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Chapter 1

General Introduction

1.1 Disclination in nematic liquid crystal

Most organic materials undergo phase transition with increasing or decreasing temperature. In the

case of a phase transition from solid (fully ordered crystal) to liquid, orders of molecular direction

and position disappear at the same time. However this is not always the case. When a molecule

comprising the system has anisotropic shape (such as rod or disk), some mesophases emerge between

the solid and liquid states. The mechanical and symmetrical properties of the state are intermediate

between the solid and the liquid. The new phases having fluidity are called liquid crystals (LC) [1,2].

Because of the anisotropic shape of molecules, LC has the order of molecular orientation, while

the order of molecular position is lost. A nematic liquid crystal (NLC) is the simplest case. The

molecular order in NLC is schematically shown in Fig. 1.1. The molecular center of gravity is com-

pletely disordered in this state. In spite of of thermal fluctuations of molecules, their mean direction

of molecules can be defined. A unit vector along the mean direction of molecules is calleddirector,

written asnnn. If the LC is not ferroelectric,nnn and−nnn are indistinguishable. This property of the direc-

tor is often represented as “headless”. NLCs treated in this thesis are not ferroelectric. The headless

nature is assumed hereafter, accordingly.

Director is defined as a function of position. In this sense, director forms a kind of field,director

field. Ideally, the director field should be uniform. However, when the director field extends for a long

distance, it may be deformed, resulting in the increase in free energy. Then, lines, the tangent to which

coincides with the orientation of the director at the point, can be imagined, similarly to electrical flux

lines in electromagnetism. Assuming the smooth variation of the orientation of the director, the

director field lines should be continuous. Thus, a line defect around which the director field lines

form a loop can easily be imagined as in Fig. 1.2. This is calleddisclination with a topological
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Figure 1.1. Schematic view of molecular order on the course of
melting of nematic liquid crystalline compound (nematogen).
Molecular structure of 5CB is also shown.

charge s= 1 [3, 4]. The director field is deformed largely around the disclination. Nematic order is

broken just on the disclination line. This disordered region is called a disclinationcore[1].

The deformation of the director field can be analytically described within an “elastic” theory of

a NLC [5], which will be summarized in more detail in Section 1.6. The theory assumes the energy

density of the form,

fe =
1
2

K1(∇ ·nnn)2+
1
2

K2(nnn· (∇×nnn))2+
1
2

K3(nnn× (∇×nnn))2, (1.1)

Figure 1.2. Director field around a disclination withs= 1.
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Figure 1.3. Director field represented by representative
molecules around kinds of disclinations.ϕ is an angle of the
director.

with K1, K2 andK3 being relevant elastic constants. The liquid crystal is treated as a continuum elastic

material while molecular dynamics and its flow are not considered. The director field in the stationary

state is described based on the least-energy principle. Hereafter we discuss a two dimensional system

of the NLC. When the elastic energy is at its local minimum, the angle of the directorϕ satisfies

Laplace equation. In a two-dimensional system, solutions with the form of

ϕ(r,θ) = sθ +α, (1.2)

is possible withs= 0, ±1
2, ±1, ±3

2, ±2, ... Here,ϕ is the angle between director andy-axis, which

can be taken arbitrarily, and a parameterα is an integral constant. Solutions with non-zeros represent

disclinations with idealized symmetry. The topological charges means the rotation angle of the

orientation of director upon turning around a disclination, and the angle is normalized by 2π. The

director field is schematically shown in Fig. 1.3 [1] for differents′s. It is emphasized that disclinations

with a half integersare allowed because of the headless nature of the director in the case of the NLC,

in addition to vortices with non-zero integers possible for vector fields. Disclinations have been

regarded as representative examples of topological defects.

1.2 Annihilation of disclination pair

Because of the deformation of the director field, the elastic energy increases in comparison with

the uniformly ordered situation. If the symmetry of the system is not sufficiently high, a disclination

moves spontaneously to reduce the elastic energy [6,7]. The driving force is exerted by the deformed

director field around the disclination. The most representative phenomenon is the annihilation of a pair

of disclinations [8,9] having the same magnitude of topological charge but with opposing signs, such

7



Figure 1.4. s=±1/2 disclination pair in NLC. Director field
around disclination (a), and image of disclination pair under
polarizing optical microscope.

ass=+1
2 ands=−1

2. A director field around an annihilating disclination pair is schematically shown

in Fig. 1.4 (a). Annihilation is widely observed in a NLC sandwiched between glass substrates. This

dynamics can be visualized by using a polarizing optical microscope. Observed pairs of disclinations

under the crossed Nicols condition is shown in Fig. 1.4 (b). In Fig. 1.4 (b), disclinations are observed

as singular points, on which dark and bright lines center. The annihilation of the disclination pairs in

(quasi) two-dimensional system has been studied experimentally and theoretically.

The annihilation has successfully been analyzed assuming the balance between elastic driving

force and viscous drag [8, 9]. Time evolution of the distance between two annihilating disclinations

are theoretically given as

u2 = u0
2− 2πKt

Γ
. (1.3)

Here,u is the distance between two disclinations,K is a mean elastic constant of the NLC, andΓ is

viscous drag acting on a disclination per unit length. The viscosityΓ had been given theoretically

[10,11] as

Γtheo=
π
4

γeff ln

(
3.6ξc

rc

)
, (1.4)

by introducing an effective viscosityγeff and a core radiusrc. A parameterξc is a characteristic

length [12] that represents the size of the region around disclination where the director field is severely

deformed. Annihilation dynamics in the two-dimensional system is described by using this simple

theoretical model.
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1.3 Anchoring and external field: External force

In the case of a two-dimensional system briefly reviewed in the previous section, only the attractive

interaction between two disclinations is considered as a driving force of disclination dynamics. In real

systems, however, three-dimensional deformation has to be considered. When the NLC is sandwiched

between substrates, molecules are bound to the cell surface. Therefore, the director close to the cell

surface does not rotate freely. This anchoring of the director field is called the surface anchoring

effect [1, 2]. Because of the anchoring, the additional deformation between the surface area and the

inner bulk area is introduced to the NLC system. Bogiet al. [12] revealed that this three-dimensional

deformation gives additional driving force to the disclinations. In addition, the attractive interaction

between disclinations is screened by this. Since the external force due to the anchoring is constant,

the disclination moves at a constant velocity as far as the attractive interaction is screened.

Some other additional force can be introduced by applying an external electric field [13, 14].

Disclination dynamics under an external electric field has widely been discussed experimentally and

theoretically. The external electric field gives a driving force for a disclination [13] because of the

dielectric anisotropy of LC. In general, the dielectric permittivity along the director (ε∥) is different

from the perpendicular one (ε⊥), resulting in the dielectric anisotropy of the bulk LC [1]. The di-

electric anisotropy of the LC is defined asεa = ε∥− ε⊥. When the anisotropy is positive (negative),

the director tends to be parallel (perpendicular) to the applied field. Therefore, the director field is

deformed under an external electric field [15]. This deformation of the director field influences the

driving force acting on a disclination. It is noted that the direction and the magnitude of external force

can be controlled by the direction and intensity of the applied field.

Annihilation dynamics was reported for as=±1 disclination pair under an electric field. Minoura

et al. [13] successfully analyzed the time evolution of the distanceu by an elastic theory. They

revealed that the external field acts as a phenomenological ordering field on the director field. On the

other hand, the case ofs= ±1/2 disclinations was theoretically investigated by Biscariet al. [14].

They discussed the effect of external field on single and pair disclination(s) in a two-dimensional

infinite system. Dynamics under the field was well discussed in their study. Although they considered

the effect of a magnetic field, their result should apply to the electric field.
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1.4 Backflow: Spontaneous effect

Flow of the NLC caused by the director reorientation also has a significant effect on the disclina-

tion dynamics. Upon the movement of a disclination, the director rotates and the surrounding elastic

field changes, accordingly. This rotation of the director is coupled with the velocity field by the so-

calledbackfloweffect [1, 2]. The effect of the backflow on the movement differs depending on the

disclination strengths. The motion ofs= +1/2 disclinations makes a pair of vortices behind them.

The flow points in the direction of defect propagation. The dynamics ofs= +1/2 disclination is ac-

celerated [16–18] by the vortices pair while the backflow arounds= −1/2 disclination affects little

the movement.

Tóthet al.[16] advocated that two sources of flow configure the whole flow field, which influences

the disclination motion. One is generated due to the motion of the disclination core. The movement

of the core induces a pair of vortices, similar to those following a moving cylinder in an isotropic

liquid. This flow is independent of the sign of the disclination. Another flow is generated due to

director rotation. The direction of this flow depends on the sign ofs, accordingly. These two modes

of flow couples, and an asymmetric annihilation is induced. They revealed thats=+1/2 disclination

is accelerated by the flow, and it moves twice as fast ass=−1/2 one. They simulated the flow around

s=±1/2 disclination pair in a two-dimensional system. The numerically simulated flow field around

disclinations is schematically shown in Fig. 1.5. In an experimental way, Blancet al.[18] successfully

proved the fact that the asymmetric annihilation is due to the backflow effect. By applying electric

field to accelerate disclination, they succeeded to obtain quasi-two dimensional system with negligible

surface effects. Their experimental results of asymmetric annihilation were consistent with their

theoretical prediction in the two-dimensional system.

1.5 Previous works, motivation, and objects of this thesis

As discussed in the previous sections, notable factors affecting the disclination dynamics consists

of three parts: Surface anchoring, external field, and backflow. Surface anchoring and external field

gives an external driving force to a disclination. These two effects are experimentally controllable.

That is, the strength of the surface anchoring can be controlled by surface treatment process including

the choise of an alignment material on the substrate. External electric field is easily controlled by

the applied voltage and the frequency, and the gap between electrodes. Even disclination dynamics

under a time dependent external force is also observable under the electric field. On the other hand,
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Figure 1.5. Director field around disclination pair (a), and flow
field around disclination (b).

backflow is unavoidably accompanied by the disclination dynamics. The backflow is more difficult

to control in comparison with two other effects.

Disclination dynamics has been examined experimentally and theoretically in the past. These

works are summarized as in Fig. 1.6, which tends not to be a complete list of papers in the past, but

to indicate a single representative paper if applicable. Factors exerting some force on a disclination

are categorized depending on surface anchoring, external field, and backflow. We think that surface

anchoring and external field are especially important for experimental studies because these effects

are controllable as an external force acting on a disclination. Figure 1.6 shows that the dynamics under

static external force has already been explored [12–14], except for those coupled with backflow. This

prompt us to investigate disclination dynamics under the strong anchoring and the external field. Since

these three effects can be active simultaneously in real systems, disclination dynamics would become

more complicated. Besides, there is no report on the disclination dynamics under time dependent

external field as seen in Fig. 1.6. This thesis fills all vacancies in Fig. 1.6.
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Chapters 2 and 3 are devoted to experimental studies on the disclination dynamics under stationary

force field. The disclination dynamics without an external field is analyzed while considering the

backflow effects in Chapter 2. Dependence on the cell gap of the disclination velocity is investigated

to explore the anchoring effect. The backflow is taken into consideration. It is revealed that the flow

is suppressed near the substrate surfaces because of the anchoring effect.

In Chapter 3, dependence on electric field of the disclination velocity is discussed. Both of the

surface anchoring and the electric field influence the disclination dynamics in this system. The discli-

nation velocity is analyzed taking the backflow into account. It is revealed that the backflow is induced

in the system, and acceleratess= +1/2 disclination even under the electric field as the same extent

to that without field.

