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Chapter 1

General Introduction

1.1 Disclination in nematic liquid crystal

Most organic materials undergo phase transition with increasing or decreasing temperature. In the
case of a phase transition from solid (fully ordered crystal) to liquid, orders of molecular direction
and position disappear at the same time. However this is not always the case. When a molecule
comprising the system has anisotropic shape (such as rod or disk), some mesophases emerge betweer
the solid and liquid states. The mechanical and symmetrical properties of the state are intermediate
between the solid and the liquid. The new phases having fluidity are called liquid crystals (LC) [1, 2].

Because of the anisotropic shape of molecules, LC has the order of molecular orientation, while
the order of molecular position is lost. A nematic liquid crystal (NLC) is the simplest case. The
molecular order in NLC is schematically shown in Fig. 1.1. The molecular center of gravity is com-
pletely disordered in this state. In spite of of thermal fluctuations of molecules, their mean direction
of molecules can be defined. A unit vector along the mean direction of molecules is diadieir,
written asn. If the LC is not ferroelectrich and—n are indistinguishable. This property of the direc-
tor is often represented as “headless”. NLCs treated in this thesis are not ferroelectric. The headless
nature is assumed hereafter, accordingly.

Director is defined as a function of position. In this sense, director forms a kind ofdieddior
field. Ideally, the director field should be uniform. However, when the director field extends for a long
distance, it may be deformed, resulting in the increase in free energy. Then, lines, the tangent to which
coincides with the orientation of the director at the point, can be imagined, similarly to electrical flux
lines in electromagnetism. Assuming the smooth variation of the orientation of the director, the
director field lines should be continuous. Thus, a line defect around which the director field lines

form a loop can easily be imagined as in Fig. 1.2. This is callsdlinationwith a topological
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Figure 1.1. Schematic view of molecular order on the course of
melting of nematic liquid crystalline compound (nematogen).
Molecular structure of 5CB is also shown.

charge s= 1 [3,4]. The director field is deformed largely around the disclination. Nematic order is
broken just on the disclination line. This disordered region is called a disclinedi@qjl].

The deformation of the director field can be analytically described within an “elastic” theory of
a NLC [5], which will be summarized in more detail in Section 1.6. The theory assumes the energy

density of the form,

fe==K1(0-n)?>+ ZKo(n- (O x n))%+ %Kg(n x (Ox n))?, (1.1)
| —)
L N
V2=
01002000
\ J
e
s=+1, a=m/2

Figure 1.2. Director field around a disclination with= 1.



Figure 1.3. Director field represented by representative
molecules around kinds of disclinatiorgs.is an angle of the
director.

with K1, Ko andK3 being relevant elastic constants. The liquid crystal is treated as a continuum elastic
material while molecular dynamics and its flow are not considered. The director field in the stationary
state is described based on the least-energy principle. Hereafter we discuss a two dimensional system
of the NLC. When the elastic energy is at its local minimum, the angle of the dir¢ctatisfies

Laplace equation. In a two-dimensional system, solutions with the form of
¢(r,0)=s6+a, (1.2)

is possible withs = 0, +31, +1, i%, +2, ... Here,¢ is the angle between director apéxis, which

can be taken arbitrarily, and a parametas an integral constant. Solutions with non-zerepresent
disclinations with idealized symmetry. The topological chasgeeans the rotation angle of the
orientation of director upon turning around a disclination, and the angle is normalized. by
director field is schematically shown in Fig. 1.3 [1] for differafst. Itis emphasized that disclinations
with a half integers are allowed because of the headless nature of the director in the case of the NLC,
in addition to vortices with non-zero integsipossible for vector fields. Disclinations have been

regarded as representative examples of topological defects.

1.2 Annihilation of disclination pair

Because of the deformation of the director field, the elastic energy increases in comparison with
the uniformly ordered situation. If the symmetry of the system is not sufficiently high, a disclination
moves spontaneously to reduce the elastic energy [6, 7]. The driving force is exerted by the deformed
director field around the disclination. The most representative phenomenon is the annihilation of a pair

of disclinations [8, 9] having the same magnitude of topological charge but with opposing signs, such



Figure 1.4.s= £+1/2 disclination pair in NLC. Director field
around disclination (a), and image of disclination pair under
polarizing optical microscope.

ass= -l-% ands= —%. A director field around an annihilating disclination pair is schematically shown

in Fig. 1.4 (a). Annihilation is widely observed in a NLC sandwiched between glass substrates. This
dynamics can be visualized by using a polarizing optical microscope. Observed pairs of disclinations
under the crossed Nicols condition is shown in Fig. 1.4 (b). In Fig. 1.4 (b), disclinations are observed
as singular points, on which dark and bright lines center. The annihilation of the disclination pairs in

(quasi) two-dimensional system has been studied experimentally and theoretically.

The annihilation has successfully been analyzed assuming the balance between elastic driving
force and viscous drag [8, 9]. Time evolution of the distance between two annihilating disclinations
are theoretically given as

5 21Kt

2
= R 1.3
u® = U - (1.3)

Here,u is the distance between two disclinatiosis a mean elastic constant of the NLC, dnds

viscous drag acting on a disclination per unit length. The viscdsityad been given theoretically

[10,11] as
T 3.6
[ theo= ZVeffln ( C) ) (1.4)
e

by introducing an effective viscosity.; and a core radius.. A parameteré; is a characteristic
length [12] that represents the size of the region around disclination where the director field is severely
deformed. Annihilation dynamics in the two-dimensional system is described by using this simple

theoretical model.



1.3 Anchoring and external field: External force

In the case of a two-dimensional system briefly reviewed in the previous section, only the attractive
interaction between two disclinations is considered as a driving force of disclination dynamics. In real
systems, however, three-dimensional deformation has to be considered. When the NLC is sandwiched
between substrates, molecules are bound to the cell surface. Therefore, the director close to the cell
surface does not rotate freely. This anchoring of the director field is called the surface anchoring
effect [1, 2]. Because of the anchoring, the additional deformation between the surface area and the
inner bulk area is introduced to the NLC system. Beigal. [12] revealed that this three-dimensional
deformation gives additional driving force to the disclinations. In addition, the attractive interaction
between disclinations is screened by this. Since the external force due to the anchoring is constant,
the disclination moves at a constant velocity as far as the attractive interaction is screened.

Some other additional force can be introduced by applying an external electric field [13, 14].
Disclination dynamics under an external electric field has widely been discussed experimentally and
theoretically. The external electric field gives a driving force for a disclination [13] because of the
dielectric anisotropy of LC. In general, the dielectric permittivity along the direetgri¢ different
from the perpendicular one (), resulting in the dielectric anisotropy of the bulk LC [1]. The di-
electric anisotropy of the LC is defined as= g, — &, . When the anisotropy is positive (negative),
the director tends to be parallel (perpendicular) to the applied field. Therefore, the director field is
deformed under an external electric field [15]. This deformation of the director field influences the
driving force acting on a disclination. It is noted that the direction and the magnitude of external force
can be controlled by the direction and intensity of the applied field.

Annihilation dynamics was reported fosa= +1 disclination pair under an electric field. Minoura
et al. [13] successfully analyzed the time evolution of the distand®y an elastic theory. They
revealed that the external field acts as a phenomenological ordering field on the director field. On the
other hand, the case ef= +1/2 disclinations was theoretically investigated by Biscztral. [14].

They discussed the effect of external field on single and pair disclination(s) in a two-dimensional
infinite system. Dynamics under the field was well discussed in their study. Although they considered

the effect of a magnetic field, their result should apply to the electric field.



1.4 Backflow: Spontaneous effect

Flow of the NLC caused by the director reorientation also has a significant effect on the disclina-
tion dynamics. Upon the movement of a disclination, the director rotates and the surrounding elastic
field changes, accordingly. This rotation of the director is coupled with the velocity field by the so-
calledbackfloweffect [1, 2]. The effect of the backflow on the movement differs depending on the
disclination strengtls. The motion ofs = +1/2 disclinations makes a pair of vortices behind them.
The flow points in the direction of defect propagation. The dynamics-0f-1/2 disclination is ac-
celerated [16—18] by the vortices pair while the backflow arosiad—1/2 disclination affects little
the movement.

Tothet al.[16] advocated that two sources of flow configure the whole flow field, which influences
the disclination motion. One is generated due to the motion of the disclination core. The movement
of the core induces a pair of vortices, similar to those following a moving cylinder in an isotropic
liquid. This flow is independent of the sign of the disclination. Another flow is generated due to
director rotation. The direction of this flow depends on the sigg atcordingly. These two modes
of flow couples, and an asymmetric annihilation is induced. They revealesthatl /2 disclination
is accelerated by the flow, and it moves twice as fastas-1/2 one. They simulated the flow around
s= +1/2disclination pair in a two-dimensional system. The numerically simulated flow field around
disclinations is schematically shown in Fig. 1.5. In an experimental way, Bisalc[18] successfully
proved the fact that the asymmetric annihilation is due to the backflow effect. By applying electric
field to accelerate disclination, they succeeded to obtain quasi-two dimensional system with negligible
surface effects. Their experimental results of asymmetric annihilation were consistent with their

theoretical prediction in the two-dimensional system.

1.5 Previous works, motivation, and objects of this thesis

As discussed in the previous sections, notable factors affecting the disclination dynamics consists
of three parts: Surface anchoring, external field, and backflow. Surface anchoring and external field
gives an external driving force to a disclination. These two effects are experimentally controllable.
That is, the strength of the surface anchoring can be controlled by surface treatment process including
the choise of an alignment material on the substrate. External electric field is easily controlled by
the applied voltage and the frequency, and the gap between electrodes. Even disclination dynamics

under a time dependent external force is also observable under the electric field. On the other hand,
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Figure 1.5. Director field around disclination pair (a), and flow
field around disclination (b).

backflow is unavoidably accompanied by the disclination dynamics. The backflow is more difficult
to control in comparison with two other effects.

Disclination dynamics has been examined experimentally and theoretically in the past. These
works are summarized as in Fig. 1.6, which tends not to be a complete list of papers in the past, but
to indicate a single representative paper if applicable. Factors exerting some force on a disclination
are categorized depending on surface anchoring, external field, and backflow. We think that surface
anchoring and external field are especially important for experimental studies because these effects
are controllable as an external force acting on a disclination. Figure 1.6 shows that the dynamics under
static external force has already been explored [12—14], except for those coupled with backflow. This
prompt us to investigate disclination dynamics under the strong anchoring and the external field. Since
these three effects can be active simultaneously in real systems, disclination dynamics would become
more complicated. Besides, there is no report on the disclination dynamics under time dependent

external field as seen in Fig. 1.6. This thesis fills all vacancies in Fig. 1.6.
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Chapters 2 and 3 are devoted to experimental studies on the disclination dynamics under stationary
force field. The disclination dynamics without an external field is analyzed while considering the
backflow effects in Chapter 2. Dependence on the cell gap of the disclination velocity is investigated
to explore the anchoring effect. The backflow is taken into consideration. It is revealed that the flow
is suppressed near the substrate surfaces because of the anchoring effect.

