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Preface

The atomic nucleus is a tiny (∼ 10−14 m) quantum object composed of two kinds of fermions,

neutrons and protons (nucleons), interacting through nuclear force. To study properties of atomic

nuclei, nucleus-nucleus collision experiments utilizing a huge heavy-ion-accelerator is indispensable.

By producing unstable nuclei which do not exist naturally on the earth as well as stable nuclei as an

outcome of the nuclear reaction, we can study properties of nuclei composed of different numbers of

neutrons and protons. From this point of view, we may consider that the nuclear reaction experiment

plays an essential role as a means to study various kinds of atomic nuclei. Because it is basically

a complex quantum many-body problem, however, it is not obvious how we experimentally produce

objective nuclei and we need theoretical considerations. The main aims of this study are (i) to

understand microscopic reaction mechanisms of low-energy heavy ion reactions and (ii) to theoretically

predict optimum reactions, i.e. projectile-target combinations and incident energies, to experimentally

produce objective nuclei. In this thesis, we focus on multinucleon transfer (MNT) and quasifission

(QF) processes which have recently been considered to be a useful means to produce unstable nuclei.

We regard the atomic nucleus as a finite, non-relativistic, self-bound, quantum many-body system

composed of neutrons and protons. Although scales of length and energy as well as interactions

governing the system are very much different from those in atomic/molecular physics or condensed

matter physics, we may expect analogous physics as a many-fermion system. From this point of

view, we consider that MNT and QF processes in low-energy heavy ion reactions would provide us

a unique opportunity for studying a non-equilibrium quantum many-body problem, where structural

properties and time-dependent reaction dynamics are strongly related to each other reflecting the

finiteness of the system and the complexity of the nuclear force. Thus this study is expected to provide

us interdisciplinary information on non-equilibrium quantum transport phenomena in many-fermion

systems.

In this thesis, we investigate MNT and QF processes in low-energy heavy ion reactions at ener-

gies around the Coulomb barrier using a microscopic framework of the time-dependent Hartree-Fock

(TDHF) theory. Although we use a conventional terminology, “TDHF”, it has recently been referred

to as time-dependent density functional theory (TDDFT) or time-dependent energy density functional

approach (TD-EDF). This is because the formalism of the TDHF theory with an effective nucleon-

nucleon interaction has a correspondence to that of the density functional theory which has achieved

great successes in atomic/molecular physics, condensed matter physics, and in the field of quantum

chemistry. To clarify our theoretical formalism, I explain this point in the main text of the thesis.

Despite the fact that continuous efforts have been devoted for improving the method and for

extending applications of the TDHF theory, limitation of the theory in various applications is not yet

clear. This study aims to reveal applicability of the TDHF theory in describing low-energy heavy

ion reactions at around the Coulomb barrier by performing a number of calculations using massively

parallel supercomputers. We consider that to know the limit of applicability of the TDHF theory will

be useful for developing our understanding of the atomic nuclei and for developing new theoretical

frameworks and experimental conditions for the future investigations. In this thesis, we investigate

MNT and QF processes which, before this work, had not been sufficiently studied in the microscopic

framework of the TDHF theory.



Both MNT and QF processes involve transfer of many nucleons between two colliding nuclei. In

this sense, the QF processes may be regarded as a special case of the MNT processes. Their transfer

dynamics is expected to depend on projectile-target combinations, relative orientations if projectile

and/or target are deformed, angular momenta, and incident energies. In addition, as described in the

main text of the thesis, we found that the amount of transferred nucleons in MNT and QF processes

depends much on the dynamics of a neck formation and its breaking, that is, a time-dependent

dynamics of shape evolution in a composite system of projectile and target nuclei. When the composite

system dissociates, a thick and long neck structure is often observed in TDHF calculations of MNT and

QF processes. We found that a scission point of the neck changes suddenly when we slightly change

the initial condition. The change in the scission point of the neck results in different number/direction

of transfer of many nucleons involved inside the neck region. We will refer to this transfer mechanism

as a neck breaking transfer dynamics. We anticipate that, if we can control the scission point of the

neck, we may be able to produce objective nuclei by choosing the scission point of the neck to induce

transfer of nucleons toward the desired direction. Then, we may regard it as nuclear chemistry, where

we produce objective nuclei as we want through the controlled neck breaking transfer dynamics. We

expect that this work will open the door to study heavy ion reactions along this direction in which we

may access a new generation of nuclear chemistry as one of the subjects of low-energy nuclear physics.

Part of the thesis is based on results reported in publications listed below:

1. Particle-number projection method in time-dependent Hartree-Fock theory:

Properties of reaction products,

K. Sekizawa and K. Yabana, Phys. Rev. 90, 064614 (2014); arXiv:1409.1083 [nucl-th].

2. Time-dependent Hartree-Fock calculations for multinucleon transfer processes in
40 ,48Ca+124Sn, 40Ca+208Pb, and 58Ni+208Pb reactions,

K. Sekizawa and K. Yabana, Phys. Rev. C 88, 014614 (2013); arXiv:1303.0552 [nucl-th].

3. Strong Orientation Dependence of Multinucleon Transfer Processes in 238U+124Sn Reaction,

K. Sekizawa and K. Yabana, to appear in JPS Conference Proceedings; arXiv:1409.8612 [nucl-

th].

4. Time-dependent Hartree-Fock calculations for multi-nucleon transfer processes:

Effects of particle evaporation on production cross sections,

K. Sekizawa and K. Yabana, EPJ Web of Conferences 86, 00043 (2015); arXiv:1403.2862 [nucl-

th].

This work was performed in collaboration with Professor Kazuhiro Yabana, the supervisor of this

Ph.D. work at the University of Tsukuba.
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Abstract

Multinucleon transfer (MNT) reactions and quasifission (QF) processes in low-energy heavy ion

reactions may be regarded as a non-equilibrium quantum many-body dynamics. They have attracted

much interests associated with curiosity for their microscopic reaction mechanisms which may reflect

both static and dynamical properties of colliding nuclei. Recently, they have also attracted much

interests as a new means to produce unstable nuclei whose production is difficult by other methods.

The main aims of this study are to understand microscopic reaction mechanisms of the MNT and

QF processes and to theoretically predict optimum reactions to produce objective unstable nuclei. To

this end, we investigate the MNT and QF processes in low-energy heavy ion reactions employing a

microscopic framework of the time-dependent Hartree-Fock (TDHF) theory.

In this thesis, we first explain the theoretical framework of the TDHF theory and its relation to

the time-dependent density functional theory, TDDFT. We present how to numerically simulate heavy

ion reactions in the TDHF theory and how to implement it into a computational code utilizing MPI

and OpenMP parallelization techniques.

After giving our theoretical framework, we describe results of the TDHF calculations for the MNT

and QF processes as a main part of the thesis. We divide it into two parts. The first part (Part I) is

devoted to show that the applicability of the TDHF theory in describing the MNT reaction. Before

our study, it was not known whether the TDHF theory can describe the MNT reaction quantitatively

or not. We present our progresses of this work step by step in Part I.

To examine to what extent the TDHF theory describes MNT cross sections quantitatively, we

analyze MNT processes in 40,48Ca+124Sn, 40Ca+208Pb, and 58Ni+208Pb reactions, for which precise

experimental data are available. To calculate MNT cross sections, we extract transfer probabilities

from the TDHF wave function after collision employing the particle-number projection (PNP) tech-

nique. From the results, effects of the neutron-to-proton ratio, N/Z, and the charge product, ZPZT, on

transfer dynamics are discussed. We show that the TDHF theory combined with the PNP technique

can describe MNT cross sections quantitatively, with an accuracy comparable to existing successful

theories, GRAZING, Complex WKB, and a dynamical model based on Langevin-type equations of

motion.

Reaction products generated through MNT reactions can be highly excited, and subsequent de-

excitation processes by particle evaporation should be taken into account. To include the effect of

particle evaporation, we use a statistical model of particle evaporation putting excitation energy of

reaction products evaluated from the TDHF wave function after collision as an input. To evaluate the

excitation energy of reaction products, we develop a theoretical framework to calculate expectation

values of operators in a particle-number projected TDHF wave function after collision. Because the

method enables us to investigate microscopic reaction mechanisms which could not be seen from ordi-

nary expectation values without the PNP, we demonstrate usefulness of the method taking 24O+16O

reaction as an illustrative example. We then present MNT cross sections including effects of particle

evaporation. We further discuss possible origins of discrepancies and several ways to improve the

description.

From the thorough analyses presented in Part I, we have obtained a confidence that the TDHF

theory provides a reasonable description of the MNT reaction with a certain predictive power in a



sense that the theory microscopically describes many-body dynamics without any adjustable parameter

specific to the reaction. In the second part of the thesis (Part II), we further extend its application to

reactions involving more heavier nuclei such as 238U, where we expect a significant effect of the QF

process in reactions at small impact parameters.

In Part II, we first investigate the MNT processes in 64Ni+238U reaction for which precise mea-

surements of MNT cross sections were performed. From comparisons between MNT cross sections

calculated by the TDHF theory combined with the PNP and those of the measurements, we again

find reasonable agreements. In particular, the TDHF theory describes not only proton-stripping but

also proton-pickup processes. This fact indicates that a reasonable description is possible for a tran-

sitional regime from quasielastic to more complex reactions in a small impact parameter region. The

TDHF theory also describes QF processes involving transfer of several tens of nucleons in dissipative

collisions at small impact parameters. For the 64Ni+238U system, measurements of total kinetic en-

ergy (TKE) of outgoing fragments as well as fragment mass (A) distributions in such a dissipative

collision were achieved. By comparing the measured TKE-A distribution with that of the TDHF

calculation, we find a good agreement between them. We investigate the orientation dependence as

well as the incident energy dependence of the QF dynamics in head-on collisions of 64Ni+238U. We

observe a capture process forming a superheavy nucleus with Z = 120 in the side collisions, while it

never observed in the tip collisions.

As a next application of the TDHF theory to reactions involving 238U, we analyze 238U+100,124,132Sn

reactions. For the 238U+124Sn reaction, production cross sections involving many-proton transfer from
238U to 124Sn were measured. From the TDHF calculation, we find a strong orientation dependence

of the reaction dynamics in 238U+124Sn. When 238U collides from its tip, a thick and long neck

structure is formed, while the neck formation is substantially suppressed when 238U collides from its

side. Because the neck structure is composed of both neutrons and protons, an absorption of the neck

region when the dinuclear system dissociates results in transfer of both neutrons and protons toward

the same direction. The measured many-proton transfer from 238U to 124Sn might be originated

from the tip collision in which a thick and long neck formation followed by subsequent absorption of

nucleons inside the neck region results in the many-proton transfer. We also investigate the orientation

and incident energy dependence as well as the N/Z ratio dependence of the QF dynamics in head-on

collisions of 238U+100,124,132Sn. We find the so called inverse QF process in the tip collisions, where a

largely deformed transuranium nucleus is generated as a primary product in the TDHF calculation.

As a final topic of the thesis, we investigate the MNT and QF processes in 136Xe+198Pt reaction

which has recently been considered as a candidate to produce neutron-rich unstable nuclei around the

N = 126 region. We conduct a systematic TDHF calculation for 136Xe+198Pt reactions at various

incident energies and impact parameters. From the results, we find that the reaction dynamics shows

a similar behavior if we classify the reaction according to the distance of closest approach of the

Rutherford trajectory, although it shows a complicated dependence on the incident energy and impact

parameter. We also find that the inverse QF process emerges at certain initial conditions, which may

be related to a large binding energy of doubly-magic 208Pb.

From the thorough analyses of the MNT and QF processes in low-energy heavy ion reactions,

we conclude that the TDHF theory provides a unified microscopic description of not only MNT

processes in peripheral reactions but also QF processes in dissipative collisions without any adjustable

parameters specific to the reaction. We thus consider that the TDHF theory will be a promising

tool to investigate the microscopic reaction mechanisms of the MNT and QF processes and to predict

optimum reactions as well as a novel reaction dynamics to produce exotic unstable nuclei which have

never been produced by other known reactions.
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Chapter 1

INTRODUCTION

Starting from the finding of an atomic nucleus by Rutherford in 1911 [1], we human begins have

explored physics of the atomic nuclei. Within the period of about 100 years, both experimental and

theoretical studies have been extensively developed. Thanks to recent developments of experimental

facilities, equipments, and techniques for nuclear reaction experiments, we are now entering a new era

that we examine properties of unstable nuclei far from stability.

We are interested in nuclear reactions as a quantum many-body dynamics. One of the biggest

goals of our study is to predict optimum reactions to produce objective nuclei based on a microscopic

quantum many-body theory. Such theoretical predictions may provide us an opportunity to study

unstable nuclei which have not been produced so far. This work aims to achieve the goal by developing

our microscopic understanding of low-energy heavy ion reactions, especially, multinucleon transfer

(MNT) and quasifission (QF) processes.

1.1 Our Interests for the Atomic Nuclei

1.1.1 Atomic nucleus as a finite quantum many-body system

The atomic nucleus is a tiny (∼ 10−14m) massive entity locating at the center of an atom, which is

responsible for almost all the mass of the atom. The atomic nucleus is composed of neutrons and

protons (nucleons). We distinguish the atomic nucleus according to the number of neutrons (the

neutron number, N) and the number of protons (the proton/atomic/charge number, Z). Each of

them is referred to as a nuclide. We symbolically express a nuclide as A
ZXN , where A denotes the total

number of nucleons (the mass number, A = N + Z) and X stands for the symbol for a corresponding

element to the atomic number Z; e.g. a helium nucleus having two neutrons, known as an α particle, is

expressed as 4
2He2 (We often omit subscripts of the proton and neutron numbers for simplicity). Nuclei

which have the same atomic number Z but have a different neutron number N are called isotopes,

while nuclei which have the same neutron number N but have a different atomic number Z are called

isotones. Nuclei having the same mass number A are called isobars.

We may regard the atomic nucleus as a finite, non-relativistic, self-bound quantum many-body

system composed of two kinds of fermions (neutrons and protons) interacting through the nuclear

force. Unlike the atom, there is no core inside the nucleus and it is self-bounded through the nuclear

attractive interaction. The nuclear force is of finite-range with an attractive part up to d ∼ 1.4 fm

and a repulsive part at short distance d ≲ 0.5 fm (d is the internucleon distance). It shows unique

properties, e.g., existence of exchange interactions, strong spin-orbit and tensor couplings, spin and

isospin dependences, and significance of the three-body force, and so on [2]. The atomic nucleus

shows a number of interesting properties such as magic numbers [3, 4, 5], saturation properties of the
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Chapter 1 Introduction

Figure 1.1: Representative processes in low-energy heavy ion reactions, deep inelastic collision (I),

quasifission (II), fast fission (III), fusion-fission (IV), and evaporation residue formation (V), are

schematically shown. The figure was taken from Ref. [8].

nuclear density (ρ0 ∼ 0.16 fm−3) and the binging energy (B/A ∼ 8 MeV) [6], strong quantum nature

in a sense that the binding energy is relatively week compared with the zero-point kinetic energy [7],

competition between the pairing and the quadrupole correlations [2], and so on. We are interested in

various phenomena in nuclei as a unique finite quantum many-body system.

1.1.2 Heavy ion reactions

To study properties of the atomic nuclei, nuclear reaction experiments utilizing a heavy-ion accelerator

are indispensable. Since, in such experiments, atomic nuclei whose surrounding electrons are removed

are accelerated, we often refer to the nuclear reaction as the heavy ion reaction.

In heavy ion reactions at low energies around the Coulomb barrier, various different processes take

place depending on the angular momentum (or the impact parameter) and the incident energy. Several

representative processes are schematically shown in Fig. 1.1. When two nuclei do not approach enough

to each other, elastic and quasielastic reactions take place. The latter may include a small excitation

of reaction products and transfer of few nucleons. When two nuclei are touched, a dinuclear system is

formed connected with a neck structure. Several nucleons are exchanged through the neck structure.

Such processes including transfer of more than one nucleons could be referred to as MNT reactions.

When the incident energy is sufficiently high compared with the Coulomb barrier, two nuclei collide

deeply producing highly-excited reaction products having similar masses to those of the projectile and

target nuclei. Such a process is referred to as a deep inelastic collision (DIC) which corresponds to a

process shown in Fig. 1.1 (I). If two nuclei overcome or tunnel through the Coulomb barrier, they get

a chance to fuse forming a compound nucleus (CN), which is referred to as a fusion reaction. However,

on the way to fusion before the CN formation, the dinuclear system can dissociate into two individual

nuclei having different masses compared with those of the projectile and target nuclei. Such a process

is referred to as a QF process which is shown in Fig. 1.1 (II). The composite system survived against

the QF process may form a mononuclear shape rather than a dinuclear shape because of a long contact
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Figure 1.2: Chart of nuclides specified by the number of neutrons (horizontal axis) and the number

of protons (vertical axis). Each box corresponds to an atomic nucleus. Black filled boxes denote

stable nuclei which exist naturally on the earth. Gray colored boxes show unstable nuclei which were

successfully produced experimentally in the past. Pink filled boxes exhibit unstable nuclei which were

produced at RIKEN for the first time. Cyan shaded area represents nuclei which are expected to

be produced by a projectile fragmentation. Pink shaded area represents nuclei which are expected

to be produced by in-flight fission of uranium nucleus. Yellow shaded area indicates a region where

corresponding nuclei are expected to exist in nature. Neutron (proton) magic numbers, 2, 8, 20,

28, 50, 82, 126, are indicated by blue (red) vertical (horizontal) lines. A possible r-process path is

schematically represented by green arrows. The figure was taken from Ref. [9].

time. It may disintegrate through nuclear fission before or after the CN formation, which are referred

to as fast fission (Fig. 1.1 (III)) and fusion-fission (CN-fission) (Fig. 1.1 (IV)), respectively. The

survived product nucleus against these processes (I-IV) as well as deexcitation processes of particle

evaporation is called an evaporation residue (EvR) which is usually measured to get an evidence of

the CN formation (Fig. 1.1 (V)).

