(𝟏,𝟏)−�̂�(𝟎,𝟎))

�̂�(𝟎,𝟎)
+  

(�̂�(𝟏,𝟏)−�̂�(𝟎,𝟏))

�̂�(𝟎,𝟏)

3
=

(0.066+ 0.03+ 0.321)

3
= 0.139  ≅ 0.14 .              (3.5.1)  

By definition, the two functions  𝑔𝑠(∆𝐵) and  𝑔¬𝑠(∆𝐵) express the same thing, that is, the effect 

of the campaign budget increase ∆𝐵 on the expected total sales of day 𝑑∆𝐵(𝑗) = 1. One computes the 

effect of the sales campaign to improve 𝑑(𝑗) = 1 from  ¬ GSD to GSD as  

(�̂�(1,1) − �̂�(1,0))

�̂�(1,0) 
  =   

0.931

3.89
=  0.24    ,                                              (3.5.2) 
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therefore, one may assume that the strengthening effect of  𝑔¬𝑠(∆𝐵) to be 24 % of that of 𝑔𝑠(∆𝐵). 

Table 3.5.1   Basic Computations on Average Total Sales ( ¥ million ) of Winter 2009 (LD) for 

Determining the Best-bet Values of the parameters of 𝒈𝒔(∆𝑩) and  𝒈¬𝒔(∆𝑩) 

�̂�(𝒎,𝒏) 
𝒏 = 𝑰𝑮𝑶𝑶𝑫:𝑺𝟎𝑻𝟎(𝒊) 

 
0 1 

𝒎 = 

𝑰𝑪𝑨𝑴𝑷 (𝒊) 

0 ¥ 3.65 ¥ 4.68 
 

1 ¥ 3.89 ¥ 4.82 

 �̂�(𝟏,𝟎) − �̂�(𝟎,𝟎) �̂�(𝟏,𝟏) − �̂�(𝟎,𝟏) �̂�(𝟏,𝟏) − �̂�(𝟎,𝟎) 

 0.240 0.138 1.17 

(�̂�(𝟏,𝒏) − �̂�(𝟎,𝒍)) /�̂�(𝟎,𝒍)  6.6 % 3.0 % 32.1 % 

 From Table 3.5.2 below, one finds that parameters (𝑎𝑠 , 𝑏𝑠 ) = ( 4 , 3 ) correspond to 𝑔𝑠(∆𝐵) =

1.14 , based on ( 3.5.1) and (𝑎¬𝑠 , 𝑏¬𝑠 ) = ( 1 , 4 ) correspond to 𝑔¬𝑠(∆𝐵) = 1.034 , based on ( 0.24 

× 0.14 = 0.0336 ).  

Table 3.5.2   The Output of The Function 𝒈(∆𝑩) with 1.0 Stepwise Increments  

of Parameters a , b , 𝒂 ≠ 𝒃 

b 
a 

1 2 3 4 5 6 7 8 9 10 

1  1.0769 1.1154 1.1538 1.1923 1.2308 1.2692 1.3077 1.3462 1.3846 

2 1.0370  1.1111 1.1481 1.1852 1.2222 1.2593 1.2963 1.3333 1.3704 

3 1.0357 1.0714  1.1401 1.1786 1.2143 1.2500 1.2857 1.3214 1.3571 

4 1.0340 1.0690 1.1034  1.1724 1.2069 1.2414 1.2759 1.3103 1.3448 

5 1.0333 1.0667 1.1000 1.1333  1.2000 1.2333 1.2667 1.3000 1.3333 

6 1.0323 1.0645 1.0968 1.1290 1.1613  1.22581 1.2581 1.2903 1.3226 

7 1.0313 1.0625 1.0938 1.1250 1.1563 1.1875  1.2500 1.2813 1.3125 

8 1.0303 1.0606 1.0909 1.1212 1.1515 1.1818 1.2121  1.2727 1.3030 

9 1.0294 1.0588 1.0882 1.1176 1.1471 1.1765 1.2059 1.2353  1.2941 

10 1.0290 1.0571 1.0857 1.1143 1.1429 1.1714 1.2000 1.2286 1.2571  
 

The optimization problem can now be readily solved yielding optimal expected profit 

�̂�(𝑑∆𝐵
∗ , ∆𝐵

∗) = ¥ 380.28 million, amounting to 9.95 % increase from actual profit 𝑃(𝐼𝐶𝐴𝑀𝑃) = 

¥ 345.85 million, one notes that, the difference between the optimal and actual profit is found to be 

¥ 34.43 million. This optimal solution is achieved by reallocating 28 campaign days with an optimal 

campaign budget  𝐵∗ =  ¥ 0.68 million per day, amounting to 70 % budget increase ( ∆𝐵 = 0.28 ) 

from the standard campaign budget 𝐵0 = ¥ 0.4 million. Figure 3.5.2 shows the curve of the optimal 

expected profit and Figure 3.5.3, displays the curves of the functions 𝑔𝑠(∆𝐵) and  𝑔¬𝑠(∆𝐵) achieving 

the optimal solution. We note that, only 2 days switched from  𝑑∗(𝑗) = 0 to 𝑑∆𝐵
∗ (𝑗) = 1, 

corresponding to expected total sales per day, �̂�(0,1)→(1,1)(𝑗), and accumulating 6.5 % of expected 
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total sales of ¥ 150.55 million specific only to sales campaign days . 

 

Figure 3.5.2   The Optimal Expected Profit ( ¥ million ) in the Winter Period achieved by 

∆𝑩
∗= ¥ 0.28 million and ∑ 𝒅∆𝑩

∗ (𝒋)𝑴
𝒋=𝟏 = 28  

 

Figure 3.5.3   The Functions  𝒈𝒔(∆𝑩) and  𝒈¬𝒔(∆𝑩) Achieved by  (𝒂 , 𝒃 )  = (𝟒 , 𝟑) 

and ( 𝟏 , 𝟒 ), Respectively, with Respect to ∆𝑩 =  𝟎. 𝟎𝟒   

In order to investigate the robustness of the solution of  �̂�(𝑑∆𝐵
∗ , ∆𝐵

∗)  in face of varying parameter 

𝑏 of the functions 𝑔𝑠(∆𝐵) and  𝑔¬𝑠(∆𝐵), we vary parameter  𝑏  by 1.0 stepwise increase and 

decrease for each function separately as shown in Table 3.5.3.  
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Table 3.5.3   Optimal Expected Profit of Winter 2010 with Varying Parameter  𝒃  by 1.0 

Stepwise, 𝒂 ≠ 𝒃  

Varying  𝒃¬𝒔  of the function 𝒈¬𝒔(∆𝑩) with ( 𝒂𝒔 , 𝒃𝒔 ) = ( 4 , 3 ) 

 ( a , b ) �̂�(𝒅∆𝑩
∗ , ∆𝑩

∗) ∆𝑩
∗ 𝒅∆𝑩

∗  

1.0 Stepwise Decrease 

of Parameter b 

( 1 , 2 ) ¥ 388.92 ¥ 0.56 28 

( 1 , 3 ) ¥ 383.16 ¥ 0.36 28 

The Best-bet Value ( 1 , 4) ¥ 380.28 ¥ 0.28 28 

1.0 Stepwise Increase 

of Parameter b 

( 1 , 5 ) ¥ 378.53 ¥ 0.24 28 

( 1 , 6 ) ¥ 376.88 ¥ 0.28 27 

⋯ 

( 1 , 10 ) ¥ 375.12 ¥ 0.12 27 

Varying  𝒃𝒔  of the function 𝒈𝒔(∆𝑩) with ( 𝒂¬𝒔 , 𝒃¬𝒔 ) = ( 1 , 4 ) 