Chapter 4 describes a study on the disclination dynamics under a time-dependent external force.

An abrupt change of the dc voltage is chosen as an example of time-dependent field. A characteristic

motion of a disclination, a kind of “damped oscillation”, is described in detail. Characteristics of the

trajectory of the disclination is discussed and compared with some calculations based on the elastic

theory of the NLC.

Experimental findings and their consequences will be summarized in Chapter 5 together with the

personal perspective of the author.

The remaining part of this introductory Chapter is devoted to a brief summary of theoretical de-

scription of disclination dynamics established in the past.
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Figure 1.6. Schematic view of previous works.

1.6 Theoretical background

1.6.1 Elastic theory of NLC

Disclination dynamics is described based on the elastic theory. NLC is treated as a continuum

medium in this theory. Elastic energy density is written as

fe =
1
2

K1(∇ ·nnn)2+
1
2

K2(nnn· (∇×nnn))2+
1
2

K3(nnn× (∇×nnn))2. (1.5)

Here parametersK1, K2 andK3 are Frank elastic constants [5], corresponding to splay, twist, and bend

deformation, respectively. Three deformation modes are schematically shown in Fig. 1.7. More ac-

curately, elastic modulus are written in a tensor form. Sometimes we have to consider a non-diagonal

element of the elastic tensor,Ksb. Ksb is a splay-bend elastic constant, which have an intermediate

mode of deformation between the splay and bend modes.

Three elastic constantsK1, K2 andK3 are often assumed to be equal for simplicity (one constant

approximation). Assuming two-dimensional system, elastic energy density is then written as

fe =
K
2
(∇ϕ)2. (1.6)
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Figure 1.7. Three deformation modes of NLC; splay mode (a),
twist mode (b) and bend mode (c).

K is the “mean” elastic constant. The director field in the stationary state is described based on the

least-energy principle. When the elastic energy is (local) minimum, the orientation angleϕ of director

filed satisfies Laplace equation. In two-dimensional systems, some kinds of solutions with the form

of Eq. 1.2 are possible as described previously.

Because of the principle of superposition, the director angleϕ around the disclinations can be

written as follws.

ϕ = s1θ1+s2θ2. (1.7)

This equation is written as [2]

ϕ = s1tan−1(y/x)+s2tan−1[y/(x−u)]. (1.8)

Equation 1.8 represents the relation between the director angleϕ and the position (x, y) in the two-

dimensional system. The director at (x, y) is illustrated in Fig. 1.8. A parameteru is the distance

between two disclinations. Elastic energy density is given by Eqs. 1.6 and 1.8. Total elastic energy is

given as a volume integral of Eq. 1.6. The interaction (force) between disclinations,Ge, is obtained

by differentiating the total elastic energy with respect tou. In the case of a disclination pair with

s=±1/2, an attractive force between two disclinations is written as [6,8,9]

Ge =
πKd
2u

. (1.9)

A parameterd is the cell gap, which is the distance between upper and lower substrates. Spontaneous

14



Figure 1.8. Director on the position (x, y). The angleϕ is a
function ofx, y, u, s1 ands2.

dynamics of disclinations is usually slow enough [6, 8, 9] thatGe is assumed to balance the viscous

drag. Therefore, the time evolution ofu is written as the form of Eq. 1.3.

1.6.2 Effect of surface anchoring

Equation 1.3 shows that the distanceu is proportional tot1/2, and that the disclination velocity

depends on time. In real systems, however,u decreases linearly to time for largeu [12, 13]. In such

a case, the distanceu decreases with proportional tot1/2 only just before the annihilation. Bogiet

al. [12] took into consideration the effect of the cell surface. Molecules on the cell surface are fixed,

and the rotation of the director is suppressed. This effect is called the surface anchoring. Bogi revealed

that the deformation of the director field comes from the surface anchoring generates an additional

driving force on a disclination.

A system includings= ±1/2 pair is schematically shown in Fig. 1.4. Here,x andy axes are set

to be parallel to the substrates of sample cell, andz-axis is perpendicular to the surface. They-axis is

set to be parallel to the easy axis of anchoring of the cell surface. Surface of the lower substrate is set

to be the originz= 0. Without a disclination, director aligns uniformly. Elastic energy is minimum

in this situation. When a disclination pair is introduced to the system, deformation along thez-axis

is introduced. This deformation is large in the region between disclination pair (so-calledπ-wall).

Because of the deformation, the elastic energy increases. The director field ofπ-wall has excess

15



elastic energy. This excess energy is a function of disclination distanceu. Therefore, additional

driving force is obtained by differentiating the excess energy with respect tou. The driving force

acting on each disclination is written as follows.

Gsurface=
K2

2

∫ [(
∂ϕ
∂z

)2

+
Ksb

K2

(
∂ϕ
∂y

)2
]

dydz+
K2

2L

∫
sin2ϕsdy (1.10)

In this equation,ϕs is the angle between the director on the cell surface and the anchoring easy axis.

L is anchoring extrapolation length, which is the distance between the cell surface and the imaginary

position where the director is expected to be parallel to the anchoring easy axis. A parameterl is

defined asl = d+2L.

If this system is assumed to be stationary (time-independent), and the director field is decided

based on the least-energy principle, the director angleϕ should obey Laplace equation. Normalized

coordinates are defined asy′ =
√

K2/Ksb
π
l y andz′ = π

l z in the equation.

∂ 2ϕ
∂y′2

+
∂ 2ϕ
∂z′2

= 0. (1.11)

Here the boundary condition is as follows:

∂ϕ
∂z′

∣∣∣
z′=(π/2)−(πd/2l)

=
l

2Lπ
sin(2ϕs),

∂ϕ
∂z′

∣∣∣
z′=(π/2)

= 0,

∂ϕ
∂y′

∣∣∣
y′=±∞

= 0.

Integration of the Laplace equation under this boundary condition gives the driving forceGsurfaceas

Gsurface= 2
√

KsbK2

[
π
2
−Tan−1

(
Lπ
l

)
+

∫ 1

0

1
t
Tan−1

(
lt
Lπ

)
dt

]
. (1.12)

Under the strong anchoring condition, the anchoring extrapolation lengthL can be taken as 0. There-

fore, approximationsL ≪ d andl ≈ d are introduced. Under these approximations, the driving force

Gsurfacereads

Gsurface= 2
√

KsbK2

[
π
2
−1+C+

π
2

ln

(
d

πL

)]
. (1.13)

ConstantC is Catalan’s constant defined as

C=
∫ 1

0

Tan−1(x)
x

dx≈ 0.916. (1.14)
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The total driving force acting on a disclination is the sum ofGe andGsurface. A characteristic length

ξc is defined so that the driving forceGe balances toGsurfaceat the distanceu = ξc. Now, the total

driving force under the strong anchoring condition is written as

Gsurface+Ge = Gsurface(1+ξc/u). (1.15)

The driving forceGe balancesGsurface, i.e.,Ge = Gsurface= πKd/(2ξc) at u= ξc. Ge is screened

by Gsurfacewhenu ≫ ξc, accordingly. In this situation, the driving force acting on a disclination is

almost constant (≈ Gsurface). Because of this constant driving force, therefore, a disclination moves

at a constant velocity. On the other hand, a disclination is accelerated whenu < ξc. The attractive

interaction between disclinations,Ge, is large enough, and it increases with decreasingu. The time

dependence ofu obeys Eq. 1.3 whenu becomes short enough.

The viscosity dragGv under zero electric field was discussed by Ryskinetal [11]. It is approxi-

mately written as

Gv =
π
4

γeffvln

(
3.6ξc

rc

)
. (1.16)

Herev is the velocity of a single disclination. Since the velocity of a disclination is assumed to be

independent ofswithin the elastic theory, the relative velocity−du/dt is written as

2v=−du
dt

. (1.17)

A differential equation that describes the time evolution ofu is given by this one together with Eq.

1.16.

Gv =−π
8

γeffdln

(
3.6ξc

rc

)
du
dt

(1.18)

Since the disclination motion is assumed to be slow enough, the viscous dragGv balances with

the total driving forceGsurface+Ge. The time evolution ofu under the strong anchoring condition is

governed by the following equation [12].

du
dt

= −vasy

(
1+

ξc

u

)
,

vasyt = u0−u+ξcln

(
u+ξc

u0+ξc

)
(1.19)
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A parametervasy is the asymptotic relative velocity in the region ofu≫ ξc written as

vasy=
8Gsurface

dπγeffln(3.6ξc/rc)
. (1.20)

Considering the relationGsurface= πKd/(2ξc), vasy is given by

vasy=
4K

γeffξcln(3.6ξc/rc)
. (1.21)

Equation 1.21 shows that the velocity decreases with increasingξc.

1.6.3 Dielectric energy

Since LC has dielectric anisotropy, the director field is reoriented depending on an external electric

field. Dielectric energyfel is written as [1,2]

fel =−1
2

ε0εa(EEE ·nnn)2. (1.22)

Here, parametersEEE, ε0, andεa are electric field, permittivity of vacuum, and dielectric anisotropy, re-

spectively. In this research, LC materials 4-cyano-4’-pentylbiphenyl (5CB), the molecular structure of

which is shown in Fig. 1.1, and 4-cyano-4’-octylbiphenyl (8CB) are used as samples for experiments.

Since 5CB and 8CB have positive dielectric anisotropy, the dielectric energy become minimum when

the directornnn becomes parallel toEEE. The molecular long axis, and consequently the director of the

NLC, tends to align parallel to the external electric field.

1.6.4 Frederiks transition

The director aligns parallel to the easy axis of the anchoring under the strong anchoring condition.

Without disclinations, the director aligns uniformly in the LC cell. When an external field perpen-

dicularly to the easy axis becomes sufficiently large, the director field is deformed. This deformation

has a clear threshold is described as occurrence of Frederiks transition [15]. Figure 1.9 shows the

director field before and after the deformation. The easy axis of anchoring is parallel to the surface of

this paper, and the electric field perpendicular to it. The director field starts to deform at a threshold

field [15]. When the electric field is parallel to the substrates as in Fig. 1.9 (a), the deformation of

twist mode is induced. The elastic constantK2 is relevant to this case, accordingly. The threshold is
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Figure 1.9. Deformation of director field under electric field
(Frederiks transition) caused by an applied electric field parallel
(a) and normal (b) to the substrates.

given by

Ec =
π
d

√
K2

ε0εa
. (1.23)

If the electric field is applied to perpendicular to the substrates, the director field is deformed as shown

in Fig. 1.9 (b). Since bend mode deformation is induced, the elastic constantK3 is relevant to this

case. The threshold electric field is given by

Ec =
π
d

√
K3

ε0εa
. (1.24)

Note that, for geometry (b), the threshold voltageVc = Ecd is independent ofd:

Vc = π
√

K3

ε0εa
. (1.25)

1.6.5 Flow dynamics of NLC

A NLC flows like a conventional liquid. Since flow dynamics of the NLC couples to the reorien-

tation of director, it becomes more complicated compared to that in isotropic liquids [1,2].

The flow disturbs the alignment of a director. Conversely, the reorientation of the director induces

the flow of the NLC. This flow called backflow [16,17] influences the dynamics itself.