We may regard these reaction processes as quantum many-body dynamics which reflects both

static properties of colliding nuclei and time-dependent dynamics during the collision. We are very

much interested in microscopic mechanisms underlying those complex quantum many-body dynamics.

In this thesis, we will focus on the MNT and QF processes which have recently been expected to be

a promising tool to produce unstable nuclei whose production is difficult by other methods.

1.1.3 Physics of unstable nuclei

Because of the continuous advances in experimental equipments and techniques, nowadays, radioactive

ions (RIs) can be used as a projectile in nuclear reaction experiments. For instance, RIs are produced

by a nuclear spallation reaction induced by a uranium (92U) beam irradiated on a beryllium (4Be) or

carbon (6C) target. After the nuclear spallation reaction, radioactive unstable nuclei are produced. In

RI beam facilities, produced RIs are re-accelerated and are irradiated on a secondary target. It enables

3



Chapter 1 Introduction

Figure 1.3: (a): The north east part of the nuclear chart. Each colored box represents an atomic

nucleus which was produced experimentally. r-process path, β-stability line, and island of stability

are shown schematically. (b): An illustration of voyages from the mainland (left bottom) toward the

island of stability (right top). The most advancing ship represents hot fusion in reactions of calcium

on an actinide target, the second one represents cold fusion, and the third one represents hot fusion

induced by light ions. The sinking ship represents neutron capture reactions. The left figure was taken

from Ref. [29]. The right figure was taken from Ref. [30].

us to explore more abundant kinds of reactions and nuclei which cannot be studied by experiment

with a stable projectile. In Fig. 1.2, we show the nuclear chart in which newly produced nuclides at

RIKEN are indicated, as an illustrative example.

One of the most striking examples of physics of unstable nuclei would be the finding of neutron

halo structure of 11Li, which was revealed, for the first time, by Tanihata et al. [10]. In the experiment,

various isotopes of lithium (3Li) and beryllium (4Be) were produced as a secondary beam through a

projectile fragmentation process and interaction cross sections were measured. From the measured

interaction cross sections, matter root-mean-square radius was deduced. The deduced radius showed

a noticeably-large value for 11Li nucleus suggesting a spatially-extended tail of loosely-bound valence

neutrons. Nowadays, such a spatially-extended neutron distribution is referred to as neutron halo, in

an analogy like a halo of the moon, and has extensively studied [11]. Because neutron halo nuclei may

have normal- and low-density regions at the center and the surface of the nucleus, respectively, they are

expected to have both BCS- and BEC-type paired nucleons and have attracted much interests for those

internucleon correlations [12] (BCS: Bardeen-Cooper-Schrieffer, BEC: Bose-Einstein Condensation).

Another example is the so called shell evolution. Recent measurements have revealed that the magic

numbers of the atomic nuclei would be appeared/disappeared as the number of neutrons increases,

toward neutron-rich nuclei far from the stability line. For example, for neutron-rich oxygen (8O)

isotopes, 28O (N = 20) was found to be unbound and the neutron drip-line was established to be 24O

(N = 16) [13]. Moreover, Ozawa et al. found that an appearance of a new magic number N = 16 for
24O from a systematic measurement of the one-neutron separation energy and the interaction cross

section for neutron-rich sd- and pf -shell nuclei [14]. Also, N = 34 [15] was found to be a new magic

number. For neutron-rich nuclei around sodium (11Na), magnesium (12Mg), and aluminum (13Al)

region, neutron-rich nuclei around N = 20 were found to be deformed indicating disappearance of

the N = 20 magic number [16, 17, 18]. This region is called island of inversion (IOI) regarding a

significance of the intruder states in those deformed N ∼ 20 nuclei. Significant role of the tensor force

for the shell evolution has recently been advocated based on shell-model calculations [19, 20, 21].
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Production of superheavy (SH) nuclei is also of great interests. The heaviest element exists on the

earth is plutonium (94Pu), and thus elements with the atomic number larger than 94 were produced

artificially in nuclear reaction experiments. The limit of existence and chemical properties of SH

nuclei are of crucial interests. Theoretically, the next magic numbers ware predicted as N = 184 and

Z = 114 [22, 23, 24], which is located on the north east part of the nuclear chart. The region in the

nuclear chart around these magic numbers is called island of stability (IOS) which is schematically

shown in Fig. 1.3 (a). These interests have urged us to synthesize and study physics of SH nuclei.

To synthesize SH nuclei, the so called cold fusion reactions in which 208
82 Pb126 or 209

83 Bi126 target is

utilized [25, 26, 27] and the so called hot fusion reactions in which an actinide target is bombarded

by 48
20Ca28 projectile [28] have been a useful tool. The situation toward the IOS is represented by a

cartoon shown in Fig. 1.3 (b). The island seen at distance represents the IOS. Each ship represents

different reaction: The first and third ships represent hot fusion reactions with 48Ca beam and those

with light-ion beam, respectively. The second ship represents cold fusion reactions. The fourth sinking

ship represents neutron capture reactions, because neutron capture reactions with a nuclear reactor

as a neutron source could synthesize SH nuclei up to fermium (100Fm) isotopes.

As can be seen from Figs. 1.2 and 1.3 (a), however, there still remain many unknown nuclei which

have not been produced so far. Recently, the MNT and QF processes have been considered to be useful

to produce those unstable nuclei. To expand our research field as far as possible from the stability

line and to develop our understanding of the atomic nuclei, this study aims to theoretically predict

how to make those unstable nuclei using the MNT and QF processes.

1.2 New Means to Produce Unstable Nuclei

1.2.1 Multinucleon transfer reactions

In the last three decades, measurements of MNT processes were achieved extensively in heavy ion

reactions at energies around the Coulomb barrier [31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,

44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55]. We may regard the MNT reaction as a non-equilibrium

quantum transport phenomenon which reflect both static properties and time-dependent dynamics of

colliding nuclei.

Besides fundamental interests in its mechanisms, the MNT reaction has recently considered to be

useful as a means to produce unstable nuclei whose production is difficult by other methods. For

example, a possibility to produce neutron-rich heavy nuclei using RI beam induced MNT reactions

was pointed out by Dasso et al. [56, 57]. A production of neutron-rich nuclei around A ∼ 200 along the

neutron magic numberN = 126 has been discussed [29, 58, 59]. The knowledge on structural properties

of those nuclei is crucially important to understand a detail scenario of heavy elements synthesis in the

rapid neutron-capture process (r-process) of the nucleosynthesis [60, 61]. An experiment to produce

such neutron-rich unstable nuclei along N = 126 is now in progress in the reactions of Xe isotopes

on 198Pt [62]. A theoretical prediction by Zagrebaev [29] for the production of such neutron-rich

nuclei is shown in Fig. 1.4 (a). The figure shows production cross sections of N = 126 isotones as a

function of the charge number of the produced nuclei. Red circles connected with dotted lines show

cross sections associated with high-energy proton-removal processes. While blue squares connected

with solid lines show cross sections for MNT processes in 136Xe+208Pb reaction. As can be seen from

the figure, cross sections of the MNT reaction is much larger than those of proton-removal reactions.

Recently, a production of neutron-rich light nuclei through MNT reactions has also been discussed by

Zagrebaev [63] and the results are shown in Fig. 1.4 (b). The figure shows production cross sections of

MNT reactions (red squares) and of fragmentation processes (gray circles) as a function of the atomic
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Figure 1.4: Cross sections calculated by a dynamical model based on Langevin-type equations of

motion in comparison with measured cross sections. (a): Production cross sections of nuclei along the

neutron magic number N = 126 for MNT processes in 136Xe+208Pb reaction at center-of-mass energy

of 450 MeV (blue squares connected with solid lines) are shown. Measured cross sections associ-

ated with high-energy proton removal processes in 208Pb+Be reaction [64] are also shown (red circles

connected with dotted lines). (b): Production cross sections of light neutron-rich nuclei for MNT

processes in 18O+238U (open squares), 26Mg+238U (filled squares), and 36S+238U (open diamonds) re-

actions are shown. Experimental cross sections associated with fragmentation processes of 48Ca+181Ta

at Elab = 128 MeV/nucleon [65] (gray filled circles) and 48Ca+9Be at Elab = 345 MeV/nucleon [66]

(black open circles) are also shown. The figure shown in (a) was taken from Ref. [29]. The figure

shown in (b) was taken from Ref. [63].

number of the produced nuclei. Again the cross sections of MNT reactions show much larger values

than those of fragmentation processes.

To describe MNT processes theoretically, models based on a direct reaction picture such as

GRAZING [67] and Complex WKB (CWKB) [68] have been extensively developed and applied [39,

40, 43, 44, 45, 46, 47, 49, 50, 51]. In these models, MNT processes are treated statistically, using

single-nucleon transfer probabilities calculated by the first-order perturbation theory. A dynamical

model based on Langevin-type equations of motion has also been developed [69, 70]. This model

describes not only MNT processes but also DICs, QF, fusion-fission, and fusion reactions in a unified

way [29, 58, 69, 70, 71, 72, 73]. The results shown in Fig. 1.4 were calculated by the Langevin model.

Although the above mentioned approaches have shown reasonable successes, these models are not

fully microscopic but include some model assumptions. To get a fundamental understanding of the

reaction dynamics and to present a reliable prediction for the cross sections, it is highly desired to

develop a fully microscopic description for the MNT processes with minimum assumptions on the

dynamics. To this end, in this thesis, we conduct microscopic investigations of the MNT reaction

employing the time-dependent Hartree-Fock (TDHF) theory.

1.2.2 Quasifission processes

In low-energy heavy ion reactions, fusion reactions take place forming the CN either passing over

or tunnel through the Coulomb barrier. The CN is a composite system of projectile and target

nuclei combined through the nuclear attractive interaction. Because the nuclear interaction makes the
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Figure 1.5: (a) and (b): Mass symmetrizing process in a dinuclear system and its correspondence in a

mass-angle distribution (MAD) plot are shown schematically. (c): Experimental MAD (upper panels)

and its projection onto MR axis (lower panels) for 64Ni+184W at Elab = 341 MeV (left), 48Ti+184W

at Elab = 245 MeV (middle), and 34S+184W at Elab = 180 MeV (right). These figures were taken

from Ref. [77].

composite system excited with chaotically complex configurations, any information of the entrance-

channel, that is, information of the projectile and target nuclei before the collision, is lost after the CN

formation. Because the CN is highly excited, it would suffer from subsequent deexcitation processes,

particle evaporation and fission. In distinction from the latter process, fusion-fission, there is another

fission process which takes place before the CN formation, the so called QF process.

The QF process hinders the CN formation and thus hinders the occurrence of the fusion reaction.

Especially for heavy systems with the charge product, ZPZT, greater than a critical value around

1600-1800, the fusion reaction is known to be suppressed, because of the strong Coulomb repulsion

and dynamical effects on the barrier penetration process [74, 75]. For example, for 40
18Ar22+

180
72 Hf108

(→220
90 Th130) reaction with ZPZT = 1296, the experimentally extracted fusion probability agrees with

a prediction of one-dimensional barrier penetration model, where the fusion probability becomes 0.5

when the incident relative energy and the barrier-top energy coincide. While for 124
50 Sn74+

96
40Zr56

(→220
90 Th130) reaction with ZPZT = 2000, which forms the same CN as the above mentioned reaction,

the fusion probability was found to be substantially suppressed by several orders of magnitude [76].

Such a heavy system with ZPZT ≳ 1600 requires additional energy to form the CN compared with

the estimation of the one-dimensional barrier penetration model. Such an energy is called extra-push

energy [74, 75]. This fission process before the CN formation originated from the fusion hindrance

phenomenon in heavy systems would be regarded as the QF process.

Because the QF process takes place in a much shorter timescale than that of fusion-fission, there

is a characteristic correlation between the fragment mass and the scattering angle. Figure 1.5 shows

typical examples of such a mass-angle correlation. In Fig. 1.5 (a), a reaction process after the touching

configuration is illustrated. After two nuclei touched, a dinuclear system connected with a neck

structure is formed. This dinuclear system rotates with symmetrizing the mass of each subsystem.

Thus, if the dinuclear system dissociates before it rotates as large as 360 degree, there will be a

visible correlation between the fragment mass and the scattering angle as schematically illustrated in

Fig. 1.5 (b). The vertical axis is the scattering angle in the center-of-mass frame, while the horizontal

axis is the mass ratio, MR ≡ MPLF(TLF)/(MP +MT). Red solid (blue dashed) line represents values

for the lighter (heavier) fragment. This plot is called the mass-angle distribution (MAD) plot. In
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Figure 1.6: (a): Primary production cross sections of heavy fragment nuclei calculated by a dynamical

model based on Langevin-type equations of motion. Blue solid line shows results for 48Ca+248Cm

reaction at center-of-mass energy of 220 MeV, while black solid line shows results for 238U+248Cm

reaction at center-of-mass energy of 770 MeV. (b): Schematic pictures of normal- and inverse-QF

processes are schematically illustrated. The figure was taken from Ref. [84].

Fig. 1.5 (c), measured MAD plots for 64Ni+184W (ZPZT = 2072), 48Ti+184W (ZPZT = 1628), and
34S+184W (ZPZT = 1184) reactions are shown, from left to right. As seen from the figure, for two

systems with a large ZPZT value (left and middle panels), we find the mass-angle correlation. While,

for the system with a small ZPZT (right panels), the mass-angle correlation is lost indicating a longer

sticking time. From the MAD plot combined with an exponential decay model, the timescale of the QF

process was deduced to be 10−20–10−21 sec [77, 78, 79, 80]. On the other hand, measurements of the

timescale of the QF process based on a crystal blocking technique indicated a timescale of 10−18 sec

[81, 82]. Although the origin of discrepancy has not been fully understood, a possible relevance to the

quantum decoherence phenomena has been advocated [83].

The QF process attracts much interests for several aspects. First one is the interest for its micro-

scopic mechanisms as in the case of the MNT process, where we may expect much more complicated

reaction dynamics than the MNT process in such a dissipative collision. Second one is related to syn-

thesis of SH nuclei. Since the QF process hinders the CN formation, to understand the mechanisms

of the QF process would have a crucial importance for investigating how to effectively synthesize SH

nuclei. Another interest is a production of unstable nuclei. Since the QF process accompanies a trans-

fer of many nucleons, it would be possible to apply it as a tool to produce unstable nuclei. Especially,

an inverse (or antisymmetrizing) QF process has recently been considered to be useful to produce

neutron-rich transuranium nuclei. A typical example is shown in Fig. 1.6. Figure 1.6 (a) shows pri-

mary production cross sections for heavier fragments in 48Ca+248Cm (blue solid line) and 238U+248Cm

(black solid line) reactions as a function of the mass number of the fragment nuclei. In the case of
48Ca+248Cm reaction, there appears a shoulder structure at around A = 208. This corresponds to

the QF process driven by the stabilization effect of doubly-magic 208Pb in heavier fragments. On the

other hand, in the case of 238U+248Cm reaction, the stabilization effect of doubly-magic 208Pb affects

to smaller fragments (initial 238U nucleus). In this case, about 10 protons and 20 neutrons are trans-

ferred from 238U to 248Cm forming SH nuclei heavier than 248Cm, which corresponds to the inverse

QF process. These normal- and inverse-QF processes are schematically illustrated in Fig. 1.6 (b).

The dynamical model based on Langevin-type equations of motion has been extensively applied

and had great successes [29, 58, 69, 70, 71, 72, 73]. However, the Langevin model contains several

8
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model parameters. To make a reliable prediction of cross sections in the QF process, it is desirable

to adequately describe not only complex reaction dynamics (energy dissipations, nucleon exchanges,

deformations, surface vibrations, and so on) but also quantum effects with minimum parameters

specific to the reaction. In this thesis, we thus investigate the QF process in the microscopic framework

of the TDHF theory.

1.3 About this Study

1.3.1 Method: The TDHF theory

The TDHF theory is a microscopic theory for nuclear dynamics. The theory of the TDHF was first

proposed by Dirac in 1930 [85]. Applications of the TDHF theory to nuclear collision dynamics

started in 1970s [86, 87, 88, 89, 90, 91, 92, 93]. Progresses in the early stage were summarized in

Ref. [94]. Since then, continuous efforts have been devoted for improving the method and extending

applications [95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114,

115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126]. At present, three-dimensional calculations

with full Skyrme functionals including time-odd components are routinely conducted. In most TDHF

calculations, Skyrme-type interactions [127] are used. Since parameters of Skyrme interactions are

determined to reproduce nuclear properties for a wide mass region, there is no empirical parameter

specific to the reaction.

The TDHF theory may describe both peripheral and central collisions. In peripheral collisions,

the mean-field of the collision partner works as a time-dependent perturbation for the orbitals. This

picture of the transfer dynamics is similar to that in direct reaction models where single-particle

transfer probabilities are calculated either by the perturbation theory [67, 68] or by solving numerically

the time-dependent Schrödinger equation [128, 129, 130]. In collisions at smaller impact parameters,

the TDHF theory describes macroscopic dynamics such as fusion [91, 95, 97, 102, 106, 109, 118,

121], QF [112, 113, 120, 121, 124, 125], and DICs [87, 88, 89, 90, 92, 93, 114, 121]. Nucleons are

exchanged between projectile and target nuclei through the neck formation. This description of the

MNT processes is similar to the Langevin-type description [69, 70]. In this way, the TDHF theory is

expected to be capable of describing quite different transfer mechanisms in a unified way.

1.3.2 Aims

One of the main aims of this study is to reveal microscopic reaction mechanisms of the MNT and QF

processes in low-energy heavy ion reactions. As explained in Sec. 1.2, the MNT and QF processes

have recently been considered to be a useful means to produce unstable nuclei whose production is

difficult by other methods. Utilizing the microscopic understanding of these reactions, we aim to

theoretically predict optimum reactions, i.e. projectile-target combinations and incident energies, to

produce objective unstable nuclei.