 ( a , b ) �̂�(𝒅∆𝑩
∗ , ∆𝑩

∗) ∆𝑩
∗ 𝒅∆𝑩

∗  

1.0 Stepwise Decrease 

of Parameter b 

( 4 , 1) ¥ 380.35 ¥ 0.28 28 

( 4 , 2) ¥ 380.31 ¥ 0.28 28 

The Best-bet Value ( 4 , 3 ) ¥ 380.28 ¥ 0.28 28 

1.0 Stepwise Increase 

of Parameter b 

( 4 , 5) ¥ 380.24 ¥ 0.28 28 

( 4 , 6) ¥ 380.22 ¥ 0.28 28 

⋯ 

( 4 , 10 ) ¥ 380.19 ¥ 0.28 28 

The results indicate that, when varying parameter  𝑏¬𝑠  of the function  𝑔¬𝑠(∆𝐵), the best-case and 

worst-case scenarios yielded �̂�(𝑑∆𝐵
∗ , ∆𝐵

∗) = ¥ 388.92 and ¥ 375.12 million, respectively, achieving a 

sensitivity index (SI) of less than 4 % as computed below  

𝑆𝐼 =  
�̂�(𝑑∆𝐵

∗ , ∆𝐵
∗)
𝑀𝐴𝑋

− �̂�(𝑑∆𝐵
∗ , ∆𝐵

∗)
𝑀𝐼𝑁

�̂�(𝑑∆𝐵
∗ , ∆𝐵

∗)
𝑀𝐴𝑋

= 
13.8

388.92 
=   0.035       ,          (3.5.2) 

whereas the best-case and worst-case scenarios of varying parameter  𝑏𝑠 of the function 

𝑔𝑠(∆𝐵) yielded  �̂�(𝑑∆𝐵
∗ , ∆𝐵

∗) = ¥ 380.35 and ¥ 380.19 million, respectively, yielding a SI of less than 

1 % as shown below  

𝑆𝐼 =  
�̂�(𝑑∆𝐵

∗ , ∆𝐵
∗)
𝑀𝐴𝑋

− �̂�(𝑑∆𝐵
∗ , ∆𝐵

∗)
𝑀𝐼𝑁

�̂�(𝑑∆𝐵
∗ , ∆𝐵

∗)
𝑀𝐴𝑋

= 
0.16

380.35
=   0.00042       ,          (3.5.3) 

In order to assess the impact of the flexible approach for optimally reallocating sales campaign 
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days with varying campaign budget, the optimal solutions of the expected profit �̂�(𝑑∆𝐵
∗ , ∆𝐵

∗)  and  

�̂�(𝑑∗)  are compared against the actual profit,  𝑃(𝐼𝐶𝐴𝑀𝑃) = ¥ 345.85 million obtained from 

traditionally organizing sales campaigns in segments of consecutive days. The expected profit of 

optimal total expected sales, denoted by �̂�( �̂�(𝑑∗) ) is also compared against actual profit. Table 

3.5.4 below shows the results of the optimal solutions and their increase rate from the actual profit. 

One finds that, there is an increase rate of only 0.46 % of �̂�(𝑑∗) from �̂�(�̂�(𝑑∗)). Moreover, when 

the campaign budget is increased by 70 % from the standard campaign budget 𝐵0, the increase rate of 

the optimal solution �̂�(𝑑∆𝐵
∗ , ∆𝐵

∗) = ¥ 380.28 from actual profit is 2.26 % higher than the optimal 

solution of �̂�(𝑑∗) = ¥ 372.46.  

Table 3.5.4   The Optimal Solutions of Expected Profit Compared Against the Actual Profit 

( ¥ million ) for the Winter Period 2010  

Actual Profit  

𝑷(𝑰𝑪𝑨𝑴𝑷) 

𝑩𝟎 ∑𝑰𝑪𝑨𝑴𝑷

𝑴

𝒋=𝟏

  𝑩𝟎  ×  ∑𝑰𝑪𝑨𝑴𝑷

𝑴

𝒋=𝟏

 𝑹(𝑰𝑪𝑨𝑴𝑷) 𝑷(𝑰𝑪𝑨𝑴𝑷) 
 

 

 

Increase 

Rate From 

Actual Profit 

 𝑷(𝑰𝑪𝑨𝑴𝑷) 

¥ 0. 40 36 ¥ 14.4 ¥ 360.25 ¥ 345.85 

The Objective 

Function  
Results  

Optimal 

Expected 

Profit 

�̂�(𝑑∆𝐵
∗ , ∆𝐵

∗) 

∆𝑩
∗= ¥ 0.28 

𝑩∗ ∑𝒅∆𝑩
∗

𝑴

𝒋=𝟏

 ( 𝑩𝟎 + ∆𝑩
∗ ) × ∑𝒅∆𝑩

∗

𝑴

𝒋=𝟏

 �̂�(𝑑∆𝐵 , ∆𝐵) �̂�(𝒅∆𝑩
∗ , ∆𝑩

∗) 

9.95% 

¥ 0.68 28 ¥ 19.04 ¥ 399.32 ¥ 380. 28 

Optimal 

Expected 

Profit �̂�(𝒅∗) 

𝑩𝟎 ∑𝒅∗
𝑴

𝒋=𝟏

  𝑩𝟎  ×  ∑𝒅∗
𝑴

𝒋=𝟏

 �̂�(𝒅) �̂�(𝒅∗) 
7.84 % 

¥ 0. 40 26 ¥ 10.40 ¥ 383.38 ¥ 372.98 

Optimal Total 

Expected 

Sales �̂�(𝒅∗) 

𝑩𝟎 ∑𝒅∗
𝑴

𝒋=𝟏

  𝑩𝟎  ×  ∑𝒅∗
𝑴

𝒋=𝟏

 �̂�(𝒅∗) �̂� (�̂�(𝒅∗)) 

7.38 % 

¥ 0.40 36 ¥ 14.40 ¥ 385.78 ¥ 371.38 

Table 3.5.5 below, demonstrates how the optimal allocation of sales campaign days, 𝑑∗ = 26 

under ∆𝐵 = 0 and 𝑑∆𝐵
∗ 

= 28 with ∆𝐵
∗= 0.28 differ from the actual sales campaign days 𝐼𝐶𝐴𝑀𝑃  = 

36. In the winter period, we set 𝑀 = 88 and  𝑁 = 36, where the sales campaign Win_1 and Win_2 

are each organized in a segment of consecutive days of 28 and 8, respectively. One find that, 

for �̂�(𝑑∗), only 4 campaign days are in common out of 26 optimal and 36 actual. There are 32 days 

for which sales campaign is assigned only in the actual practice, and 22 by the optimal decision. 
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For �̂�(𝑑∗), only 5 campaign days are in common out of 28 optimal and 36 actual days. There are 31 

days for which sales campaign is assigned only in the actual practice, and 23 by the optimal decision.  

Table 3.5.5   The Effect of the Optimal Decision Approach on GSDs Under Budget 𝑩𝟎 

and 𝑩𝟎 + ∆𝑩 for the Winter Period 2010 

�̂�(𝒅∗) �̂�(𝒅∆𝑩
∗ , ∆𝑩

∗) 

# of GSD Days 
Optimal GSD 

Total # of GSD Days 
Optimal GSD 

Total 
1 0 1 0 

Actual 

GSD 

1 4 32 36 Actual 

GSD 

1 5 31 36 

0 22 30 52 0 23 29 52 

Total 26 62 88 Total 28 60 88 

In Table 3.5.6 below, the effect of the optimal allocation of sales campaign days (SCD) on GSDs 

is summarized for the optimal solutions of expected profit �̂�(𝑑∗) and  �̂�(𝑑∆𝐵
∗ , ∆𝐵

∗). In case of 

�̂�(𝑑∗),  31 GSDs and 24 ￢GSDs are in common, amounting to 62.5 % of 88 days in winter 2010. It 

should be noted that the optimal decision of �̂�(𝑑∗) approach converted 26 actual ￢GSDs into GSDs 

in the optimal decision, while only 7 days were downgraded from GSD in the actual practice to    

￢GSD. Consequently, the optimal decision approach of  �̂�(𝑑∗), yielded 57 GSDs or 65% of 88 days. 