19



In order to discuss simultaneously the flow and the elastic energy, a scalar order parameterSand a

tensor order parameterQQQ for the nematic order are introduced. A scalar order parameterS is defined

as follows,

S=
1
2

(
3⟨cos2θm⟩−1

)
. (1.26)

Here parameterθm is an angle between the directornnn and the molecular long axis. Tensor order

parameter is introduced as a function ofS, and it is written as

Qαβ = S

(
nαnβ − 1

3
δαβ

)
. (1.27)

Indices ofQQQ specify components of Cartesian axis. By usingQQQ, the Landau-de Gennes free energy

fb and the elastic energyfe are given as [2]

fb =
A
2

(
1− Φ

3

)
Q2

αβ − AΦ
3

Qαβ QβγQγα +
AΦ
4

(Q2
αβ )

2, (1.28)

fe =
L1

2
(∂αQβγ)

2+
L2

2
(∂αQαγ)(∂β Qβγ)+

L3

2
Qαβ (∂αQγε)(∂β Qγε). (1.29)

The parameterΦ is a constant related to a temperature.A represents the relative contribution of the

Landau-de Gennes free energy to the total free energy of the system. ParametersL1, L2, andL3 are

materials constants related to Frank elastic constants given by

L1 = (K3+2K2−K1)/(9S2), (1.30)

L2 = 4(K1−K2)/(9S2), (1.31)

L3 = 2(K3−K1)/(9S3), (1.32)

Time evolution of the tensor order parameterQQQ obeys the following equation,

(∂t + u⃗·∇)QQQ−SSS(WWW,QQQ) = ΓHHH. (1.33)

Here u⃗ is the velocity of flow in the bulk region,Γ the coefficient of energy dissipation due to the

rotation of a director, andWWW the velocity gradient tensor written asWαβ = ∂β uα = (∂uα/∂xβ ). HHH in

the right hand side is a molecular field for the nematic order, which is related to the free energyF by

the following equation.

HHH =−δF
δQQQ

+
III
3

Tr

(
δF
δQQQ

)
, (1.34)

20



whereIII is the unit matrix. FunctionSSS(WWW,QQQ) is given by

SSS(WWW,QQQ) = (ξDDD+ΩΩΩ)

(
QQQ+

III
3

)
+

(
QQQ+

III
3

)
(ξDDD−ΩΩΩ)−2ξ

(
QQQ+

III
3

)
Tr(QQQWWW). (1.35)

HereDDD andΩΩΩ are the symmetric and antisymmetric parts of the velocity gradient tensor, respectively,

andξ a parameter related to the anisotropy of molecular shape.

Velocity of flow in the bulk region⃗u obeys Navier-Stokes equation and the elastic theory. Stress

tensor exerted on the NLC due to the flow is written as

σαβ = −P0δαβ − (ξ −1)Hαγ

(
Qγβ +

1
3

δγβ

)
− (ξ +1)

(
Qαγ +

1
3

δαγ

)
Hγβ

+2ξ
(

Qαβ +
1
3

δαβ

)
QγεHγε −∂β Qγν

δF
δ∂αQγν

. (1.36)

ParametersP0 is the pressure. This equation includes terms of the tensor order parameterQQQ and the

molecular fieldHHH. It shows that the time evolution of order parameter and molecular field generate the

stress [2], which induces the flow of the NLC. Namely, disclination dynamics induces macroscopic

flow [16,17].
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Chapter 2

Cell gap dependence of asymmetric

annihilation

2.1 Introduction

The backflow effect on the annihilation dynamics of disclination pair has been studied by various

methods. Numerical simulations ignoring the surface effect have been reported for a two-dimensional

system without confinement [16, 17]. These works showed that the backflow makes asymmetric an-

nihilation dynamics. A disclination withs=+1/2 moves almost twice as fast ass=−1/2 one owing

to the backflow. On the other hand, a simple phenomenological model was proposed on the ba-

sis of Ericksen-Leslie theory by Sonnetet al. [19, 20] A more recent work utilizing perturbative

approach [21] explains the mechanism of dissipation around ans= ±1/2 disclination. The experi-

mental evidence of the backflow effect on disclination dynamics has also been given. Blancet al.[18]

observed the electric-field-driven annihilation of nematic disclination pairs withs= ±1/2 under an

electric field which was strong enough for ignoring the effect of cell surfaces. Their experimental

setup enabled a quantitative comparison with numerical results.

The fundamental characteristics of the backflow effect have been revealed by considering surface-

free systems as briefly summarized above. For more advancement, however, we have to treat the

backflow under more realistic situations. It is surmised that a strong anchoring affects the backflow

because the surface anchoring suppresses the reorientation of the NLC director.

Effects of cell surfaces on the disclination dynamics and the flow of NLC have been studied

theoretically. Denniston [22] showed that the disclination withs= ±1 requires the flow to move in

the medium regardless of the sign. Tóth et al. [23] studied the motion of disclination line which is

parallel to the substrates. In this situation, the backflow is confined between two cell surfaces.
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Figure 2.1. Molecular structure of 4-cyano-4’-pentylbiphenyl
(5CB).

In this chapter, we study experimentally the annihilation dynamics of disclinations under strong

anchoring condition considering backflow effect(s). In order to see the effect of surface systematically,

NLC cells were prepared of its thickness distributed in two-order of magnitude (d = 1 − 92 µm).

We investigate the cell gap dependence of the disclination velocity to reveal the anchoring effect on

the dynamics. The velocity ratiov+/v− is regarded as a measure of the backflow effect. Cell gap

dependence of the velocity ratio was analyzed in order to reveal a mechanism by which the anchoring

influences the backflow.

2.2 Experimental

Nematic phase of 4-cyano-4’-pentylbiphenyl (TNI = 35.3◦C) was selected as a sample to study

the disclination dynamics, because its material parameters are well known [24, 25]. The material is

written as 5CB for short. Structure of the molecule is illustrated in Fig. 2.1.

5CB was sandwiched between two glass plates coated with a homogeneous alignment material.

Poly(vinyl alcohol) (PVA) solution (1% in concentration) was used as the homogeneous alignment

material. Glass plates were coated with PVA using pieces of paper dipped in PVA solution. The

pieces of paper were moved in a particular direction to obtain a strong anchoring condition. The glass

plates were then dried. The coating-drying process was performed 8 times. After final drying, the

glass plates were heated for 1 h at 130◦C.

The cell gapd was discretely changed by spacers, the thickness of which were 1, 2, 5, 12, 32,

54, and 92µm. The true cell gapd is expected to be larger than the thickness of spacer byca. 3

µm, which was estimated from separate measurements on cells similarly prepared. The difference

between the cell gap and the thickness of spacer scarcely affects the qualitative discussion in this

paper.

Disclinations were generated by quenching the sample fromT = 36.0 ◦C (isotropic phase) to 34.8

◦C (nematic phase) at a rate of 10 K/min. Then the sample temperature was kept constant within
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±0.1 ◦C by using a hot stage (LINKAM LK-600PM and THMS600) for observation. The image of

disclination pairs was recorded through a CCD camera mounted on a polarizing microscope. After

the sample was quenched, the dynamics was observed of a disclination pair moving perpendicularly

to the anchoring easy axis. As will be described, our setup guarantees the annihilation dynamics of

the disclination pair can be discussed while ignoring other disclination(s).

2.3 Results

First we examined the velocity of±1/2 disclinations at a constant cell gap (d = 12 µm). Two

disclinations seemingly moved with constant but different velocities. The velocity was determined

by using a least-squares method assuming a linear function of time for their positions. Although the

velocity itself depended on cells, which would differ in the strength of surface anchoring, the velocity

ratiov+/v− for an annihilating pair in each cell remained constant. Since the ratiov+/v− is a measure

of the backflow, the constant ratio implies that the backflow is not influenced by the strength of surface

anchoring if the cell gap is kept constant in our LC cells.

We observed annihilation of disclination pairs withs= ±1/2 in LC cells withd = 1 − 92 µm.

Figure 2.2 shows the typical examples of annihilation behaviors. This plot shows the position of two

annihilating disclinations withs=+1/2 (upper side) ands=−1/2 (lower side) as functions of time.

Here, we definex as the axis connecting two disclination cores. The asymmetric motion with +1/2

defects moving faster is clearly seen by inspecting the meeting point, which is not halfway between

the initial positions of the defects. It is noted that the asymmetry is small in the LC cell withd = 1

µm.

Figure 2.2 shows that the motion of disclinations just before annihilation deviates from the linear

dependence on time. This trend is more discernible with increasing the cell gapd. In the curved

region, the elastic interaction between±1/2 disclinations dominates the annihilation [12]. To see this,

a characteristic lengthξc, which is the radius of a cylindrical region (around each disclination core)

where the elastic force field associated to the defects dominates the anchoring torque, is calculated.

Bogi et al. [12] derived the formula ofξc within an elastic theory as

ξc =
πKsbd

4
√

KsbK2
[π

2 −1+C+ π
2 ln

(
d

πL

)] , (2.1)

whereKsb andK2 are, respectively, the splay-bent and twist elastic constants,L the anchoring ex-

trapolation length, andC =
∫ 1

0 [arctan(x)/x]dx≈ 0.916 (Catalan’s constant). We setKsb= 2.4 pN,
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Figure 2.2. Typical annihilation dynamics ofs=±1/2
disclination pair in LC cells withd =1, 5, 32, and 92µm (a),
andd = 2, 12, and 54µm (b).
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Figure 2.3. Cell gap (d) dependence ofξc calculated according
to Eq. 2.1.

K2 = 1.5 pN andL ≈ 0.2µm [12]. Figure 2.3 shows the dependence ofξc on the cell gapd. ξc mono-

tonically increases withd. It means that elastic interaction becomes in effect even when the distance

between the disclination pair is large in a thicker cell. In other words, the curved region in Fig. 2.2

grows with increasingd. It is noted thatξc in Fig. 2.3 is smaller than 10µm in our experimental

setup. The annihilating disclination pairs that we observed were separated from other disclinations

at least 30µm. The disclination pair under observation was safely assumed to behave as if isolated

from others.

We definev+ (v−) as the velocity ofs= +1/2 (−1/2) disclination in the linear region against

time. Ford ≤ 12 µm, we determinev+ andv− by applying the least-squares method assuming a

linear function of time to the whole course of annihilation dynamics. Ford ≥ 32 µm and larger,

however, the curved region is certainly discernible as seen in Fig. 2.2, and should be omitted from the

fitting procedure. In order to determine the time domain which we should ignore, we plotted the time

dependence ofu2, whereu is the distance between the annihilating disclinations. Whenu is small,u2

exhibits a linear decrease with time (shown in Fig. 2.4). It means thatu obeys the square-root time

law [8, 9]. A linear region of a plot like Fig. 2.4 was thus omitted in determiningv+ andv− by the

least-squares analysis assuming a linear function of time.