The semiclassical theories, GRAZING and CWKB, have achieved great successes in describing MNT

reactions, while the dynamical Langevin model has recently been extensively developed and success-

fully applied to both MNT and QF processes. Their successes are noteworthy and they provide us

substantial developments of our understanding of the reactions and related physics. However, a possi-

ble weak point of those successful models is that they are not fully microscopic and contain some model

parameters and assumptions in describing the reaction. To obtain a microscopic understanding of the

MNT and QF processes and to provide a reliable prediction for producing objective unstable nuclei,

we aim to elucidate the feasibility of the TDHF theory as a possible candidate of a fully microscopic

theory with smallest parameters and assumptions in describing the reaction dynamics.
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In order to accomplish the aims of this study, we investigate the MNT and QF processes in a

microscopic framework of the TDHF theory. Although there have been substantial efforts in studying

low-energy heavy ion reactions employing the TDHF theory, applicability of the theory to study the

MNT and QF processes was unclear (Very recently, the applicability of the TDHF theory to describe

the QF process has been becoming noticeable [124, 125]). Because there is no adjustable parameter

specific to the reaction dynamics in the TDHF theory, we do not know a priori that how reasonably

it works in describing those complex reaction dynamics. To show that whether the TDHF theory

describes MNT cross sections quantitatively, we shall make a direct comparison between experimental

and theoretical cross sections. To this end, we calculate transfer probabilities and cross sections from

the TDHF wave function after collision using a particle-number projection (PNP) technique [115]. By

performing a systematic TDHF calculation for various systems for which precise experimental data of

MNT and/or QF processes are available, we will shed light on the feasibility of the TDHF theory in

describing the MNT and QF processes.

Although the TDHF theory provides us a fully microscopic description of nuclear many-body dy-

namics, it is, of course, not exact but an approximate framework for the nuclear many-body problem

(Even though it has a connection to the time-dependent density functional theory (TDDFT) as ex-

plained in Chapter 2, we do not know a special density-functional which provides an exact description

for various reaction channels). We thus consider that to extend its application as far as possible is

quite important, because it will reveal the limit of application of the theory and will help us when we

develop more sophisticated framework to describe the reaction dynamics. Receiving a benefit from

extensive developments of high performance computing infrastructure (HPCI) which enables us a mas-

sively parallel computing on a supercomputer, we perform TDHF calculations for various systems at

a number of initial conditions in order to achieve the aims and, hopefully, to elucidate a novel reaction

dynamics in the TDHF theory.

1.3.3 Outline of the thesis

The thesis is organized as follows. In Chapter 2, we first give the theoretical formalisms of the

Hartree-Fock (HF) and TDHF theories. A relation of them to the density functional theory (DFT)

and the TDDFT is explained. Computational techniques to simulate heavy ion reactions numerically

employing the TDHF theory is given.

We divide the main part of the thesis into two parts, Part I composed of Chapters 3, 4, and 5 and

Part II composed of Chapters 6, 7, 8, and 9. The first part of the thesis (Part I) is devoted to show

that the applicability of the TDHF theory to the MNT reactions taking into account effects of particle

evaporation from primary reaction products. In the second part of the thesis (Part II), we examine

a further extension of the application of the TDHF theory to reactions involving more heavier nuclei

such as 238U, where a significant contribution of the QF process is expected because of a substantially

large ZPZT value.

In Chapter 3, we show results of the TDHF calculations for MNT reactions. To the author’s

knowledge, it was the first serious study of the MNT reaction employing the TDHF theory. We

first explain how the MNT processes are described in the TDHF theory as well as the formalism

of the PNP technique. We then apply the TDHF theory to reactions of 40Ca+124Sn at Elab =

170 MeV, 48Ca+124Sn at Elab = 174 MeV, 40Ca+208Pb at Elab = 235 and 249 MeV, and 58Ni+208Pb

at Elab = 328.4 MeV, for which precise experimental data are available. From direct comparisons

of MNT cross sections between calculated and measured ones, we show that the TDHF theory can

describe MNT cross sections quantitatively. We also compare our results with those of other theoretical

predictions. We find that the TDHF theory quantitatively describes MNT cross sections with an

accuracy comparable to existing theories. We discuss dependence of MNT processes on the neutron-
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to-proton ratio, N/Z, and the charge product, ZPZT, of colliding nuclei. Light is shed on the existence

of two types of transfer mechanisms, quantum tunneling and neck breaking dynamics, in the MNT

reactions.

Reaction products produced by MNT processes can be highly excited. Because of this fact, MNT

cross sections would be affected by particle evaporation processes. To include effects of particle

evaporation, we need to evaluate excitation energy of reaction products in each transfer channel. To

evaluate excitation energy of reaction products, we have developed a formalism to calculate expectation

values of operators in a particle-number projected TDHF wave function after collision. This method

is useful not only for evaluating excitation energy of reaction products but also for investigating

reaction mechanisms which could not be examined by ordinary expectation values without the PNP.

In Chapter 4, we explain an idea and the formalism of the method. We then apply it to 24O+16O

reaction as an illustrative example to show usefulness of our method. The effects of particle evaporation

on MNT cross sections are examined in Chapter 5.

From the analysis presented in Part I (Chapters 3, 4, and 5) we get a confidence that the TDHF

theory describes the MNT reaction reasonably well without any adjustable parameter specific to the

reaction. In Part II (Chapters 6, 7, 8, and 9), we extend its application to MNT and QF processes in

reactions involving more heavier nuclei, as a next step of the study.

We first investigate 64Ni+238U reaction at Elab = 390 MeV, for which measurements of MNT cross

sections were achieved. From a comparison between measured cross sections and calculated ones,

we show that the TDHF theory nicely reproduces measured cross sections both proton-stripping and

proton-pickup channels. It is remarkable that cross sections for the proton-pickup channels were un-

derestimated by the existing semiclassical theory, GRAZING, may be due to an insufficient assumption

of the strong absorption of flux from transfer channels to fusion at a small impact parameter region.

This fact may indicate that the TDHF theory would correctly describe the transitional regime from

quasielastic to more complex reaction mechanisms. In addition, TDHF calculations show abundant

cross sections for QF induced MNT processes. In such QF processes, we find that a scission point

of a neck changes suddenly depending on the impact parameter and the relative orientation. To get

further information on the QF dynamics, we examine energy dependence of QF dynamics in head-on

collisions of 64Ni+238U. From the calculation, we find a significant effect of the relative orientation

of colliding nuclei on the QF dynamics. In Chapter 6, we show these results and discuss possible

structural effects of the composite system on the QF dynamics.

We next investigate 238U+124Sn reaction at Elab = 1356.6 MeV. Measurements of MNT cross

sections in 238U+124Sn induced dissipative collision were achieved in 1985, where measured MNT

cross sections indicate that many protons (up to around 10) are transferred from 238U to 124Sn. From

the TDHF calculations, we show that the measured many-proton transfer from 238U to 124Sn might

be originated from the neck breaking dynamics, where a thick neck is formed between two colliding

nuclei and its dissociation and subsequent absorption of the neck region results in transfer of many

nucleons. In Chapter 7, the neck breaking transfer dynamics as well as significant effects of the relative

orientation in 238U+124Sn reaction are discussed. To examine effects of the incident energy and the

N/Z asymmetry on the QF dynamics, head-on collisions of 238U+100,124,132Sn are investigated, where

we find inverse QF processes producing transuranium nuclei for certain initial conditions.

In Chapter 8, as a final topic of the thesis, we present tentative results of the application of

the TDHF theory toward a prediction to produce objective unstable nuclei. We show results of a

systematic TDHF calculation for 136Xe+198Pt reactions at various initial conditions. This reaction

is considered to be useful to produce neutron-rich unstable nuclei around the neutron magic number

N = 126. From the calculation, we find that the direction and amount of transfer at different initial

conditions show a similar behavior as a function of distance of closest approach, although it shows

quite complex behavior as functions of the impact parameter. We find that there appear inverse QF
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processes at initial conditions corresponding to a certain region of the distance of closest approach.

We discuss MNT and QF processes in 136Xe+198Pt reactions in comparisons with the other cases
64Ni+238U and 238U+100,124,132Sn reactions, in Chapter 8.

Finally, a summary of the thesis and a future prospect of the study are presented in Chapter 9.
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Chapter 2

TDHF THEORY AND TDDFT, AND

THEIR APPLICATION TO HEAVY

ION REACTIONS

In this Chapter, we present theoretical formalisms which will be used to study MNT and QF processes

in low-energy heavy ion reactions in the subsequent Chapters. In Sec. 2.1, we explain the HF theory

and its time-dependent extension (the TDHF theory) with a Skyrme-type effective interaction. We

refer them as the Skyrme HF theory and the Skyrme TDHF theory, respectively. Although the Skyrme

(TD)HF theory has been developed as an approximate framework to describe many-nucleon systems,

we may regard it as the DFT and the TDDFT. In Sec. 2.2, we thus explain basic concepts of the DFT

and the TDDFT, where the Skyrme (TD)HF theory is regarded as the Kohn-Sham scheme based on

the (TD)DFT. In Sec. 2.3, we describe computational techniques for simulating heavy ion reactions

employing the TDHF theory.

2.1 TDHF Theory with a Skyrme Effective Interaction

In this Section, we recapitulate theoretical formalisms of the HF and TDHF theories. In Sec. 2.1.1,

we first explain a basic concept of the HF theory. In Sec. 2.1.2, we introduce a Hamiltonian with

a Skyrme-type effective interaction which has widely been used to study properties of many-nucleon

systems. We will utilize the Skyrme Hamiltonian in our TDHF calculations of heavy ion reactions.

In Secs. 2.1.3 and 2.1.4, we present the Skyrme energy density functional (EDF) and the Skyrme HF

equation, respectively. In Sec. 2.1.5, we explain the theoretical framework of the TDHF theory.

2.1.1 Hartree-Fock theory

The Schrödinger equation for an N -particle system,

ĤΨ(r1, · · · , rN ) = EΨ(r1, · · · , rN ), (2.1.1)

can be derived according to the variational principle:

δ

δ
⟨
Ψ
∣∣
[⟨

Ψ
∣∣Ĥ∣∣Ψ⟩⟨
Ψ
∣∣Ψ⟩

]
= 0. (2.1.2)

Here and hereafter, we often use the bracket notation, e.g.
⟨
Ψ
∣∣Ĥ∣∣Ψ⟩ ≡ ∫ dr1 · · · ∫ drNΨ∗(r1, · · · , rN )

ĤΨ(r1, · · · , rN ), to simplify equations. We temporary omit the spin and isospin degrees of freedom
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for simplicity. Since it is computationally too demanding to solve the Schrödinger equation exactly,

we need to introduce some approximations in describing the many-body problem. The HF theory

[131, 132] is one of the approximations to treat a many-body problem, which is based on the variational

principle. In the HF theory, the trial function
∣∣Ψ⟩ for the variation is taken to be a single Slater

determinant,

Φ(r1, · · · , rN ) =
1√
N !

det
{
ϕi(rj)

}
, (2.1.3)

where ϕi(r) (i = 1, · · · , N) denotes a single-particle wave function of ith orbital. These single-particle

wave functions are orthonormal to each other,
⟨
ϕi
∣∣ϕj⟩ ≡ ∫ drϕ∗i (r)ϕj(r) = δij . The many-body wave

function Eq. (2.1.3) is thus normalized to unity in the whole space, ⟨Φ|Φ⟩ = 1. The variation of

Eq. (2.1.2) using the Slater determinant
∣∣Φ⟩ with a constraint on the orthonormalization condition

for the single-particle wave functions,

δ

δϕ∗α(rσ)

⟨Φ∣∣Ĥ∣∣Φ⟩−∑
ij

εij

(⟨
ϕi
∣∣ϕj⟩− δij)

 = 0, (2.1.4)

leads the HF equation. εij denote Lagrange multipliers for the constraint on the orthonormalization

condition. We summarize details of the derivation in Appendix A.4. The HF equation takes the

following form: ∫
dr′ ĥHF(r, r

′)ϕi(r
′) = εiϕi(r) (i = 1, · · · , N), (2.1.5)

ĥHF(r, r
′) =

[
t̂(r) + ΓH(r)

]
δ(r − r′)− ΓF(r, r

′). (2.1.6)

The Hartree potential, ΓH(r), and the Fock potential, ΓF(r, r
′), are defined by

ΓH(r) ≡
∫
dr′v̂(r, r′)ρ(r′), ρ(r) ≡

N∑
i=1

∣∣ϕi(r)∣∣2, (2.1.7)

ΓF(r, r
′) ≡ v̂(r, r′)ρ(r, r′), ρ(r, r′) ≡

N∑
i=1

ϕi(r)ϕ
∗
i (r

′). (2.1.8)

The Slater determinant is invariant under arbitrary unitary transformations for the single-particle wave

functions {ϕi}. We used this gauge degree of freedom to diagonalize the single-particle Hamiltonian,

i.e. εi ≡ εii.
In this way, the Schrödinger equation Eq. (2.1.1) is reduced to N coupled non-linear integro-

differential equations in the HF theory. The Hartree-Fock theory is often referred to as a mean-field

approximation, because Eq. (2.1.5) may be regarded as an equation for independent particles under a

non-local potential which is generated by all the particles in the system.

2.1.2 Skyrme effective interaction

The Skyrme effective interaction [127, 133] has been used widely, starting from applications by Vau-

therin and Brink [134, 135], and had great successes in describing structural properties of nuclei in

a wide mass region [136, 137]. Since the Skyrme effective interaction is a contact-type interaction

(v(r, r′) ∝ δ(r − r′)), the non-local Fock-potential in the HF equation is reduced to a local potential.

The computational cost for the Skyrme HF theory is reduced significantly because of this locality.

The Skyrme Hamiltonian is given by

ĤSkyrme = T̂ +
∑
i<j

v̂ij +
∑

i<j<k

v̂ijk + V̂Coul. (2.1.9)
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T̂ denotes the kinetic energy operator,

T̂ =

N∑
i=1

p̂2
i

2m
, (2.1.10)

where m denotes the nucleon mass and p̂i = −iℏ∇i. V̂Coul denotes the Coulomb interaction between

protons,

V̂Coul =
∑
i<j

e2∣∣ri − rj
∣∣δqipδqjp. (2.1.11)

The three-body interaction is usually renormalized into the two-body interaction as a density de-

pendent interaction [6]. The two-body interaction with the density-dependent effective three-body

interaction is given by

v̂ij = v̂(riσi, rjσj) = t0
(
1 + x0P̂σ

)
δ(ri − rj) +

1

6
t3 ρ

α
(ri + rj

2

)(
1 + x3P̂σ

)
δ(ri − rj)

+
1

2
t1
(
1 + x1P̂σ

){
δ(ri − rj)k̂

2 + k̂′2δ(ri − rj)
}

+ t2
(
1 + x2P̂σ

)
k̂′ · δ(ri − rj)k̂ + iW0 (σ̂i + σ̂j) ·

{
k̂′ × δ(ri − rj)k̂

}
.

(2.1.12)

σ̂ denotes the ordinary Pauli spin matrices and P̂σ = 1
2(1+σ̂i ·σ̂j) denotes the spin exchange operator.

The operators of the relative wave vector, k̂ and k̂′, are defined by

k̂ =

−→∇i −
−→∇j

2i
, k̂′ = −

←−∇i −
←−∇j

2i
. (2.1.13)

The operator k̂ acts on spatial functions located its right side, while the operator k̂′ acts on spatial

functions located its left side. The parameters t0, t1, t2, t3, x0, x1, x2, x3,W0, and α are determined so

as to reproduce static properties of nuclei and some representative properties of nuclear matter (e.g.

binding energy, root-mean-square radius, fission barrier height, properties of the equation of state,

and so on) (see, e.g., Refs. [138, 139, 140, 141, 142, 143, 144, 145, 146, 147]).