In case of �̂�(𝑑∆𝐵
∗ , ∆𝐵

∗) , 30 GSDs and 25 ￢GSDs are common, amounting to 62.5 % of 88 days in 

winter 2010. The optimal decision approach of  �̂�(𝑑∆𝐵
∗ , ∆𝐵

∗), converted 25 actual ￢GSDs into 

GSDs in the optimal decision, while 8 days were downgraded from GSD in the actual practice to   

￢GSD in the optimal decision, consequently, the optimal decision approach of �̂�(𝑑∆𝐵
∗ , ∆𝐵

∗) yielded 

55 GSDs or 62.5% of 88 days.  

Table 3.5.6  The Allocation of Sales Campaign Days Across GSD for �̂�(𝒅∗) and �̂�(𝒅∆𝑩
∗ , ∆𝑩

∗) 

for the Winter Period 2010 

�̂�(𝒅∗) �̂�(𝒅∆𝑩
∗ , ∆𝑩

∗) 

# of SCD Days 
Optimal SCD 

Total # of SCD Days 
Optimal SCD 

Total 
GSD ￢GSD GSD ￢GSD 

Actual 

SCD 

  GSD 31 7 38 
Actual 

SCD 

  GSD 30 8 38 

￢GSD 26 24 50 ￢GSD 25 25 50 

Total 57 31 88 Total 55 33 88 

Table 3.5.7 and 3.5.8 demonstrate how the improvement by the optimal decision approach of 

�̂�(𝑑∗) and �̂�(𝑑∆𝐵
∗ , ∆𝐵

∗)  was achieved in further detail, where transitions of GSD vs.￢GSD are 

classified according to sales campaign days in the following manner: in the actual practice only, in 
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common only (actual and optimal), and by the optimal decision approach only. The optimal solution 

of �̂�(𝑑∗)  yielded 20 + 3 = 23 sales campaign days (or 64%) are assigned to GSDs in the actual 

practice, and 12 + 1 = 13 days (or 36%) to ￢GSDs, whereas the optimal decision approach allocated 

only 3 + 2 = 6 days (or 19%) to GSDs in the actual practice, and 1 + 20 = 21 days (or 81%) to     

￢GSDs. On the other hand, the optimal solution of �̂�(𝑑∆𝐵
∗ , ∆𝐵

∗) yielded 19 + 4 = 23 sales campaign 

days (or 64%) are assigned to GSDs in the actual practice, and 12 + 1 = 13 days (or 36%) to ￢GSDs, 

whereas the optimal decision approach allocated only 4 + 2 = 6 days (or 21%) to GSDs in the actual 

practice, and 1 + 21 = 22 days (or 79%) to ￢GSDs. This result supports the original observation that 

the effect of a sales campaign for enhancing the total sales of ¬GSD may exceed that for 

strengthening the total sales of GSD further. 

Table 3.5.7  GSD vs. ￢GSD Transitions by the Optimal Decision Approach for �̂�(𝒅∗), 

𝒅∗  = 26 for the Winter Period 2010 

Actual Only  In Common   Optimal Only 

SCD 
Optimal 

Total  SCD 

(Common)  

Optimal 
Total  SCD 

Optimal 
Total 

GSD ￢GSD 
 

GSD ￢GSD 
 

GSD ￢GSD 

Actual 

  GSD 14 6 20 
 

Actual 

  GSD 3 0 3 
 

Actual 

  GSD 2 0 2 

￢GSD 0 12 12 
 

￢GSD 1 0 1 
 

￢GSD 20 0 20 

Total 14 18 32  Total 4 0 4 
 

Total 22 0 22 

Table 3.5.8  GSD vs. ￢GSD Transitions by the Optimal Decision Approach  

for �̂�(𝒅∆𝑩
∗ , ∆𝑩

∗), 𝒅∆𝑩
∗ = 28 for the Winter Period 2010 

Actual Only  In Common   Optimal Only 

SCD 
Optimal 

Total  SCD 
Optimal 

Total  SCD 
Optimal 

Total 
GSD ￢GSD 

 
GSD ￢GSD 

 
GSD ￢GSD 

Actual 

  GSD 13 6 19 
 

Actual 

  GSD 3 1 4 
 

Actual 

  GSD 2 0 2 

￢GSD 0 12 12 
 

￢GSD 1 0 1 
 

￢GSD 20 1 21 

Total 13 18 31  Total 4 1 5 
 

Total 22 1 23 
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4   Numerical Examples  

This chapter is devoted to numerical example of the fall season. The mathematical models developed 

in Chapters 2 and 3 are implemented on the fall datasets obtained from the same SC in Tokyo. Section 

4.1 describes the datasets; and Section 4.2 reports the numerical results of the optimization problems. 

4.1 Data Description of the Fall Period  

A dataset from the same SC in Tokyo for the fall periods 2009 and 2010 are obtained, that is, 

September, October and November 2009 for fall 2009, and September, October and November 2010 

for fall 2010. The dataset comprises the following main elements: total sales, number of purchase 

transactions, and the campaign flag, as defined previously in (2.2.1). Two sales campaigns are 

organized in the fall period, that is, Fall_1 and Fall_2. Unlike the winter period, Fall_1 is organized in 

two segments of consecutive days rather than one segment, whereas Fall_2 is organized in one 

segment only. The organization of sales campaign days of the fall periods 2009 and 2010 is given in 

Table 4.1.1 below.  

Table 4.1.1   The Organization of Sales Campaign days over the Fall Periods 2009 and 2010  

as Obtained from the SC 

Start Date End Date Campaign # of Days 

Fall 2009 

09/01/2009 09/16/2009 no camp 16 

09/17/2009 09/19/2009 Fall_1 3 

09/20/2009 10/08/2009 no camp 19 

10/09/2009 10/12/2009 Fall_1 4 

10/13/2009 11/19/2009 no camp 37 

11/20/2009 11/30/2009 Fall_2 11 

Fall 2010 

09/01/2010 09/16/2010 no camp 16 

09/17/2010 09/19/2010 Fall_1 3 

09/20/2010 10/08/2010 no camp 19 

10/09/2010 10/12/2010 Fall_1 4 

10/13/2010 11/18/2010 no camp 36 

11/19/2010 11/30/2010 Fall_2 12 
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Figure 4.1.1 shows 𝑠(𝑖) and 𝑡(𝑖) as obtained from the SC for fall periods 2009 and 2010 in a 

histogram format. One can easily detect some outliers in the datasets. 

 

Figure 4.1.1   Total Sales and Number of Purchase Transactions for Fall 2009 and 2010  

Before Cleaning 

As in the winter season, outliers resulted from the Music Store are adjusted in Table 4.1.2., 

whereas outliers detected by the standard deviation method are adjusted by the formula given 

previously in (2.2.3) and shown in Table 4.1.3 below.  

Table 4.1.2   Adjusted Outliers of the Music Store for the Fall Periods 2009 and 2010   

Fall 2009  

Total Sales 
 

Purchase Transactions 

Date Entire SC Store X 
Adjusted 

Sales  
Date 

Entire 

SC 
Store X 

Adjusted  

Transactions 

09/25/2009 ¥ 7,985,535 ¥ 4,041,400 ¥ 3,944,135 
 

09/25/2009 3,167 421 2,746 

10/24/2009 ¥ 11,375,837 ¥ 4,574,900 ¥ 6,800,937 
 

10/24/2009 4,102 414 3,688 

11/25/2009 ¥ 7,565,088 ¥ 3,908,000 ¥ 3,657,088 
 

11/25/2009 3,116 408 2,708 
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Fall 2010  