In Chapter 3, dependence on electric field of the disclination velocity is discussed. Both of the
surface anchoring and the electric field influence the disclination dynamics in this system. The discli-
nation velocity is analyzed taking the backflow into account. It is revealed that the backflow is induced
in the system, and accelerates +1/2 disclination even under the electric field as the same extent
to that without field.

Chapter 4 describes a study on the disclination dynamics under a time-dependent external force.
An abrupt change of the dc voltage is chosen as an example of time-dependent field. A characteristic
motion of a disclination, a kind of “damped oscillation”, is described in detail. Characteristics of the
trajectory of the disclination is discussed and compared with some calculations based on the elastic
theory of the NLC.

Experimental findings and their consequences will be summarized in Chapter 5 together with the
personal perspective of the author.

The remaining part of this introductory Chapter is devoted to a brief summary of theoretical de-

scription of disclination dynamics established in the past.
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Figure 1.6. Schematic view of previous works.

1.6 Theoretical background

1.6.1 Elastic theory of NLC

Disclination dynamics is described based on the elastic theory. NLC is treated as a continuum
medium in this theory. Elastic energy density is written as
1 1

fe=SKa(0-n)*+ SK(n- (0 x n))2+ %Kg(n x (0% n))2. (1.5)

Here parametells;, Ko andKs are Frank elastic constants [5], corresponding to splay, twist, and bend
deformation, respectively. Three deformation modes are schematically shown in Fig. 1.7. More ac-
curately, elastic modulus are written in a tensor form. Sometimes we have to consider a non-diagonal
element of the elastic tensdfg,. Kgp, is a splay-bend elastic constant, which have an intermediate
mode of deformation between the splay and bend modes.

Three elastic constanks;, Ko andKs are often assumed to be equal for simplicity (one constant

approximation). Assuming two-dimensional system, elastic energy density is then written as

NI7<

(D9)2. (1.6)

'_\
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Figure 1.7. Three deformation modes of NLC; splay mode (a),
twist mode (b) and bend mode (c).

K is the “mean” elastic constant. The director field in the stationary state is described based on the
least-energy principle. When the elastic energy is (local) minimum, the orientationgantBrector
filed satisfies Laplace equation. In two-dimensional systems, some kinds of solutions with the form
of Eqg. 1.2 are possible as described previously.
Because of the principle of superposition, the director aggkround the disclinations can be
written as follws.
¢ =561+ 965. (1.7)

This equation is written as [2]
¢ = sptan L (y/x) + sptan Ly/ (x—u)]. (1.8)

Equation 1.8 represents the relation between the director gngtel the positiony, y) in the two-
dimensional system. The director & §) is illustrated in Fig. 1.8. A parameteris the distance
between two disclinations. Elastic energy density is given by Egs. 1.6 and 1.8. Total elastic energy is
given as a volume integral of Eq. 1.6. The interaction (force) between disclinaGgnis, obtained

by differentiating the total elastic energy with respecutoln the case of a disclination pair with

s=+1/2, an attractive force between two disclinations is written as [6, 8, 9]

~ 1Kd

A parameted is the cell gap, which is the distance between upper and lower substrates. Spontaneous

14
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dynamics of disclinations is usually slow enough [6, 8, 9] Balis assumed to balance the viscous

drag. Therefore, the time evolution vis written as the form of Eq. 1.3.

1.6.2 Effect of surface anchoring

Equation 1.3 shows that the distancés proportional tatl/2, and that the disclination velocity
depends on time. In real systems, howeuvatecreases linearly to time for largg12, 13]. In such
a case, the distanaedecreases with proportional t&'2 only just before the annihilation. Bogi
al. [12] took into consideration the effect of the cell surface. Molecules on the cell surface are fixed,
and the rotation of the director is suppressed. This effect is called the surface anchoring. Bogi revealed
that the deformation of the director field comes from the surface anchoring generates an additional
driving force on a disclination.

A system includings = +1/2 pair is schematically shown in Fig. 1.4. Hereandy axes are set
to be parallel to the substrates of sample cell, zadis is perpendicular to the surface. Tfaaxis is
set to be parallel to the easy axis of anchoring of the cell surface. Surface of the lower substrate is set
to be the origire = 0. Without a disclination, director aligns uniformly. Elastic energy is minimum
in this situation. When a disclination pair is introduced to the system, deformation alozegiie
is introduced. This deformation is large in the region between disclination pair (so-caliedl).

Because of the deformation, the elastic energy increases. The director fisltvalf has excess

15



elastic energy. This excess energy is a function of disclination distanceEherefore, additional
driving force is obtained by differentiating the excess energy with respect fthe driving force

acting on each disclination is written as follows.
G K2 [ (99", Kb (99 ddz+Q/sin2¢d (1.10)
surface™ 97 Ky \ dy y oL sady :

In this equationgs is the angle between the director on the cell surface and the anchoring easy axis.
L is anchoring extrapolation length, which is the distance between the cell surface and the imaginary
position where the director is expected to be parallel to the anchoring easy axis. A paraseter
defined ag =d +2L.

If this system is assumed to be stationary (time-independent), and the director field is decided
based on the least-energy principle, the director atigtdould obey Laplace equation. Normalized
coordinates are defined #s= \/K»/Ksp Ty andZ = Tzin the equation.

0%p 0%¢
EN + 377 = 0. (1.11)
Here the boundary condition is as follows:
29 L
07 lz=(m/2)—(md/21) E‘rsm(%s)’
%9 _
07 17=(n/2)
99 _
Oy ly=teo

Integration of the Laplace equation under this boundary condition gives the driving@gigg.cas

L 11 It
Gaurtace= 2+/Kep¥z [’—ZT _Tan'? <|—"> + [ ZTant (—) dt} . (1.12)

o? LT

Under the strong anchoring condition, the anchoring extrapolation lénggim be taken as 0. There-
fore, approximationt < d andl ~ d are introduced. Under these approximations, the driving force

Gsurfacereads

T m d
Gsurface= 21/ KspK2 {E -1+C+ Eln (E)l . (1.13)

ConstanC is Catalan’s constant defined as

1 —1
C:/ TanT(X)dmeQlﬁ (1.14)
0
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The total driving force acting on a disclination is the sunGafandGgyrace A characteristic length
éc is defined so that the driving fordge balances tdsg,faceat the distancel = &.. Now, the total

driving force under the strong anchoring condition is written as

Gsurfacet Ge = Gsurfacd 1+ &c/U). (1.15)

The driving forceGe balancesSgyrface 1-€., Ge = Gsurface= TKd/(2&c) atu = &c. Ge is screened
by Gsurlacewhenu > &, accordingly. In this situation, the driving force acting on a disclination is
almost constantx Ggyriacd. Because of this constant driving force, therefore, a disclination moves
at a constant velocity. On the other hand, a disclination is acceleratedwhef. The attractive
interaction between disclinationSg, is large enough, and it increases with decreasinghe time
dependence af obeys Eq. 1.3 when becomes short enough.

The viscosity dradgs, under zero electric field was discussed by Ryskial [11]. It is approxi-

mately written as

T
Gy = ZVeffVln (

3‘6‘%) . (1.16)

c
Herev is the velocity of a single disclination. Since the velocity of a disclination is assumed to be

independent o within the elastic theory, the relative velocitydu/dt is written as

du
V= ——. 1.17
V= (1.17)
A differential equation that describes the time evolutiorua$ given by this one together with Eq.

1.16.

(1.18)

T 3.6 du
Gy = _gyeffdln ( EC) at

C
Since the disclination motion is assumed to be slow enough, the viscouSdtagances with
the total driving forceGgyriacet Ge. The time evolution ofi under the strong anchoring condition is

governed by the following equation [12].

du ¢
at —Vasy(l‘l'ac)y

U+Ec)

it (1.19)

Vasgyl = UO—U+Ec|n(

17



A parametew,syis the asymptotic relative velocity in the regionw§g> & written as

SGsurface
= ) 1.2
Yasy drtyerIn(3.6&c/rc) (1.20)

Considering the relatio®syrface= TKd/(2¢&c), Vasyis given by

Voo 4K
&Y Ver&eIn(3.6&c/rc)’

(1.21)

Equation 1.21 shows that the velocity decreases with incredsing

1.6.3 Dielectric energy

Since LC has dielectric anisotropy, the director field is reoriented depending on an external electric

field. Dielectric energyf is written as [1, 2]
1 2

Here, parametel, &y, andg, are electric field, permittivity of vacuum, and dielectric anisotropy, re-
spectively. In this research, LC materials 4-cyano-4’-pentylbiphenyl (5CB), the molecular structure of
which is shown in Fig. 1.1, and 4-cyano-4’-octylbiphenyl (8CB) are used as samples for experiments.
Since 5CB and 8CB have positive dielectric anisotropy, the dielectric energy become minimum when
the directom becomes parallel t&. The molecular long axis, and consequently the director of the

NLC, tends to align parallel to the external electric field.

1.6.4 Frederiks transition

The director aligns parallel to the easy axis of the anchoring under the strong anchoring condition.
Without disclinations, the director aligns uniformly in the LC cell. When an external field perpen-
dicularly to the easy axis becomes sufficiently large, the director field is deformed. This deformation
has a clear threshold is described as occurrence of Frederiks transition [15]. Figure 1.9 shows the
director field before and after the deformation. The easy axis of anchoring is parallel to the surface of
this paper, and the electric field perpendicular to it. The director field starts to deform at a threshold
field [15]. When the electric field is parallel to the substrates as in Fig. 1.9 (a), the deformation of

twist mode is induced. The elastic const#&atis relevant to this case, accordingly. The threshold is

18



(a) (b)

Figure 1.9. Deformation of director field under electric field
(Frederiks transition) caused by an applied electric field parallel
(a) and normal (b) to the substrates.