In our study, we employ Skyrme SLy5 parameter set [141] in Chapters 3, 4, 6, 7, and 8 and Skyrme

SLyIII.0.8 parameter set [146] in Chapter 5. The SLy5 parameter set was made to reproduce, e.g.

the binding energies and root-mean-square radii (when experimentally known) of doubly magic nuclei

(40,48Ca, 56Ni, 132Sn, and 208Pb) and properties of infinite nuclear matter (the saturation properties

ρ0 ≈ 0.16 fm−3 and E/A ≈ −16 MeV, the incompressibility K∞ ≈ 230 MeV, the symmetry energy

aS ≈ 32 MeV, and so on). In addition, the
←→
J 2 term of the Skyrme EDF is included in the fitting

procedure, which was usually neglected other parameter sets. The SLyIII.0.8 parameter set was made

starting from the SLy5 parameter set with a particular constraint on the density-dependent term

in the Skyrme EDF. Usually, a fractional-power density-dependence ρα (α = 1/3 or 1/6) has been

utilized to reproduce the incompressibility of nuclear matter. However, there arises a problem when

we evaluate an EDF kernel by applying the PNP and/or the angular momentum projection. The

fractional-power density-dependence provides multi-poles in the complex plane and we cannot know

which pole corresponds to the physical anzats (for detailed discussions, see, e.g., Refs. [148, 149, 150]

and references therein). Thus the SLyIII.0.8 parameter set was made constraining α = 1 to avoid the

problem. Since we will evaluate the energy expectation value with the PNP, the SLyIII.0.8 parameter

set will be used in Chapter 5. (The number “0.8” indicates a value of the isoscalar effective mass,

m∗
0/m. There are other parameter sets of SLyIII.x.x with x.x = 0.7, 0.9, and 1.0.) The SLy5 and

SLyIII.0.8 parameter sets are shown in Table 2.1.
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Table 2.1: Values of the Skyrme SLy5 [141] and SLyIII.0.8 [146] parameter sets.

parameters SLy5 SLyIII.0.8

t0 (MeV fm3) −2484.88 −1100.272
t1 (MeV fm5) 483.13 359.568

t2 (MeV fm5) −549.40 −210.840
t3 (MeV fm3+3α) 13763.0 13653.845

x0 0.778 0.445 280

x1 −0.328 0.224 693

x2 −1.000 −0.615 015
x3 1.267 0.639 947

W0 (MeV fm5) 126.0 110.828

α 1/6 1

2.1.3 Skyrme energy density functional

In the Skyrme HF theory, an EDF, ESHF, and a Hamiltonian density, H(r), are defined as the energy

expectation value of the Skyrme Hamiltonian:

ESHF[ρ, τ, j, s,T ,
←→
J ] =

⟨
Φ
∣∣ĤSkyrme

∣∣Φ⟩ = ∫ drH(r). (2.1.14)

We now introduce the spin and isospin degrees of freedom. We denote the single-particle wave functions

as ϕi(rσ), where σ denotes the spin coordinate. In the standard HF theory, each single-particle wave

function is assumed to have its own intrinsic isospin, qi, where qi = n is used for neutrons, while

qi = p is used for protons. The Hamiltonian density is given by (a detailed derivation is given in

Appendix B.2)

H(r) =
ℏ2

2m
τ(r) +B1ρ

2(r) +B2

∑
q

ρ(q)2(r)

+ B3

[
ρ(r)τ(r)− j2(r)

]
+B4

∑
q

[
ρ(q)(r)τ (q)(r)− j(q)2(r)

]
+ B5ρ(r)△ ρ(r) +B6

∑
q

ρ(q)(r)△ ρ(q)(r) +B7ρ
α(r)ρ2(r) +B8ρ

α(r)
∑
q

ρ(q)2(r)

+ B9

[
ρ(r)∇ · J(r) + s(r) · (∇× j(r)) +

∑
q

{
ρ(q)(r)∇ · J (q)(r) + s(q)(r) ·

(
∇× j(q)(r)

)}]
+ B10s

2(r) +B11

∑
q

s(q)2(r) +B12ρ
α(r)s2(r) +B13

∑
q

ρ(q)α(r)s(q)2(r)

+ B14

[
s(r) · T (r)−

←→
J 2(r)

]
+B15s(r) ·△s(r)

+ B16

∑
q

[
s(q)(r) · T (q)(r)−

←→
J (q)2(r)

]
+B17

∑
q

s(q)(r) ·△s(q)(r) +HCoul(r), (2.1.15)

where the Coulomb energy density, HCoul(r), is defined by

HCoul(r) =
e2

2
ρ(p)(r)

{∫
dr′

ρ(p)(r′)∣∣r − r′
∣∣ − 3

2

(
3

π

) 1
3 [
ρ(p)(r)

] 1
3

}
. (2.1.16)

The so called Slater approximation [151] was used for the exchange term. In practice, we use the

Hockney’s method [152] to evaluate the Coulomb potential in the direct term, in which the Fourier
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Section 2.1 TDHF Theory with a Skyrme Effective Interaction

transformation is achieved in a grid of a box two times larger than that utilized to express the single-

particle wave functions. Some details of the method is given in Appendix D. The coefficients B1, · · · ,
B17 are defined as follows:

B1 =
1

2
t0

(
1 +

1

2
x0

)
, B2 = −

1

2
t0

(1
2
+ x0

)
, B3 =

1

4

{
t1

(
1 +

1

2
x1

)
+ t2

(
1 +

1

2
x2

)}
,

B4 = −1

4

{
t1

(1
2
+ x1

)
− t2

(1
2
+ x2

)}
, B5 = −

1

16

{
3t1

(
1 +

1

2
x1

)
− t2

(
1 +

1

2
x2

)}
,

B6 =
1

16

{
3t1

(1
2
+ x1

)
+ t2

(1
2
+ x2

)}
, B7 =

1

12
t3

(
1 +

1

2
x3

)
, B8 = −

1

12
t3

(1
2
+ x3

)
,

B9 = −1

2
W0, B10 =

1

4
t0x0, B11 = −

1

4
t0, B12 =

1

24
t3x3, B13 = −

1

24
t3,

B14 =
1

8
(t1x1 + t2x2), B15 = −

1

32
(3t1x1 − t2x2), B16 = −

1

8
(t1 − t2), B17 =

1

32
(3t1 + t2).

We have introduced several densities ρ, τ , j, s, T and
←→
J defined as follows [153]:

(i) particle density
ρ(r) = ρ(r, r)

=
∑
i, σ

ϕ∗i (rσ)ϕi(rσ), (2.1.17)

(ii) kinetic energy density
τ(r) = (∇ ·∇′)ρ(r, r′)

∣∣∣
r=r′

=
∑
i, σ

∇ϕ∗i (rσ) · ∇ϕi(rσ), (2.1.18)

(iii) spin density
s(r) = s(r, r)

=
∑

i, σ1, σ2

ϕ∗i (rσ1)ϕi(rσ2)
⟨
σ1
∣∣σ̂∣∣σ2⟩, (2.1.19)

(iv) current
j(r) =

1

2i

(
∇−∇′) ρ(r, r′)∣∣∣

r=r′

=
∑
i, σ

1

2i

{
ϕ∗i (rσ)∇ϕi(rσ)− ϕi(rσ)∇ϕ∗i (rσ)

}
=

∑
i, σ

ℑ
[
ϕ∗i (rσ)∇ϕi(rσ)

]
, (2.1.20)

(v) spin kinetic energy density

T (r) =
(
∇ ·∇′) s(r, r′)∣∣∣

r=r′

=
∑

i, σ1, σ2

{∇ϕ∗i (rσ1) · ∇ϕi(rσ2)}
⟨
σ1
∣∣σ̂∣∣σ2⟩, (2.1.21)

(vi) spin current pseudotensor

←→
J (r) =

1

2i

(
∇−∇′)⊗ s(r, r′)

∣∣∣
r=r′

=
∑

i, σ1, σ2

1

2i
{ϕ∗i (rσ1)∇ϕi(rσ2)− ϕi(rσ2)∇ϕ∗i (rσ1)}⊗

⟨
σ1
∣∣σ̂∣∣σ2⟩

=
∑

i, σ1, σ2

ℑ
[
ϕ∗i (rσ1)∇ϕi(rσ2)

]
⊗
⟨
σ1
∣∣σ̂∣∣σ2⟩. (2.1.22)
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These densities are real by definition. Density and spin-density matrices are defined by ρ(r, r′) ≡∑
σ ρ(rσ, r

′σ) and s(r, r′) ≡
∑

σ1, σ2
ρ(rσ1, r

′σ2)
⟨
σ2
∣∣σ̂∣∣σ1⟩, respectively, where ρ(rσ, r′σ′) ≡∑i ϕi(rσ)

ϕ∗i (r
′σ′). Densities ρ, τ , and

←→
J are even under the time-reversal operation, while s, T , and j are odd.←→

J (r) is a rank-2 tensor having components Jµν(r) =
∑

iσ1σ2
ℑ
[
ϕ∗i (rσ1)∇µϕi(rσ2)

]⟨
σ1
∣∣σ̂ν∣∣σ2⟩. The

density J(r) =
(
J1(r), J2(r), J3(r)

)
in Eq. (2.1.15) is the anti-symmetric part of the tensor

←→
J (r),

which has components Jλ(r) =
∑

µν εµνλJµν(r). We note that an inner product of these tensors is de-

fined by
←→
J 2(r) =

∑
µν

(
Jµν(r)

)2
. △s(r) in Eq. (2.1.15) denotes a vector function having components

△sν(r) (ν = 1, 2, 3), that is, the Laplacian acts on each component of s(r).

2.1.4 Skyrme Hartree-Fock equation

By performing the variation of Eq. (2.1.4) with the Skyrme Hamiltonian, we obtain the Skyrme HF

equation for the single-particle wave functions (a detailed derivation is given in Appendix B.3):∑
σ′

ĥ
(qi)
SHF(rσσ

′)ϕi(rσ
′) = εi ϕi(rσ), (2.1.23)

where the single-particle Hamiltonian has the following form [153, 154],

ĥ
(q)
SHF(rσσ

′) = − ℏ2

2m
△ δσσ′ + ĥ(q)even(rσσ

′) + ĥ
(q)
odd(rσσ

′). (2.1.24)

The time-even and time-odd parts of the single-particle Hamiltonian are defined by

ĥ
(q)
even(rσσ′) = −

−→∇ ·M (q)(r)
−→∇δσσ′ + U (q)(r)δσσ′ +

1

2i

(←→∇σσσ′ · ←→B (q)(r) +
←→
B (q)(r) · ←→∇σσσ′

)
,

(2.1.25)

ĥ
(q)
odd(rσσ

′) = −
−→∇ ·

(
σσσ′ ·C(q)(r)

)−→∇ + σσσ′ ·Σ(q)(r) +
1

2i

(−→∇ · I(q)(r) + I(q)(r) ·−→∇
)
δσσ′ .

(2.1.26)

We introduced a shorthand notation, σσσ′ ≡
⟨
σ
∣∣σ̂∣∣σ′⟩. We defined two rank-2 tensors,

←→∇ which

denotes a tensor having components ∇µν ≡
∑

λ εµνλ∇λ and
←→∇σ which denotes a tensor having com-

ponents ∇µσν . We note that the differential operators, ∇ and △, act only on a neighboring spatial

function, while
−→∇ acts all the spatial functions sitting on the right side of

−→∇. Time-even mean-field

potentials are defined by

M (q)(r) = B3ρ(r) +B4ρ
(q)(r), (2.1.27)

U (q)(r) = 2
{
B1ρ(r) +B2ρ

(q)(r)
}
+B3τ(r) +B4τ

(q)(r)

+ 2
{
B5 △ ρ(r) +B6 △ ρ(q)(r)

}
+B9∇ ·

{
J(r) + J (q)(r)

}
+ B7(α+ 2)ρα+1(r) +B8

{
αρα−1(r)

(
ρ(n)2(r) + ρ(p)2(r)

)
+ 2ρα(r)ρ(q)(r)

}
+ αρα−1(r)

{
B12s

2(r) +B13

(
s(n)2(r) + s(p)2(r)

)}
+ VCoul(r) δqp, (2.1.28)

←→
B (q)(r) = −2

{
B14
←→
J (r) +B16

←→
J (q)(r)

}
−B9

←→
∇
{
ρ(r) + ρ(q)(r)

}
, (2.1.29)
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Section 2.1 TDHF Theory with a Skyrme Effective Interaction

where the Coulomb potential VCoul(r) is given by

VCoul(r) = e2

{∫
dr′

ρ(p)(r′)∣∣r − r′
∣∣ −

(
3

π

) 1
3 [
ρ(p)(r)

] 1
3

}
. (2.1.30)

While time-odd mean-field potentials are defined by

I(q)(r) = −2
{
B3j(r) +B4j

(q)(r)
}
+B9∇×

{
s(r) + s(q)(r)

}
, (2.1.31)

C(q)(r) = B14s(r) +B16s
(q)(r), (2.1.32)

Σ(q)(r) = 2
{
B10s(r) +B11s

(q)(r)
}
+B14T (r) +B16T

(q)(r)

+ 2
{
B15 △ s(r) +B17 △ s(q)(r)

}
+B9∇×

{
j(r) + j(q)(r)

}
+ 2ρα(r)

{
B12s(r) +B13s

(q)(r)
}
. (2.1.33)

In the static HF calculation, all the time-odd mean-field potentials vanish because of the time-reversal

symmetry. These time-odd components have non-zero values in the case of dynamical Skyrme TDHF

calculations.

2.1.5 Time-dependent Hartree-Fock theory

The TDHF theory [85] is the time-dependent extension of the static HF theory. The TDHF equation

can be derived in an analogous manner to the derivation of the HF equation. By performing the

time-dependent variation of an action,

δ

δϕ∗α(rσ, t)

[∫
dt′ ⟨Φ(t)| iℏ ∂

∂t
− Ĥ |Φ(t)⟩

]
= 0, (2.1.34)

using a single Slater determinant as a trial function, we can derive the TDHF equation. In the case

of the Skyrme Hamiltonian, we obtain

iℏ
∂ϕi(rσ, t)

∂t
=
∑
σ′

ĥ
(qi)
SHF(rσσ

′, t)ϕi(rσ
′, t). (2.1.35)

The time-dependent single-particle Hamiltonian has the same form as in the static HF equation defined

by Eqs. (2.1.24)-(2.1.33) with the time-dependent densities composed of {ϕi(rσ, t)}.
The Skyrme TDHF equation Eq. (2.1.35) guarantees some conservation laws. The hermiteness of

the single-particle Hamiltonian leads the conservation of the overlap between two single-particle wave

functions:

iℏ
∂

∂t

⟨
ϕi(t)

∣∣ϕj(t)⟩ =
∑
σ

∫
dr

{(
iℏ
∂ϕ∗i (rσ, t)

∂t

)
ϕj(rσ, t) + ϕ∗i (rσ, t)

(
iℏ
∂ϕj(rσ, t)

∂t

)}

=
∑
σ, σ′

∫
dr

{
−
(
ĥ
(qi)
SHF(rσσ

′, t)ϕi(rσ
′, t)
)∗
ϕj(rσ, t)

+ϕ∗i (rσ, t)
(
ĥ
(qi)
SHF(rσσ

′, t)ϕj(rσ
′, t)
)}

=
∑
σ, σ′

∫
dr ϕ∗i (rσ)

[
−ĥ(qi)†SHF(rσ

′σ, t) + ĥ
(qi)
SHF(rσσ

′, t)
]
ϕj(rσ

′)

= 0. (2.1.36)
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Chapter 2 TDHF Theory and TDDFT, and their Application to Heavy Ion Reactions

Eq. (2.1.36) automatically ensures the Pauli exclusion principle during a time evolution. The total

energy is also conserved:

iℏ
∂

∂t

⟨
Φ(t)

∣∣ĤSHF

∣∣Φ(t)⟩ =
∑
i, σ

[
δESHF

δϕi(rσ, t)

(
iℏ
∂ϕi(rσ, t)

∂t

)
+

δESHF

δϕ∗i (rσ, t)

(
iℏ
∂ϕ∗i (rσ, t)

∂t

)]

=
∑
i, σ

[
δESHF

δϕi(rσ, t)

δESHF

δϕ∗i (rσ, t)
− δESHF

δϕ∗i (rσ, t)

δESHF

δϕi(rσ, t)

]
= 0, (2.1.37)

where we regarded ESHF =
⟨
Φ
∣∣ĤSkyrme

∣∣Φ⟩ as a functional of {ϕi} and {ϕ∗i }. We can also show that

the expectation value of any one-body operator which have no intrinsic time-dependence is conserved

in the TDHF theory [94]. For example, the expectation values of the linear momentum and the

total angular momentum operators are conserved, if the two-body interaction is Galilean invariant,

[ĤSHF, P̂ ] = 0 and [ĤSHF, Ĵ ] = 0, where P̂ =
∑N

i=1 p̂i and Ĵ =
∑N

i=1(r̂i × p̂i + ŝi).

In the TDHF theory, a time evolution of a many-particle system is described microscopically

from degrees of freedom of constituent particles of the system. Every particle moves under the time-

dependent mean-field potential which is generated by all the particles in the system. Because the

TDHF equation is the first-order differential equation with respect to time t, the many-body wave

function after the time evolution is uniquely determined by a given initial condition.

As explained in this Section, the HF and TDHF theories are an approximated framework to

describe a many-particle system by a single Slater determinant. However, the Skyrme (TD)HF theory

may be regarded as an exact framework based on the (TD)DFT, if we regard the Skyrme (TD)HF

equation as the (TD)KS equation with a universal density-functional expressed as the Skyrme EDF.

To make the connection between the Skyrme (TD)HF theory and the (TD)DFT clear, we explain the

basic concepts of the (TD)DFT in the next Section.

2.2 Basic Concepts of DFT and TDDFT

2.2.1 Density functional theory

We present basic concepts of the DFT. The DFT is based on a theorem of Hohenberg and Kohn [155]

which states that there is a one-to-one correspondence between an external potential and a one-body

density. We first explain the Hohenberg-Kohn (HK) theorem in Sec. 2.2.1 (a) for a many-particle

system like atoms, molecules, and solids, where an external potential (Coulomb potential of atomic

nuclei) exists which characterizes the system. A constrained search method of Levy [156] is explained

in Sec. 2.2.1 (b) which supports basic concepts of the DFT. An elegant scheme of Kohn and Sham

[157] is explained in Sec. 2.2.1 (c) which is quite useful for practical calculations based on the DFT.

Because an atomic nucleus is a self-bound finite system without an external potential, we need some

modifications of the original HK theorem. We will describe this point in Sec. 2.2.1 (d) and introduce

recent progresses.

(a) Hohenberg-Kohn theorem

The DFT is based on the theorem of Hohenberg and Kohn [155] which states a one-to-one correspon-

dence between an external potential v(r) and the one-body density ρ(r): v(r) ⇔ ρ(r). The proof is

given as follows.

Let us consider two external potentials, v(r) and v′(r), which deffer by more than a constant,

v(r) − v′(r) ̸= const. The ground states under these external potentials will be different because
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Section 2.2 Basic Concepts of DFT and TDDFT

they obey different Schrödinger equations. It can be shown by reductio ad absurdum. We define the

Hamiltonian Ĥ = T̂ + Ŵ + V̂ and Ĥ ′ = T̂ + Ŵ + V̂ ′. T̂ is the kinetic energy and Ŵ is two-particle

interactions. V̂ =
∑N

i=1 v(ri) and V̂ ′ =
∑N

i=1 v
′(ri) denote the external potentials. Let us assume

that they provide the same ground state
∣∣Ψ0

⟩
with eigenvalues E0 and E′

0, respectively:

Ĥ
∣∣Ψ0

⟩
= E0

∣∣Ψ0

⟩
, (2.2.1)

Ĥ ′∣∣Ψ0

⟩
= E′

0

∣∣Ψ0

⟩
. (2.2.2)

The subtraction of Eq. (2.2.2) from Eq. (2.2.1) leads V − V ′ = E0−E′
0 = const. which is inconsistent

with the assumption that the external potentials differ by more than a constant. It means that there

is a one-to-one correspondence between the external potential (regarding v(r) + const. as a same

potential) and its ground state: v(r)⇔
∣∣Ψ0

⟩
.