Total Sales 
 

Purchase Transactions 

Date Entire SC Store X 
Adjusted 

Sales  
Date 

Entire 

SC 
Store X 

Adjusted  

Transactions 

09/25/2010 ¥ 8,704,249 ¥ 4,054,200 ¥ 4,650,049 
 

09/25/2009 3,687 433 3,254 

10/25/2010 ¥ 11,134,432 ¥ 4,529,592 ¥ 6,604,840 
 

10/24/2009 3,397 432 2,965 

11/25/2010 ¥ 8,656,996 ¥ 3,941,442 ¥ 4,715,554 
 

11/25/2009 3,191 420 2,771 

Table 4.1.3   Adjusted Outliers for the Fall 2009 and 2010, Detected by the  

Standard Deviation Method   

Fall 2009 Fall 2010 

Date Transactions 
Adjusted  

Transactions 
Date Transactions 

Adjusted  

Transactions 

09/19/2009 3,697 2,898 10/02/2010 3,670 2,992 

10/10/2009 3,837 3,008 10/23/2010 3,541 2,887 

10/11/2009 3,676 2,882 11/03/2010 3,442 2,806 

10/24/2009 3,688 2,891 
   

Date Total Sales 
Adjusted  

Total Sales 
Date Total Sales 

Adjusted  

Total Sales 

10/22/2009 ¥ 7,241,547 ¥ 4,174,873 10/23/2010 ¥ 8,050,988 ¥ 4,221,772 

10/23/2009 ¥ 7,142,666 ¥ 4,117,866 10/22/2010 ¥ 7,300,568 ¥ 3,828,268 

10/24/2009 ¥ 6,800,937 ¥ 3,920,854 10/24/2010 ¥ 7,172,099 ¥ 3,760,901 

10/25/2009 ¥ 6,676,526 ¥ 3,849,129 10/25/2010 ¥ 6,604,840 ¥ 3,463,442 

   
10/26/2010 ¥ 6,481,638 ¥ 3,398,838 

Checking for minimum extremes in the dataset yielded two minimum extremes in the number of 

purchase transactions of fall 2009, both minimum extremes are present on a Wednesday. This sort of 

outliers is adjusted by the average purchase transactions of the weekdays of the same week. Table 

4.1.4 below lists the minimum extremes and their adjusted values. 

Table 4.1.4   Minimum Extremes in the Number of Purchase Transactions of Fall 2009  

Fall 2009 
 

Date Day Transactions 
Adjusted 

Transactions 

10/07/2009 Wednesday 2,275 2,759 

11/11/2009 Wednesday 2,171 2,731 

Before the data cleaning, the Q−Q plots of the total sales and the number of purchase transactions in 

Figure 4.1.2 were examined to check for the normality assumption. 
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Figure 4.2.2   Q−Q Plots of Total Sales and Number of Purchase Transactions  

For Fall 2009 and 2010 

4.2 Numerical Results  

Numerical results of the fall season are reported in the following manner; first, the numerical 

thresholds 𝑆0 and 𝑇0 are summarized in Table 4.2.1 below. Second, the results of the logistic 

regression model and its associated confusion matrix are presented. Third, the average total sales 

matrix obtained from LD is reported. Fourth, the results of the optimization problem of total expected 

sales are shown and finally, the two extensions of the optimization problem of expected profit are 

reported.  

First, the numerical threshold levels 𝑆0 and 𝑇0 of the fall period are summarized in Table 4.2.1 

below. The numerical thresholds obtained from LD are used to mark the cut-off points in TD to define 

the variables 𝐼𝐺𝑂𝑂𝐷:𝑆0𝑇0(𝑖) for 𝑖 ∈  𝐷𝐿𝐷 and 𝐼𝐺𝑂𝑂𝐷:𝑆0𝑇0:𝑇𝐷(𝑗) for 𝑗 ∈  𝐷𝑇𝐷, similarly.  
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Table 4.2.1   Numerical Thresholds of Total Sales and Number of Purchase Transactions  

Obtained from Fall 2009 (LD) 

Deciles Total Sales 
Number of Purchase 

Transactions 

10% ¥ 4,939,577 3,289 

20% ¥ 4,658,289 3,204 

30% ¥ 4,436,692 3,081 

40% ¥ 4,174,873 3,007 

50% ¥ 4,014,895 2,918 

60% ¥ 3,920,854 2,865 

70% ¥ 3,738,611 2,790 

80% ¥ 3,585,832 2,725 

90% ¥ 3,406,258 2,640 

100% ¥ 2,521,625 2,171 
 

Second, following the standard procedure for eliminating multi-collinearity of the explanatory 

variables in Table 4.2.2, the correlation structure for these variables is given in Table 4.2.3. It 

happened that the correlation of every pair of variables is less than 0.6 and no variables are eliminated 

because of multi-collinearity. 

Table 4.2.2   Variables Considered for Logistic Regression for the Fall Period 2010    

Label Description 

Week_k (𝒊) ,  

k = 1, 2, 3, 4 . 

Each month has four weeks, labeled as: Week_1, Week_2, Week_3, and 

Week_4. Any week consists of seven days, except that Week_4 may 

include extra days until the end of the month. Week_k (𝑖) =1 if day 𝑖 
belongs to week k, and 0, otherwise.  

Weekday_k (i),  

k = 1 , ⋯ , 5 . 

This binary variable takes the value of 1 when WeekDay_𝑘 (𝑖) is a 

weekday and 0 otherwise. Each week has five weekdays, Mon, Tue, Wed, 

Thu, and Fri, labeled as Weekday_1, Weekday_2, Weekday_3, 

Weekday_4, and Weekday_5, respectively.  

Weekend (𝒊) 
This binary variable takes the value of 1 when day 𝑖 is Saturday or 

Sunday, and 0, otherwise.  

LY_Transactions (𝒊) 
This integer variable describes the number of purchase transactions of the 

same day of the month of the last year.  

National Holiday (i) 
This binary flag indicates that day 𝑖 is an official national holiday in 

Japan.  

Fall_1 (𝒊) 
This binary variable takes the value of 1 only if day 𝑖 is in September or 

October and 𝐼𝐶𝐴𝑀𝑃(𝑖)=0, otherwise. 

Fall_2 (𝒊) 
This binary variable takes the value of 1 only if day 𝑖 is in November and 

𝐼𝐶𝐴𝑀𝑃(𝑖)=0, otherwise. 
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Table 4.2.3   The Correlation Structure of Variables Tested for Multi-collinearity  

for the Fall Period 2010  

 
 

Week 

_1 

Week 

_2 

Week 

_3 

Week 

_4 
Mon Tue Wed Thu Fri Weekend 

LY_ 

trans 

Holiday 

_1 

Fall 

_1 

Fall 

_2 

 Week_1 1 
         

    

 Week_2 -0.304 1 
        

    

 Week_3 -0.295 -0.295 1 
       

    

 Week_4 -0.371 -0.371 -0.359 1 
      

    

 Mon -0.002 -0.002 0.008 -0.003 1 
     

    

 Tue -0.002 -0.002 0.008 -0.003 -0.169 1 
    

    

 Wed 0.015 0.015 -0.052 0.019 -0.161 -0.161 1 
   

    

 Thu -0.002 -0.002 0.008 -0.003 -0.169 -0.169 -0.161 1 
  

    

 Fri -0.002 -0.002 0.008 -0.003 -0.169 -0.169 -0.161 -0.169 1 
 

    

 weekend -0.004 -0.004 0.013 -0.005 -0.262 -0.262 -0.250 -0.262 -0.262 1     

 LY_trans 0.000 0.126 -0.108 -0.018 -0.094 -0.288 -0.145 -0.299 -0.108 0.600 1    

 Holiday_1 -0.019 -0.019 -0.013 0.047 0.314 0.038 0.048 -0.100 -0.100 -0.155 -0.020 1   

 Fall_1 -0.160 0.232 0.144 -0.195 -0.001 -0.119 -0.114 -0.001 0.117 0.089 0.151 0.111 1  

 Fall_2 -0.206 -0.206 -0.036 0.409 0.040 -0.057 -0.047 -0.057 0.040 0.062 -0.003 0.058 -0.108 1 

The estimated regression coefficients and other statistical measures of the best logistic regression 

model are summarized in Table 4.2.4. The corresponding confusion matrix with maximum Precision 

subject to Recall  ≥ 0.75 is shown in Table 4.2.5 below, yielding Precision = 0.77, Recall = 0.77 and 

Accuracy  = 0.76, with threshold value   𝜌∗𝐺𝑂𝑂𝐷 =  0.06 and 𝑆0
∗ =  3,585,832 , 𝑇0

∗ =  2,725, 

representing the 80% threshold levels in the total sales and the number of purchase transactions in LD. 