The validity (adequacy) of our determination ofv+ andv− was examined from two aspects: 1)
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Figure 2.4. Time dependence ofu2. The straight line shows the
square-root time law [8,9] before annihilation.

elastic constantK from Fig. 2.4, and 2)v− itself in comparison with a theoretical magnitude. First

we discuss the elastic constant. Whenu is small, the defect annihilation is dominated by elastic

interaction between the two disclinations, and the effect of the surface anchoring is negligible.u

obeys the square-root time law in this situation. If only the elastic interaction between disclinations

is considered as a driving force of the annihilation in Eq. 2.2, the time dependence ofu without the

surface effect is given by [8,9]

u2 = u0
2− 8πKt

πγeff ln
(

3.6ξc
rc

) , (2.2)

whereγeff is the effective viscosity expressed as

γeff = γ1−
α2

2

2(ηb− γ2)
(2.3)

in terms of the orientational viscosityγ1, and coefficients related to the Leslie coefficients (α2, ηb, and

γ2) [12,24]. The numerical value ofγeff is calculated as1.1×10−2 Pa s. Ten annihilation data yields,

in average,K = 1.5 pN, which is favorably compared with the reported estimate for 5CB (about 1−

2 pN) [25]. Therefore the elastic interaction between disclinations is certainly dominant in the linear

region of Fig. 2.4. Second we discuss the experimental magnitude ofv− itself. Since the backflow
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Figure 2.5. Cell gap (d) dependence of experimentalv− and
theoreticalv while ignoring the backflow effect calculated by
using Eq. 2.4.

is very weak around ans=−1/2 disclination,v− is close to the velocity estimated within the elastic

theory. In our experiment, only the anchoring energy contributes to the velocityv−. The driving

force from the anchoring energy should be equal to the viscosity [12]. The velocity of ans= −1/2

disclination is thus given by

v− =
8
√

KsbK2
[π

2 −1+C+ π
2 ln

(
d

πL

)]
dπγeff ln

(
3.6ξc

rc

) . (2.4)

The constantrc is the radius of the core. We setrc = 0.01 µm considering the literature [12]. The

dependence ofv− on cell gapd is shown in Fig. 2.5. The experimental and theoretical velocities

are qualitatively consistent. The above analyses show that the determination ofv+ andv− seems

acceptable.

The velocity of a disclination was determined by using the method noted above. The actual value

of velocity exhibits difference depending on the position within a cell. Figure 2.6 shows experimental

velocities of annihilating disclinations (d = 54 µm). The annihilation was observed at three positions

in a LC cell. These observations were repeated for more than 20 times at each position. Each point

with an error bar means the average of velocity in one position.
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Figure 2.6. The disclination velocity of each position, in thed =
54 µm LC cell.

Having validated the determination ofv+ andv−, we proceed to the issue of the strength of the

backflow effect. Figure. 2.7 shows the relation betweenv+/v− and cell gapd. The largest error bar is

exhibited by thed = 54 µm cell, the data of which are shown in Fig. 2.6.v+/v− ≈ 2 is expected from

theoretical studies ignoring the influence of surfaces. In our experiment,v+/v− gets close to 2 with

the cell gapd becoming large. This is reasonable because the surface effect becomes relatively small

with increasingd. It is emphasized that the velocity ratiov+/v− at d = 1 µm is much smaller than a

smooth (straight) curve in Fig. 2.7. The straight line means a logarithmic function. Figure 2.7 shows

that the reduction ofv+/v− aroundd = 1 µm is more rapid than the logarithmic function.v+/v−

seems to be changed discontinuously. This implies thatd = 1 µm LC cell has different flow mode

from thicker cells.

2.4 Discussion

Let us discuss the dependence on the cell gapd of the velocity ratiov+/v−, which is a measure

of the backflow. The elastic anisotropy is ignored in the following, though it could cause asymmetric

annihilation of a disclination pair in Langmuir monolayers [26]. Previous theoretical studies [16,17]

predictedv+/v− ≈ 2 in the absence of surfaces. If the backflow is suppressed by cell surfaces, it is

expected thatv+/v− gets close to the unity.
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Figure 2.7. Cell gap (d) dependence of velocity ratiov+/v−. A
straight line is a guide for eyes.

When the cell gap is thicker than 2µm, the velocity ratio increase slightly with the increase in

the cell gapd. The ratiov+/v− ≈ 1.8 is reached atd = 102 µm as seen in Fig. 2.7. This magnitude

is comparable with the theoretical prediction (ca. 2). It shows that thicker LC cells have the region

where the surface effect could be ignored. This region should locate at the central part of a cell in the

direction of thickness, because the surface effect is the weakest there. Figure 2.8 schematically shows

the expected distribution of the director field in a thick LC cell. A constant (uniform) flow is expected

in the region near the center of the cell. This region is denoted “free flow region” hereafter. On the

other hand, Fig. 2.7 shows thatv+/v− drops sharply whend = 1 µm. It means that the backflow is

suppressed in the LC cell. A region with weak flow exists near the cell surface. We call this region

“suppressed flow region.” Considering the fact that NLC is sandwiched between two glass plates, the

thickness of the suppressed flow region is about 0.5µm.

We discuss the mechanism of the backflow to explain the dependence of velocity ratio on cell gap

d. Tóthet al.[16] showed that the coupling of two modes of flow causes the total backflow. One mode

comes from the director rotation involved in the disclination movement. The sense of the director

rotation is decided by the sign ofs. The other mode comes from the movement of the disclination

core, where the nematic order is suppressed. The core can be treated as a moving cylinder in the NLC.

The movement of the core induces vortices, accordingly. This mode is independent of disclination
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Figure 2.8. Schematic illustration of the director field onπ-wall.
The director field near two surfaces are twisted by the anchoring
effect.

strengths. Namely, the flow mode is“symmetric” for the sign ofs. For s= −1/2 disclination, the

flow caused by the director rotation is opposite to the symmetric flow, resulting in negligible backflow.

On the other hand, the two flow modes points the same direction around ans= +1/2 disclination.

Moreover, the direction of the coupled flow is the same as that of the disclination movement. Because

of this coupling, ans=+1/2 disclination is accelerated.

We consider the distribution of flow caused by the director rotation in order to explain the forma-

tion of suppressed and free flow regions, because the symmetric flow has no essential effect on the

asymmetry in the annihilation dynamics. LC cells withd≥ 2µm is considered first. The director field

between two glass plates is distributed as Fig. 2.8 on the so-calledπ-wall. The director near the cell

surface is aligned by the anchoring effect. The angle between the director and the anchoring easy axis

is smaller in comparison with that in the bulk region, whereas the anchoring effect is relatively small

in the bulk region, where the director field is distributed as if there were no surfaces. In addition, the

director field in the bulk region is mostly independent of thez coordinate.

After the disclination goes through, the angle between the director and the anchoring easy axis

becomes zero. Considering the distribution of the director field, the director rotation near the surface

is slower than that in the bulk region. Therefore the flow caused by the director rotation becomes

weak near the cell surface. In the bulk region, the flow distributes uniformly. As for the symmetric

flow, we assume that there is no specific cell gap as in the case of Poiseuille flow of isotropic fluids.

The assumption is phenomenological, but does not have essential effect on the asymmetry in annihi-

lation dynamics. Distributions of the two flow modes are schematically shown in Fig. 2.9. The total
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Figure 2.9. Distribution of flow coming from director rotation
(a), symmetric flow (b), and total backflow around ans=+1/2
disclination (c).

backflow is a superposition of the two flow modes as shown in Fig. 2.9(c). It is expected that the total

flow is almost independent of thez coordinates in the central part of the LC cell by virtue of the flat

distribution of the director rotation flow. On the other hand, the backflow drops off rapidly as the cell

surfaces come close. The gradual increase inv+/v− for d ≥ 2 µm is explained by the increase in the

maximum velocity of Poiseuille (symmetric) flow with increasing the cell gapd.

The suppression of the backflow in the LC cell withd = 1 µm is also explained on the basis of

Fig. 2.9. Because of the small cell gap, the flat region in Fig. 2.9(a) is absent in the LC cell withd =

1 µm. Therefore all the thickness of LC cell belongs to the suppressed flow region. The velocity ratio

v+/v− gets close to the unity.

To see the consistency of the above qualitative discussion with existing theories, we examine the

director field around theπ-wall. The angle between the director and the anchoring easy axis, denoted

asϕ , can be calculated on the basis of the elastic theory [12]. By putting the origin of coordinates on
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a cell surface, the angleϕ on theyz-plane (shown by a dashed line in Fig. 2.10(b)) is given by [12]

ϕ(y,z) =
1
2

Tan−1

 2sinh(
√

K2
Ksb

π
d y)sin(π

d z)

sinh2(
√

K2
Ksb

π
d y)−sin2(π

d z)

 . (2.5)

Figure 2.10(a) shows the relation betweenϕ and the distance from the lower surface for cell gaps used

in the present study. The value of they coordinate was set to the radius of disclination core (rc = 0.01

µm) to fix the sense of director rotation (±π/2 is equivalent because of the head-to-tail symmetry of

nematic phase). The angle starts at a small value on the cell surface (z= 0), increases rapidly without

the dependence on the cell thicknessd, saturates toπ/2 (the surface-free value) if the cell is thick

enough, and then return to the small value on the other surface (z= d). This is fully consistent with

our expectation depicted in Fig. 2.8. In the LC cell withd = 1 µm, the maximum magnitude ofϕ

is notably smaller thanπ/2. The suppression of the flow caused by the director rotation is expected

throughout the cell.

2.5 Conclusion

We observed the annihilation dynamics of disclination pair under the strong anchoring condition.

To see the backflow effect, we analyzed the ratio of velocities ofs= ±1/2 disclinations. The ratio

rapidly decreased when the cell gapd was reduced to 1µm. It means that the backflow is suppressed

in a thin LC cell. There is the suppressed flow region near the cell surface, where the effect of the

surface anchoring is in effect. The angle between director and the anchoring easy axis at the surfaces

is smaller in comparison with that in the central region of the LC cell. The director rotation involved

in annihilation dynamics is slow near the cell surface, accordingly. Therefore the flow caused by the

director rotation is significantly suppressed. When the cell gapd is 1 µm, the director rotation is

suppressed throughout the whole thickness of the cell. This picture is supported by the calculated

profile of the director field within an elastic theory.
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Figure 2.10.(a) Angle betweeny-axis and the director
calculated by using Eq.2.5 for cell thicknessesd utilized in the
present study. (b) Director field atz= d/2 with a disclination
pair. The dashed line in (b) indicates the planex= 0, where
Eq.2.5 applies.
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Chapter 3

Annihilation under external field and surface

anchoring

3.1 Introduction

Surface anchoring effect on disclination dynamics and backflow was investigated in the previous

chapter. Backflow is suppressed under the strong anchoring condition, and “suppressed flow region”

is generated near the cell surface. It was revealed that the surface anchoring influences very thin

region close to the surface. On the other hand, an external electric field deforms the whole region

of the director field in the LC cell. Therefore the electric field can influence disclination motion in a

more direct way. In this chapter, the effect of the external electric field is discussed, in addition to that

of the strong anchoring.

Disclination dynamics under the external electric field has been discussed considering backflow.

Blanc et al. [18] measured the electric-field-driven annihilation of nematic disclination pairs with

s= ±1/2 in the nematic phase of 5CB. They used planarly oriented layers with a very weak az-

imuthal anchoring, thus enabling a free rotation of the director on the plane of the substrates. In a

strong enough electric field, the anchoring becomes negligible. This simple experimental system al-

lows a quantitative comparison with numerical studies based on the hydrodynamics of tensorial order

parameter. The simulations showed that the asymmetry in the annihilation of the nematic disclinations

is due to the backflow.

Backflow effect under the influence of cell surfaces has also been studied. Tóthet al. [23] studied

the motion of disclination line that is parallel to the substrates. In this situation, backflow is confined

between two cell surfaces. On the other hand, the backflow effect on annihilation dynamics under the

strong anchoring condition remains totally unexplored.
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Figure 3.1. Configuration of the director around±1/2
disclinations in the present experimental setup. The two dots are
cores of these disclinations. These disclinations move parallel to
the applied electric field. Curved arrows surrounding the director
denote torques. The torque from the elastic energy (solid) is
always opposite to that from the electric field (dotted).