We next prove a one-to-one correspondence between the ground state
∣∣Ψ0

⟩
and the density ρ(r):∣∣Ψ0

⟩
⇔ ρ(r). The proof can again be given by reductio ad absurdum. Let us assume that two different

wave functions,
∣∣Ψ0

⟩
and

∣∣Ψ′
0

⟩
, provide the same density ρ(r). According to the variational principle

(Rayleigh-Ritz’s minimal principle), there holds an inequality

E0 =
⟨
Ψ0

∣∣Ĥ∣∣Ψ0

⟩
<

⟨
Ψ′

0

∣∣Ĥ∣∣Ψ′
0

⟩
=

⟨
Ψ′

0

∣∣Ĥ ′∣∣Ψ′
0

⟩
+
⟨
Ψ′

0

∣∣V̂ − V̂ ′∣∣Ψ′
0

⟩
= E′

0 +

∫
dr ρ(r)

{
v(r)− v′(r)

}
. (2.2.3)

The same argument holds for E′
0 giving another inequality

E′
0 < E0 +

∫
dr ρ(r)

{
v′(r)− v(r)

}
. (2.2.4)

The addition of Eqs. (2.2.3) and (2.2.4) leads inconsistency E0 + E′
0 < E0 + E′

0 which verifies the

one-to-one correspondence between the ground state and the density:
∣∣Ψ0

⟩
⇔ ρ(r). This completes

the proof.

To summarize, the proven theorem in the above shows that there hold one-to-one correspondences,

v(r) ⇔
∣∣Ψ0

⟩
⇔ ρ(r). Thus it states the one-to-one correspondence between the external potential

and the density: v(r) ⇔ ρ(r). This theorem is called the 1st Hohenberg-Kohn (HK) theorem. As

a corollary of this theorem, an important consequence is obtained. The 1st HK theorem indicates

a fact that the many-body wave function of the system can be given by a functional of the density,∣∣Ψ⟩ = ∣∣Ψ[ρ]
⟩
. It means that any physical observables can also be given by a functional of the density:

O[ρ] =
⟨
Ψ[ρ]

∣∣Ô∣∣Ψ[ρ]
⟩
. Therefore, the energy of the system is also given by a functional of the density

as E[ρ] (we will refer E[ρ] as an EDF) and a variation of E[ρ] with respect to the density will lead

the energy as well as the density of the ground state:

E0 = E[ρ0] = min
ρ
E[ρ]. (2.2.5)

The statement represented in Eq. (2.2.5) is called the 2nd HK theorem. The 2nd HK theorem indicates

that we can use the density ρ(r) as a basic variable to describe the N -body system. This theorem

thus provides a substantial reduction of the number of coordinates, from 3N to 3, in describing the

N -body system.

(b) Levy’s constrained search method

Up to now, we showed the basic concept of the HK theorem which forms a theoretical foundation

of the DFT. In the proof shown above, however, we implicitly assumed the existence of an external
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potential v(r) as well as an N -body wave function
∣∣Ψ⟩ which actually generate the density ρ(r). The

former is referred to as v-representability, while the latter is referred to as N -representability. The v-

representability is a strong requirement. Indeed, it was proven that there exists a reasonably-behaved

non-v-representable density [158]. The N -representability is more weaker requirement. Indeed, it was

proven that any non-negative (ρ(r) > 0) differentiable density normalized as N =
∫
drρ(r) would

be N -representable [159, 160]. Thus, a constrained search method proposed by Levy [156] has been

a useful prescription to avoid the v-representability problem in performing the minimization of E[ρ]

with respect to the density ρ(r).

The Levy’s constrained search method consists of two minimization procedures. We first minimize

the EDF E[ρ] within a subspace of the Hilbert space in which the sate
∣∣Ψ⟩ generates the trial density

ρ(r). After that, we minimize the E[ρ] with respect to the density ρ(r). The procedure is expressed

by

E0 = E[ρ0] = min
ρ

[
min
Ψ→ρ

E[ρ]

]
. (2.2.6)

This method mathematically justifies that we can perform the variation of E[ρ] with respect to the

density ρ(r) which gives us the ground state energy E0 at the true density ρ0(r) [156, 158].

(c) Kohn-Sham scheme

To describe the shell effect in the atom as well as the atomic nucleus, we need to adequately treat the

kinetic energy of constituent particles of the system. An elegant prescription was proposed by Kohn

and Sham [157] which magically provides a useful scheme where an auxiliary non-interacting reference

system is introduced whose solution is exactly equivalent to the interacting system of interest.

According to the HK theorem, the energy of the interacting system described by Ĥ = T̂ + Ŵ + V̂

can be expressed as a functional of the density

Ev[ρ] =
⟨
Ψ[ρ]

∣∣Ĥ∣∣Ψ[ρ]
⟩
= F [ρ] +

∫
dr v(r)ρ(r), (2.2.7)

where F [ρ] ≡
⟨
Ψ[ρ]

∣∣T̂ + Ŵ
∣∣Ψ[ρ]

⟩
is a universal density-functional which contains information of the

N -body interacting system independent from the external potential. Then, Kohn and Sham rewrote

the EDF Ev[ρ] using the kinetic energy of a non-interacting system T0[ρ] (which can be a functional

of the density because of the HK theorem) as

Ev[ρ] = T0[ρ] +G[ρ] +

∫
dr v(r)ρ(r), (2.2.8)

where G[ρ] ≡ F [ρ]− T0[ρ]. The variational principle for this interacting system with the energy Ev[ρ]

leads

δEv[ρ]

δρ
=

δT0[ρ]

δρ
+ vKS(r) = 0, (2.2.9)

vKS(r) = vKS[ρ(r)] ≡
δG[ρ]

δρ
+ v(r). (2.2.10)

One would notice that the condition Eq. (2.2.9) is equivalent to a necessary condition to minimize

energy of a non-interacting system described by ĤKS = T̂ +
∑N

i=1 vKS(ri). Therefore, the solution of

simultaneous equations for orbital functions {ϕi} in the non-interacting reference system,[
− ℏ2

2m
△+vKS(r)

]
ϕi(r) = εiϕi(r), (2.2.11)

vKS(r) =
δG[ρ]

δρ
+ v(r), (2.2.12)
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is exactly equivalent to the solution of Eqs. (2.2.9) and (2.2.10) for the interacting system of in-

terest. The density is now given by ρ(r) =
∑N

i=1

∣∣ϕi(r)∣∣2. The kinetic energy is given by T0[ρ] =

− ℏ2
2m

∑N
i=1

∫
drϕ∗i (r)△ ϕi(r) in terms of the orbitals {ϕi}. We note that Eqs. (2.2.11) and (2.2.12)

must be solved self-consistently, because the KS potential is given as a functional of the density

vKS(r) = vKS[ρ(r)] which itself depends on the solution of Eq. (2.2.11).

In this way, the Kohn-Sham scheme provides a quite useful formalism to solve exactly the N -

body interacting system in a solvable way. The functions {ϕi} are called the KS orbitals and the

simultaneous equations for them, Eqs. (2.2.11) and (2.2.12), are called the KS equations. The KS

equations look very similar to the HF equation. While the KS scheme is an exact method based on

the DFT, the HF theory is just an approximation for the N -body system. The main difference is the

one-body mean-field-like potential. In the KS scheme, the KS potential vKS(r) contains a universal

density-functional G[ρ] which implicitly includes information of the interacting system of interest. We

note that we do not know a priori the exact form of the universal density-functional G[ρ].

(d) Application to the atomic nucleus

As we mentioned earlier, we need some modifications of the HK theorem to treat the atomic nucleus,

because the atomic nucleus is a self-bound finite system without an external potential. In practice, we

usually describe an intrinsic state which violates the translational invariance and also the rotational

invariance in case of a deformed nucleus. The original HK theorem is actually treating the density

in the laboratory frame. We thus need a modified HK theorem for the intrinsic state (a wave-packet

state) localized in space which verifies an existence of a universal density-functional with respect to

the density of the intrinsic state.

Recently, extensive efforts have been paid for establishing a theoretical foundation of the DFT for

the atomic nucleus [7, 161, 162, 163, 164, 165]. Indeed, in Ref. [164], it was shown that there exists a

density functional for an intrinsic state. The proof can be done in a similar manner as described in

Sec. 2.1.1. (a)-(c). We have to pay, however, a particular attention for decomposing the wave function

into a product of intrinsic and spurious components. It can be performed exactly for the case of

translational motion, while it cannot be done exactly for other cases such as rotational motion. For

details of the proof, we recommend reader to see the proof in Refs. [7, 164]. Anyhow, the modified HK

theorem justifies the DFT for the atomic nucleus and the KS scheme provides an exact self-consistent

mean-field-like description for the atomic nucleus at the limit of zero external potential, v(r)→ 0.

2.2.2 Time-dependent density functional theory

The DFT provides an exact formalism to calculate properties of the ground state of an N -body system.

There is a time-dependent version of the DFT which enables us to calculate excitation, response, and

reaction properties of a many-particle system. The TDDFT is based on the theorem of Runge and

Gross [166] and we explain it in Sec. 2.2.2 (a). In practice, we use time-dependent version of the

KS scheme. The van Leeuwen’s theorem [167] guarantees the existence of a non-interacting reference

system which provides the same time-dependent density ρ(r, t) as the interacting system of interest.

The van Leeuwen’s theorem is explained in Sec. 2.2.2 (b).

(a) Runge-Gross theorem

We consider the time-dependent Hamiltonian, Ĥ(t) = T̂ + Ŵ + V̂ (t) and Ĥ ′(t) = T̂ + Ŵ + V̂ ′(t).

We assume that the system is in the same ground state
∣∣Ψ0

⟩
=
∣∣Ψ(t0)

⟩
at the initial time t = t0.

We also assume that the external potentials v(r, t) and v′(r, t) are an analytic function of time t

so that they are Taylor expandable about t = t0. The Runge-Gross (RG) theorem states that, for
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v-representable densities ρ(r, t), there holds a one-to-one correspondence between the time-dependent

external potential v(r, t) and the density ρ(r, t).

To prove the theorem, we first show that there is a one-to-one correspondence between the time-

dependent external potential v(r, t) and the one-body current j(r, t): v(r, t)⇔ j(r, t). The one-body

current is defined by

j(r, t) =
ℏN
2im

∫
dr2 · · ·

∫
drN

{
Ψ∗(t)∇Ψ(t)−Ψ(t)∇Ψ∗(t)

}
, (2.2.13)

where we have abbreviated the spatial coordinates {r1, · · · , rN}. We note that the differential operator

∇ acts only for the 1st coordinates, r ≡ r1. The time derivative of the current j(r, t) at t = t0 can

be written as

∂tj(r, t)
∣∣∣
t=t0

=
N

2m

∫
dr2 · · ·

∫
drN

{
(ĤΨ∗

0)∇Ψ0−Ψ∗
0∇(ĤΨ0)+(ĤΨ0)∇Ψ∗

0−Ψ0∇(ĤΨ∗
0)
}
, (2.2.14)

where the time-dependent Schrödinger equation, iℏ∂tΨ = ĤΨ, (and its complex conjugate) was used.

The difference ∂t
[
j(r) − j′(r)

]∣∣
t=t0

eliminates the common part proportional to T̂ + Ŵ leading a

relation

∂t
[
j(r, t)− j′(r, t)

]∣∣∣
t=t0

= − 1

m
ρ(r, t0)∇

[
v(r, t0)− v′(r, t0)

]
, (2.2.15)

where ρ(r, t0) = N
∫
dr2 · · ·

∫
drN

∣∣Ψ0

∣∣2 and we used an equality ∇V (t) = ∇
∑N

i=1 v(ri, t) = ∇v(r, t).

The Eq. (2.2.15) means that, if the time-dependent external potentials, v(r, t) and v′(r, t), differ by

more than a time-dependent constant, v(r, t)−v′(r, t) ̸= c(t), the first time-derivative of the currents,

j(r, t) and j′(r, t), at t = t0 must be different. Therefore, j(r, t) and j′(r, t) must be different at a

certain instant t > t0. In the same way, we can calculate a difference between a higher-order (more

than one) time-derivative of the currents j(r, t) and j′(r, t). For the (k + 1)th time-derivative, we

obtain

∂k+1
t

[
j(r, t)− j′(r, t)

]∣∣∣
t=t0

= − 1

m
ρ(r, t0)∇wk(r), (2.2.16)

where wk(r) ≡ ∂kt
[
v(r, t) − v′(r, t)

]∣∣
t=t0

. Since the external potentials, v(r, t) and v′(r, t), differ by

more than a time-dependent constant, v(r, t) − v′(r, t) ̸= c(t), the right hand side of Eq. (2.2.16)

must again have a non-zero value. Therefore, the Taylor expansion of the currents j(r, t) and j′(r, t)

must be different at a certain order and it guarantees that j(r, t) ̸= j′(r, t). This proves the one-to-

one correspondence between the time-dependent external potential (regarding v(r, t) + c(t) as a same

potential) and the current: v(r, t)⇔ j(r, t).

We next prove the one-to-one correspondence between the time-dependent external potential and

the density: v(r, t)⇔ ρ(r, t). We take the divergence of Eq. (2.2.16) to get a relation for the densities:

∂k+1
t ∇ ·

[
j(r, t)− j′(r, t)

]∣∣∣
t=t0

= −∂k+2
t

[
ρ(r, t)− ρ′(r, t)

]∣∣∣
t=t0

= − 1

m
∇ ·

[
ρ(r, t0)∇wk(r)

]
, (2.2.17)

where we used the continuity equation, ∂tρ(r, t) = −∇ · j(r, t). If the right hand side has non-zero

value, it means that the (k+2)th time-derivative of the densities, ρ(r, t) and ρ′(r, t), must be different.

It can be shown by considering the following equation:∫
dr∇ ·

[
wk(r)ρ(r, t0)∇wk(r)

]
=

∫
dr ρ(r, t0)

[
∇wk(r)

]2
+

∫
drwk(r)∇ ·

[
ρ(r, t0)∇wk(r)

]
.

(2.2.18)

The left hand side of Eq. (2.2.18) vanishes according to the Gauss’s divergence theorem assuming that

ρ(r, t0)
r→∞−→ 0. Since the first term in the right hand side of Eq. (2.2.18) must have a non-zero value,

the second term in the right hand side must also have a non-zero value. Therefore, from Eqs. (2.2.17)
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and (2.2.18), we can conclude that a certain-order time-derivative of the densities, ρ(r, t) and ρ′(r, t),

at t = t0 must be different. Thus ρ(r, t) and ρ′(r, t) must be different at a certain instant t > t0 if

v(r, t)− v′(r, t) ̸= c(t). This conpletes the proof.

The RG theorem elucidates that the external potential v(r, t) [modulo c(t)] is a functional of the

density and the initial state. It means that the time-dependent many-body wave function can be

expressed as a functional of the density multiplied by a merely phase factor,
∣∣Ψ(t)

⟩
= e−iα(t)

∣∣Ψ[ρ(t)]
⟩

with α̇(t) = c(t). Thus, any physical observables can be written as a functional of the density,

O[ρ(t)] =
⟨
Ψ[ρ(t)]

∣∣Ô∣∣Ψ[ρ(t)]
⟩
, because the phase does not affect the expectation value.

In practice, we use a time-dependent version of the KS scheme. The time-dependent Kohn-Sham

(TDKS) equations are defined by

iℏ
∂

∂t
ϕi(r, t) =

[
− ℏ2

2m
△+vKS(r, t)

]
ϕi(r, t). (2.2.19)

The density is expressed as ρ(r, t) =
∑N

i=1

∣∣ϕi(r, t)∣∣2. Because the RG theorem does not tell us a

specific form of the KS potential, how to define the time-dependent KS potential vKS(r, t) would be

a problem. Usually the so called adiabatic approximation is used where the same form of the KS

potential as in the ground state DFT (except for the time-dependent external potential v(r, t)) is

utilized for t ≥ t0, which is composed of the TDKS orbitals {ϕi(r, t)}. Extensive discussions for

the determination of the time-dependent KS potential can be found in Ref. [168]. One of the most

important theorems was proven by van Leeuwen [167] which can be regarded as an extension of the

RG theorem. The theorem guarantees that there exists an external potential v′(r, t) for a system

obeying a different two-particle interaction Ŵ ′ which provides the density ρ(r, t) that coincides with

the density in the system with Ŵ for all times. Because the non-interacting limit W ′ → 0 guarantees

the existence of the non-interacting reference system, we shall follow the van Leeuwen’s theorem in

the next Section.

(b) Van Leeuwen’s theorem

In the case of the DFT, the KS scheme provides an elegant formalism which is quite useful for practical

applications. Because the RG theorem is not based on the variational principle, we need to carefully

prove the existence of an auxiliary non-interacting reference system which provides the same density

as the interacting system for all times, t ≥ t0. It was proven by van Leeuwen [167] that there

exists a system which gives the same time-dependent density ρ(r, t), albeit that they have different

interactions, Ŵ and Ŵ ′, and different external potentials, V̂ (t) and V̂ ′(t). Since the theorem is valid

even for the non-interacting limit Ŵ ′ → 0, it guarantees the existence of the non-interacting reference

system which provides the same density ρ(r, t) as the interacting system of interest, Ŵ ̸= 0.