Table 4.2.4   Estimated Coefficients of the Logistic Regression for Fall 2010 

 Estimate Std. Error z value Pr(>|z|) Sig 

(Intercept) -22.5623 7.629081 -2.95 0.00310 ** 

Weekend 5.01152 1.485726 3.37 0.00074 *** 

National Holiday 5.40635 1.755616 3.07 0.00207 ** 

Thursday 2.53315 1.281845 1.97 0.04813 * 

Friday 2.49443 1.117791 2.23 0.02564 * 

Week_1 1.92318 0.956927 2.01 0.04445 * 

Fall_1 3.27627 1.612787 2.03 0.04221 * 

Fall_2 2.96813 1.361948 2.17 0.02930 * 

LY_Transactions 0.00601 0.002307 2.60 0.00915 ** 

                           Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

Given the decision vector 𝑑 specifying campaign days for the future fall period, as well as the 

estimated coefficients of the explanatory variables in Table 4.2.4, one can compute 𝜌𝐺𝑂𝑂𝐷(𝑗) as in 

(2.3.5) which in turn enables one to determine 𝐼𝐺𝑂𝑂𝐷(𝑗) = 1 or 0. 
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Table 4.2.5   The Confusion Matrix of the Logistic Regression Model for Fall 2010 

 
Actual   

 
¬ 𝑮𝑺𝑫 𝑮𝑺𝑫 Total 

Judgment 

¬ 𝑮𝑺𝑫 32 11 43 Precision 

  𝑮𝑺𝑫 11 36 47 76.6% 

Total 43 47 90  

 Recall 76.60% Accuracy 75.56% 

Third, the matrix of the average total sales, denoted by �̂�(𝑚,𝑛), computed over days 𝑖 ∈  𝐷𝐿𝐷 in 

the fall period with 𝑚 = 𝐼𝐶𝐴𝑀𝑃(𝑖) and 𝑛 =  𝐼𝐺𝑂𝑂𝐷:𝑆0𝑇0 (𝑖), 𝑚, 𝑛 ∈ {0,1} is displayed in Table 4.2.6 

below. The average total sales, obtained from LD, is then used to estimate the expected total sales of 

day 𝑗 ∈ 𝐷𝑇𝐷, denoted by �̂�(𝑚,𝑛) with 𝑚 = 𝑑(𝑗) and 𝑛 =  𝐼𝐺𝑂𝑂𝐷(𝑗), 𝑚, 𝑛 ∈ {0,1}.  

Table 4.2.6   Average Total Sales ( ¥ million ) Obtained from Fall 2009 (LD) 

 
𝒏 = 𝑰𝑮𝑶𝑶𝑫:𝑺𝟎𝑻𝟎 (𝒊) 

0 1 

𝒎 = 𝑰𝑪𝑨𝑴𝑷(𝒊) 
0 ¥ 3.33 ¥ 4.21 

1 ¥ 3.60 ¥ 4.35 

In order to test the validity of this approach, the formula of total expected sales �̂�(𝑑) as in 

(2.3.6) is used with actual campaign days 𝐼𝐶𝐴𝑀𝑃 in TD, and then compared with the actual total sales 

𝑅 of TD achieving the relative accuracy of 1.40 % as shown in Table 4.2.7 below. 

Table 4.2.7   The Validity of the Systematic Approach for Estimating Total Sales  

for Fall 2009 (TD) 

( ¥ Million)  Notation Value 

Expected total sales �̂�(𝐼𝐶𝐴𝑀𝑃) ¥ 343.98 

Actual total sales 𝑅 ¥ 339.26 

Relative accuracy |�̂�(𝐼𝐶𝐴𝑀𝑃) − 𝑅| × 100/𝑅 1.40 % 

Fourth, we report the results of the optimization problem of total expected sales. To assess the 

impact of this flexible allocation of sales campaign days, we compare the optimal solution of total 

expected sales against the actual total sales. For this purpose, we set M = 90 and N = 19 as obtained 

from TD of the fall period with ∑ 𝑑(𝑗) =90
𝑗=1 19. This optimization problem can now be solved, 

yielding  �̂�(𝑑∗) = ¥ 355.16 million. We note that the difference between the optimal total expected 
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sales and the actual total sales, R = ¥ 339.26 is given by  �̂�(𝑑∗) − 𝑅 = ¥ 15.9 million, or about 

4.69 % increase.  

Table 4.2.8 demonstrates how the optimal allocation of sales campaign days, 𝑑∗, differs from the 

actual sales campaign days, 𝐼𝐶𝐴𝑀𝑃, obtained from TD. We find that only 2 sales campaign days are in 

common out of 19 sales campaign days. There are 17 days for which sales campaign is assigned only 

in the actual practice, or only by the optimal decision. 

Table 4.2.8   Sales Campaign Days (Actual vs. Optimal) of �̂�(𝒅∗) for Fall Period 2010 (TD) 

 
Optimal 

Total 
1 0 

Actual 
1 2 17 19 

0 17 54 71 

Total  19 71 90 

In Table 4.2.9, the effect of the optimal allocation of sales campaign days on GSDs is 

summarized, where 34 GSDs and 24 ￢GSDs are common, amounting to 64% of 90 days in the fall 

period. It should be noted that the optimal decision approach converted 26 ￢GSDs into GSDs, while 

only 6 days were downgraded from GSD to ￢GSD in the actual practice. Consequently, the optimal 

decision approach yielded 60 GSDs or 66.6% of 90 days.  

Table 4.2.9   The Effect of the Optimal Decision Approach on GSDs of �̂�(𝒅∗) for  

Fall 2010 (TD) 

# of Days 
Optimal 

Total 
GSD ￢GSD 

Actual 
  GSD 34 6 40 

￢GSD 26 24 50 

Total 60 30 90 

Table 4.2.10 below demonstrates how the above improvement by the optimal decision approach 

was achieved in further detail, where GSD vs. ￢GSD are classified according to sales campaign 

days only in the actual practice, those in common (actual and optimal), and those only by the optimal 

decision approach.  
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Table 4.2.10  GSD vs. ￢GSD Transitions by Optimal Decision Approach of �̂�(𝒅∗)  

for Fall 2010 (TD) 

Actual Only  In Common   Optimal Only  

Campaign Days  
Optimal 

Total  Campaign Days 
Optimal 

Total  Campaign Days 
Optimal 

Total 
GSD ￢GSD 

 
GSD ￢GSD 

 
GSD ￢GSD 

Actual 
  GSD 11 2 13 

 Actual 
GSD 0 0 0 

 Actual 
  GSD 7 0 7 

￢GSD 0 4 4 
 

￢GSD 2 0 2 
 

￢GSD 10 0 10 

Total 11 6 17 
 

Total 2 0 2 
 

Total 17 0 17 

In the actual practice, 13 + 0 = 13 sales campaign days (or 68%) are assigned to GSDs in the 

actual practice, and 4 + 2 = 6 days (or 32%) to ￢GSDs, whereas the optimal decision approach 

allocated only 7 + 0 = 7 days (or 37%) to GSDs in the actual practice, and 10 + 2 = 12 days (or 63%) 

to ￢GSDs. This result supports the original observation that the effect of a sales campaign for 

enhancing the total sales of ￢GSD may exceed that for strengthening the total sales of GSD further.  

Finally, regarding the results of the two extensions of the optimization problem of expected 

profit, the campaign cost 𝐵0 per day for the Fall campaigns in LD and those in TD is estimated to be 

¥ 0.40 million in the following manner; the SC stated that the total cost per day would be 

approximately 20% of the total sales per day, which turned out to be: (¥ 3.98 million / day × 20% = 

¥ 0.795 million / day). The SC also stated that the campaign cost per day was 50 % of the total cost 

for the fall period, yielding B0 = ¥ 0.40 million.  