T Ko
Ec=—-y/—. 1.23
c d‘/eosa (1.23)

If the electric field is applied to perpendicular to the substrates, the director field is deformed as shown

given by

in Fig. 1.9 (b). Since bend mode deformation is induced, the elastic comgtastrelevant to this

case. The threshold electric field is given by

T Kz
Ec=—-y/—. 1.24
°= 3V 2ota (1.24)

Note that, for geometry (b), the threshold voltage= E.d is independent od:

VA N (1.25)

1.6.5 Flow dynamics of NLC

A NLC flows like a conventional liquid. Since flow dynamics of the NLC couples to the reorien-
tation of director, it becomes more complicated compared to that in isotropic liquids [1, 2].
The flow disturbs the alignment of a director. Conversely, the reorientation of the director induces

the flow of the NLC. This flow called backflow [16, 17] influences the dynamics itself.
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In order to discuss simultaneously the flow and the elastic energy, a scalar order pa&aneitar
tensor order paramet€) for the nematic order are introduced. A scalar order paransatedefined
as follows,

S=Z (3(co$6m) — 1). (1.26)

I\)II—\

Here parametef,, is an angle between the directorand the molecular long axis. Tensor order

parameter is introduced as a functionSaind it is written as

1
QUB = S(nanﬁ — é aﬁ) . (127)

Indices ofQ specify components of Cartesian axis. By usfpgthe Landau-de Gennes free energy

fp and the elastic energfy are given as [2]

A
o =3 <1_ _) g QaBQBvaa + 22 (Q g% (1.28)
L
fe = ?1(001QBV)2+ 7(00QGV)(03QBV) + ?Qaﬁ (0aQye) (95Qye).- (1.29)
The paramete® is a constant related to a temperatuberepresents the relative contribution of the

Landau-de Gennes free energy to the total free energy of the system. PardmedterandLs are

materials constants related to Frank elastic constants given by

L1 = (Ka+2Ko—Ky)/(9SD), (1.30)
Lo = 4(Ki—Kp)/(95%), (1.31)
Lz = 2(Kg—Ky)/(9S%), (1.32)

Time evolution of the tensor order paramefeobeys the following equation,
(+U-0)Q—SW,Q)=TH. (1.33)

Hered is the velocity of flow in the bulk regior; the coefficient of energy dissipation due to the
rotation of a director, anW the velocity gradient tensor written %%,z = dgUg = (dUg/dXg). H in

the right hand side is a molecular field for the nematic order, which is related to the free Eneygy

oF | oF

the following equation.
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wherel is the unit matrix. Functio(W, Q) is given by

SW,Q)=({D+Q) (Q+%) + (Q—I—%) (ED—Q)—2¢ (Q—l—:l—g> Tr(QW). (1.35)

HereD andQ are the symmetric and antisymmetric parts of the velocity gradient tensor, respectively,
and¢ a parameter related to the anisotropy of molecular shape.
Velocity of flow in the bulk regiorti obeys Navier-Stokes equation and the elastic theory. Stress

tensor exerted on the NLC due to the flow is written as

1 1
Oap = —Polap— (& —1)Hay (Qvﬁ +§5VB> —(&+1) (Qav+ ééav) Hys
1 oF
+2£( o +_5a) gHg_a <A A 136
Q B 3 B QV )iz 3QVV 500{va ( )

Parameter$ is the pressure. This equation includes terms of the tensor order par&neterthe
molecular fieldH. 1t shows that the time evolution of order parameter and molecular field generate the
stress [2], which induces the flow of the NLC. Namely, disclination dynamics induces macroscopic
flow [16,17].
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Chapter 2

Cell gap dependence of asymmetric

annihilation

2.1 Introduction

The backflow effect on the annihilation dynamics of disclination pair has been studied by various
methods. Numerical simulations ignoring the surface effect have been reported for a two-dimensional
system without confinement [16, 17]. These works showed that the backflow makes asymmetric an-
nihilation dynamics. A disclination wite= +1/2 moves almost twice as fasts&s —1/2 one owing
to the backflow. On the other hand, a simple phenomenological model was proposed on the ba-
sis of Ericksen-Leslie theory by Sonnet al. [19, 20] A more recent work utilizing perturbative
approach [21] explains the mechanism of dissipation arounsl=aa-1/2 disclination. The experi-
mental evidence of the backflow effect on disclination dynamics has also been giveneB#hiht8]
observed the electric-field-driven annihilation of nematic disclination pairs swtht-1/2 under an
electric field which was strong enough for ignoring the effect of cell surfaces. Their experimental
setup enabled a quantitative comparison with numerical results.

The fundamental characteristics of the backflow effect have been revealed by considering surface-
free systems as briefly summarized above. For more advancement, however, we have to treat the
backflow under more realistic situations. It is surmised that a strong anchoring affects the backflow
because the surface anchoring suppresses the reorientation of the NLC director.

Effects of cell surfaces on the disclination dynamics and the flow of NLC have been studied
theoretically. Denniston [22] showed that the disclination wgith +-1 requires the flow to move in
the medium regardless of the signoth et al. [23] studied the motion of disclination line which is

parallel to the substrates. In this situation, the backflow is confined between two cell surfaces.
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NC CH,

Figure 2.1. Molecular structure of 4-cyano-4’-pentylbiphenyl
(5CB).

In this chapter, we study experimentally the annihilation dynamics of disclinations under strong
anchoring condition considering backflow effect(s). In order to see the effect of surface systematically,
NLC cells were prepared of its thickness distributed in two-order of magnitide I — 92 um).

We investigate the cell gap dependence of the disclination velocity to reveal the anchoring effect on
the dynamics. The velocity rati, /v_ is regarded as a measure of the backflow effect. Cell gap
dependence of the velocity ratio was analyzed in order to reveal a mechanism by which the anchoring

influences the backflow.

2.2 Experimental

Nematic phase of 4-cyano-4'-pentylbiphenyj( = 35.3°C) was selected as a sample to study
the disclination dynamics, because its material parameters are well known [24, 25]. The material is
written as 5CB for short. Structure of the molecule is illustrated in Fig. 2.1.

5CB was sandwiched between two glass plates coated with a homogeneous alignment material.
Poly(vinyl alcohol) (PVA) solution (1% in concentration) was used as the homogeneous alignment
material. Glass plates were coated with PVA using pieces of paper dipped in PVA solution. The
pieces of paper were moved in a particular direction to obtain a strong anchoring condition. The glass
plates were then dried. The coating-drying process was performed 8 times. After final drying, the
glass plates were heated for 1 h at 280

The cell gapd was discretely changed by spacers, the thickness of which were 1, 2, 5, 12, 32,
54, and 92um. The true cell gapl is expected to be larger than the thickness of spacarab®
um, which was estimated from separate measurements on cells similarly prepared. The difference
between the cell gap and the thickness of spacer scarcely affects the qualitative discussion in this
paper.

Disclinations were generated by quenching the sample Trea86.0 °C (isotropic phase) to 34.8

°C (nematic phase) at a rate of 10 K/min. Then the sample temperature was kept constant within
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+0.1 °C by using a hot stage (LINKAM LK-600PM and THMSG600) for observation. The image of

disclination pairs was recorded through a CCD camera mounted on a polarizing microscope. After
the sample was quenched, the dynamics was observed of a disclination pair moving perpendicularly
to the anchoring easy axis. As will be described, our setup guarantees the annihilation dynamics of

the disclination pair can be discussed while ignoring other disclination(s).

2.3 Results

First we examined the velocity af1/2 disclinations at a constant cell gap=£€ 12 um). Two
disclinations seemingly moved with constant but different velocities. The velocity was determined
by using a least-squares method assuming a linear function of time for their positions. Although the
velocity itself depended on cells, which would differ in the strength of surface anchoring, the velocity
ratiov, /v_ for an annihilating pair in each cell remained constant. Since thevatio is a measure
of the backflow, the constant ratio implies that the backflow is not influenced by the strength of surface
anchoring if the cell gap is kept constant in our LC cells.

We observed annihilation of disclination pairs wih- +1/2 in LC cells withd = 1 — 92 um.

Figure 2.2 shows the typical examples of annihilation behaviors. This plot shows the position of two
annihilating disclinations witls = +1/2 (upper side) and= —1/2 (lower side) as functions of time.
Here, we define as the axis connecting two disclination cores. The asymmetric motion with +1/2
defects moving faster is clearly seen by inspecting the meeting point, which is not halfway between
the initial positions of the defects. It is noted that the asymmetry is small in the LC celbwitid

pm.

Figure 2.2 shows that the motion of disclinations just before annihilation deviates from the linear
dependence on time. This trend is more discernible with increasing the cedl. ghpthe curved
region, the elastic interaction betweed/2 disclinations dominates the annihilation [12]. To see this,

a characteristic lengté., which is the radius of a cylindrical region (around each disclination core)
where the elastic force field associated to the defects dominates the anchoring torque, is calculated.

Bogi et al.[12] derived the formula o€ within an elastic theory as

K s,d
.= , 2.1
¢ 4./KeoK2 [g—1+c+g|n(%)} (2.1)

whereKgp andK» are, respectively, the splay-bent and twist elastic constanise anchoring ex-

trapolation length, an@ = fol [arctar{x) /x| dx =~ 0.916 (Catalan’s constant). We sKt, = 2.4 pN,
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Figure 2.2. Typical annihilation dynamics af= £1/2
disclination pair in LC cells witld =1, 5, 32, and 92i/m (a),
andd = 2, 12, and 54um (b).
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Figure 2.3. Cell gap @) dependence af. calculated according
to Eq. 2.1.

K2 =21.5pN andL =~ 0.2 um [12]. Figure 2.3 shows the dependencéodn the cell gagl. & mono-
tonically increases witl. It means that elastic interaction becomes in effect even when the distance
between the disclination pair is large in a thicker cell. In other words, the curved region in Fig. 2.2
grows with increasingl. It is noted that. in Fig. 2.3 is smaller than 1@im in our experimental
setup. The annihilating disclination pairs that we observed were separated from other disclinations
at least 3Qum. The disclination pair under observation was safely assumed to behave as if isolated
from others.

We definev, (v_) as the velocity ofs = +1/2 (—1/2) disclination in the linear region against
time. Ford < 12 um, we determinas,. andv_ by applying the least-squares method assuming a
linear function of time to the whole course of annihilation dynamics. dror 32 um and larger,
however, the curved region is certainly discernible as seen in Fig. 2.2, and should be omitted from the
fitting procedure. In order to determine the time domain which we should ignore, we plotted the time
dependence af?, whereu is the distance between the annihilating disclinations. Whisrsmall,u?
exhibits a linear decrease with time (shown in Fig. 2.4). It meansutlobieys the square-root time
law [8, 9]. A linear region of a plot like Fig. 2.4 was thus omitted in determiningandv_ by the
least-squares analysis assuming a linear function of time.