We first derive a relation between the density ρ(r, t) and the external potential v(r, t) (Eq. (2.2.23))

which will be used to prove the theorem. We again start with a time-derivative of the current,

∂tjµ(r, t) =
N

2m

∫
dr2 · · ·

∫
drN

{
(ĤΨ∗(t))∂µΨ(t)−Ψ∗(t)∂µ(ĤΨ(t))

+(ĤΨ(t))∂µΨ
∗(t)−Ψ(t)∂µ(ĤΨ∗(t))

}
.

Here, we focus on a µ component of the current jµ(r, t), j(r, t) =
(
j1(r, t), j2(r, t), j3(r, t)

)
. By

putting Ĥ = T̂ + Ŵ + V̂ , we obtain [169]

m∂tjµ(r, t) = ρ(r, t)∂µv(r, t)−
∑
ν

∂νTνµ(r, t)−Wµ(r, t), (2.2.20)
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where we define Wµ(r, t) and the momentum-stress tensor (part of the energy-momentum tensor)

Tµν(r, t) as

Wµ(r, t) ≡ N
∫
dr2 · · ·

∫
drNΨ∗(t)

[
∂µŴ

]
Ψ(t), (2.2.21)

Tµν(r, t) ≡
ℏ2N
2m

∫
dr2 · · ·

∫
drN

{[
∂µΨ

∗(t)
][
∂νΨ(t)

]
+
[
∂µΨ(t)

][
∂νΨ

∗(t)
]
− 1

2
∂µ∂ν

[
Ψ∗(t)Ψ(t)

]}
.

(2.2.22)

By taking the divergence of Eq. (2.2.20) and using the continuity equation, we obtain the relation

between the density and the external potential,

m∂t∇ · j(r, t) = −m∂2t ρ(r, t) = −∇ ·
[
ρ(r, t)∇v(r, t)

]
− q(r, t), (2.2.23)

where q(r, t) ≡
∑

µν ∂µ∂νTνµ(r, t) +
∑

µ ∂µWµ(r, t).

Here, we introduce another system which obeys a different Hamiltonian Ĥ ′ = T̂ + Ŵ ′+ V̂ ′(t) with

a wave function
∣∣Ψ′(t)

⟩
. We prove that there exists an external potential v′(r, t) which provides the

same density ρ(r, t) as the system of Ĥ = T̂ + Ŵ + V̂ (t) for all times. Let us assume that we have

solved the time-dependent Schrödinger equation with the initial wave function
∣∣Ψ0

⟩
so that we know

the density ρ(r, t) for all times. We then require ρ′(r, t) = ρ(r, t) for all times and shall prove that we

can construct v′(r, t) which satisfies the requirement. Because of the requirement, there folds

ρ′(r, t0) = ρ(r, t0). (2.2.24)

That is, the initial state of these systems,
∣∣Ψ0

⟩
and

∣∣Ψ′
0

⟩
, has the same density. Since the relation

Eq. (2.2.23) is a second-order differential equation with respect to time t, we also require a condition

∂tρ
′(r, t)

∣∣∣
t=t0

= ∂tρ(r, t)
∣∣∣
t=t0

, (2.2.25)

which is equivalent to ∇·j′(r, t0) = ∇·j(r, t0) because of the continuity equation. Then, the relation

Eq. (2.2.23) for these systems gives the following equations:

m∂2t ρ(r, t) = ∇ ·
[
ρ(r, t)∇v(r, t)

]
+ q(r, t), (2.2.26)

m∂2t ρ(r, t) = ∇ ·
[
ρ(r, t)∇v′(r, t)

]
+ q′(r, t). (2.2.27)

The subtraction of Eq. (2.2.27) from Eq. (2.2.26) leads

∇ ·
[
ρ(r, t)∇ω(r, t)

]
= ζ(r, t), (2.2.28)

where we define two functions, ω(r, t) ≡ v(r, t) − v′(r, t) and ζ(r, t) ≡ q′(r, t) − q(r, t). This type of

differential equation is known as the Sturm-Liouville type and we can, in principle, uniquely solve the

equation under a boundary condition, ω(r, t)
r→∞−→ 0, if ρ(r, t) and ζ(r, t) are given.

Using the determination equation of Eq. (2.2.28), we can show that the existence of v′(r, t) as

follows. For t = t0, we have

∇ ·
[
ρ(r, t0)∇ω(r, t0)

]
= ζ(r, t0). (2.2.29)

Because of the requirements, we know the density ρ(r, t0). We may calculate ζ(r, t0) from the wave

functions
∣∣Ψ0

⟩
and

∣∣Ψ′
0

⟩
. Thus, in principle, we can obtain ω(r, t0) by solving Eq. (2.2.29). We then

also obtain the external potential v′(r, t0) = v(r, t0)− ω(r, t0) as well.
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Next, we take a time-derivative of Eq. (2.2.28) at t = t0. We then find

∇ ·
[
ρ(r, t0)∇∂tω(r, t)

∣∣∣
t=t0

]
= ∂tζ(r, t)

∣∣∣
t=t0
−∇ ·

[
∂tρ(r, t)

∣∣∣
t=t0

∇ω(r, t0)
]
. (2.2.30)

We already know ρ(r, t0) and ∂tρ(r, t)
∣∣
t=t0

(by the assumptions), ζ(r, t0), and w(r, t0). Since we have

obtained v′(r, t0) by solving Eq. (2.2.29), we may evaluate ∂tζ(r, t)
∣∣
t=t0

by solving the time-dependent

Schrödinger equation. Thus, we can, in principle, calculate ∂tω(r, t)
∣∣
t=t0

by solving the Sturm-Liouville

type equation of Eq. (2.2.30) and can obtain ∂tv
′(r, t)

∣∣
t=t0

= ∂tv(r, t)
∣∣
t=t0
− ∂tω(r, t)

∣∣
t=t0

.

By repeating this procedure for the 2nd, 3rd, · · · , kth time-derivatives of Eq. (2.2.28), we obtain

∇ ·
[
ρ(r, t)∇∂kt ω(r, t)

∣∣∣
t=t0

]
= Q(k)(r), (2.2.31)

where we define the inhomogeneity

Q(k)(r) ≡ ∂kt ζ(r, t)
∣∣∣
t=t0
−

k−1∑
l=0

kCl ∇ ·
{
∂k−l
t ρ(r, t)

∣∣∣
t=t0

∇∂ltω(r, t)
∣∣∣
t=t0

}
. (2.2.32)

We can calculate an arbitrary-order time-derivative of v′(r, t) at t = t0 through this procedure. Thus,

we can construct the external potential v′(r, t) by the Taylor series

v′(r, t) =

∞∑
k=0

1

k!
∂kt v

′(r, t)
∣∣∣
t=t0

(
t− t0

)k
, (2.2.33)

which actually generates the density ρ(r, t0) in the system of Ĥ ′(t0) = T̂ + Ŵ ′ + V̂ ′(t0). After an

infinitesimal time evolution,
∣∣Ψ(t0)

⟩
→
∣∣Ψ(t1)

⟩
, within the convergence radius of the Taylor expansion,

we can conduct the same argument at t = t1 as for the t = t0 case. Therefore, we can construct the

external potential v′(r, t) in the system of Ĥ ′(t) = T̂ + Ŵ ′ + V̂ ′(t) for all times which generates the

density ρ(r, t) that coincides with the density in the system of Ĥ(t) = T̂ + Ŵ + V̂ (t) for all times.

This completes the proof.

In the case of Ŵ ′ = Ŵ , the van Leeuwen’s theorem corresponds to the RG theorem. Because

the van Leeuwen’s theorem is also valid for the non-interacting system (Ŵ ′ → 0), it guarantees the

existence of the non-interacting reference system which can be regarded as the time-dependent version

of the KS system.

As we saw in this Section, the KS scheme based on the (TD)DFT provides a powerful and quite

useful theoretical formalism for describing a many-particle system. The (TD)KS equations have a

very similar form as the (TD)HF equation. We may actually regard the Skyrme (TD)HF theory

as the (TD)DFT regarding the Skyrme EDF as an approximated representation of the universal

density-functional. Moreover, since the Skyrme Hamiltonian with the density-dependent effective

three-body interaction contains ρα in the two-body interaction (cf. Eq. (2.1.12)), it is not a many-body

Hamiltonian in a strict sense. This fact also exhibits the DFT-like character of the Skyrme (TD)HF

theory. Indeed, properties of thousands of nuclei in a wide mass region have been successfully described

by a single Skyrme-parameter-set which is adjusted to reproduce properties of several representative

nuclei and the nuclear matter. Let us use, however, the conventional terminology, “the HF theory”

and “the TDHF theory”, to express our theoretical framework throughout the thesis.
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2.3 Application to Nuclear Reactions

In this Section, we present computational techniques which will be used in our study of heavy ion

reactions employing the TDHF theory. In Sec. 2.3.1, we explain a detailed procedure to construct an

initial condition for the simulation of heavy ion reactions in the TDHF theory. Several computational

methods are presented in Sec. 2.3.2.

2.3.1 Initial condition

(a) Ground-state calculation: Imaginary-time method

To simulate heavy ion reactions, we need to prepare the many-body wave function of the projectile

and target nuclei in the HF ground state. We use the imaginary-time method to calculate the HF

ground state. In the imaginary-time method, the total energy of the system is minimized by iterative

updates of the single-particle wave functions and the mean-field potential.

Here, we present a basic concept of the imaginary-time method. Let us consider a case where the

system obeys the Schrödinger equation,

Ĥ
∣∣Ψn

⟩
= En

∣∣Ψn

⟩
. (2.3.1)∣∣Ψ0

⟩
denotes the ground state, while

∣∣Ψn

⟩
(n > 0) denotes excited states. Because the eigenfunctions

{Ψn} form a complete set, an arbitrary state
∣∣ξ⟩ can be expanded by using these eigenfunctions as

∣∣ξ⟩ = ∞∑
n=0

Cn

∣∣Ψn

⟩
. (2.3.2)

A multiplication of the imaginary-time evolution operator for a small imaginary-time step ∆τ ≡ i∆t,

e−Ĥ∆τ/ℏ, to the state |ξ⟩ may be written as

e−Ĥ∆τ/ℏ∣∣ξ⟩ =

∞∑
n=0

Cne
−Ĥ∆τ/ℏ∣∣Ψn

⟩
=

∞∑
n=0

Cne
−En∆τ/ℏ∣∣Ψn

⟩
= e−E0∆τ/ℏ

∞∑
n=0

Cne
(E0−En)∆τ/ℏ∣∣Ψn

⟩
. (2.3.3)

We will reach the ground state wave function
∣∣Ψ0

⟩
after a sufficiently long imaginary-time propagation:

lim
n→∞

[
e−Ĥ∆τ/ℏ

]n
|ξ⟩ ∝ |Ψ0⟩ . (2.3.4)

Excited states
∣∣Ψn

⟩
(n > 0) will be dumped exponentially in a much faster way than the ground state∣∣Ψ0

⟩
, because En > E0 (n > 0) by definition. This is the basic concept of the imaginary-time method.

In the case of the Skyrme HF theory, small changes in the single-particle orbitals ϕi(rσ)+ δϕi(rσ)

(i = 1, · · · , N) vary the EDF, ESHF[Φ] =
⟨
Φ
∣∣ĤSkyrme

∣∣Φ⟩, up to the first-order of δϕi(rσ) to

ESHF[Φ + δΦ] = ESHF[Φ] +
∑
i, σ

∫
dr

δESHF[Φ]

δϕi(rσ)
δϕi(rσ) +

∑
i, σ

∫
dr

δESHF[Φ]

δϕ∗i (rσ)
δϕ∗i (rσ). (2.3.5)

If we take the small variation, δϕi(rσ), as

δϕi(rσ) ≡ −
∆τ

ℏ
δESHF[Φ]

δϕ∗i (rσ)
= −∆τ

ℏ
∑
σ′

ĥ
(qi)
SHF(rσσ

′)ϕi(rσ
′), (2.3.6)
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Figure 2.1: Schematic figures of the three-dimensional Cartesian grid for the HF calculation (a) and

for the TDHF calculation (b). (a): The HF ground states of projectile and target nuclei are calculated

separately. Because we do not impose any spatial symmetry, those nuclei can be spontaneously

deformed to minimize the energy. (b): We use a rectangular box to calculate reaction dynamics.

The ground states of the projectile and target nuclei are putted inside the box. We note that, the

center-of-mass correction is neglected to use a consistent single-particle Hamiltonian in both HF and

TDHF calculations.

a monotonic decrease of the total energy is guaranteed:

ESHF[Φ + δΦ] = ESHF[Φ]−
2∆τ

ℏ
∑
i, σ

∫
dr

∣∣∣∣∣δESHF[Φ]

δϕi(rσ)

∣∣∣∣∣
2

< ESHF[Φ]. (2.3.7)

In practice, we use three-dimensional Cartesian grid representation to express the single-particle

wave functions without any symmetry restrictions as schematically shown in Fig. 2.1 (a). We separately

calculate the HF ground state of projectile and target nuclei. We start with an arbitrary Slater

determinant composed of N Gaussian wave packets whose position is determined by a random number.

We then repeat the imaginary-time propagation with a sufficiently small imaginary time-step, ∆τ . We

perform the Schmidt’s orthonormalization for the single-particle wave functions at each time-step to

ensure
⟨
ϕi
∣∣ϕj⟩ ≡∑σ

∫
drϕ∗i (rσ)ϕj(rσ) = δij . Since we deal with an intrinsic wave packet state, the

HF ground sate spontaneously breaks the translational symmetry and the rotational symmetry in case

of a deformed nucleus. Moreover, there may exist local minima on the potential energy surface as

functions of deformation parameters [6, 170]. We indeed perform the imaginary-time calculation with

certain constraints on the center-of-mass position and the principal axes as well as the deformation

parameters. Such a calculation is called the constrained Hartree-Fock (CHF) method [6]. We first

perform the CHF calculations with constraints on the deformation parameters, β = 0 and β = 0.1

and 0.2 with γ = 0◦, 30◦, and 60◦. Then, we release those constraints and re-minimize the energy. We

regard the least energy state as the HF ground state. Some details of the CHF method are summarized

in Appendix C. In usual static HF calculation for nuclear structure, the center-of-mass correction is

taken into account by replacing the kinetic energy operator as T̂ → T̂ − P̂ 2/(2mA), where P̂ =
∑

i p̂i

and A is the mass number of the nucleus [136]. We note that, however, the center-of-mass correction

is neglected in both the HF calculation of the projectile and target nuclei and the TDHF reaction

calculation, because how to treat the center-of-mass correction in a colliding system is not at all trivial

[102].

(b) Evaluation of the relative momentum

We simulate heavy ion reactions based on the TDHF theory. To save the computational cost in

practice, we solve the TDHF equation using a finite-size numerical-box (typically, several tens of fm)
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Figure 2.2: Schematic figures to explain our approach to evaluate the position and the relative wave

vector for the TDHF calculation. (a): Geometric situation of the scattering problem is shown. (b):

The initial configuration at a given separation distance in the x-direction, x0, is illustrated. (c): The

wave vectors of the two colliding nuclei at the initial configuration are illustrated in the center-of-mass

frame.

for the reaction calculation as schematically shown in Fig. 2.1 (b). The initial separation distance,

r0, between the projectile and target nuclei at the initial stage of the TDHF calculation must be

sufficiently shorter than the size of the box. In practice, we place the projectile and target nuclei in

their HF ground state inside the numerical box assuming the Rutherford trajectory neglecting any

Coulomb excitations before they reach the initial separation distance.

Let us denote the mass and charge of the projectile and target nuclei as MP, ZP and MT, ZT,

respectively. We use the mass simply given by MP = mNP and MT = mNT, where NP(T) denotes

the total number of nucleons in the projectile (target) nucleus. We consider a situation that the

projectile nucleus is coming from infinity with an incident energy Elab and an impact parameter b in

the laboratory frame. The target nucleus is considered to be at rest initially. We note that the target

nucleus will start to move because of the recoil effect by the Coulomb repulsion. We set the incident

direction parallel to the negative-x direction and the impact parameter vector parallel to the positive-y

direction. The reaction plane is the xy-plane. This situation is schematically illustrated in Fig. 2.2 (a).

It is well known that we can reduce this two-body scattering problem to the one-body problem with

respect to the relative coordinate r = rP− rT with the reduced mass µ =MPMT/(MP +MT), where

the trivial center-of-mass translational motion is removed from the problem. For the reduced one-body

problem, we have the equation of trajectory [171]

r(θ) =
l

−1 + ε cos(θ − α)
, (2.3.8)

where several quantities are defined by

l =
2Eb2

k
=

k

2E
(ε2 − 1) ≥ 0, (2.3.9)

ε =

√
1 +

(
2Eb

k

)2

≥ 1, (2.3.10)

k = ZPZTe
2. (2.3.11)

E ≡ MT
MP+MT

Elab denotes the incident relative energy. Because of the initial condition r(θ = 0)→∞,

the angle α is determined to be α = cos−1
(
1
ε

)
.

To evaluate the position and the relative momentum of the projectile and target nuclei, we first

specify the initial separation distance parallel to the x-axis, which we denote as x0, as schematically
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illustrated in Fig. 2.2 (b). Using an equality r0 cos θ0 = x0 and the equation of trajectory Eq. (2.3.8),

we find

cos θ0 =
−c0c1 ± c2

√
c21 + c22 − c20

c21 + c22
, (2.3.12)

where c0 ≡ x0, c1 ≡ l−x0, and c2 ≡ x0(ε2−1)1/2. Because the initial relative distance r0 (= x0/ cos θ0)

must be positive (r0 > 0), we select the positive sign in the denominator of Eq. (2.3.12). In this

algorithm, we can arbitrary choose the position of the center-of-mass of the two colliding nuclei,

Rc.m.. The initial position of the projectile and target nuclei inside the numerical box is then uniquely

determined by x0 and Rc.m. for a given MP(T), ZP(T), Elab, and b.