The strengthening effect of the sales campaign under  ∆𝐵 >  0, expressed by (�̂�(1,𝑛) − �̂�(0,𝑙)) ×

𝑔𝑠(∆𝐵) , 𝑛 ≥ 𝑙, is estimated based on the campaign effect under  ∆𝐵 =  0 to enhance the total sales 

from  �̂�(0,𝑙) to  �̂�(1,𝑛)based on LD. When 𝑛 ≥ 𝑙 , three possibilities are conceived, that is (�̂�(1,0) −

�̂�(0,0)), (�̂�(1,1) − �̂�(0,1)), and (�̂�(1,1) − �̂�(0,0)). Accordingly, as shown in Table 4.2.11 below, the 

average increase rate of such effect is estimated to be 0.14 as shown below 

(�̂�(𝟏,𝟎)−�̂�(𝟎,𝟎))

�̂�(𝟎,𝟎)
+  

(�̂�(𝟏,𝟏)−�̂�(𝟎,𝟎))

�̂�(𝟎,𝟎)
+  

(�̂�(𝟏,𝟏)−�̂�(𝟎,𝟏))

�̂�(𝟎,𝟏)

3
=

(0.081+0.033+.306 )

3
=   0.14.              (4.2.1)  

One also computes the effect of the sales campaign to improve 𝑑(𝑗) = 1 from  ¬ GSD to GSD as  

(�̂�(1,1) − �̂�(1,0))

�̂�(1,0) 
  =   

0.75

3.60
=  0.208               ,                               (4.2.2) 

Assuming that the strengthening effect of  𝑔¬𝑠(∆𝐵) to be 21 % of that of 𝑔𝑠(∆𝐵), the parameters 

(𝑎𝑠 , 𝑏𝑠 )  = ( 4 , 3 ) , obtained from Table 3.5.2, correspond to 𝑔𝑠(∆𝐵) = 1.14, and (𝑎¬𝑠 , 𝑏¬𝑠 ) =  
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( 1 , 10 ) correspond to 𝑔¬𝑠(∆𝐵) = 1.029.  

Table 4.2.11  Basic Computations on Average Total Sales ( ¥ million ) of Fall 2009 (LD) for 

Determining the Best-bet Values of the parameters of 𝒈𝒔(∆𝑩) and  𝒈¬𝒔(∆𝑩) 

�̂�(𝒎,𝒏) 
𝒏 = 𝑰𝑮𝑶𝑶𝑫:𝑺𝟎𝑻𝟎(𝒊) 

 
0 1 

𝒎 = 

𝑰𝑪𝑨𝑴𝑷 (𝒊) 

0 ¥ 3.33 ¥ 4.21  

1 ¥ 3.60 ¥ 4.35  

 �̂�(𝟏,𝟎) − �̂�(𝟎,𝟎) �̂�(𝟏,𝟏) − �̂�(𝟎,𝟏) �̂�(𝟏,𝟏) − �̂�(𝟎,𝟎) 

 0.27 0.14 1.02 

(�̂�(𝟏,𝒏) − �̂�(𝟎,𝒍)) /�̂�(𝟎,𝒍)  8.1 % 3.3% 30.6 % 

Now, the optimization problem can be readily solved yielding optimal expected profit 

�̂�(𝑑∆𝐵
∗ , ∆𝐵

∗) = ¥ 353.47 million, which amounts to 6.58 % increase from actual profit 𝑃(𝐼𝐶𝐴𝑀𝑃) = 

¥ 331.66 million. This optimal solution is achieved by reallocating 19 campaign days with an optimal 

campaign budget  𝐵∗ =  ¥ 0.72 million per day, amounting to 80 % ( ∆𝐵
∗= 0.32 ) increase from the 

standard campaign budget 𝐵0 = ¥ 0.4 million. Figure 4.2.1 shows the curve of the optimal expected 

profit and Figure 4.2.2 displays the curves of the functions  𝑔𝑠(∆𝐵) and  𝑔¬𝑠(∆𝐵) achieving the 

optimal solution. We note that, 17 days switched from  𝑑∗(𝑗) = 0 to 𝑑∆𝐵
∗ (𝑗) = 1 

generating  �̂�(0,0)→(1,1)(𝑗) and accumulating 90.1 % of total expected sales of ¥ 94.63 million specific 

to sales campaign days only. 

 

Figure 4.2.1   The Optimal Expected Profit ( ¥ million ) in the Fall Period achieved by ∆𝑩
∗= 

¥ 0.32 million and ∑ 𝒅∆𝑩
∗ (𝒋)𝑴

𝒋=𝟏 = 19  
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Figure 4.2.2   The Functions  𝒈𝒔(∆𝑩) and  𝒈¬𝒔(∆𝑩) Achieved by  (𝒂 , 𝒃 )  = (𝟒 , 𝟑) 

and ( 𝟏 , 𝟏𝟎 ), Respectively, with Respect to ∆𝑩 =  𝟎. 𝟎𝟒   

In order to investigate the robustness of the solution of   �̂�(𝑑∆𝐵
∗ , ∆𝐵

∗)  in face of varying 

parameter 𝑏 of the functions 𝑔𝑠(∆𝐵) and  𝑔¬𝑠(∆𝐵), we vary parameter  𝑏  by 1.0 stepwise increase 

and decrease for each function separately, as shown in Table 4.2.12.  

Table 4.2.12   Optimal Expected Profit of Fall 2010 with Varying Parameter  𝒃  by 1.0 

Stepwise, 𝒂 ≠ 𝒃  

Varying  𝒃¬𝒔  of the function 𝒈¬𝒔(∆𝑩) with ( 𝒂𝒔 , 𝒃𝒔 ) = ( 4 , 3 ) 

 ( a , b ) �̂�(𝒅∆𝑩
∗ , ∆𝑩

∗) ∆𝑩
∗ 𝒅∆𝑩

∗  

1.0 Stepwise Decrease 

of Parameter b 

( 1 , 2 ) ¥ 358.75 ¥ 0.56 19 

⋯ 

( 1 , 8 ) ¥ 353.55 ¥ 0.28 19 

( 1 , 9 ) ¥ 353.52 ¥ 0.32 19 

The Best-bet Value ( 1 , 10) ¥ 353.47 ¥ 0.32 19 

Varying  𝒃𝒔  of the function 𝒈𝒔(∆𝑩) with ( 𝒂¬𝒔 , 𝒃¬𝒔 ) = ( 1 , 10 ) 

 ( a , b ) �̂�(𝒅∆𝑩
∗ , ∆𝑩

∗) ∆𝑩
∗ 𝒅∆𝑩

∗  

1.0 Stepwise Decrease 

of Parameter b 

( 4 , 1) ¥ 363.84 ¥ 0.76 19 

( 4 , 2) ¥ 356.15 ¥ 0.48 19 

The Best-bet Value ( 4 , 3 ) ¥ 353.47 ¥ 0.32 19 

1.0 Stepwise Increase 

of Parameter b 

( 4 , 5) ¥ 350.97 ¥ 0.28 19 

( 4 , 6) ¥ 350.72 ¥ 0.16 19 

⋯ 

( 4 , 10 ) ¥ 349.70 ¥ 0.12 19 
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The results indicate that, when holding parameter 𝑎¬𝑠 fixed and varying parameter  𝑏¬𝑠, the 

best-case and worst-case scenarios yielded �̂�(𝑑∆𝐵
∗ , ∆𝐵

∗) = ¥ 358.75 and ¥ 353.47 million, 

respectively, achieving a SI of less than 1.5 % as computed below  

𝑆𝐼 =  
�̂�(𝑑∆𝐵

∗ , ∆𝐵
∗)
𝑀𝐴𝑋

− �̂�(𝑑∆𝐵
∗ , ∆𝐵

∗)
𝑀𝐼𝑁

�̂�(𝑑∆𝐵
∗ , ∆𝐵

∗)
𝑀𝐴𝑋

= 
5.28

358.75
=   0.015       ,          (3.5.2) 

whereas the best-case and worst-case scenarios of varying parameter  𝑏𝑠 of the function 

𝑔𝑠(∆𝐵) yielded  �̂�(𝑑∆𝐵
∗ , ∆𝐵

∗) = ¥ 363.84 and ¥ 349.70 million, respectively, yielding a SI of 4.0 %.  