The validity (adequacy) of our determination\of andv_ was examined from two aspects: 1)
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Figure 2.4. Time dependence af. The straight line shows the
square-root time law [8, 9] before annihilation.

elastic constanK from Fig. 2.4, and 2)_ itself in comparison with a theoretical magnitude. First
we discuss the elastic constant. Whems small, the defect annihilation is dominated by elastic
interaction between the two disclinations, and the effect of the surface anchoring is negligible.
obeys the square-root time law in this situation. If only the elastic interaction between disclinations
Is considered as a driving force of the annihilation in Eq. 2.2, the time dependenceithiout the

surface effect is given by [8, 9]

8nKt
TyettIN < .rc C)
whereyes is the effective viscosity expressed as
2
a;
Vet = V1 — 57—~ (2.3)
¢ 2(Nb— Vo)

in terms of the orientational viscosiy, and coefficients related to the Leslie coefficiemmis, (7,, and

o) [12, 24]. The numerical value ok is calculated ag.1 x 102 Pa s. Ten annihilation data yields,

in averageK = 1.5 pN, which is favorably compared with the reported estimate for 5CB (abeut 1

2 pN) [25]. Therefore the elastic interaction between disclinations is certainly dominant in the linear

region of Fig. 2.4. Second we discuss the experimental magnitude ib$elf. Since the backflow
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Figure 2.5. Cell gap () dependence of experimental and
theoretical while ignoring the backflow effect calculated by
using Eq. 2.4.

is very weak around as= —1/2 disclination,v_ is close to the velocity estimated within the elastic
theory. In our experiment, only the anchoring energy contributes to the vehocityThe driving
force from the anchoring energy should be equal to the viscosity [12]. The velocitysfanl/2

disclination is thus given by

_ 8/KKz[F—1+C+7In ()]

d7yettIn <%)

(2.4)

The constant. is the radius of the core. We set= 0.01 um considering the literature [12]. The
dependence of_ on cell gapd is shown in Fig. 2.5. The experimental and theoretical velocities
are qualitatively consistent. The above analyses show that the determinatignaotiv_ seems
acceptable.

The velocity of a disclination was determined by using the method noted above. The actual value
of velocity exhibits difference depending on the position within a cell. Figure 2.6 shows experimental
velocities of annihilating disclinationsl & 54 um). The annihilation was observed at three positions
in a LC cell. These observations were repeated for more than 20 times at each position. Each point

with an error bar means the average of velocity in one position.
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Figure 2.6. The disclination velocity of each position, in tde=
54 um LC cell.

Having validated the determination ef andv_, we proceed to the issue of the strength of the
backflow effect. Figure. 2.7 shows the relation betweefv_ and cell gagl. The largest error bar is
exhibited by thed = 54 um cell, the data of which are shown in Fig. 2\6./v_ ~ 2 is expected from
theoretical studies ignoring the influence of surfaces. In our experiment,. gets close to 2 with
the cell gapd becoming large. This is reasonable because the surface effect becomes relatively small
with increasingd. It is emphasized that the velocity ratig /v_ atd = 1 um is much smaller than a
smooth (straight) curve in Fig. 2.7. The straight line means a logarithmic function. Figure 2.7 shows
that the reduction of, /v_ aroundd = 1 um is more rapid than the logarithmic functiom.. /v_
seems to be changed discontinuously. This impliesdratl um LC cell has different flow mode

from thicker cells.

2.4 Discussion

Let us discuss the dependence on the celldjapthe velocity ratiov, /v_, which is a measure
of the backflow. The elastic anisotropy is ignored in the following, though it could cause asymmetric
annihilation of a disclination pair in Langmuir monolayers [26]. Previous theoretical studies [16, 17]
predictedv, /v_ ~ 2 in the absence of surfaces. If the backflow is suppressed by cell surfaces, it is

expected that, /v_ gets close to the unity.
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Figure 2.7. Cell gap ¢) dependence of velocity ratio_/v_. A
straight line is a guide for eyes.

When the cell gap is thicker than2m, the velocity ratio increase slightly with the increase in
the cell gapd. The ratiov, /v_ ~ 1.8 is reached afl = 10° um as seen in Fig. 2.7. This magnitude
is comparable with the theoretical predictiaa.(2). It shows that thicker LC cells have the region
where the surface effect could be ignored. This region should locate at the central part of a cell in the
direction of thickness, because the surface effect is the weakest there. Figure 2.8 schematically shows
the expected distribution of the director field in a thick LC cell. A constant (uniform) flow is expected
in the region near the center of the cell. This region is denoted “free flow region” hereafter. On the
other hand, Fig. 2.7 shows that /v_ drops sharply whed = 1 um. It means that the backflow is
suppressed in the LC cell. A region with weak flow exists near the cell surface. We call this region
“suppressed flow region.” Considering the fact that NLC is sandwiched between two glass plates, the
thickness of the suppressed flow region is abouf.rb

We discuss the mechanism of the backflow to explain the dependence of velocity ratio on cell gap
d. Téthet al.[16] showed that the coupling of two modes of flow causes the total backflow. One mode
comes from the director rotation involved in the disclination movement. The sense of the director
rotation is decided by the sign sf The other mode comes from the movement of the disclination
core, where the nematic order is suppressed. The core can be treated as a moving cylinder in the NLC.

The movement of the core induces vortices, accordingly. This mode is independent of disclination

30



>~ suppressed flow region

@ N

AN

 free flow region

—— | suppressed flow region

R

Figure 2.8. Schematic illustration of the director field anwall.
The director field near two surfaces are twisted by the anchoring
effect.

strengths. Namely, the flow mode is“symmetric” for the sign af Fors= —1/2 disclination, the

flow caused by the director rotation is opposite to the symmetric flow, resulting in negligible backflow.
On the other hand, the two flow modes points the same direction arouse-ail/2 disclination.
Moreover, the direction of the coupled flow is the same as that of the disclination movement. Because
of this coupling, ars = +1/2 disclination is accelerated.

We consider the distribution of flow caused by the director rotation in order to explain the forma-
tion of suppressed and free flow regions, because the symmetric flow has no essential effect on the
asymmetry in the annihilation dynamics. LC cells with- 2um is considered first. The director field
between two glass plates is distributed as Fig. 2.8 on the so-cafeall. The director near the cell
surface is aligned by the anchoring effect. The angle between the director and the anchoring easy axis
is smaller in comparison with that in the bulk region, whereas the anchoring effect is relatively small
in the bulk region, where the director field is distributed as if there were no surfaces. In addition, the
director field in the bulk region is mostly independent of #emordinate.

After the disclination goes through, the angle between the director and the anchoring easy axis
becomes zero. Considering the distribution of the director field, the director rotation near the surface
is slower than that in the bulk region. Therefore the flow caused by the director rotation becomes
weak near the cell surface. In the bulk region, the flow distributes uniformly. As for the symmetric
flow, we assume that there is no specific cell gap as in the case of Poiseuille flow of isotropic fluids.
The assumption is phenomenological, but does not have essential effect on the asymmetry in annihi-

lation dynamics. Distributions of the two flow modes are schematically shown in Fig. 2.9. The total
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Figure 2.9. Distribution of flow coming from director rotation
(a), symmetric flow (b), and total backflow aroundssa +1/2
disclination (c).

backflow is a superposition of the two flow modes as shown in Fig. 2.9(c). It is expected that the total
flow is almost independent of tiecoordinates in the central part of the LC cell by virtue of the flat
distribution of the director rotation flow. On the other hand, the backflow drops off rapidly as the cell
surfaces come close. The gradual increase jfv_ for d > 2 um is explained by the increase in the
maximum velocity of Poiseuille (symmetric) flow with increasing the cell dap

The suppression of the backflow in the LC cell with= 1 um is also explained on the basis of
Fig. 2.9. Because of the small cell gap, the flat region in Fig. 2.9(a) is absent in the LC cedl with
1 um. Therefore all the thickness of LC cell belongs to the suppressed flow region. The velocity ratio
v /V_ gets close to the unity.

To see the consistency of the above qualitative discussion with existing theories, we examine the
director field around therwall. The angle between the director and the anchoring easy axis, denoted

as¢ , can be calculated on the basis of the elastic theory [12]. By putting the origin of coordinates on
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a cell surface, the anglg on theyzplane (shown by a dashed line in Fig. 2.10(b)) is given by [12]

2sinh(, /X2 Iy sin( I2)
¢(y,z)=%Tan‘1 . Ko d ‘d . (2.5)

Figure 2.10(a) shows the relation betwegeand the distance from the lower surface for cell gaps used
in the present study. The value of theoordinate was set to the radius of disclination coge<0.01

pm) to fix the sense of director rotatios: (/2 is equivalent because of the head-to-tail symmetry of
nematic phase). The angle starts at a small value on the cell surfad® (increases rapidly without

the dependence on the cell thicknesssaturates tat/2 (the surface-free value) if the cell is thick
enough, and then return to the small value on the other surfacal). This is fully consistent with

our expectation depicted in Fig. 2.8. In the LC cell with= 1 um, the maximum magnitude af

is notably smaller tham/2. The suppression of the flow caused by the director rotation is expected

throughout the cell.

2.5 Conclusion

We observed the annihilation dynamics of disclination pair under the strong anchoring condition.
To see the backflow effect, we analyzed the ratio of velocities-ef+1/2 disclinations. The ratio
rapidly decreased when the cell ghwas reduced to im. It means that the backflow is suppressed
in a thin LC cell. There is the suppressed flow region near the cell surface, where the effect of the
surface anchoring is in effect. The angle between director and the anchoring easy axis at the surfaces
is smaller in comparison with that in the central region of the LC cell. The director rotation involved
in annihilation dynamics is slow near the cell surface, accordingly. Therefore the flow caused by the
director rotation is significantly suppressed. When the celldjap 1 um, the director rotation is
suppressed throughout the whole thickness of the cell. This picture is supported by the calculated

profile of the director field within an elastic theory.
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Figure 2.10.(a) Angle between-axis and the director
calculated by using Eq.2.5 for cell thicknesslagtilized in the
present study. (b) Director field at= d/2 with a disclination
pair. The dashed line in (b) indicates the plane 0, where
Eqg.2.5 applies.
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Chapter 3

Annihilation under external field and surface

anchoring

3.1 Introduction

Surface anchoring effect on disclination dynamics and backflow was investigated in the previous
chapter. Backflow is suppressed under the strong anchoring condition, and “suppressed flow region”
is generated near the cell surface. It was revealed that the surface anchoring influences very thin
region close to the surface. On the other hand, an external electric field deforms the whole region
of the director field in the LC cell. Therefore the electric field can influence disclination motion in a
more direct way. In this chapter, the effect of the external electric field is discussed, in addition to that
of the strong anchoring.

Disclination dynamics under the external electric field has been discussed considering backflow.
Blanc et al. [18] measured the electric-field-driven annihilation of nematic disclination pairs with
s= +1/2 in the nematic phase of 5CB. They used planarly oriented layers with a very weak az-
imuthal anchoring, thus enabling a free rotation of the director on the plane of the substrates. In a
strong enough electric field, the anchoring becomes negligible. This simple experimental system al-
lows a quantitative comparison with numerical studies based on the hydrodynamics of tensorial order
parameter. The simulations showed that the asymmetry in the annihilation of the nematic disclinations
Is due to the backflow.

Backflow effect under the influence of cell surfaces has also been studittetTal. [23] studied
the motion of disclination line that is parallel to the substrates. In this situation, backflow is confined
between two cell surfaces. On the other hand, the backflow effect on annihilation dynamics under the

strong anchoring condition remains totally unexplored.
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Figure 3.1. Configuration of the director arountdl/2

disclinations in the present experimental setup. The two dots are
cores of these disclinations. These disclinations move parallel to
the applied electric field. Curved arrows surrounding the director
denote torques. The torque from the elastic energy (solid) is
always opposite to that from the electric field (dotted).