In this chapter, presented is an experimental study of the dynamics of±1/2 disclinations in the

nematic phase of 5CB under the strong anchoring condition in an electric field. The results show

that their motion is clearly asymmetric; The +1/2 disclination moves almost twice as fast as the−1/2

one even under the strong anchoring condition. This behavior essentially remains unchanged under

electric fields up to 30 V/mm. The backflow effect under the electric field is discussed.

3.2 Experimental

Nematic phase of 5CB was selected as a sample to study the disclination dynamics. 5CB was

sandwiched between two glass plates coated with a homogeneous alignment material. Poly(vinyl

alcohol) (PVA) solution (1% in concentration) was used as the homogeneous alignment material.

Details of the surface treatment process was shown in Chapter. 2.

Aluminum foil (12µm in thickness) was used as spacers and electrodes to apply a dc electric field

parallel to the glass plates. Each electrode was 0.3 mm in width and 10 mm in length. Two electrodes

were arranged parallel to the easy axis of anchoring at an interval of 0.5 mm. An electric fields was

applied perpendicularly to the easy axis, to which the two glass plates were parallel.

Disclinations in nematic phase were generated by quenching the sample from the isotropic phase

(T = 36.0 ◦C) to the nematic phase (34.8◦C), and then the sample temperature was kept constant

within ±0.1 ◦C by using a hot stage for observation. The experimental configuration is schematically

shown in Fig. 3.1.

Images of disclination pairs were recorded through a CCD camera mounted on a polarizing micro-
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scope. After the sample was quenched, the dynamics of the disclination pair moving perpendicularly

to the anchoring easy axis was observed. The applied dc electric field ranged from 0 to±30 V/mm.

3.3 Results

A typical time dependence of the distanceu between a disclination pair is shown in Fig. 3.2.

When the disclination pair is largely separated,u decreases linearly with time. On the other hand,

there is a slight deviation downward from the extrapolation line with a constant speed shortly before

the annihilation of the disclinations. Although the relative velocity of the disclination pair gradually

decreases with increasing electric field, the time dependence ofu is essentially the same as that at the

zero electric field. This behavior is simply explained in terms of an elastic model proposed by Bogi

et al. [12], where the anchoring energy is taken into account. According to them, during the time

course,u satisfies the following equation

vasyt = u0−u+ξc ln

(
u+ξc

u0+ξc

)
, (3.1)

whereu0 is the initial distance between the disclinations.vasy is the initial annihilation speed given

by

vasy=
16

√
KsbK2

[π
2 −1+C+ π

2 ln
(

d
πL

)]
dπγeff ln

(
3.6ξc

rc

) . (3.2)

In Eq. 3.1,ξc is a characteristic length, which represents the radius of a cylinder around each defect

where the elastic torque associated with the defects dominates the anchoring torque. In the region

u≫ ξc, the direct elastic interaction between disclinations is completely screened out by the anchor-

ing energy. The disclinations approach each other with a constant speedvasy (stationary regime), ac-

cordingly. On the other hand, in the regionu< ξc, the elastic interaction of two anchoring-free discli-

nations is in effect. The distance between disclinations follows a square-root time law (accelerating

regime). Thus, a crossover between the stationary and accelerating regimes occurs at approximately

u≈ ξc. Since the square-root time law was observed only just before the annihilation of disclinations

in the present study, the time dependence ofu is described by Eq. 3.1 withξc → 0. This means that the

direct elastic interaction between disclinations plays only a minor role in the disclination dynamics,

and therefore the present cell successfully provides a strong anchoring condition.

Figure 3.3 shows the position of two annihilating disclinations withs= +1/2 (upper side) and

s= −1/2 (lower side), as a function of time. Here, we definex as the axis connecting the two
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Figure 3.2. Time dependence of the distanceu between a
disclination pair in dc electric fields of 0, 16, and 28 V/mm.
There is a slight deviation downward from the straight line
(dashed, with a constant speed) shortly before the annihilation of
the disclinations.

disclination cores (see Fig. 3.1). Asymmetric motion with +1/2 defects moving faster than−1/2

defects is clearly seen by inspecting the meeting point, which is not the midpoint between the initial

positions of the defects. A similar asymmetry in the defect motions was also observed in the case of

applied electric fields. Note that thes= ±1/2 disclinations exhibit stationary velocities most of the

time.

Now, we focus on the stationary dynamics of the pair of disclinations. Figure 3.4 shows the electric

field dependences ofv+ andv−, wherev+ (v−) is the stationary velocity of the disclination withs =

+1/2 (−1/2). For comparison,vasy (= v++ v−) is also shown.v+, v−, andvasy decrease gradually

with increasing electric field. Similar results were obtained when the direction of the electric field

was reversed (not shown).

To discuss the role of the backflow, we quantify the symmetry-broken dynamics using the ratio of

v+/v−. Figure 3.5(a) shows the ratiov+/v− as a function of electric field.v+/v− is almost independent

of the electric field up to 30 V/mm with a constant value of∼ 1.6, which is slightly smaller than that

in a weak anchoring case [16–18, 23, 27]. Since thes= −1/2 disclination is only slightly affected

by the backflow,v− can be regarded as the velocity of the defect without the backflow effect. Figure

38



Figure 3.3. Motion of the disclinations towards their
annihilation in electric fields of 0, 16, and 28 V/mm. Thex-axis
is defined as the axis connecting the two annihilating
disclinations. The position of thes=+1/2 (−1/2) disclination is
positive (negative) att = 0.

3.5(b) showsv+/v− as a function ofv−. We notice thatv+/v− is also independent ofv−. Our results

show thats = +1/2 disclinations systematically move faster thans=−1/2 ones.

3.4 Discussion

Let us discuss the effect of an electric field on the annihilation under a strong anchoring condition.

The velocities of±1/2 disclinations decrease with increasing the electric field. The reduction in

disclination speed should be explained by a mechanism that does not affect the growth of backflow.

Possible origins of disclination speed reduction are as follows: (i) electrohydrodynamic convection

(EHC) of the NLC, (ii) a change in the viscosity of 5CB with electric field application, and (iii) a

change of elastic energy of 5CB with electric field application.

The characteristic pattern of EHC [28–30] was not observed in the present experiments. Therefore

EHC is not the cause of the velocity reduction. The change in viscosity is also not the cause of the

velocity reduction, because the reduction in velocity is too large to be explained by the change in

viscosity [31]. Furthermore, hypotheses (i) and (ii) would change the velocity ratio. Consequently,
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Figure 3.4. Electric field dependences ofv+, v− andvasy.

these hypotheses are discarded.

The reduction in disclination speed can be qualitatively understood by considering a change in

elastic energy due to an applied electric field [hypothesis (iii)]. It is known that the coupling term in

free energy between a dc electric field and the director field has the form [1],

fel =−1
2

ε0εaE
2cos2θ , (3.3)

whereεa is the dielectric anisotropy (positive for 5CB), andθ the angle between the director and the

electric field. In our experimental configuration shown in Fig. 3.1, the director in the bulk region is

perpendicular to the electric field (θ = π/2) owing to the strong anchoring, while that on theπ-wall is

parallel to the electric field (θ = 0). Considering the positive dielectric anisotropy of 5CB, theπ-wall

region is stabilized byε0εaE2/2 compared with the bulk region. The energy per unit length of the

π-wall is equal to the constant driving force, which dominates the velocity of the disclination in the

regionu ≫ ξc [12, 18]. Hence the driving force of annihilation is weakened under an electric field,

resulting in the reduced velocity of the disclination. The disclination velocitiesvasy, v+ andv− are in

proportion to elastic energy. The observed decrease in Fig. 3.4 is roughly quadratic as expected from

Eq. 3.3.
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Figure 3.5. Ratiov+/v− as a function of electric field (a) andv−
(b).

41



The discussion on the stabilization of theπ-wall given above does not consider how two disclina-

tions approach each other while accompanied by the deformation of the director filed. The velocity

of disclinations is also influenced by the suppression of the director rotation around disclinations.

The director field around disclinations is different from that in the exact (and idealized)π-wall re-

gion (plane). The director near disclinations is in rotary motion owing to the disclination dynamics.

We have to consider the balance of three types of torque arising from the elastic energy, the electric

field, and the viscosity. The torque from viscosity arises only to balance the sum of the elastic and

dielectric torques in the case of the stationary dynamics considered in this study. This is true even

under a strong anchoring condition. We discuss the elastic and dielectric torque in order to explain

the disclination motion under a strong anchoring and an electric field. The director field near±1/2

disclinations in the middle of the cell in its thickness direction is shown in Fig. 3.1. Under a strong

anchoring condition, the director near the cell surfaces is parallel to the anchoring easy axis. Along

the cell thickness (z-axis), therefore, the angle between the director andx-axis changes from 0 toπ/2

(maximum). Because of this twist, the director is subjected to a torque, the sense of which depends

on the side of theπ-wall. This torque arising from the twist deformation is shown as solid curved

arrows in Fig. 3.1 Since the director at the surface is fixed by a strong anchoring, the torque forces

the director to rotate toward the anchoring easy axis. On the other hand, the electric field forces the

director to be parallel to theπ-wall. Considering again the positive dielectric anisotropy of 5CB, the

dielectric energy becomes minimum when the director is parallel to theπ-wall. This dielectric torque

is shown in Fig. 3.1 by dotted arrows. The dielectric torque has the opposite sense to the elastic torque.

Thus, the rotation of the director is suppressed by an external electric field. The external electric field

makes the rotational relaxation around disclintions slower by this mechanism. For disclinations to be

stationary, the torques arising from twist elasticity, electric anisotropy and viscosity must be closely

balanced. Since the torque from the dielectric anisotropy is always opposite the rotation necessary

for the movement of disclinations, the sum of the elastic and dielectric torques, i.e., the total driving

force, becomes smaller. The torque from viscosity is a function of director rotation speed. A smaller

driving force generates the slower director rotation, and the torque from viscosity becomes smaller,

accordingly. It is emphasized that our model is for a time course when directors are just rotating

associated with the movement of disclinations. This model of torque balance is valid under a strong

anchoring condition and a smaller electric field than the cutoff of the Frederiks transition (estimated

asca.35 V/mm for the present experimental setting).

Finally, a comment is given on the reason why the ratio of defect velocities remains constant under

external electric fields. Figure 3.1 shows that the mechanism for the slowing down applies regardless
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of the sign ofs= ±1/2 disclinations. The suppression of director rotation around thes= ±1/2

disclination is explained by the elastic (i.e., stationary) theory. Since there is no plausible reason to

assume that hydrodynamic parameters are altered by the external electric field, the backflow arises in

the same way as under the zero electric field condition, and the ratio of disclination velocity remains

constant.