𝑆𝐼 =  
�̂�(𝑑∆𝐵

∗ , ∆𝐵
∗)
𝑀𝐴𝑋

− �̂�(𝑑∆𝐵
∗ , ∆𝐵

∗)
𝑀𝐼𝑁

�̂�(𝑑∆𝐵
∗ , ∆𝐵

∗)
𝑀𝐴𝑋

= 
14.4

363.84
=   0.0395       ,          (3.5.3) 

In order to assess the impact of the flexible approach for optimally reallocating sales campaign 

days with varying the campaign budget, the optimal solutions of the expected profit �̂�(𝑑∆𝐵
∗ , ∆𝐵

∗)  

and �̂�(𝑑∗) are compared against the actual profit, 𝑃(𝐼𝐶𝐴𝑀𝑃) =¥ 331.66 million. Table 4.2.13 below 

shows the results of the optimized solutions and their increase rate from the actual profit.  

Table 4.2.13   The Optimal Solutions of Expected Profit Compared Against the Actual Profit 

( ¥ million ) for the Fall Period 2010 

Actual Profit  

𝑷(𝑰𝑪𝑨𝑴𝑷) 

𝑩𝟎 ∑𝑰𝑪𝑨𝑴𝑷

𝑴

𝒋=𝟏

  𝑩𝟎  ×  ∑𝑰𝑪𝑨𝑴𝑷

𝑴

𝒋=𝟏

 𝑹(𝑰𝑪𝑨𝑴𝑷) 𝑷(𝑰𝑪𝑨𝑴𝑷) 
 

 

 

Increase 

Rate From 

Actual Profit 

 𝑷(𝑰𝑪𝑨𝑴𝑷) 

¥ 0. 40 19 ¥ 7.60 ¥ 339.26 ¥ 331.66 

The Objective 

Function  
Results  

Optimal 

Expected 

Profit 

�̂�(𝑑∆𝐵
∗ , ∆𝐵

∗) 

∆𝑩
∗= ¥ 0.32 

𝑩∗ ∑𝒅∆𝑩
∗

𝑴

𝒋=𝟏

 ( 𝑩𝟎 + ∆𝑩
∗ ) × ∑𝒅∆𝑩

∗

𝑴

𝒋=𝟏

 �̂�(𝑑∆𝐵 , ∆𝐵) �̂�(𝒅∆𝑩
∗ , ∆𝑩

∗) 

6.58 % 

¥ 0.72 19 ¥ 13.68 ¥ 367.15 ¥ 353.47 

Optimal 

Expected 

Profit �̂�(𝒅∗) 

𝑩𝟎 ∑𝒅∗
𝑴

𝒋=𝟏

  𝑩𝟎  ×  ∑𝒅∗
𝑴

𝒋=𝟏

 �̂�(𝒅) �̂�(𝒅∗) 
4.79 % 

¥ 0. 40 19 ¥ 7.60 ¥ 355.16 ¥ 347.56 

Optimal Total 

Expected 

Sales �̂�(𝒅∗) 

𝑩𝟎 ∑𝒅∗
𝑴

𝒋=𝟏

  𝑩𝟎  ×  ∑𝒅∗
𝑴

𝒋=𝟏

 �̂�(𝒅∗) 𝑷(�̂�(𝒅∗)) 

4.79 % 

¥ 0.40 19 ¥ 7.60 ¥ 355.16 ¥ 347.56 
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One finds that, there is no difference in the increase rate of �̂�(𝑑∗) and  𝑃(�̂�(𝑑∗)) from actual 

profit. Moreover, when the campaign budget is increased by 80 % from the standard campaign 

budget 𝐵0, the optimal solution �̂�(𝑑∆𝐵
∗ , ∆𝐵

∗) = ¥ 353.47 was 1.79 % higher than the optimal solution 

�̂�(𝑑∗) = ¥ 347.56.  

Table 4.2.14 below, demonstrates how the optimal allocation of sales campaign days, 𝑑∗ = 19 

under ∆𝐵 = 0 and 𝑑∆𝐵
∗ 

= 19 with ∆𝐵
∗= 0.32 differ from the actual sales campaign days 𝐼𝐶𝐴𝑀𝑃  = 

19. We find that, for �̂�(𝑑∗) only 5 campaign days are in common out of 19 optimal and actual. There 

are 14 days for which sales campaign is assigned only in the actual practice and by the optimal 

decision. For  �̂�(𝑑∆𝐵
∗ , ∆𝐵

∗), only 3 campaign days are in common out of 19 optimal and actual. There 

are 16 days for which sales campaign is assigned only in the actual practice and by the optimal 

decision.  

Table 4.2.14   The Effect of the Optimal Decision Approach on GSDs Under Budget 𝑩𝟎 

and 𝑩𝟎 + ∆𝑩 for the Fall Period 2010 

�̂�(𝒅∗) �̂�(𝒅∆𝑩
∗ , ∆𝑩

∗) 

# of GSD Days 
Optimal GSD 

Total # of GSD Days 
Optimal GSD 

Total 
1 0 1 0 

Actual 

GSD 

1 5 14 19 
Actual 

GSD 

1 3 16 19 

0 14 57 71 0 16 55 71 

Total 19 71 90 Total 19 71 90 

In Table 4.2.15 below, the effect of the optimal allocation of sales campaign days (SCD) on 

GSDs is summarized for the optimal solutions of the expected profit �̂�(𝑑∗) and  �̂�(𝑑∆𝐵
∗ , ∆𝐵

∗). In 

case of �̂�(𝑑∗),  36 GSDs and 26 ￢GSDs are in common, amounting to 69 % of 90 days in fall 2010. 

It should be noted that the optimal decision of �̂�(𝑑∗) approach converted 24 actual ￢GSDs into 

GSDs in the optimal decision, while only 4 days were downgraded from GSD in the actual practice to

￢GSD. Consequently, the optimal decision approach of �̂�(𝑑∗), yielded 60 GSDs or 67% of 90 days.  

In case of �̂�(𝑑∆𝐵
∗ , ∆𝐵

∗) , 31 GSDs and 21 ￢GSDs are common, amounting to 58 % of 90 days 

in fall 2010. The optimal decision approach of  �̂�(𝑑∆𝐵
∗ , ∆𝐵

∗), converted 29 actual ￢GSDs into GSDs 

in the optimal decision, while 9 days were downgraded from GSD in the actual practice to ￢GSD in 

the optimal decision. Consequently, the optimal decision approach of �̂�(𝑑∆𝐵
∗ , ∆𝐵

∗) yielded 60 GSDs 

or 67% of 90 days.  
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Table 4.2.15   The Allocation of Sales Campaign Days Across GSD for �̂�(𝒅∗) and 

�̂�(𝒅∆𝑩
∗ , ∆𝑩

∗) for the Fall Period 2010 

�̂�(𝒅∗) �̂�(𝒅∆𝑩
∗ , ∆𝑩

∗) 

# of SCD Days 
Optimal SCD 

Total # of SCD Days 
Optimal SCD 

Total 
GSD ￢GSD GSD ￢GSD 

Actual 

SCD 

  GSD 36 4 40 
Actual 

SCD 

  GSD 31 9 40 

￢GSD 24 26 50 ￢GSD 29 21 50 

Total 60 30 90 Total 60 30 90 

Table 4.2.16 and 4.2.17 demonstrate how the improvement by the optimal decision approach of 

�̂�(𝑑∗) and �̂�(𝑑∆𝐵
∗ , ∆𝐵

∗)  was achieved in further detail, where transitions of GSD vs.￢GSD are 

classified in the following manner: in the actual practice only, in common only (actual and optimal), 

and by the optimal decision approach only. The optimal solution of �̂�(𝑑∗)  yielded 12 + 1 = 13 sales 

campaign days (or 68%) are assigned to GSDs in the actual practice, and 2 + 4 = 6 days (or 32%) to 

￢GSDs, whereas the optimal decision approach allocated only 1 + 8 = 9 days (or 10%) to GSDs in 

the actual practice, and 4 + 6 = 10 days (or 11%) to ￢GSDs. On the other hand, the optimal solution 

of �̂�(𝑑∆𝐵
∗ , ∆𝐵

∗) yielded 12 + 1 = 13 sales campaign days (or 68%) are assigned to GSDs in the actual 

practice, and 4 + 2 = 6 days (or 32%) to ￢GSDs, whereas the optimal decision approach allocated 

only 1 + 3 = 4 days (or 21%) to GSDs in the actual practice, and 2 + 13 = 15 days (or 49%) to￢GSDs. 