In this chapter, presented is an experimental study of the dynamit4/@f disclinations in the
nematic phase of 5CB under the strong anchoring condition in an electric field. The results show
that their motion is clearly asymmetric; The +1/2 disclination moves almost twice as fast-a$/the
one even under the strong anchoring condition. This behavior essentially remains unchanged under

electric fields up to 30 V/mm. The backflow effect under the electric field is discussed.

3.2 Experimental

Nematic phase of 5CB was selected as a sample to study the disclination dynamics. 5CB was
sandwiched between two glass plates coated with a homogeneous alignment material. Poly(vinyl
alcohol) (PVA) solution (1% in concentration) was used as the homogeneous alignment material.
Details of the surface treatment process was shown in Chapter. 2.

Aluminum foil (12 um in thickness) was used as spacers and electrodes to apply a dc electric field
parallel to the glass plates. Each electrode was 0.3 mm in width and 10 mm in length. Two electrodes
were arranged parallel to the easy axis of anchoring at an interval of 0.5 mm. An electric fields was
applied perpendicularly to the easy axis, to which the two glass plates were parallel.

Disclinations in nematic phase were generated by quenching the sample from the isotropic phase
(T = 36.0 °C) to the nematic phase (34°€), and then the sample temperature was kept constant
within £0.1 °C by using a hot stage for observation. The experimental configuration is schematically
shown in Fig. 3.1.

Images of disclination pairs were recorded through a CCD camera mounted on a polarizing micro-
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scope. After the sample was quenched, the dynamics of the disclination pair moving perpendicularly

to the anchoring easy axis was observed. The applied dc electric field ranged fraa30 Y¥Wmm.

3.3 Results

A typical time dependence of the distangdetween a disclination pair is shown in Fig. 3.2.
When the disclination pair is largely separatedjecreases linearly with time. On the other hand,
there is a slight deviation downward from the extrapolation line with a constant speed shortly before
the annihilation of the disclinations. Although the relative velocity of the disclination pair gradually
decreases with increasing electric field, the time dependences @ssentially the same as that at the
zero electric field. This behavior is simply explained in terms of an elastic model proposed by Bogi
et al. [12], where the anchoring energy is taken into account. According to them, during the time

courseyu satisfies the following equation

B u+éc
VaS)I—UO—U‘f‘Ec'n(UO_'_EC)a (3.1)

whereug is the initial distance between the disclinationgsy is the initial annihilation speed given

by
16y/KeoKz [T —1+C+ Zin ()]

d7yesIn (%)

In Eq. 3.1, is a characteristic length, which represents the radius of a cylinder around each defect

Vasy = (3.2)

where the elastic torque associated with the defects dominates the anchoring torque. In the region
u>> ¢, the direct elastic interaction between disclinations is completely screened out by the anchor-
ing energy. The disclinations approach each other with a constant gpgéstationary regime), ac-
cordingly. On the other hand, in the regiorc &, the elastic interaction of two anchoring-free discli-
nations is in effect. The distance between disclinations follows a square-root time law (accelerating
regime). Thus, a crossover between the stationary and accelerating regimes occurs at approximately
u= &c. Since the square-root time law was observed only just before the annihilation of disclinations
in the present study, the time dependenceisfdescribed by Eq. 3.1 with. — 0. This means that the
direct elastic interaction between disclinations plays only a minor role in the disclination dynamics,
and therefore the present cell successfully provides a strong anchoring condition.

Figure 3.3 shows the position of two annihilating disclinations vgith +1/2 (upper side) and

s= —1/2 (lower side), as a function of time. Here, we definas the axis connecting the two
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Figure 3.2. Time dependence of the distancbetween a
disclination pair in dc electric fields of 0, 16, and 28 V/mm.

There is a slight deviation downward from the straight line
(dashed, with a constant speed) shortly before the annihilation of
the disclinations.

disclination cores (see Fig. 3.1). Asymmetric motion with +1/2 defects moving faster-thaa
defects is clearly seen by inspecting the meeting point, which is not the midpoint between the initial
positions of the defects. A similar asymmetry in the defect motions was also observed in the case of
applied electric fields. Note that tlse= +£1/2 disclinations exhibit stationary velocities most of the
time.

Now, we focus on the stationary dynamics of the pair of disclinations. Figure 3.4 shows the electric
field dependences of. andv_, wherev, (v_) is the stationary velocity of the disclination wigh
+1/2 (—1/2). For comparisonyasy (= V4 +V_) is also shown.v,, v_, andvasy decrease gradually
with increasing electric field. Similar results were obtained when the direction of the electric field
was reversed (not shown).

To discuss the role of the backflow, we quantify the symmetry-broken dynamics using the ratio of
v, /v_. Figure 3.5(a) shows the ratia /v_ as a function of electric fieldz, /v_ is almost independent
of the electric field up to 30 V/mm with a constant value~oi..6, which is slightly smaller than that
in a weak anchoring case [16-18, 23, 27]. Sinceghe—1/2 disclination is only slightly affected

by the backflowy_ can be regarded as the velocity of the defect without the backflow effect. Figure
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Figure 3.3. Motion of the disclinations towards their
annihilation in electric fields of 0, 16, and 28 V/mm. Thexis
is defined as the axis connecting the two annihilating
disclinations. The position of the= +1/2 (—1/2) disclination is
positive (negative) at= 0.

3.5(b) showsr, /v_ as a function ol/_. We notice that/v_ is also independent af_. Our results

show thats = +1/2 disclinations systematically move faster tlsan —1/2 ones.

3.4 Discussion

Let us discuss the effect of an electric field on the annihilation under a strong anchoring condition.
The velocities of+1/2 disclinations decrease with increasing the electric field. The reduction in
disclination speed should be explained by a mechanism that does not affect the growth of backflow.
Possible origins of disclination speed reduction are as follows: (i) electrohydrodynamic convection
(EHC) of the NLC, (ii) a change in the viscosity of 5CB with electric field application, and (iii) a
change of elastic energy of 5CB with electric field application.

The characteristic pattern of EHC [28—30] was not observed in the present experiments. Therefore
EHC is not the cause of the velocity reduction. The change in viscosity is also not the cause of the
velocity reduction, because the reduction in velocity is too large to be explained by the change in

viscosity [31]. Furthermore, hypotheses (i) and (ii) would change the velocity ratio. Consequently,
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Figure 3.4. Electric field dependences of , v_ andvasy.

these hypotheses are discarded.
The reduction in disclination speed can be qualitatively understood by considering a change in
elastic energy due to an applied electric field [hypothesis (iii)]. It is known that the coupling term in

free energy between a dc electric field and the director field has the form [1],
1 2
fo = —5€0€aE co< 0, (3.3)

whereg; is the dielectric anisotropy (positive for 5CB), a@ldhe angle between the director and the
electric field. In our experimental configuration shown in Fig. 3.1, the director in the bulk region is
perpendicular to the electric fiel@ & 1/2) owing to the strong anchoring, while that on thevall is

parallel to the electric fieldqd = 0). Considering the positive dielectric anisotropy of 5CB, thwall

region is stabilized byoesE2/2 compared with the bulk region. The energy per unit length of the
r-wall is equal to the constant driving force, which dominates the velocity of the disclination in the
regionu > & [12, 18]. Hence the driving force of annihilation is weakened under an electric field,
resulting in the reduced velocity of the disclination. The disclination velooitigsv., andv_ are in
proportion to elastic energy. The observed decrease in Fig. 3.4 is roughly quadratic as expected from
Eq. 3.3.
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The discussion on the stabilization of titevall given above does not consider how two disclina-
tions approach each other while accompanied by the deformation of the director filed. The velocity
of disclinations is also influenced by the suppression of the director rotation around disclinations.
The director field around disclinations is different from that in the exact (and idealized)l! re-
gion (plane). The director near disclinations is in rotary motion owing to the disclination dynamics.
We have to consider the balance of three types of torque arising from the elastic energy, the electric
field, and the viscosity. The torque from viscosity arises only to balance the sum of the elastic and
dielectric torques in the case of the stationary dynamics considered in this study. This is true even
under a strong anchoring condition. We discuss the elastic and dielectric torque in order to explain
the disclination motion under a strong anchoring and an electric field. The director field-h&ar
disclinations in the middle of the cell in its thickness direction is shown in Fig. 3.1. Under a strong
anchoring condition, the director near the cell surfaces is parallel to the anchoring easy axis. Along
the cell thicknesszaxis), therefore, the angle between the directonaagis changes from O ta/2
(maximum). Because of this twist, the director is subjected to a torque, the sense of which depends
on the side of thear-wall. This torque arising from the twist deformation is shown as solid curved
arrows in Fig. 3.1 Since the director at the surface is fixed by a strong anchoring, the torque forces
the director to rotate toward the anchoring easy axis. On the other hand, the electric field forces the
director to be parallel to tha-wall. Considering again the positive dielectric anisotropy of 5CB, the
dielectric energy becomes minimum when the director is parallel tartvall. This dielectric torque
is shown in Fig. 3.1 by dotted arrows. The dielectric torque has the opposite sense to the elastic torque.
Thus, the rotation of the director is suppressed by an external electric field. The external electric field
makes the rotational relaxation around disclintions slower by this mechanism. For disclinations to be
stationary, the torques arising from twist elasticity, electric anisotropy and viscosity must be closely
balanced. Since the torque from the dielectric anisotropy is always opposite the rotation necessary
for the movement of disclinations, the sum of the elastic and dielectric torques, i.e., the total driving
force, becomes smaller. The torque from viscosity is a function of director rotation speed. A smaller
driving force generates the slower director rotation, and the torque from viscosity becomes smaller,
accordingly. It is emphasized that our model is for a time course when directors are just rotating
associated with the movement of disclinations. This model of torque balance is valid under a strong
anchoring condition and a smaller electric field than the cutoff of the Frederiks transition (estimated
asca. 35 V/mm for the present experimental setting).

Finally, a comment is given on the reason why the ratio of defect velocities remains constant under

external electric fields. Figure 3.1 shows that the mechanism for the slowing down applies regardless
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of the sign ofs = +1/2 disclinations. The suppression of director rotation aroundsthet1/2
disclination is explained by the elastic (i.e., stationary) theory. Since there is no plausible reason to
assume that hydrodynamic parameters are altered by the external electric field, the backflow arises in
the same way as under the zero electric field condition, and the ratio of disclination velocity remains

constant.