3.5 Conclusion

We have presented an experimental study of the dynamics of disclinations withs = ±1/2 in a

NLC under a strong anchoring condition in an electric field.v+/v− is almost independent of the

electric field up to 30 V/mm with a constant value of∼ 1.6, which is slightly smaller than that in a

weak anchoring case. Moreover,v+/v− is independent ofv−, which can be regarded as the velocity

of defects without the backflow effect. Our results show thats= +1/2 disclinations systematically

move faster thans= −1/2 ones. The backflow effect under a strong anchoring condition is very

similar to that without the anchoring effect. These experimental results suggest that a strong velocity

vortex pair is formed around the+1/2 defect even under a strong anchoring condition. An electric

field significantly affected the rotation of director around disclinations, but only slightly affected the

occurrence of backflow nears=±1/2 disclinations.
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Chapter 4

Ultraslow oscillation of disclination after

abrupt switching of voltage

4.1 Introduction

In Chapter 2 and 3, the annihilation dynamics of the nematic disclinations was investigated under

the stationary external forces. The annihilation dynamics was reasonably analyzed based on the

continuum theory of the NLC. In previous chapters, disclination dynamics was analyzed based on the

assumption that the external force balance the viscous drag. In this sense, the motion of a disclination

in a quasi-steady state has been studied so far.

If the deformation of the director field is large and time-dependent, the deformation will also de-

pend on the position and velocity of the disclination. In particular, when an electric field is applied to

a liquid crystal (LC), such deformation is easily introduced. Since the force acting on the disclination

also depends on time (and position), the disclination dynamics will become more complicated.

Disclination dynamics under a high-frequency ac field has been well discussed. [18] Because the

dielectric energy of an LC is proportional to the square of the field strength, the effect of a high-

frequency ac field can be regarded as identical to that of a dc field. Actually, the annihilation dy-

namics of a disclination pair under a dc field was reported to be the same as that under a steady ac

field. [32] The frequency used in past studies was, however, higher than the relaxation frequency of

the director field but lower than the relaxation frequency of dielectric dispersion due to molecular

reorientation. [33] It is possible that dc and ac voltages may exert different effects on the disclination

dynamics accordingly. Since the quasi-stationary dynamics has been successfully analyzed assuming

the equivalence of dc and ac fields, such a difference might appear in the dynamics immediately after

applying dc and ac voltages.
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Figure 4.1. Schematic illustrations of LC cell. Cross-sectional
view (a) and top view (b). In (a), the director field is also shown
schematically.

In this chapter, we performed experiments to record the relaxation dynamics of an isolated nematic

disclination bound to an air-LC interface by applying an abrupt (stepwise) change in the electric field.

The damped oscillation of the disclination with a very long time scale was observed after switching

only under the dc voltage. The details of the oscillation (amplitude and cycle) depend on the history

of voltage switching.

4.2 Experimental

It is known [34] that an isolated and stable disclination (s= −1
2) ring is formed at its periphery

when a droplet of nematic LC is sandwiched between two planar substrates having preferential per-

pendicular alignment, as schematically shown in Fig. 4.1. The surface facing the air forms a meniscus,

to which the local director field is perpendicular at all points. Then, a disclination line is introduced

along the interface.

8CB (nematic-isotropic phase transition temperatureTNI = 40.5 ◦C) was selected as a nematic
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Figure 4.2. Molecular structure of 8CB.

LC sample because its material parameters are well known. [35–38] A schematic view of our ex-

perimental system is shown in Fig. 4.1. An 8CB droplet was sandwiched between two indium tin

oxide (ITO)-coated glass plates. The glass surface was treated with a vertical alignment material

[n-octyltriethoxysilane (Z-6341)]. Since the director is aligned perpendicular to the surface of the

substrates and the air-LC interface, a disclination ring was stably introduced near the air-LC inter-

face. The cell gapd was controlled by a spacer made of polyimide tape. The thickness of the cell

and glass plates was measured five times, and the arithmetic mean of 55µm was adopted asd. The

temperature (T = 39.0 ◦C) was kept constant within±0.1 ◦C using a hot stage and a temperature con-

troller (INSTEC HCS302 and mK1000). The temperature was monitored by using a thermocouple

placed near the sample. Images of the disclination were recorded using a digital camera with spatial

and time resolutions of0.19 µm/pixel and 30 frames/s, respectively.

The disclination dynamics was observed by exerting an abrupt (stepwise) change in the applied

voltage to the cell. In the dc experiments, the pair of applied dc voltages was changed systematically

as follows. First, the initial voltageVi was set to−1.00, 0.00, 0.50, 1.00, 1.50, and 3.00 V while

keeping the final voltage atVf = 2.25 V. Second,Vf was varied from 1.75 to 2.50 V withVi = 0.00

V. Third, bothVi andVf were changed while their difference was kept atVf −Vi = 1.25 V. In the ac

experiment for comparison,Vf = 2.00V (RMS value, 1 kHz) andVi = 0.00V were used.

4.3 Results

The trajectory of the disclination was obtained by analyzing movies of its motion. The recorded

movies were converted to a set of luminance (greyscale) data. In order to reduce the noise in the

luminance data, the luminance was averaged out in each frame along the disclination line (150 pixels

in length), which is short enough to ignore the curvature of the disclination. Considering that the

luminance reaches a minimum at the disclination position, the integrated luminance data for each

frame were fitted to a Gaussian to locate the disclination position as the minimum point of the fitted
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curve. The disclination positionx′ was measured from the air interface.

The general behavior of the motion of a disclination observed under a dc voltage is as follows. A

disclination remains stationary under a voltage ofVi before the change in voltage. When the voltage

is switched toVf at t = 0, the disclination starts to move toward to the equilibrium positionx0. After

some relaxational (oscillatory) motion around the equilibrium position, the disclination stops. The air-

LC interface did not move upon switching the applied voltage. The displacement of the disclination

is written asx= x′−x0. The trajectories of the disclination are shown in Fig. 4.3.

Note that the existence of the equilibrium positionx0 is essential for a relaxation resembling a

damped oscillation. The existence arises from the balance between the dielectric force and the repul-

sive force from the air-LC interface. Such relaxation would only be observed for a bound disclination

at an air-LC interface.

In Fig. 4.3(a), trajectories with the sameVf are shown. The amplitude of oscillation and the

velocity of the disclination increases with decreasingVi . With Vi = 3.00V (>Vf = 2.25V), the sense

of the oscillation is reversed because the starting point of the disclination is on the opposite side of

the equilibrium position. When the difference between the start and final voltages is kept constant

[1.25 V, Fig. 4.3(b)], the maximum amplitude of the oscillation decreases with increasingVf . This

is explained by considering the fact that the distance between the disclination and the air interface

is larger for a smaller voltage because of the shift of the equilibrium position (x0) as shown in Fig.

4.3(b). If the repulsive force acting on the disclination strongly depends on the distance from the air

interface, the disclination moves more easily under a weak voltage, giving a damped oscillation with

a large amplitude.

The trajectory under an ac voltage is shown in Fig. 4.4. The disclination monotonically approaches

the equilibrium position and ceases to move within 20 s. Namely, the disclination relaxes much faster

under an ac voltage than under a dc voltage. This implies that the director field relaxes faster under

an ac voltage than under a dc voltage. The elastic energy causes a minimum within a short time under

an ac voltage accordingly. Figures 4.3 and 4.4 imply that the detailed behavior of the relaxation

depends on the frequency of the applied voltage. Since the dielectric energy of an LC is theoretically

proportional to the square of the field strength, dc and ac fields have indistinguishable effects if the

frequency of the ac field is high enough. In the present experiment, the frequency is high enough

relative to the motion of the disclination, as evidenced by the nonsynchronous motion under the

applied voltage. However, the experimental results show that the disclination dynamics under an ac

voltage is different from that under a dc voltage.

Since the diameter of the droplet is large enough (≈ 5 mm) compared with the amplitude of
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Figure 4.3. Damped oscillation of a disclination (a) under a
constant final voltage (Vf = 2.25V, Vi =−1.00, 0.00, 0.50, 1.00,
1.50, 3.00V) and (b) driven by a constant∆V =Vf −Vi

(Vi = 0.50, 0.75, 1.00, 1.25V and∆V = 1.25V).
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Figure 4.4. Disclination dynamics under an ac voltage
(Vi = 0.00V, Vf,RMS = 2.00V, 1 kHz).

oscillation (≤ 5 µm), the disclination can be regarded as a straight line. Consequently, little effect

of the line tension of the disclination is expected for its oscillatory motion normal to the line. The

effect of backflow is also ignored here because it is known that the backflow around ans= −1/2

disclination is very weak under an external voltage [23]. In more advanced studies, needless to say,

the flow dynamics of LC is taken into account [39].

In order to experimentally extract the characteristics of the observed dynamics, we examine the

value of(τ/2)app (the time difference between successive crossings at the equilibrium positionx0)

under a constantVf. Figure 4.5 is a plot of(τ/2)app with Vf = 2.25 V as a function ofxex, at which

the trajectory exhibits an extremum between the nodes defining(τ/2)app. It is evident that(τ/2)app

increases whenxex is closer to 0. That is, the oscillation becomes slower over time. This implies that

the force field acting on the disclination is highly anharmonic with a negligible linear term.

Figure 4.5 implies that a nonlinear force field acts on the disclination. The driving force depends

on the disclination position,x. The force can be roughly estimated through the analysis of disclination

velocity, assuming that it balances with the viscous drag. Based on the assumption, the driving force
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Figure 4.5. (τ/2)app (time difference between successive
crossings) as a function ofxex (positions of extrema of
trajectory) underVf = 2.25V. The broken line represents the half
period of a harmonic oscillator having an effective force constant
keff =

1
2kx2

ex.
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acting on the disclination is given as follows.

G0−Γv= 0,

G0 = Γv. (4.1)

An estimate of the disclination velocity is thus given by

v=
dx
dt

≈ xex

∆t
. (4.2)

Here∆t is a time, during which the disclination moves from the extrema to the equilibrium position,

andΓ the relevant viscosity.

The viscosityΓ has been theoretically given as [10,11]

Γtheor=
π
4

γeff ln
ξE

rc
, (4.3)

but it was later experimentally revealed thatΓ = 1
2Γtheor is a better estimate. [40,41]ξE is an electric

coherence length written as

ξE =
1
E

√
K1

ε0εa
. (4.4)

Elastic constantK1 is set to beK1 = 4.48 pN, andγeff = 0.0289 Pa s. Using material parameters for

8CB [10,35,36] and setting a core radius of the disclination ofrc = 100Å, [12] a numerical estimate

yieldsΓ = 0.077−0.073Pa s (1.75−2.50V).

The driving forceG0 estimated based on Eq. 4.1 is plotted againstxex in Fig. 4.6. All of experi-

mental results are shown in Fig. 4.6. ForVf −Vi ≥ 2.25V, G0’s are scattered, and it is hard to identify

any tendency, accordingly. On the other hand,G0 systematically decreases with increasingxex, for

Vf −Vi < 2.25 V. It changes mildly around equilibrium position, and it increase rapidly when discli-

nation approaches the air-LC interface. Namely, the dependence ofG0 on xex is nonlinear. Since the

director field between the disclination and the air-LC interface is deformed in their close approach,

the elastic energy increases and repulsive force acts on the disclination. The increase ofG0 is thus

qualitatively explained by the elastic theory.