Ones we obtain the initial relative distance r0, we can evaluate the relative velocity from the

conservation rows for the relative angular momentum and the energy:

vθ(r0) =
b

r0
v0, (2.3.13)

vr(r0) =

√[
1−

(
b

r0

)2]
v20 −

2

µ

k

r0
, (2.3.14)

vx(r0) = vr(r0) cos θ0 + vθ(r0) sin θ0, (2.3.15)

vy(r0) = −vr(r0) sin θ0 + vθ(r0) cos θ0, (2.3.16)

where v0 =
√

2E/µ denotes the initial relative velocity. vr(r0), vθ(r0), vx(r0), and vy(r0) denote

the radial, azimuthal, x, and y components of the relative velocity at the initial relative distance r0,

respectively. From the relative velocity, we define the relative wave vector at the initial separation

distance by Krel(r0) =
(
µvx(r0)/ℏ, µvy(r0)/ℏ

)
.

To describe the whole reaction dynamics within a limited-size spatial box, we choose the center-

of-mass frame, KP +KT = 0, where KP(T) denotes the wave vector of the projectile (target) in the

center-of-mass frame. From an equality for the kinetic energy

ℏ2K2
rel

2µ
=

ℏ2K2
P

2MP
+

ℏ2K2
T

2MT
=

ℏ2K2
P(T)

2µ
,

we see that
∣∣KP

∣∣ = ∣∣KT

∣∣ = ∣∣Krel

∣∣. We thus distribute the relative wave vector to the projectile and

target nuclei as

KP(r0) =

(
−µvx(r0)

ℏ
, +

µvy(r0)

ℏ

)
, (2.3.17)

KT(r0) =

(
+
µvx(r0)

ℏ
, −µvy(r0)

ℏ

)
. (2.3.18)

These wave vectors are schematically illustrated in Fig. 2.2 (c).

(c) Galilean boost

After the evaluation of the initial relative momentum, we give the momentum for the projectile and

target nuclei. In the TDHF theory, the translational motion of a nucleus is represented by a collective

translational motion of nucleons inside the nucleus. To see this, we consider a transformation for the

single-particle wave functions {ϕi(rσ)}

ϕ′i(rσ) = exp

[
1

N
iK · r̂

]
ϕi(rσ), (2.3.19)
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where ϕ′i(rσ) represents the transformed single-particle wave function which has the translational

momentum ℏK/N . The many-body wave function constructed from the transformed single-particle

wave function takes the following form:

Φ′(r1σ1, · · · , rNσN ) =
1√
N !

det
{
ϕ′i(rjσj)

}

=
1√
N !

∣∣∣∣∣∣∣
eiK·r1/Nϕ1(r1σ1) · · · eiK·rN/Nϕ1(rNσN )

...
...

eiK·r1/NϕN (r1σ1) · · · eiK·rN/NϕN (rNσN )

∣∣∣∣∣∣∣
= exp

[
iK ·

{
1

N

N∑
i=1

ri

}]
Φ(r1σ1, · · · , rNσN )

= exp
[
iK ·R

]
Φ(r1σ1, · · · , rNσN ). (2.3.20)

R = 1
N

∑N
i=1 ri is the center-of-mass coordinate of the nucleus. The transformed many-body wave

function Eq. (2.3.20) may be regarded as a state boosted with the momentum ℏK.

In practice, we first perform the transformation for each single-particle wave function

ϕ′i(rσ) = exp

[
1

Nµ
iKµ · r̂

]
ϕi(rσ) for i ∈ µ (= P or T),

where Kµ is the relative wave vector defined by Eqs. (2.3.17) and (2.3.18) and Nµ is the number of

nucleons in each nucleus. “i ∈ µ” means that the ith orbital initially belongs to either the projectile

(µ = P) or the target (µ = T) at the initial stage of the TDHF calculation. In our code, 1st, · · · ,
(NP)th orbitals initially belong to the projectile, while (NP +1)th, · · · , (NP +NT)th orbitals initially

belong to the target. After that, we construct a single Slater determinant by the boosted orbitals

{ϕ′i} (i = 1, · · · , NP + NT). We then calculate a real-time evolution by solving the TDHF equation

using the transformed single Slater-determinant composed of {ϕ′i} as an initial wave function. We

note that the TDHF wave function (a single Slater determinant) is invariant under arbitrary unitary

transformations for the single-particle wave functions. Therefore, we may not be able to discuss any

physics, in a strict sense, in terms of the information that which orbitals belonged to which nuclei at

the initial stage of the TDHF calculation, because it is not gauge invariant.

2.3.2 Computational methods

(a) Real-space method

We employ three-dimensional Cartesian grid representation to express the single-particle wave func-

tions. We use a uniform orthogonal mesh having a mesh spacing H. We set H = 0.8 fm in practical

calculations. We have a discreet complex value at each grid point which represents the discretized

single-particle wave function ϕα(xi, yj , zk, σ, t) at xi ≡ iH, yj ≡ jH, and zk ≡ kH, where i, j, and k

are zero or positive integers.

To calculate the first and second derivatives, we employ the high-order finite-difference method.

For example, the νth x-derivative of the single-particle wave function at a grid point (xi, yj , zk) is

given by [172]

∂νϕα(xi, yj , zk, σ, t)

∂xν
≈ 1

b
(ν)
N Hν

N∑
n=−N

c
(ν)
N,n ϕα(xi + nH, yj , zk, σ, t). (2.3.21)

The same formula is utilized for the y- and z-derivative. In practice, we use 11-point finite-difference

formula (N = 5). The coefficients, b
(ν)
N and c

(ν)
N,n, are shown in Table 2.2 for ν = 1 and 2 with N = 5.
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Table 2.2: Coefficients in the high-oder finite-difference formula Eq. (2.3.21), b
(ν)
N and c

(ν)
N,n, for the

first (ν = 1) and second (ν = 2) derivatives with N = 5 (the 11-point formula) [172].

11-point formula (N = 5)

ν b
(ν)
5 c

(ν)
5,0 c

(ν)
5,±1 c

(ν)
5,±2 c

(ν)
5,±3 c

(ν)
5,±4 c

(ν)
5,±5

1 2520 0 ±2100 ∓600 ±150 ∓25 ±2
2 25200 −73766 42000 −6000 1000 −125 8

All operations of the gradient, divergence, rotation, and Laplacian in the Skyrme HF equation are

evaluated according to Eq. (2.3.21).

(b) Real-time method

Using the wave function prepared as described in Sec. 2.3.1 as an initial TDHF wave function, we can

simulate heavy ion reactions numerically. To calculate a real-time evolution, we employ the Taylor

expansion method. In the method, a time evolution from time t to t+∆t of the single-particle wave

functions obeying the TDHF equation is calculated as

ϕi(rσ, t+∆t) ≈
kmax∑
k=0

1

k!

(
∆t

iℏ

)k∑
σ′

[
ĥ
(qi)
SHF

(
rσσ′, t+ ∆t

2

)]k
ϕi(rσ

′, t), (2.3.22)

where ∆t and kmax denote a small time-step and the maximum order of the Taylor expansion, respec-

tively. We set ∆t = 0.2 fm/c and kmax = 4 in our practical calculations. For the time evolution from

time t to t+∆t, we use ĥ
(qi)
SHF(rσσ

′, t+∆t/2) which is the single-particle Hamiltonian associated with

the single-particle wave functions at time t+∆t/2 to increase numerical accuracy. This corresponds

to the first-order predictor-corrector method. We note that we encountered a numerical instability

just after a short real-time propagation if we omit the predictor-corrector step. In Fig. 2.3, the time-

evolution scheme with the first-order predictor-corrector method is illustrated. Because the mean-field

potentials in the single-particle Hamiltonian are constructed from the orbitals at each time-step, we

need to calculate the time evolution in a self-consistent manner. A time evolution of the orbitals causes

some changes of the densities and the mean-field potentials. The changes in the mean-field potentials

affect the next time-evolution of the orbitals. In this way, complex many-body reaction processes,

not only single-particle excitations but also corrective excitations, are described microscopically in a

self-consistent manner from nucleons’ degrees of freedom in the TDHF theory.

(c) Parallelization

The recent remarkable progress in computational sciences, not only computational methods but also

architecture, enables us to solve computationally-tough problems numerically on a massively-parallel

supercomputer. Thus, we can now explore new physics by performing large-scale calculations and/or

systematic calculations, which cannot be realized without abundant computational resources and the

massively-parallel supercomputer powered by HPCI systems. It has been recognized that computa-

tional sciences have been one of the essential approaches to study physics in the nature in addition to

the experimental and the theoretical approaches.

In order to perform a large number of TDHF calculations using a full Skyrme EDF including

all the time-odd components without any symmetry restrictions, we parallelize our computational
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code using a hybrid parallelization technique with the massage passing interface (MPI) and the open

multi-processing (OpenMP). Since the time evolution of each single-particle wave function can be

performed independently, we parallelize the code with respect to the single-particle wave functions.

Our parallelization procedure is schematically illustrated in Fig. 2.4. We distribute N single-particle

wave functions ϕi (i = 1, · · · , N = NP + NT) to M MPI processes. To optimize the load balance of

every processor, the number of single-particle wave functions per MPI process is determined as equal

as possible. If we can adopt several CPUs with a shared memory to each MPI process, we further

parallelize the calculation using the OpenMP. We note that communications between MPI processes

are required at each time-step, because we need to update the single-particle Hamiltonian as shown in

Fig. 2.3 (The densities/mean-fields are constructed from all the single-particle wave functions at each

time-step).
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Figure 2.3: Time-evolution scheme from time t to t + ∆t with the first-order predictor-corrector

method is illustrated schematically. The circled numbers indicate the order of procedures. The red

down-arrows at step 1, 3, and 5 represent evaluation of the densities, the mean-field potentials, and

the single-particle Hamiltonian using the single-particle wave functions at each time. The blue solid

curry-arrow at step 2 represents a time evolution from time t to t + ∆t/2 using the single-particle

Hamiltonian at time t. While the pink solid curry-arrow at step 4 represents a time evolution from

time t to t+∆t using the single-particle Hamiltonian at time t+∆t/2.

Figure 2.4: Concept of our MPI-OpenMP hybrid parallelization is illustrated. Green boxes represent

MPI processes to which we may distribute several CPUs with a shared memory. Those CPUs are

represented by blue small boxes inside the green box. We distribute N single-particle wave functions

ϕi(rσ, t) (i = 1, · · · , N = NP+NT) toM MPI processes. The each MPI process is designed to perform

the OpenMP parallelization with respect to the single-particle wave functions utilizing the CPUs with

the shared memory.
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Part I

Application of the TDHF theory to

MNT reactions
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Chapter 3

TDHF CALCULATIONS FOR MNT

REACTIONS

In this first part of the thesis (Part I), we shed light on the feasibility of the TDHF theory combined

with the PNP technique in describing MNT cross sections.

In this Chapter, we investigate MNT processes in reactions of 40Ca+124Sn at Elab = 170 MeV,
48Ca+124Sn at Elab = 174 MeV, 40Ca+208Pb at Elab = 235 and 249 MeV, and 58Ni+208Pb at Elab =

328.4 MeV, for which precise measurements of MNT cross sections were achieved [40, 43, 47, 50]∗.

In addition to the fact that extensive experimental data are available for these systems, analyses

and comparisons of these systems are of much interest because reactions in these systems are expected

to show qualitatively different features. While 48Ca+124Sn has almost the same neutron-to-proton

ratio, N/Z, between the projectile and target nuclei, other three systems have different N/Z ratios.

We expect that transfer processes toward the charge equilibrium take place in reactions with a large

N/Z asymmetry [116, 119, 174]. Moreover, it is well known that the basic feature of the low-energy

heavy ion reactions depends much on the product of the charge numbers of the projectile and target

nuclei, ZPZT. Fusion reactions beyond the critical value, ZPZT ∼ 1600-1800, are known to accompany

an extra-push energy [75, 121]. Analyses of the fusion-hindrance phenomena in the TDHF theory have

been reported in Refs. [117, 121], showing that the extra-push energy in the TDHF calculation is in

good agreement with that of the Swiatecki’s extra-push model [74]. The four systems to be analyzed

have different ZPZT values, 1000 for 40, 48Ca+124Sn, 1640 for 40Ca+208Pb, and 2296 for 58Ni+208Pb.

It has been considered that the success of the TDHF theory is limited to observables expressed as

expectation values of one-body operators. Indeed, the particle-number fluctuation in DICs has been

found to be substantially underestimated in the TDHF calculations [88, 89, 93]. Since transfer prob-

abilities in the TDHF calculation may not be given as expectation values of any one-body operators,

it is not at all obvious whether the TDHF calculation provides a reasonable description for MNT

processes. One of the main purposes of this work is to clarify usefulness and limitation of the TDHF

calculation for the MNT processes. We note that Simenel has recently presented a calculation using

the Barian-Vénéroni variational principle [175] and concluded that the particle-number fluctuation

may not be affected much by the correlation effects beyond the TDHF theory for reactions that are

not as violent as DICs [176].

This Chapter is organized as follows. In Sec. 3.1, we describe a formalism to calculate trans-

fer probabilities from the TDHF wave function after collision. We also describe our computational

method. In Sec. 3.2, we present results of our TDHF calculations for four systems and compare them

with measurements. In Sec. 3.3, we compare our results with those by other theories. In Sec. 3.4, a

∗ This Chapter is essentially based on our publication of Ref. [173].
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summary and concluding remarks on this Chapter are presented.

3.1 Formulation

3.1.1 Definition of transfer probabilities

We consider a collision of two nuclei described by the TDHF theory. The projectile is composed of NP

nucleons and the target is composed of NT nucleons. The total number of nucleons is N = NP +NT.

In the TDHF calculation, a time evolution of single-particle orbitals, ϕi(rσ, t) (i = 1, · · · , N), is

calculated where r and σ denote the spatial and the spin coordinates, respectively. The total wave

function is given by the Slater determinant composed of the orbitals:

Φ(x1, · · · , xN , t) =
1√
N !

det
{
ϕi(xj , t)

}
, (3.1.1)

where x is a set of the spatial and the spin coordinates, x ≡ (r, σ). For the moment, we will develop a

formalism for a many-body system composed of identical fermions. An extension to the actual nuclei

composed of two kinds of fermions, neutrons and protons, is simple and obvious.

Before the collision, two nuclei are separated spatially. We divide the whole space into two, the

projectile region, V i
P, and the target region, V i

T. After the collision, we assume that there appear two

nuclei, a projectile-like fragment (PLF) and a target-like fragment (TLF). We ignore channels in which

nuclei are separated into more than two fragments after the collision. We again introduce a division

of the whole space into two, the projectile region, V f
P , which includes the PLF, and the target region,

V f
T , which includes the TLF.

We define the number operator of each spatial region as

N̂τ =

∫
τ
dr

N∑
i=1

δ(r − ri) =
N∑
i=1

Θτ (ri), (3.1.2)

where τ specifies the spatial region either V
i(f)
P or V

i(f)
T . We introduce the space division function,

Θτ (r), defined as

Θτ (r) =

{
1 for r ∈ τ,
0 for r /∈ τ.

(3.1.3)

The sum of the two operators, N̂
V

i(f)
P

and N̂
V

i(f)
T

, is the number operator of the whole space, N̂ =

N̂V i
P
+ N̂V i

T
= N̂

V f
P
+ N̂

V f
T
. In ordinary TDHF calculations, an initial wave function is the direct

product of the ground state wave functions of two nuclei boosted with the relative velocity. The

single-particle orbitals, ϕi(x, t), are localized in one of the spatial regions, V i
P or V i

T, at the initial

stage of the calculation. Therefore, the initial wave function is the eigenstate of both operators, N̂V i
P

and N̂V i
T
, with eigenvalues, NP and NT, respectively. At the final stage of the calculation after the

collision, each single-particle orbital extends spatially to both spatial regions of V f
P and V f

T . Because

of this fact, the Slater determinant at the final stage is not an eigenstate of the number operators,

N̂
V f
P
and N̂

V f
T
, but a superposition of states with different particle-number distributions.

The probability that n nucleons are in the spatial region V f
P and N −n nucleons are in the spatial

region V f
T is defined as follows. We start with the normalization relation of the final wave function

after the collision, ∫
dx1 · · ·

∫
dxN |Ψ(x1, · · · , xN )|2 = 1, (3.1.4)

where
∫
dx ≡

∑
σ

∫
dr. Here and hereafter, we denote the many-body wave function at the final stage

of the calculation as Ψ(x1, · · · , xN ) = det{ψi(xj)}/
√
N !, and omit the time index. We also omit the
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suffix f from V f
P and V f

T . The normalization relation, Eq. (3.1.4), includes an N -fold integral over

the whole spatial region. We divide each spatial integral into two integrals over the subspaces, VP and

VT. We then classify the 2N terms, generated by the divisions of the spatial regions, according to the

number of VP and the number of VT included in the integral:

1 =

∫
VP+VT

dx1 · · ·
∫
VP+VT

dxN |Ψ(x1, · · · , xN )|2

=

N∑
n=0

∑
s({τi}:V n

P V N−n
T )

∫
τ1

dx1· · ·
∫
τN

dxN |Ψ(x1, · · · , xN )|2, (3.1.5)

where each subscript τi (i = 1, · · · , N) represents either VP or VT. The notation s({τi} : V n
P V

N−n
T )

means that the sum should be taken for all possible combinations of τi on condition that, in the

sequence of τ1, · · · , τN , VP appears n times and VT appears N − n times. The number of the combi-

nations equals to NCn. From this expression, we find the probability that n nucleons are in the VP
and N − n nucleons are in the VT is given by

Pn =
∑

s({τi}:V n
P V N−n

T )

∫
τ1

dx1 · · ·
∫
τN

dxN |Ψ(x1, · · · , xN )|2 . (3.1.6)

Equation (3.1.5) ensures the relation,
∑N

n=0 Pn = 1. From the probability Pn, we may obtain nucleon

transfer probabilities. For example, the probability of n-particle transfer from the projectile to the

target is given by PNP−n.