3.5 Conclusion

We have presented an experimental study of the dynamics of disclinations withl1/2 in a
NLC under a strong anchoring condition in an electric field./v_ is almost independent of the
electric field up to 30 V/mm with a constant value~ofl1.6, which is slightly smaller than that in a
weak anchoring case. Moreovet, /v_ is independent of_, which can be regarded as the velocity
of defects without the backflow effect. Our results show that+1/2 disclinations systematically
move faster thars = —1/2 ones. The backflow effect under a strong anchoring condition is very
similar to that without the anchoring effect. These experimental results suggest that a strong velocity
vortex pair is formed around thel/2 defect even under a strong anchoring condition. An electric
field significantly affected the rotation of director around disclinations, but only slightly affected the

occurrence of backflow near= 4+-1/2 disclinations.
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Chapter 4

Ultraslow oscillation of disclination after

abrupt switching of voltage

4.1 Introduction

In Chapter 2 and 3, the annihilation dynamics of the nematic disclinations was investigated under
the stationary external forces. The annihilation dynamics was reasonably analyzed based on the
continuum theory of the NLC. In previous chapters, disclination dynamics was analyzed based on the
assumption that the external force balance the viscous drag. In this sense, the motion of a disclination
in a quasi-steady state has been studied so far.

If the deformation of the director field is large and time-dependent, the deformation will also de-
pend on the position and velocity of the disclination. In particular, when an electric field is applied to
a liquid crystal (LC), such deformation is easily introduced. Since the force acting on the disclination
also depends on time (and position), the disclination dynamics will become more complicated.

Disclination dynamics under a high-frequency ac field has been well discussed. [18] Because the
dielectric energy of an LC is proportional to the square of the field strength, the effect of a high-
frequency ac field can be regarded as identical to that of a dc field. Actually, the annihilation dy-
namics of a disclination pair under a dc field was reported to be the same as that under a steady ac
field. [32] The frequency used in past studies was, however, higher than the relaxation frequency of
the director field but lower than the relaxation frequency of dielectric dispersion due to molecular
reorientation. [33] It is possible that dc and ac voltages may exert different effects on the disclination
dynamics accordingly. Since the quasi-stationary dynamics has been successfully analyzed assuming
the equivalence of dc and ac fields, such a difference might appear in the dynamics immediately after

applying dc and ac voltages.

44



Eﬂ?%%ﬁf%%%%%%?

®

|-

|

Figure 4.1. Schematic illustrations of LC cell. Cross-sectional
view (a) and top view (b). In (a), the director field is also shown
schematically.

In this chapter, we performed experiments to record the relaxation dynamics of an isolated nematic
disclination bound to an air-LC interface by applying an abrupt (stepwise) change in the electric field.
The damped oscillation of the disclination with a very long time scale was observed after switching
only under the dc voltage. The details of the oscillation (amplitude and cycle) depend on the history

of voltage switching.

4.2 Experimental

It is known [34] that an isolated and stable disclinatieﬂ:(—%) ring is formed at its periphery
when a droplet of nematic LC is sandwiched between two planar substrates having preferential per-
pendicular alignment, as schematically shown in Fig. 4.1. The surface facing the air forms a meniscus,
to which the local director field is perpendicular at all points. Then, a disclination line is introduced
along the interface.

8CB (nematic-isotropic phase transition temperailije= 40.5°C) was selected as a nematic
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Figure 4.2. Molecular structure of 8CB.

LC sample because its material parameters are well known. [35-38] A schematic view of our ex-
perimental system is shown in Fig. 4.1. An 8CB droplet was sandwiched between two indium tin
oxide (ITO)-coated glass plates. The glass surface was treated with a vertical alignment material
[n-octyltriethoxysilane (Z-6341)]. Since the director is aligned perpendicular to the surface of the
substrates and the air-LC interface, a disclination ring was stably introduced near the air-LC inter-
face. The cell gapl was controlled by a spacer made of polyimide tape. The thickness of the cell
and glass plates was measured five times, and the arithmetic mearuaf 8&s adopted as. The
temperature = 39.0 °C) was kept constant withi#t0.1 °C using a hot stage and a temperature con-
troller (INSTEC HCS302 and mK1000). The temperature was monitored by using a thermocouple
placed near the sample. Images of the disclination were recorded using a digital camera with spatial
and time resolutions d3.19 um/pixel and 30 frames/s, respectively.

The disclination dynamics was observed by exerting an abrupt (stepwise) change in the applied
voltage to the cell. In the dc experiments, the pair of applied dc voltages was changed systematically
as follows. First, the initial voltag¥; was set to—1.00, 0.00, 0.50, 1.00, 1.50, and 3.00 V while
keeping the final voltage & = 2.25 V. Secondy; was varied from 1.75 to 2.50 V witi = 0.00
V. Third, bothV; andV; were changed while their difference was kep¥at V; = 1.25V. In the ac
experiment for comparisol; = 2.00V (RMS value, 1 kHz) and/; = 0.00V were used.

4.3 Results

The trajectory of the disclination was obtained by analyzing movies of its motion. The recorded
movies were converted to a set of luminance (greyscale) data. In order to reduce the noise in the
luminance data, the luminance was averaged out in each frame along the disclination line (150 pixels
in length), which is short enough to ignore the curvature of the disclination. Considering that the
luminance reaches a minimum at the disclination position, the integrated luminance data for each

frame were fitted to a Gaussian to locate the disclination position as the minimum point of the fitted
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curve. The disclination positioxt was measured from the air interface.

The general behavior of the motion of a disclination observed under a dc voltage is as follows. A
disclination remains stationary under a voltag&/dbefore the change in voltage. When the voltage
Is switched tov; att = 0, the disclination starts to move toward to the equilibrium posikgnAfter
some relaxational (oscillatory) motion around the equilibrium position, the disclination stops. The air-
LC interface did not move upon switching the applied voltage. The displacement of the disclination
is written asx = X' — Xp. The trajectories of the disclination are shown in Fig. 4.3.

Note that the existence of the equilibrium positignis essential for a relaxation resembling a
damped oscillation. The existence arises from the balance between the dielectric force and the repul-
sive force from the air-LC interface. Such relaxation would only be observed for a bound disclination
at an air-LC interface.

In Fig. 4.3(a), trajectories with the sanve are shown. The amplitude of oscillation and the
velocity of the disclination increases with decreadiigWVith V; = 3.00V (> Vs = 2.25V), the sense
of the oscillation is reversed because the starting point of the disclination is on the opposite side of
the equilibrium position. When the difference between the start and final voltages is kept constant
[1.25 V, Fig. 4.3(b)], the maximum amplitude of the oscillation decreases with incredsinthis
Is explained by considering the fact that the distance between the disclination and the air interface
is larger for a smaller voltage because of the shift of the equilibrium posixgraé shown in Fig.

4.3(b). If the repulsive force acting on the disclination strongly depends on the distance from the air
interface, the disclination moves more easily under a weak voltage, giving a damped oscillation with
a large amplitude.

The trajectory under an ac voltage is shown in Fig. 4.4. The disclination monotonically approaches
the equilibrium position and ceases to move within 20 s. Namely, the disclination relaxes much faster
under an ac voltage than under a dc voltage. This implies that the director field relaxes faster under
an ac voltage than under a dc voltage. The elastic energy causes a minimum within a short time under
an ac voltage accordingly. Figures 4.3 and 4.4 imply that the detailed behavior of the relaxation
depends on the frequency of the applied voltage. Since the dielectric energy of an LC is theoretically
proportional to the square of the field strength, dc and ac fields have indistinguishable effects if the
frequency of the ac field is high enough. In the present experiment, the frequency is high enough
relative to the motion of the disclination, as evidenced by the nonsynchronous motion under the
applied voltage. However, the experimental results show that the disclination dynamics under an ac
voltage is different from that under a dc voltage.

Since the diameter of the droplet is large enoughS mm) compared with the amplitude of
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Figure 4.3. Damped oscillation of a disclination (a) under a
constant final voltage = 2.25V, V; = —1.00, 0.00, 0.50, 1.00,
1.50, 3.00V) and (b) driven by a constathv =V —Vj

(Vi =0.50,0.75,1.00, 1.25V andAV = 1.25V).
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Figure 4.4. Disclination dynamics under an ac voltage
(Vi =0.00V, Vs rms = 2.00V, 1 kHz).

oscillation (< 5 um), the disclination can be regarded as a straight line. Consequently, little effect
of the line tension of the disclination is expected for its oscillatory motion normal to the line. The
effect of backflow is also ignored here because it is known that the backflow aroune afl/2
disclination is very weak under an external voltage [23]. In more advanced studies, needless to say,
the flow dynamics of LC is taken into account [39].

In order to experimentally extract the characteristics of the observed dynamics, we examine the
value of (1/2)app (the time difference between successive crossings at the equilibrium pogjtion
under a constant;. Figure 4.5 is a plot of1/2)app With V = 2.25V as a function oy, at which
the trajectory exhibits an extremum between the nodes def{mif)app It is evident tha{1/2)app
increases wherey is closer to 0. That is, the oscillation becomes slower over time. This implies that
the force field acting on the disclination is highly anharmonic with a negligible linear term.

Figure 4.5 implies that a nonlinear force field acts on the disclination. The driving force depends
on the disclination positior. The force can be roughly estimated through the analysis of disclination

velocity, assuming that it balances with the viscous drag. Based on the assumption, the driving force
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acting on the disclination is given as follows.

Go—Tlv= 0,
Go=TIVv (4.1)

An estimate of the disclination velocity is thus given by

_dX Xex

V—ENE. (4.2)

HereAt is a time, during which the disclination moves from the extrema to the equilibrium position,
andr the relevant viscosity.

The viscosityl has been theoretically given as [10,11]

m ¢
[ theor= Zyeff In r_E, (4.3)

Cc

but it was later experimentally revealed that %Ftheoris a better estimate. [40, 4t is an electric

coherence length written as

1 K1
= — . 4.4
&e EV zocs (4.4)

Elastic constank; is set to beK; = 4.48 pN, andss = 0.0289 Pa s. Using material parameters for
8CB [10, 35, 36] and setting a core radius of the disclination, ef 1004, [12] a numerical estimate
yieldsI = 0.077—0.073Pa s (.75— 2.50 V).

The driving forceGg estimated based on Eq. 4.1 is plotted agaxagin Fig. 4.6. All of experi-
mental results are shown in Fig. 4.6. BorV; > 2.25V, Gg’s are scattered, and it is hard to identify
any tendency, accordingly. On the other haBg,systematically decreases with increaskag for
Vi —V; < 2.25 V. It changes mildly around equilibrium position, and it increase rapidly when discli-
nation approaches the air-LC interface. Namely, the depender&gaf Xex is nonlinear. Since the
director field between the disclination and the air-LC interface is deformed in their close approach,
the elastic energy increases and repulsive force acts on the disclination. The incr&adge tifus
gualitatively explained by the elastic theory.

Neither the microscopic (molecular) nor the mesoscopic (elastic) mechanism of the disclination
dynamics can be plausibly imagined at present. We therefore consider a phenomenological model
while regarding the disclination as a massive object. By doing so, the observed behavior can be

described in a simple way. The disappearance of the oscillation under an ac voltage may be described
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as a kind of overdamping in this model. The following equation of motion is assumed as the starting
point:
d?x dx

Here,p is the effective mass a unit lengthjs the relevant viscosity, ar@(x) is the elastic force field
acting on the disclination. I6(x) is a linear function ok, the right-hand-side of Eq. (4.5) becomes
one for a simple damped oscillator with a harmonic spring.