Neither the microscopic (molecular) nor the mesoscopic (elastic) mechanism of the disclination

dynamics can be plausibly imagined at present. We therefore consider a phenomenological model

while regarding the disclination as a massive object. By doing so, the observed behavior can be

described in a simple way. The disappearance of the oscillation under an ac voltage may be described
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Figure 4.6. Relation between estimated driving forceG0 and
xex. Dashed circle shows the results withVf −Vi larger than 2.25
V. Applied voltages are represented as (Vi , Vf). +, (3.00 V, 2.25
V); ×, (1.50 V, 2.25 V);♦, (1.00 V, 2.25 V);■, (0.50 V, 2.25 V);
•, (−1.00 V, 2.25 V);♢, (1.25 V, 2.50 V);□, (0.75 V, 2.00 V);
■, (0.50 V, 1.75 V);◦, (0.00 V, 2.50 V);◦, (0.00 V, 2.25 V);◦,
(0.00 V, 2.00 V);◦, (0.00 V, 1.75 V).
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as a kind of overdamping in this model. The following equation of motion is assumed as the starting

point:

ρ
d2x
dt2

= G(x)−Γ
dx
dt

. (4.5)

Here,ρ is the effective mass a unit length,Γ is the relevant viscosity, andG(x) is the elastic force field

acting on the disclination. IfG(x) is a linear function ofx, the right-hand-side of Eq. (4.5) becomes

one for a simple damped oscillator with a harmonic spring.

The force field relevant to the observed slow dynamics of the disclination starts from a cubic

term of x accordingly. The force field is approximately written asG(x) = −kx3. This formula also

crudely explains the behavior of(τ/2)app. Assuming that the potential energies atxex are equal to each

other for a real (anharmonic) disclination and a virtual harmonic oscillator having an effective force

constantkeff, i.e., 1
2keffx2

ex =
1
4kx4

ex, then the half period of the harmonic oscillator (τ/2) is expected

to satisfyτ/2 ∝ 1/|xex|. This seems consistent with the experimental results as shown in Fig. 4.5.

Assuming an elastic driving force of the formG(x) = −kx3, the constantk was deduced from

each experimental trajectory shown in Fig. 4.3. The time dependence ofx around an inflection point

was fitted to a cubic polynomial to obtain the position and velocity of the disclination at the inflection

point. These two quantities suffice to fixk because the acceleration is zero at an inflection point.

UsingΓ andk thus determined, Eq. (4.5) was numerically integrated by the Runge-Kutta method (an

example is shown in the inset of Fig. 4.8) with variousρ . Each calculation was started from the time

whenx is at the minimum with null velocity, because some other phenomena such as the relaxation

of the elastic field, in principle, occur immediately after the change in the applied electric field. For

example, the director field relaxes within 0.7 s. The time whenx passes through the inflection point

was treated as the “fitting” criterion.
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Figure 4.7. Comparison of experimental and simulated
trajectories atVi = 1.00 V andVf = 2.25 V.

The resultant line densityρ of a disclination (Vf = 2.25 V) is shown in Fig. 4.8.ρ is roughly

independent ofVi . This is reasonable because the whole dynamics progresses underVf . On the

other hand,ρ decreased with increasingVf. The tendency of decreasingρ was found regardless of

the history of applying voltage. These results suggest thatρ is dominated by the voltage at which

disclination dynamics occurs.
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Figure 4.8. Experimental effective line densityρ of the disclination under
Vf = 2.25V as a function ofVi .

4.4 Theoretical Estimation ofρ

The origin and physical meaning of the mass term in Eq. 4.5 are not clear. It was expected, within

the elastic theory, that the disclination would have nonzero line density [42]. The elastic energy of

the director field is increased around a moving disclination due to viscous stress. Deformation of

the director field around a moving disclination is schematically illustrated in Fig. 4.10. Director field

of s= −1 disclination is shown in Fig. 4.10. for the purpose of illustration. Similar deformation is

induced to as=−1/2 disclination. The additional energy of a moving disclination can be treated as

the kinetic energy. Since the increment in the elastic energy starts from the quadratic term of velocity

by virtue of symmetry, its coefficient can be regarded asρ/2.

At this stage, however, it is noted that the same mass should emerge under both dc and ac cases

because the scenario is within the elastic theory. This clearly contradicts the experimental finding.

To see to what extent does the scenario works, it would be valuable to estimate the line density of a

disclination.

It is necessary to calculate the elastic energy of the director field as a function of velocity. In order

to calculate the energy, the director field around a moving disclination is considered. The director
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Figure 4.9. Experimental effective line densityρ of a disclination as a
function ofVi . ρ depends on applied final voltageVf . ▲: Vi = 0.00 V.•:
Vf −Vi = 1.25 V.

field around a moving disclination obeys the following basic equation [13,14].

−K1△ϕ + ε0εaE
2sinϕ cosϕ + γ1v

∂ϕ
∂x

= 0. (4.6)

Here γ1 is rotational viscosity andK1 an elastic constant. As seen from Eq. 4.6, it is possible to

fix a disclination while assuming the stationary flow of the NLC, in stead of considering a moving

disclination in stationary NLC without net flow.

In actual calculations, a disclination is fixed on the origin of the system for the easy treatment.

The NLC is assumed to be moving at a constant velocity with a stationary elastic field, accordingly.

However, the velocity is used as a relative velocity of a disclination with respect to the NLC. The

positive velocity means that a disclination moves right. Velocity is set between−5 ∼ +10 µm/s,

which covers the velocities experimentally observed. Applied dc voltage, corresponding toVf in the

experiments, is assumed between 0∼ 2.5 V, which covers an actual experimental condition. The
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Figure 4.10.Director field around static (a) and moving
disclination (b) ofs=−1. Because of viscous torque, director
field around moving disclination is distorted.

boundary condition for ans=−1/2 disclination is illustrated in Fig. 4.11, and is expressed as,

ϕ(x,d/2) = 0,

ϕ(x,0) =

0 (x< 0),

π/2 (x≥ 0),

∂ϕ
∂x

∣∣∣∣
x=±∞

= 0.

The basic equation is integrated to simulate the director field (director angleϕ as a function of

the position), assumingγ1 = 0.0447Pa s(of 8CB at39.0 ◦C ), andK1 = 4.48pN [37]. Director angle

ϕ(x,z) is calculated in a domain ofz≥ 0. Sinceϕ is symmetric with respect to thex-axis, ϕ for

z< 0 is given as the mirror image. Cell gapd is set to be 50µm to mimic the experimental setup

(d = 55 µm). ϕ is obtained by using Gauss-Seidel method on a square mesh (0.1µm) in the area

of −100≤ x/µm ≤ 100 and0 ≤ z/µm ≤ 25. Since the size alongx direction is large enough in

comparison with characteristic lengths of director deformation: Characteristic length of deformation

is decided by electric field and substrate. When an electric field is applied to the system, the electric

coherence lengthξE is given as a function of applied field. It is a characteristic length, over which

the angle of director changes fromϕ = 0 on the surface toϕ = π/2 in the bulk NLC area. Typical

length ofξE is about 10µm in our experiment. Another characteristic length is a half of cell gapd/2.

This is also the length of the director deformation fromϕ = 0 on the surface toϕ = π/2 in the bulk.

System size alongx direction is large enough compared toξE andd/2. The present simulation thus
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Figure 4.11.Schematic illustration of boundary condition,
written as Eq. 4.4. Disclination is put on the origin of the
xz-plane.

approximates an ideal system with an infinite size along thex direction.

Director field around ans=−1 disclination is also simulated in a similar system with the bound-

ary condition

ϕ(x,0) =

−π/2 (x< 0),

π/2 (x≥ 0).

Other conditions for the simulation are the same as the case of ans=−1/2 disclination.

The energy density (per unit volume) is divided into elastic energyfe and dielectric energyfel.

The energy density is thus given by,

ftotal = fe+ fel =
K1

2
∇2ϕ − 1

2
ε0εaE

2cos2ϕ. (4.7)

The total energy of the system is obtained by integratingftotal over volume of the whole system. The

integration is written as follows.

Ftotal =
∫ [

K1

2
∇2ϕ − 1

2
ε0εaE

2cos2ϕ
]

dxdz. (4.8)

Since this model is assumed to be a two-dimensional system, the energyFtotal corresponds to the

energy of a disclination per unit length (along they direction).
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Figure 4.12.Director angle arounds=−1/2 disclination.ϕ
changes from 0 (green) toπ/2 (red) in these figures. Relation
between color andϕ is shown in the color bar.

Some results of simulation ofϕ are shown in Fig. 4.12 and Fig. 4.13 fors= −1/2 ands= −1,

respectively. In both cases, the director field is deformed by applied voltage. Deformation around

substrate surface is reduced under voltage, and a director tends to be perpendicular to the surface.

When a disclination is moving in the system, the director field is deformed by the motion. The

deformation is clearly seen around as= −1 disclination, shown in Fig. 4.13. Since stationary state

of the director field obeys the least-energy principle, the deformed director field with velocityv has

an excess energy.

Figure 4.14 shows the energy increment as a function of the velocity of a disclination. The state

with the least energy is set to be the origin of these plots. Energy increments are plotted against∆v

= v− v0, wherev0 is the velocity of the least energy state. While a statics= −1 disclination has

the least energy by virtue of the symmetry,s= −1/2 disclination has an asymmetric director field

with respect to they-axis even in a static state. Total energy density is therefore slightly decreases

when thes= −1/2 disclination moves toward left. The elastic energy atv= 0 is not the minimum,
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Figure 4.13.Director angle arounds=−1 disclination.ϕ
changes from−π/2 (blue) toπ/2 (red) in these figures. Relation
between color andϕ is shown in the color bar.
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accordingly. The dependence is well approximated by a quadratic function of the velocity, regardless

of the topological charges. These results of simulation is fitted to a quadratic function∆F = av2.

Since a fitting parametera is regarded asρ/2, the line densityρ is obtained theoretically within the

elastic theory.

In Fig. 4.15, the obtainedρ is compared with the experimental results.ρ decreases with increasing

voltage. This tendency resembles the experimental results.ρ of a s = −1 disclination is estimated

by using the same method.∆F andρ have the same tendency with that of as = −1/2 disclination.

Because the director is caught by an electric field, the deformation of the director field becomes

weaker under a stronger field. Therefore, the energy increment∆F also becomes smaller. This means

the coefficienta = ρ/2 decreases with increasing electric field. In this way, voltage dependence of

theoreticalρ is explained.

The estimate of the effective line densityρ thus obtained is smaller by more than an order of

magnitude than the experimental “line density” shown in Fig. 4.15. Experimental result ofρ is several

times as large as numerical result ofs= −1 disclination. This discrepancy clearly indicates that

another reasoning(s) are necessary for the observed oscillation than the elastic theory, though the

calculated small “line density” may be consistent with the need for assuming smallρ to explain the

dynamics under an ac field as an overdamping.
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Figure 4.14.Energy increment∆F of the moving disclination
with s=−1/2 (a), ands=−1 (b). □, 0.00 V;•, 1.25 V;■,
2.50 V.
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Figure 4.15.Theoretical estimate ofρ for a disclination with
s=−1/2 (open square) and−1 (open diamond). Filled marks
represent experimentally estimatedρ . ▲: Vi = 0.00 V.•:
Vf −Vi = 1.25 V.

4.5 Discussion

In this chapter, characteristic oscillation dynamics was found after the abrupt switching of the

applied dc voltage. On the other hand, the oscillation dynamics was not observed under the 1 kHz

ac voltage. Since the dielectric energy of the NLC is proportional to the square of the field strength

in the theory, dc and ac fields are indistinctive if the frequency of the ac field is high enough. In the

present experiment, the frequency is high enough in comparison with the motion of the disclination,

as evidenced by non-synchronous motion with the applied voltage. However, the experimental results

shows that the disclination dynamics under the ac voltage is different from that under the dc voltage.