This result supports the original observation that the effect of a sales campaign for enhancing the total 

sales of ¬GSD may exceed that for strengthening the total sales of GSD further. 

Table 4.2.16   GSD vs. ￢GSD Transitions by the Optimal Decision Approach for �̂�(𝒅∗), 

𝒅∗ =19 for the Fall Period 2010 

Actual Only  In Common  Optimal Only 

SCD  
Optimal 

Total  SCD 
Optimal 

Total  SCD  
Optimal 

Total 
GSD ￢GSD 

 
GSD ￢GSD 

 
GSD ￢GSD 

Actual 

  GSD 11 1 12 
 

Actual 

  GSD 1 0 1 
 

Actual 

  GSD 8 0 8 

￢GSD 0 2 2 
 

￢GSD 4 0 4 
 

￢GSD 6 0 6 

Total 11 3 14  Total 5 0 5 
 

Total 14 0 14 

Table 4.2.17   GSD vs. ￢GSD Transitions by the Optimal Decision Approach  

for �̂�(𝒅∆𝑩
∗ , ∆𝑩

∗), 𝒅∆𝑩
∗ = 19 for the Fall Period 2010 

Actual Only  In Common  Optimal Only 

SCD 
Optimal 

Total  SCD 
Optimal 

Total  SCD 
Optimal 

Total 
GSD ￢GSD 

 
GSD ￢GSD 

 
GSD ￢GSD 

Actual 

  GSD 11 1 12 
 

Actual 

  GSD 0 1 1 
 

Actual 

  GSD 3 0 3 

￢GSD 0 4 4 
 

￢GSD 2 0 2 
 

￢GSD 13 0 13 

Total 11 5 16  Total 3 0 3 
 

Total 16 0 16 
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5 Conclusion and Discussion  

An extensive literature exists concerning SCs and sales optimization, where different approaches are 

taken; e.g. how to find the optimal location of SCs among available alternatives, and how to 

determine the configuration of space and design so as to achieve either cost-performance efficiency or 

profit generation. To the best knowledge of the researcher, the problem of optimally allocating 

campaign days over a certain period, e.g. the winter and fall seasons, has not been addressed in the 

literature. The purpose of this thesis is to fill this gap by developing a mathematical model to optimize 

returns in an SC by optimally reallocating sales campaign days, based on the marketing flexibility 

concept.  

Through numerical examples, the proposed model for maximizing total expected sales 

demonstrated the power of marketing flexibility. By comparing the optimal total expected sales 

against the actual total sales of the winter season, the total expected sales increased by 7% by 

optimally reallocating sales campaign days with no additional cost. By implementing the same 

mathematical model on the fall season, the results similarly indicated an increase in optimal expected 

sales by 4.69% with no additional cost. This implies that, by mere reorganization of sales campaign 

days freely rather than in segments of consecutive days, the total expected sales would increase with 

no additional cost.  

Furthermore, we compare the effect of the optimal allocation of sales campaign days only 

against that of reallocating both sales campaign days and the campaign budget on expected profit. The 

results of the winter season indicated that, optimal expected profit increased by 7.84% from actual 

profit by optimally reallocating sales campaign days only. However, by optimally reallocating both 

sales campaign days and the campaign budget, optimal expected profit increased by 9.95% from 

actual profit. This implies that, the optimal campaign budget is responsible for only (9.95 – 7.84 = 

2.26%) of the improvement in optimal expected profit. The numerical example of the fall season 

provided similar evidence. By optimally reallocating both sales campaign days and the campaign 

budget, optimal expected profit increased by 6.58% from actual profit. Comparing this result with the 

4.79% increase rate, achieved by optimally reallocating sales campaign days only, the optimal 

campaign budget would be responsible for only (6.58 – 4.79 = 1.79%).  
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In both numerical examples, the optimal campaign budget was responsible for about 2% only of 

the improvement in optimal expected profit, while the optimal allocation of sales campaign days only 

was responsible for about double this amount in the fall season (4.79%) and more than triple this 

amount in the winter season (7.84 %). This result is consistent with that reported by Fischer et al., 

(2011), they state that, profit improvement from better allocation across products or regions is much 

higher than that from improving the overall budget. Similarly, one can state that, optimal allocation of 

sales campaign days achieves better improvement in optimal expected profit than that achieved by 

only improving the overall budget.  

One of the main assumptions of the procedure for estimating expected total sales per day under 

the influence of an enhanced campaign budget is that, non-sales-campaign-days switching to sales 

campaign days under the effect of the budget increase would experience better improvement in 

expected total sales than non-switching sales campaign days. In respect to the winter season, only 2 

days switched from non-sales-campaign-days to campaign days corresponding to �̂�(0,1)→(1,1)(𝑗), and 

accumulating 6.5% of ¥150.55 million of expected total sales specific to sales campaign days only. 

On the other hand, 17 days switched from 𝑑∗(𝑗) = 0 to 𝑑∆𝐵
∗ (𝑗) =1 in the fall season, corresponding 

to  �̂�(0,0)→(1,1)(𝑗) and accumulating 90.1 % of ¥ 94.63 million of total expected sales specific to sales 

campaign days. This can be interpreted in the following manner; regardless of the number of sales 

campaign days switching from non-sales-campaign-days, the impact of the optimal reallocation of 

sales campaign days would overwhelm that of the optimal campaign budget. 

The proposed approach would be quite useful for the management of an SC, where different 

stores in one place can organize common sales campaigns to share the advantages of implementing a 

marketing flexibility-based strategy. To effectively allocate resources, optimal allocation of sales 

campaign days is recommended to maximize returns. For further improvement, the campaign budget 

could be optimally allocated along with the sales campaign days. These recommendations challenge 

the common business practices of improving the overall budget of a sales campaign to further boost 

its effectiveness. For this approach to be implemented efficiently, it is recommended for the 

management of the SC to share the timetable of scheduled campaign days with its customers. With the 

advent of smart phones, reaching out to customers has never been easier. Visitors of the SC can be 

kept informed through traditional channels of communication and advertising as well. 
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Future Work  

This approach may be applicable in the telecommunication market in India, where Organized 

Trade (OT) and General Trade (GT) are cohabited together. The impact of the sales campaigns on the 

mobile device market might be analyzed from a similar perspective. To support this notion, a recent 

paper by Vidyarthi and Singh (2011), describing the relatively new Indian telecommunication market, 

gives insight into new directions of research that could be pursued in the future.  

Limitations  

One of the limitations of this study may be that, the available data was limited to two seasons 

only. One may expand the implementation of the proposed approach on a more extensive data from 

different industries. Furthermore, the size of the datasets, 88 and 90 days for winter and fall, 

respectively, may also be perceived as a limitation. However, one finds this to be inevitable in the 

context of SC retail business. Because over 50% of the SC stores are fashion stores, such stores highly 

rely on sales campaigns to lower their inventory before every new season in order to be able to 

introduce new lines of fashion on seasonal bases. Due to this practice, seasonal analysis deemed to be 

necessary, as in Pauwels (2007), Poel et al. (2004), and Arnold et al. (1983). Another limitation may 

be that, the effect of the campaign budget increase on expected total sales was estimated based on a 

previous dataset that was not treated by such effect.  
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