The force field relevant to the observed slow dynamics of the disclination starts from a cubic
term ofx accordingly. The force field is approximately written@gx) = —kx3. This formula also
crudely explains the behavior 0f /2)app. Assuming that the potential energiesgtare equal to each
other for a real (anharmonic) disclination and a virtual harmonic oscillator having an effective force
constankeg, i.e., %keﬁxgx = 1k, then the half period of the harmonic oscillatay/ @) is expected
to satisfyt /2 [0 1/|xex|- This seems consistent with the experimental results as shown in Fig. 4.5.

Assuming an elastic driving force of the for@(x) = —kx3, the constank was deduced from
each experimental trajectory shown in Fig. 4.3. The time dependencarotind an inflection point
was fitted to a cubic polynomial to obtain the position and velocity of the disclination at the inflection
point. These two quantities suffice to fixbecause the acceleration is zero at an inflection point.
Usingl andk thus determined, Eq. (4.5) was numerically integrated by the Runge-Kutta method (an
example is shown in the inset of Fig. 4.8) with varigusEach calculation was started from the time
whenx is at the minimum with null velocity, because some other phenomena such as the relaxation
of the elastic field, in principle, occur immediately after the change in the applied electric field. For
example, the director field relaxes within 0.7 s. The time wk@asses through the inflection point

was treated as the “fitting” criterion.
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Figure 4.7. Comparison of experimental and simulated
trajectories a¥; = 1.00 V andv; = 2.25 V.

The resultant line densitp of a disclination {; = 2.25 V) is shown in Fig. 4.8.p is roughly
independent o¥,. This is reasonable because the whole dynamics progresses\gndén the
other handp decreased with increasing. The tendency of decreasimgwas found regardless of
the history of applying voltage. These results suggestghatdominated by the voltage at which

disclination dynamics occurs.
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4.4 Theoretical Estimation ofp

The origin and physical meaning of the mass term in Eq. 4.5 are not clear. It was expected, within
the elastic theory, that the disclination would have nonzero line density [42]. The elastic energy of
the director field is increased around a moving disclination due to viscous stress. Deformation of
the director field around a moving disclination is schematically illustrated in Fig. 4.10. Director field
of s= —1 disclination is shown in Fig. 4.10. for the purpose of illustration. Similar deformation is
induced to & = —1/2 disclination. The additional energy of a moving disclination can be treated as
the kinetic energy. Since the increment in the elastic energy starts from the quadratic term of velocity
by virtue of symmetry, its coefficient can be regardeg A2.

At this stage, however, it is noted that the same mass should emerge under both dc and ac cases
because the scenario is within the elastic theory. This clearly contradicts the experimental finding.
To see to what extent does the scenario works, it would be valuable to estimate the line density of a
disclination.

Itis necessary to calculate the elastic energy of the director field as a function of velocity. In order

to calculate the energy, the director field around a moving disclination is considered. The director
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field around a moving disclination obeys the following basic equation [13, 14].

—K1A @ + goeaE? sing cosp + ylv(;—(i =0. (4.6)

Here y; is rotational viscosity and&; an elastic constant. As seen from Eq. 4.6, it is possible to
fix a disclination while assuming the stationary flow of the NLC, in stead of considering a moving
disclination in stationary NLC without net flow.

In actual calculations, a disclination is fixed on the origin of the system for the easy treatment.
The NLC is assumed to be moving at a constant velocity with a stationary elastic field, accordingly.
However, the velocity is used as a relative velocity of a disclination with respect to the NLC. The
positive velocity means that a disclination moves right. Velocity is set betwdern +10 um/s,
which covers the velocities experimentally observed. Applied dc voltage, correspondinio tine

experiments, is assumed between-@.5 V, which covers an actual experimental condition. The

56



(a)

IS /11
/NN 7N\
=z //8\\\ NS ZA\\
= \\0// —= V2
\E\g/ = \\\\\\\M///%

/
)7/ \\
=0

__1’

Figure 4.10.Director field around static (a) and moving
disclination (b) ofs= —1. Because of viscous torque, director
field around moving disclination is distorted.

boundary condition for an= —1/2 disclination is illustrated in Fig. 4.11, and is expressed as,

¢(x,d/2) =
0 x < 0),
$(x,0) = <9
m/2 (x>0),
¢ B
I X:im_o.

The basic equation is integrated to simulate the director field (director gngtea function of
the position), assuming = 0.0447Pa s(of 8CB aB89.0 °C ), andK; = 4.48 pN [37]. Director angle
$(x,z) is calculated in a domain af> 0. Since¢ is symmetric with respect to theaxis, ¢ for
z< 0is given as the mirror image. Cell gabis set to be 5Qum to mimic the experimental setup
(d =55 um). ¢ is obtained by using Gauss-Seidel method on a square mesptrff).in the area
of —100< x/um < 100and0 < z/um < 25. Since the size along direction is large enough in
comparison with characteristic lengths of director deformation: Characteristic length of deformation
is decided by electric field and substrate. When an electric field is applied to the system, the electric
coherence lengtle is given as a function of applied field. It is a characteristic length, over which
the angle of director changes fropn= 0 on the surface t¢ = 11/2 in the bulk NLC area. Typical
length ofég is about 1Qum in our experiment. Another characteristic length is a half of celldy&p
This is also the length of the director deformation fr¢r= 0 on the surface t¢ = 17/2 in the bulk.

System size along direction is large enough compared§eandd/2. The present simulation thus
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Figure 4.11. Schematic illustration of boundary condition,
written as Eq. 4.4. Disclination is put on the origin of the
xz-plane.

approximates an ideal system with an infinite size alongfttieection.
Director field around as = —1 disclination is also simulated in a similar system with the bound-

ary condition

H(x.0) = —m/2 (x<0),
n/2  (x>0).

Other conditions for the simulation are the same as the casesfanl/2 disclination.
The energy density (per unit volume) is divided into elastic endgggnd dielectric energye,.

The energy density is thus given by,

K1

1
fiotal = fe+ fei = ?qub - ésoeaEzcossz. (4.7)

The total energy of the system is obtained by integrafjpg over volume of the whole system. The

integration is written as follows.

FtotalZ/{%szp—%ﬁoEaEzcossz dxdz (4.8)

Since this model is assumed to be a two-dimensional system, the daggggorresponds to the

energy of a disclination per unit length (along thdirection).

58



T T T T T T 25

T T T T T T
, voltage=0.00 V _’ voltage=0.00 V
= 08 velocity = 0.00 pm s! 7 E 20 = velocity=10.0 pm s~! B
S5k 4 315F -
— ~
N 10 - 4 N o) .
5k g 5k -
0 | | | | | 0 | | | |
25 T T T T 25 T T T T T
20 b voltage=1.25V | 20 voltage=1.25V
= =1 velocity=0.00 um s g =1 velocity=10.0 um s™! B
s 15k 4 315k il
~
IR 4 N 10F d
sk - 5k J
0 L 1 ! 0 | I I
25 T T T T T 25 T T T T T /2
N voltage =2.50 V N voltage =2.50 V |
20 yelocity=0.00 pm s~! bl 20 yelocity=10.0 pm s~ bl
= . E st g
3 = 0o Q
~ 10k 4 >~ 10k -
N N
5E — 5= — -1
0 | | | | | I I 0 | I | I | I I —n/2
-20 -15  -10 -5 0 5 10 15 20 =20 -15  -10 -5 0 5 10 15 20
X/ pum X/ um

Figure 4.12.Director angle around= —1/2 disclination.¢
changes from 0 (green) /2 (red) in these figures. Relation
between color ang is shown in the color bar.

Some results of simulation @f are shown in Fig. 4.12 and Fig. 4.13 fo= —1/2 ands= —1,
respectively. In both cases, the director field is deformed by applied voltage. Deformation around
substrate surface is reduced under voltage, and a director tends to be perpendicular to the surface.
When a disclination is moving in the system, the director field is deformed by the motion. The
deformation is clearly seen aroung a —1 disclination, shown in Fig. 4.13. Since stationary state
of the director field obeys the least-energy principle, the deformed director field with veldwity
an excess energy.

Figure 4.14 shows the energy increment as a function of the velocity of a disclination. The state
with the least energy is set to be the origin of these plots. Energy increments are plotted &gainst
= v—\p, Wherey is the velocity of the least energy state. While a statie —1 disclination has
the least energy by virtue of the symmetsy- —1/2 disclination has an asymmetric director field
with respect to the-axis even in a static state. Total energy density is therefore slightly decreases

when thes= —1/2 disclination moves toward left. The elastic energy at 0 is not the minimum,
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accordingly. The dependence is well approximated by a quadratic function of the velocity, regardless
of the topological charge. These results of simulation is fitted to a quadratic functién= av’.
Since a fitting parametexis regarded ap/2, the line density is obtained theoretically within the
elastic theory.

In Fig. 4.15, the obtained is compared with the experimental resufgsdecreases with increasing
voltage. This tendency resembles the experimental resplts.a s = —1 disclination is estimated
by using the same methodF andp have the same tendency with that o & —1/2 disclination.
Because the director is caught by an electric field, the deformation of the director field becomes
weaker under a stronger field. Therefore, the energy increfifeaiso becomes smaller. This means
the coefficienta = p/2 decreases with increasing electric field. In this way, voltage dependence of
theoreticalp is explained.

The estimate of the effective line densjbythus obtained is smaller by more than an order of
magnitude than the experimental “line density” shown in Fig. 4.15. Experimental regul skveral
times as large as numerical resultf —1 disclination. This discrepancy clearly indicates that
another reasoning(s) are necessary for the observed oscillation than the elastic theory, though the
calculated small “line density” may be consistent with the need for assuming grt@kxplain the

dynamics under an ac field as an overdamping.
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4.5 Discussion

In this chapter, characteristic oscillation dynamics was found after the abrupt switching of the
applied dc voltage. On the other hand, the oscillation dynamics was not observed under the 1 kHz
ac voltage. Since the dielectric energy of the NLC is proportional to the square of the field strength
in the theory, dc and ac fields are indistinctive if the frequency of the ac field is high enough. In the
present experiment, the frequency is high enough in comparison with the motion of the disclination,
as evidenced by non-synchronous motion with the applied voltage. However, the experimental results
shows that the disclination dynamics under the ac voltage is different from that under the dc voltage.