In the present experimental setup, the disclination dynamics may be influenced by the accumu-

lation of charged impurities on the electrode. Under a dc voltage, the applied field may be screened

by the accumulation of charged impurities, resulting in a time-dependent effective electric field. In

contrast, impurities cannot move towards one electrode under an ac voltage at a sufficiently high fre-

quency. In this respect, ac and dc voltage influence the motion of charged impurities in different way.

However, the time dependence of the electric field cannot be the origin of the damped oscillation,

because the time scale of the motion of a charged particle (ca. 1 s) is much shorter than that of the

disclination motion (on the order of 102 s). Moreover, the existence of the second and third extrema,
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clearly observed withVi = −1.00 V in Fig. 4.3(a), cannot be explained because the accumulation of

charged impurities (and the creation of a Debye layer) is certainly an example of one-way dynamics.

For the same reason, i.e., the difference in relevant time scales, it is difficult to explain the oscillation

in terms of flexoelectricity (∼ 10−6 s) and/or the dielectric memory effect (∼ 10−6 s). Electro hydro-

dynamic convection may be another cause of the effect exerted on the disclination dynamics. Since

the cutoff electric field depends on the frequency, it seems possible to drive a disclination only under

a dc field. However, a pattern assignable to the convection was not observed in the experiments.

There seems to exist a new mechanism that induces the oscillation dynamics under a dc field. It is

needed to characterize the oscillation dynamics and the driving force on the disclination, in order to

reveal the origin of the oscillation. Figures 4.5 and 4.6 shows that the nonlinear driving force acts on

the disclination. The nonlinear force becomes noticeably weak around the equilibrium position, and it

decreases moderately whenx is positive. Since director field between disclination and air-LC interface

is deformed largely, force acting on the disclination is increased when the disclination approaches the

air-LC interface. It is important to emphasize thatG0 depends on the displacementx, not a distance

from the air-LC interfacex′. If the driving force is due to deformation of the director field,G0 can be

a function of the distancex′. Because the volume of deformed region is a function ofx′, it seems to be

natural to expect thatG0 is a function ofx′. However, it was experimentally revealed thatG0 depends

on x. This fact shows that the volume of deformed area is not an decisive parameter that determines

a driving force acting on the disclination. It implies that the observed oscillation dynamics is not due

to the elastic energy of the bulk NLC.

The oscillation of disclination was discussed by considering a Newton equation model, in order

to characterize the dynamics. The driving force that induces the oscillation is regarded as an inertial

force due to the mass term of the equation of motion. Effective line densityρ is a characteristic

parameter. The parameter was estimated experimentally, and itsVf dependence was found .

Vf dependence ofρ was reproduced by numerical simulations, which was based on the elastic

theory. In this simulation,ρ comes from the elastic energy of the director field. In this sense, the

bulk elastic energy is regarded as a source of the driving force in the model. However, numerically

estimatedρ was an order of magnitude smaller than experimental results. Therefore, the elastic

energy of the bulk NLC is too small to explain experimental results.

In this way, it is thus suggested that a radically new mechanism of NLC system induces the oscil-

lation of a disclination. The elastic theory of the NLC considers the energy by director deformation

of whole system. However, experimental and theoretical results of the present study imply that the

oscillation dynamics is not induced by the bulk elastic energy. We may have to take into considera-
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tion local dynamics of the nematic system. Molecular reorientation around the disclination is one of

possible examples of such a mesoscopic dynamics.

Considering the fact that disclination dynamics has frequency dependence of the applied voltage,

molecular reorientation after switching may give a driving force to the disclination. Under the dc

voltage, 8CB molecule tends to be parallel to the applied voltage. On the other hand, they rotate

under the 1 kHz ac voltage [33]. It is possible to imagine that the difference of molecular dynamics

influenced the disclination motion. If molecular reorientation process is fast enough, the effect of

molecular dynamics may appear in driving force. Actually, Fig. 4.6 shows thatG0 is largely enhanced

for Vf −Vi ≥ 2.25V. WhenVf −Vi is large enough, a molecule around the disclination rotate and may

become parallel to the applied field in a very short time. This fast reorientation process might induce

largeG0.

4.6 Conclusion

In conclusion, we found a new type of disclination dynamics. The ultraslow oscillatory dynam-

ics was observed only under a dc voltage and not under a high-frequency ac voltage (1 kHz). The

difference between the dc and ac cases is difficult to explain by the established mechanisms of discli-

nation dynamics (the elastic theory of a director field). Since the dynamics under a dc voltage has

been reported to be qualitatively the same as that under an ac voltage without abrupt switching of the

applied voltage, it can be concluded that the difference emerges upon the abrupt switching of the ap-

plied field. A further extensive study is necessary to clarify the mechanism of the ultraslow dynamics

found in this study. It is worth pursuing whether there exists a hitherto missed link between molecular

dynamics and the deformation of a director field that bridges different hierarchies of matter.
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Chapter 5

General Conclusion

Although disclination dynamics under external forces have been investigated in previous works,

backflow under the surface anchoring effect had not been taken into consideration. Besides, effects

of time-dependent external force had not been investigated in these works. In this work, disclina-

tion dynamics under external forces was investigated experimentally. Surface anchoring effect and

external electric field were treated as controllable external forces. Disclination dynamics under the

force of anchoring effect and the static electric field was discussed in Chapters 2 and 3, respectively.

Annihilating dynamics under these forces were analyzed considering the backflow. Effect of the

time-dependent external force was discussed in Chapter 4.

In Chapter 2, the annihilation dynamics of disclination pair was investigated. Disclination dynam-

ics was observed in the simplest system where only the strong anchoring worked. Driving force due

to the anchoring was treated as a controllable parameter that influenced disclination motion. Relative

effect of the anchoring was controlled by changing the cell gapd. Trajectories of disclinations with

s=±1/2 was recorded, and the velocities of positive and negative disclinations (v+ andv−) were an-

alyzed. In a thin LC cells, the disclinations moved at a constant velocity when the distanceu between

them was large enough, while disclinations were accelerated just before the annihilation in a thick

LC cell. Acceleration started earlier in a thicker LC cell. The elastic theory predicts, as a function of

d, the increase ofξc, the distance within which attractive interaction between disclinations become

effective. Ans= ±1/2 disclination was differently accelerated by the backflow in the experimental

systems, resulting in an asymmetric annihilation. The velocity of a disclination withs= −1/2 was

assumed to correspond to the unperturbed one, which should be estimated by the elastic theory. Ex-

perimental results were smaller than the theoretical prediction, but both decreased with increasingd.

In this way, the cell gap dependence of dynamics were described in the elastic theory.

Velocity ratiov+/v− were discussed as a function ofd in order to discuss the cell gap dependence
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of the backflow. Whend ≥ 2 µm, v+/v− was about 1.6− 2.0. On the other hand,v+/v− rapidly

became close to 1, whend =1 µm. This experimental results show that there is a region where the

flow is suppressed within 0.5µm from the cell surface. The director field in the LC cell according to

the elastic theory was consistent with that expected for the suppressed flow near the substrates.

In this chapter, the director field in the LC cell was theoretically analyzed by the elastic theory. It

was revealed that the suppressed flow region was generated by the anchoring effect. Mechanism of

generation of suppressed flow was qualitatively explained by director field in the LC cell.

In Chapter 3, the effect of an electric field was introduced to the system in order to apply a force

on a bulk region of NLC. Two electrodes were sandwiched between glass substrates. Electric field

was applied horizontally to the surfaces, while perpendicular to the anchoring easy axis.

v+ andv− of ±1/2 disclinations were estimated from experimental trajectories. The dependence

on electric field of the velocities was discussed. The velocity decreased with increasing electric field.

Since director between disclinations tends to be parallel to electric field, the director field in the

region was stabilized by the electric field. In this way, driving force was reduced and disclination

velocity became slow. The dependence on electric field of the velocity was successfully rationalized

by considering the energy of deformed field.

In order to discuss the backflow in the cell, the velocity ratiov+/v− was analyzed against the

external field. It is theoretically known thatv+ is roughly twice as fast asv− because of the backflow

in systems where the surface effect is negligible.v+/v− was almost independent of applied electric

field andv−. These results imply that the mechanism of generating backflow remains unchanged

under an electric field. Flow field is generated only to keepv+/v− constant.

Chapter 4 deals with an effect of time-dependent field, in contrast to Chapters 2 and 3, where

disclination dynamics under static external field was discussed. From a vast variety of time dependent

fields, abrupt switching was chosen as the simplest example.

After switching of applied dc voltage, a kind of damped oscillation ofs= −1/2 disclination

string was observed. On the other hand, any oscillation was not observed after switching of 1 kHz ac

voltage: Disclination approached to air-LC interface monotonously. It means that disclination relaxes

faster under ac voltage than dc case. Dynamics under the ac voltage could be qualitatively understood

within the elastic theory. This difference implies that there is frequency dependence of disclination

relaxation.

The oscillation dynamics under dc voltage was examined in detail. To discuss characteristics of the

motion, trajectories of oscillations were analyzed. A half of oscillation cycle(τ/2)app was estimated

as the interval between crossing the equilibrium position.(τ/2)app depended on the amplitude of the
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oscillation. It implies that nonlinear driving force acts on the disclination. Nonlinearity of the driving

force was discussed by estimating it from experimental results. It was found that the force field can be

expressed as a smooth nonlinear function of amplitudexex when the jump in voltages between final

and initial states (|Vf −Vi |) is smaller than 2.25 V.

A Newton equation was applied as a minimal phenomenological model to describe the oscillation

of a disclination. An effective line densityρ was introduced to write the equation of motion. Nu-

merically simulated trajectory was partially fitted to experimental results by setting suitableρ. While

resultantρ decreased with increasingVf, it was independent ofVi , implying thatρ was decided by the

voltage under which disclination dynamics progressed.

Possible origin ofρ was examined within the elastic theory. Disclination dynamics accompanies

energy increment∆F , which can be regarded as the kinetic energy of the disclination,ρv2/2. Within

the elastic theory, elastic energy under a constant voltage was estimated numerically as a function of

velocityv of a disclination.ρ estimated by this scenario decreased with increasing voltage. Although

this tendency was consistent with experimental results, theoretically estimatedρ was an order of

magnitude smaller than experimental ones. It was thus revealed that the elastic energy of NLC is too

small to explain the oscillation of disclination.

Experimental results imply that there is some interrelation between local dynamics of NLC and a

driving force acting on the disclination. Driving force may be generated by local reorientation process

of mesogenic molecules (8CB in the present experiments) around the disclination core. Disclination

oscillation seems to be a fundamentally new dynamics in non-equilibrium state.

In conclusion, I investigated disclination dynamics under external forces. These forces were in-

troduced by surface anchoring and electric field. Annihilation dynamics of positive and negative

disclination pair was observed under static external force, and discussed considering the backflow

effect. It was revealed that dynamics under static forces could be explained by existing theoretical

description within the continuum theory of NLC. On the other hand, a fundamentally new dynamics

was found in the non-equilibrium relaxation process, after an abrupt switching of the external field.

It is expected that new kinds of mechanisms for disclination dynamics will be found by investigat-

ing motions under time-dependent external forces. Relation between local molecular dynamics and

macroscopic dynamics in LC (including disclination motion) may be revealed. The present investiga-

tion should hopefully be the first step towards such a new stage of LC science.
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