In the present experimental setup, the disclination dynamics may be influenced by the accumu-
lation of charged impurities on the electrode. Under a dc voltage, the applied field may be screened
by the accumulation of charged impurities, resulting in a time-dependent effective electric field. In
contrast, impurities cannot move towards one electrode under an ac voltage at a sufficiently high fre-
guency. In this respect, ac and dc voltage influence the motion of charged impurities in different way.
However, the time dependence of the electric field cannot be the origin of the damped oscillation,
because the time scale of the motion of a charged partel€l(s) is much shorter than that of the

disclination motion (on the order of #8). Moreover, the existence of the second and third extrema,
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clearly observed witN; = —1.00V in Fig. 4.3(a), cannot be explained because the accumulation of
charged impurities (and the creation of a Debye layer) is certainly an example of one-way dynamics.
For the same reason, i.e., the difference in relevant time scales, it is difficult to explain the oscillation
in terms of flexoelectricity{ 10~ s) and/or the dielectric memory effeet (L0~° s). Electro hydro-
dynamic convection may be another cause of the effect exerted on the disclination dynamics. Since
the cutoff electric field depends on the frequency, it seems possible to drive a disclination only under
a dc field. However, a pattern assignable to the convection was not observed in the experiments.

There seems to exist a new mechanism that induces the oscillation dynamics under a dc field. Itis
needed to characterize the oscillation dynamics and the driving force on the disclination, in order to
reveal the origin of the oscillation. Figures 4.5 and 4.6 shows that the nonlinear driving force acts on
the disclination. The nonlinear force becomes noticeably weak around the equilibrium position, and it
decreases moderately wheis positive. Since director field between disclination and air-LC interface
is deformed largely, force acting on the disclination is increased when the disclination approaches the
air-LC interface. It is important to emphasize tiia depends on the displacemeninot a distance
from the air-LC interface!’. If the driving force is due to deformation of the director fie@, can be
a function of the distanc€. Because the volume of deformed region is a functioxi,df seems to be
natural to expect thag is a function ofx'. However, it was experimentally revealed tk&tdepends
onx. This fact shows that the volume of deformed area is not an decisive parameter that determines
a driving force acting on the disclination. It implies that the observed oscillation dynamics is not due
to the elastic energy of the bulk NLC.

The oscillation of disclination was discussed by considering a Newton equation model, in order
to characterize the dynamics. The driving force that induces the oscillation is regarded as an inertial
force due to the mass term of the equation of motion. Effective line depsisya characteristic
parameter. The parameter was estimated experimentally, avidlependence was found .

V; dependence gb was reproduced by numerical simulations, which was based on the elastic
theory. In this simulationp comes from the elastic energy of the director field. In this sense, the
bulk elastic energy is regarded as a source of the driving force in the model. However, numerically
estimatedp was an order of magnitude smaller than experimental results. Therefore, the elastic
energy of the bulk NLC is too small to explain experimental results.

In this way, it is thus suggested that a radically new mechanism of NLC system induces the oscil-
lation of a disclination. The elastic theory of the NLC considers the energy by director deformation
of whole system. However, experimental and theoretical results of the present study imply that the

oscillation dynamics is not induced by the bulk elastic energy. We may have to take into considera-
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tion local dynamics of the nematic system. Molecular reorientation around the disclination is one of
possible examples of such a mesoscopic dynamics.

Considering the fact that disclination dynamics has frequency dependence of the applied voltage,
molecular reorientation after switching may give a driving force to the disclination. Under the dc
voltage, 8CB molecule tends to be parallel to the applied voltage. On the other hand, they rotate
under the 1 kHz ac voltage [33]. It is possible to imagine that the difference of molecular dynamics
influenced the disclination motion. If molecular reorientation process is fast enough, the effect of
molecular dynamics may appear in driving force. Actually, Fig. 4.6 showS3fat largely enhanced
forVf -V, > 2.25V. WhenV; —V, is large enough, a molecule around the disclination rotate and may
become parallel to the applied field in a very short time. This fast reorientation process might induce

largeGo.

4.6 Conclusion

In conclusion, we found a new type of disclination dynamics. The ultraslow oscillatory dynam-
ics was observed only under a dc voltage and not under a high-frequency ac voltage (1 kHz). The
difference between the dc and ac cases is difficult to explain by the established mechanisms of discli-
nation dynamics (the elastic theory of a director field). Since the dynamics under a dc voltage has
been reported to be qualitatively the same as that under an ac voltage without abrupt switching of the
applied voltage, it can be concluded that the difference emerges upon the abrupt switching of the ap-
plied field. A further extensive study is necessary to clarify the mechanism of the ultraslow dynamics
found in this study. It is worth pursuing whether there exists a hitherto missed link between molecular

dynamics and the deformation of a director field that bridges different hierarchies of matter.
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Chapter 5

General Conclusion

Although disclination dynamics under external forces have been investigated in previous works,
backflow under the surface anchoring effect had not been taken into consideration. Besides, effects
of time-dependent external force had not been investigated in these works. In this work, disclina-
tion dynamics under external forces was investigated experimentally. Surface anchoring effect and
external electric field were treated as controllable external forces. Disclination dynamics under the
force of anchoring effect and the static electric field was discussed in Chapters 2 and 3, respectively.
Annihilating dynamics under these forces were analyzed considering the backflow. Effect of the
time-dependent external force was discussed in Chapter 4.

In Chapter 2, the annihilation dynamics of disclination pair was investigated. Disclination dynam-
ics was observed in the simplest system where only the strong anchoring worked. Driving force due
to the anchoring was treated as a controllable parameter that influenced disclination motion. Relative
effect of the anchoring was controlled by changing the celldjaprajectories of disclinations with
s=+1/2was recorded, and the velocities of positive and negative disclinatioremdv_) were an-
alyzed. In a thin LC cells, the disclinations moved at a constant velocity when the disthateeen
them was large enough, while disclinations were accelerated just before the annihilation in a thick
LC cell. Acceleration started earlier in a thicker LC cell. The elastic theory predicts, as a function of
d, the increase o, the distance within which attractive interaction between disclinations become
effective. Ans= +1/2 disclination was differently accelerated by the backflow in the experimental
systems, resulting in an asymmetric annihilation. The velocity of a disclinationswith-1/2 was
assumed to correspond to the unperturbed one, which should be estimated by the elastic theory. Ex-
perimental results were smaller than the theoretical prediction, but both decreased with inaeasing
In this way, the cell gap dependence of dynamics were described in the elastic theory.

Velocity ratiov /v_ were discussed as a functiondin order to discuss the cell gap dependence
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of the backflow. Wherd > 2 um, v, /v_ was about 1.6- 2.0. On the other hand,, /v_ rapidly
became close to 1, wheh=1 um. This experimental results show that there is a region where the
flow is suppressed within 0,8m from the cell surface. The director field in the LC cell according to
the elastic theory was consistent with that expected for the suppressed flow near the substrates.

In this chapter, the director field in the LC cell was theoretically analyzed by the elastic theory. It
was revealed that the suppressed flow region was generated by the anchoring effect. Mechanism of
generation of suppressed flow was qualitatively explained by director field in the LC cell.

In Chapter 3, the effect of an electric field was introduced to the system in order to apply a force
on a bulk region of NLC. Two electrodes were sandwiched between glass substrates. Electric field
was applied horizontally to the surfaces, while perpendicular to the anchoring easy axis.

v, andv_ of +1/2 disclinations were estimated from experimental trajectories. The dependence
on electric field of the velocities was discussed. The velocity decreased with increasing electric field.
Since director between disclinations tends to be parallel to electric field, the director field in the
region was stabilized by the electric field. In this way, driving force was reduced and disclination
velocity became slow. The dependence on electric field of the velocity was successfully rationalized
by considering the energy of deformed field.

In order to discuss the backflow in the cell, the velocity ratigv_ was analyzed against the
external field. It is theoretically known that is roughly twice as fast as_ because of the backflow
in systems where the surface effect is negligibe/v_ was almost independent of applied electric
field andv_. These results imply that the mechanism of generating backflow remains unchanged
under an electric field. Flow field is generated only to keepv_ constant.

Chapter 4 deals with an effect of time-dependent field, in contrast to Chapters 2 and 3, where
disclination dynamics under static external field was discussed. From a vast variety of time dependent
fields, abrupt switching was chosen as the simplest example.

After switching of applied dc voltage, a kind of damped oscillatiorsef —1/2 disclination
string was observed. On the other hand, any oscillation was not observed after switching of 1 kHz ac
voltage: Disclination approached to air-LC interface monotonously. It means that disclination relaxes
faster under ac voltage than dc case. Dynamics under the ac voltage could be qualitatively understood
within the elastic theory. This difference implies that there is frequency dependence of disclination
relaxation.

The oscillation dynamics under dc voltage was examined in detail. To discuss characteristics of the
motion, trajectories of oscillations were analyzed. A half of oscillation cytl)ap, was estimated

as the interval between crossing the equilibrium posit{ari2)app depended on the amplitude of the
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oscillation. It implies that nonlinear driving force acts on the disclination. Nonlinearity of the driving
force was discussed by estimating it from experimental results. It was found that the force field can be
expressed as a smooth nonlinear function of amplitggdehen the jump in voltages between final

and initial states|¥; — V;|) is smaller than 2.25 V.

A Newton equation was applied as a minimal phenomenological model to describe the oscillation
of a disclination. An effective line density was introduced to write the equation of motion. Nu-
merically simulated trajectory was partially fitted to experimental results by setting syitaidléile
resultanio decreased with increasing, it was independent of, implying thatp was decided by the
voltage under which disclination dynamics progressed.

Possible origin op was examined within the elastic theory. Disclination dynamics accompanies
energy incremenm\F, which can be regarded as the kinetic energy of the disclingbie?y,2. Within
the elastic theory, elastic energy under a constant voltage was estimated numerically as a function of
velocity v of a disclination.p estimated by this scenario decreased with increasing voltage. Although
this tendency was consistent with experimental results, theoretically estimatesd an order of
magnitude smaller than experimental ones. It was thus revealed that the elastic energy of NLC is too
small to explain the oscillation of disclination.

Experimental results imply that there is some interrelation between local dynamics of NLC and a
driving force acting on the disclination. Driving force may be generated by local reorientation process
of mesogenic molecules (8CB in the present experiments) around the disclination core. Disclination
oscillation seems to be a fundamentally new dynamics in non-equilibrium state.

In conclusion, | investigated disclination dynamics under external forces. These forces were in-
troduced by surface anchoring and electric field. Annihilation dynamics of positive and negative
disclination pair was observed under static external force, and discussed considering the backflow
effect. It was revealed that dynamics under static forces could be explained by existing theoretical
description within the continuum theory of NLC. On the other hand, a fundamentally new dynamics
was found in the non-equilibrium relaxation process, after an abrupt switching of the external field.
It is expected that new kinds of mechanisms for disclination dynamics will be found by investigat-
ing motions under time-dependent external forces. Relation between local molecular dynamics and
macroscopic dynamics in LC (including disclination motion) may be revealed. The present investiga-

tion should hopefully be the first step towards such a new stage of LC science.
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