3.1.2 Particle-number projection operator

Above expression of the probability Pn can be represented as an expectation value of the PNP operator

P̂n, i.e. Pn =
⟨
Ψ
∣∣P̂n

∣∣Ψ⟩. This operator extracts a component of the wave function with particle number

n in the VP and N − n in the VT from the final wave function Ψ(x1, · · · , xN ). From Eq. (3.1.6), we

obtain the following expression for the PNP operator,

P̂n =
∑

s({τi}:V n
P V N−n

T )

Θτ1(r1) · · ·ΘτN (rN ). (3.1.7)

The projected wave function, P̂nΨ, is the eigenstate of the number operators, N̂VP
and N̂VT

, with

eigenvalues, n and N − n, respectively. From Eq. (3.1.5), there follows

N∑
n=0

P̂n =

N∏
i=1

(
ΘVP

(ri) + ΘVT
(ri)

)
= 1. (3.1.8)

Recently, Simenel has provided an alternative expression for the PNP operator [115] which is given

by

P̂n =
1

2π

∫ 2π

0
dθ ei(n−N̂VP

)θ. (3.1.9)
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We can easily show that this expression, Eq. (3.1.9), is equivalent to Eq. (3.1.7) as follows:

P̂n =
1

2π

∫ 2π

0
dθ ei(n−N̂VP

)θ

=
1

2π

∫ 2π

0
dθ einθ

N∏
i=1

(
ΘVT

(ri) + e−iθΘVP
(ri)

)
=

N∑
n′=0

1

2π

∫ 2π

0
ei(n−n′)θdθ

∑
s({τi}:V n′

P V N−n′
T )

Θτ1(r1) · · ·ΘτN (rN )

=
∑

s({τi}:V n
P V N−n

T )

Θτ1(r1) · · ·ΘτN (rN ).

3.1.3 Computation of transfer probabilities

Two expressions for the PNP operator P̂n, Eq. (3.1.7) and Eq. (3.1.9), have been utilized to calculate

transfer probabilities in the TDHF theory. When we use Eq. (3.1.7), the probability Pn is expressed

in terms of the single-particle orbitals as

Pn =

∫
dx1 · · ·

∫
dxN ψ∗

1(x1) · · ·ψ∗
N (xN )P̂n det

{
ψi(xj)

}
=

∑
s({τi}:V n

P V N−n
T )

∑
ξ

sgn(ξ)
⟨
ψ1

∣∣ψξ1

⟩
τ1
· · ·
⟨
ψN

∣∣ψξN

⟩
τN

=
∑

s({τi}:V n
P V N−n

T )

det
{⟨
ψi

∣∣ψj

⟩
τi

}
, (3.1.10)

where the summation over ξ is taken for all possible permutations of the index ξi (i = 1, · · · , N), and

sgn(ξ) is a sign depending on the number of permutations.
⟨
ψi

∣∣ψj

⟩
τ
≡
∫
τ dxψ

∗
i (x)ψj(x) denotes an

overlap integral in the spatial region τ .

When we use Eq. (3.1.9), we obtain

Pn =
1

2π

∫ 2π

0
dθ einθ

⟨
Ψ
∣∣ N∏
i=1

e−iΘVP
(ri)θ

∣∣Ψ⟩
=

1

2π

∫ 2π

0
dθ einθ det

{⟨
ψi

∣∣ψj

⟩
VT

+ e−iθ
⟨
ψi

∣∣ψj

⟩
VP

}
. (3.1.11)

Two expressions, Eq. (3.1.10) and Eq. (3.1.11), should give equivalent results. We indeed confirmed

that both expressions give the same results for light systems. However, the computational cost is rather

different between two methods. Let us first consider the computational cost of Eq. (3.1.10),

Pn =
∑

s({τi}:V n
P V N−n

T )

det
{⟨
ψi

∣∣ψj

⟩
τi

}
.

In this expression, it is necessary to calculate the determinants of dimension N many times. For

example, to calculate the probabilities of all possible processes, P0 to PN , we need to calculate deter-

minants of dimension N for 2N times. Even for the calculation of the probability without any particle

transfer, we need to calculate the determinants as many as NCNP
. The calculation in this way soon

becomes impossible as N increases and is useful only for light systems. This method has been used in

the 40Ca+40Ca reaction in Ref. [88]. It has also been used in the electron transfer processes in atomic

collisions [177, 178].
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When we use the expression of Eq. (3.1.11),

Pn =
1

2π

∫ 2π

0
dθ einθ det

{⟨
ψi

∣∣ψj

⟩
VT

+ e−iθ
⟨
ψi

∣∣ψj

⟩
VP

}
,

the computational cost can be significantly small. In this expression, we achieve integral over θ

employing the trapezoidal rule discretizing the interval [0, 2π] into M equal grids. To calculate all

the probabilities, P0 to PN , we need to calculate the determinants of dimension N for M times. We

find M = 200 is sufficient for systems presented in this Chapter. In our calculations shown below, we

employ Eq. (3.1.11).

3.1.4 Transfer cross sections

We next derive the formula for cross sections of transfer reactions. We assume that both projectile

and target nuclei are spherical, so that the reaction is specified by the incident energy E and the

impact parameter b.

Up to this point, we derived expressions of transfer probabilities for a system composed of identical

fermions. Since the TDHF wave function is a direct product of Slater determinants for neutrons and

protons, the reaction probability is also given by the product of the probabilities for neutrons and

protons. Let us denote the probability that N neutrons are included in the VP as P
(n)
N (b) and Z

protons are included in the VP as P
(p)
Z (b). Then, the probability that N neutrons and Z protons are

included in the VP is given by

PN,Z(b) = P
(n)
N (b)P

(p)
Z (b). (3.1.12)

We calculate the transfer cross section for the channel where the PLF is composed of N,Z nucleons

by integrating the probability PN,Z(b) over the impact parameter,

σtr(N,Z) = 2π

∫ ∞

bmin

b PN,Z(b) db. (3.1.13)

The minimum of the integration over the impact parameter is the border dividing fusion and binary

reactions. In practice, we first examine the maximum impact parameter in which fusion reactions take

place for a given incident energy. We will call it the fusion critical impact parameter and denote it

as bf . We then repeat reaction calculations at various impact parameters for the region, b > bf , and

calculate the cross section by numerical quadrature according to Eq. (3.1.13).

3.1.5 Computational details

We have developed our own computational code of the TDHF theory for heavy ion reactions extending

the code developed for the real-time linear response calculations [99]. As described in Chapter 2, we

employ a uniform spatial grid in the three-dimensional Cartesian coordinate to represent single-particle

orbitals without any symmetry restrictions. The grid spacing is taken to be 0.8 fm. We take a box size

of 60×60×26 grid points (48 fm × 48 fm × 20.8 fm) for reaction calculations, where the reaction plane

is taken to be the xy-plane. The initial wave functions of projectile and target nuclei are prepared in

a box with 26× 26× 26 grid points.

We have tested the accuracy of the code by comparing our results with those by other codes. We

have confirmed that the fusion critical impact parameters of the reactions of 16O+16O and 16O+28O

reported in Ref. [102] are reproduced within 0.1 fm accuracy by our code. We have also calculated

the fluctuation of exchanged nucleons for 40Ca+40Ca head-on collisions and confirmed that results

reported in Ref. [179] are reproduced accurately.
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3.2 Results

In this Section, we show calculated results for the reactions of 40Ca+124Sn at the incident energy of

170 MeV, 48Ca+124Sn at 174 MeV, 40Ca+208Pb at 235, 249 MeV, and 58Ni+208Pb at 328.4 MeV.

As for the energy density functional and potential, we use the Skyrme functional including all

time-odd terms [154] except for the second derivative of the spin densities, △s(n, p). We encounter

numerical instability in the time evolution calculation if we include the term in the potential. All

the results reported in this Chapter are calculated using the Skyrme SLy5 parameter set [141]. This

interaction has been utilized in the fully three-dimensional TDHF calculations for heavy ion reactions

[102, 109, 118].

In the ground state calculations, we find the ground states of 40Ca, 48Ca and 208Pb are spherical.

The ground state of 124Sn is oblately deformed with β ∼ 0.11. The ground state of 58Ni is prolately

deformed with β ∼ 0.11.

We take the incident direction parallel to the x-axis and the impact parameter vector parallel to

the y-axis. The reaction is specified by the incident energy and the impact parameter. As an initial

condition, the two colliding nuclei are placed with the distance 16-18 fm in the x-direction. Before

starting the TDHF calculation, we assume the centers of the two colliding nuclei follow the Rutherford

trajectory. For the deformed nuclei, we placed the nucleus with the symmetry axis being set parallel

to the z-axis.

We stop time evolution calculations when two nuclei are separated by 20-26 fm, if binary fragments

are produced. If the colliding nuclei fuse and do not separate, we continue time evolution calculations

more than 3000 fm/c after two nuclei touch. We have not found any reactions in which more than

two fragments are produced after collision.

For each collision system, we first find the fusion critical impact parameter bf . We find them by

repeating calculations changing the impact parameter by 0.01 fm step. We then calculate reactions

for various impact parameters outside the critical value. At an impact parameter region smaller than

7 fm, we calculate reactions of impact parameters with 0.25 fm step. At an impact parameter region

larger than 7 fm, we calculate reactions of b = 7.5, 8, 9, and 10 fm. Close to the fusion critical

impact parameter, we calculate reactions in 0.05 fm and 0.01 fm impact parameter steps. All these

calculations are used to evaluate the transfer cross sections. In calculating transfer cross sections

according to Eq. (3.1.13), the upper limit of the integral over b is set to 10 fm.

3.2.1 40, 48Ca+124Sn reactions

In this Subsection, we present results for the reactions of 40Ca+124Sn at Elab = 170 MeV (Ec.m. ≃
128.5 MeV) and 48Ca+124Sn at Elab = 174 MeV (Ec.m. ≃ 125.4 MeV), for which MNT cross sections

have been measured experimentally [40, 43]. The neutron-to-proton ratio, N/Z, is different between

the projectile and the target for 40Ca+124Sn, while it is almost the same for 48Ca+124Sn. Therefore,

we expect different features in the transfer process. As we mentioned in the introduction, the product

of charge numbers of the projectile and the target is important for the fusion dynamics. The present

systems have ZPZT = 1000 < 1600, so that no fusion-hindrance is expected to occur.

To estimate the Coulomb barrier height, we calculate the nucleus-nucleus potential using the

frozen-density approximation neglecting the Pauli blocking effect [110, 180, 181]. The potential is

given by V (R) = E[ρP + ρT ](R) − Eg.s.[ρP ] − Eg.s.[ρT ], where R is the distance between the centers-

of-masses of the two nuclei, ρP (ρT) denotes nuclear density of the projectile (target) in their ground

state. E[ρP+ρT ](R) denotes the total energy when two nuclei are separated by the relative distance R.

Eg.s.[ρP ] and Eg.s.[ρT ] denote the ground state energy of each nucleus. In the calculation, the Coulomb

barrier height is estimated as VB ≈ 116.3 MeV for 40Ca+124Sn and VB ≈ 115.1 MeV for 48Ca+124Sn,

44



Section 3.2 Results

 30

 40

 50

 60

 70

 80

 90

 100

 110

Θ
(b

) 
(d

eg
)

(a)

Coulomb {

40
Ca+

124
Sn

48
Ca+

124
Sn

 0

 5

 10

 15

 20

 25

 3  4  5  6  7  8  9  10

T
K

E
L

 (
M

eV
)

b (fm)

(b)
40

Ca+
124

Sn
48

Ca+
124

Sn

Figure 3.1: Deflection function (a) and total kinetic energy loss (b) as functions of impact parameter

b for the reactions of 40Ca+124Sn at Elab = 170 MeV and 48Ca+124Sn at Elab = 174 MeV. Results

for the 40Ca+124Sn reactions are denoted by red filled triangles connected with solid lines, while

results for the 48Ca+124Sn reactions are denoted by green open circles connected with dashed lines.

In (a), we also show deflection functions for the pure Coulomb trajectories by a red dotted line for

the 40Ca+124Sn reactions and by a green two-dot chain line for the 48Ca+124Sn reactions. The figure

was taken from Ref. [173].

respectively. Since the initial relative energies are higher than the Coulomb barrier heights, we find

the fusion critical impact parameter, bf = 3.95 fm for 40Ca+124Sn and bf = 3.93 fm for 48Ca+124Sn,

respectively.

(a) Overview of the reactions

Before showing detailed analyses of transfer reactions, we first present an overview of the reaction

dynamics. In Fig. 3.1, we show the deflection function, Θ(b), in (a) and the total kinetic energy loss

(TKEL) in (b), as functions of impact parameter b. Results for the 40Ca+124Sn reactions are denoted

by red filled triangles connected with solid lines, while results for the 48Ca+124Sn reactions are denoted

by green open circles connected with dotted lines. In Fig. 3.1 (a), we also show deflection functions

of the pure Coulomb trajectories by a red dotted line for 40Ca+124Sn and by a green two-dot chain

line for 48Ca+124Sn.

In practice, the deflection function and the TKEL are calculated in the following way. We denote

the center-of-mass coordinate of the PLF (TLF) and the relative coordinate as RPLF (TLF)(t) and

R(t) = RPLF(t) −RTLF(t), respectively. We also denote the mass, charge number, and the reduced

mass at the final stage of the calculation as MPLF (TLF), ZPLF (TLF), and µf = MPLFMTLF/(MPLF +

MTLF). The relative velocity at the final stage of the calculation, t = tf , is calculated by Ṙ(tf ) =

(R(tf+∆t)−R(tf−∆t))/2∆t. We evaluate the TKEL by TKEL = Ec.m.− 1
2µfṘ(tf )

2−ZPLFZTLF e
2/

|R(tf )|, where Ec.m. is the initial incident energy in the center-of-mass frame. The angle between
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Figure 3.2: Differential cross sections of representative transfer channels as functions of scattering

angle in the laboratory frame for the 40Ca+124Sn reaction at Elab = 170 MeV. The Coulomb rainbow

angle obtained from the TDHF trajectories is denoted by blue solid vertical lines, and is compared

with measured differential cross sections, red filled circles, which have been reported in Ref. [40]. The

figure was taken from Ref. [173].

the vector R(tf ) and the x-axis, or the angle between the vector Ṙ(tf ) and the x-axis, provides

approximate value of the deflection angle. We estimate the correction for it assuming that both the

PLF and the TLF follow the Rutherford trajectory specified by the coordinates and the velocities at

the final time, tf .

The TKEL increases rapidly as the impact parameter decreases in the region b < 4.5 fm, where the

deflection function, Θ(b), decreases appreciably by the nuclear attractive interaction. The deflection

function shows a maximum at b ∼ 4.25 fm and decreases inside this impact parameter. The maximum

deflection angle corresponds to the Coulomb rainbow angle, θr. It is given by 99◦ for 40Ca+124Sn and

100◦ for 48Ca+124Sn. In Fig. 3.2, we compare the Coulomb rainbow angle for the 40Ca+124Sn reaction

with measured differential cross sections reported in Ref. [40]. Red filled circles denote measured

cross sections and blue solid vertical lines denote the Coulomb rainbow angle in the laboratory frame.

As seen from the figure, the peak positions of the measured cross sections roughly coincide with the

Coulomb rainbow angle by the TDHF calculation.

Figure 3.3: Snapshots of density distribution of the 40Ca+124Sn reaction at Elab = 170 MeV and b =

3.96 fm, just outside the fusion critical impact parameter. The figure was taken from Ref. [173].
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In Fig. 3.3, we show snapshots of density distribution for the 40Ca+124Sn reaction at b = 3.96 fm,

just outside the fusion critical impact parameter, bf . We find a formation of a neck between the

projectile and the target during the collision. As will be shown later, several nucleons are exchanged

between the projectile and the target at this impact parameter. We find the formation of a neck for

the impact parameter region smaller than b ∼ 4.25 fm where the TKEL becomes appreciable.

We next consider the average number of transferred nucleons and its fluctuation. We denote the

average number of nucleons in the PLF as N
(q)
PLF (q = n for neutrons, p for protons), which is calculated

from the density distribution at the final stage of the calculation,

N
(q)
PLF =

∫
aroundPLF
dr ρ(q)(r), (3.2.1)

where ρ(q)(r) is the density distribution of neutrons (q = n) or protons (q = p). The spatial integration

is achieved over a sphere whose center coincides with the center-of-mass of the PLF. The radius of the

sphere is taken to be 10 fm. We calculate the average number of nucleons in the TLF in the same way

taking the radius of 14 fm for the TLF. We summarize various expressions for the average number

and the fluctuation of transferred nucleons in Appendix A.

We denote the neutron (proton) number of the projectile and the target as N
(q)
P and N

(q)
T , respec-

tively. In general, there holds N
(q)
PLF + N

(q)
TLF < N

(q)
P + N

(q)
T , since some nucleons are emitted to the

continuum by the breakup process. As will be shown later, however, the number of nucleons emitted

to the continuum is very small in the present calculations. The average number of transferred nucleons

from the target to the projectile, N
P(q)
tr , is given by

N
P(q)
tr = N

(q)
PLF −N

(q)
P . (3.2.2)

Figure 3.4 shows the average number of transferred nucleons, N
P(q)
tr , in (a) and (e), the neutron-

to-proton ratios, N/Z, of the PLF and the TLF after collision in (b) and (f), the average number

of nucleons emitted to the continuum in (c) and (g), and the fluctuation of the transferred nucleon

number in (d) and (h), as functions of impact parameter b for 40, 48Ca+124Sn reactions.

In Fig. 3.4 (a) and (e), the average number of transferred neutrons is shown by filled symbols

connected with solid lines, while the average number of transferred protons is shown by open symbols

connected with dotted lines. Positive values indicate the increase of the projectile nucleons (transfer

from 124Sn to 40, 48Ca) and negative values indicate the decrease (transfer from 40, 48Ca to 124Sn). As

seen from Fig. 3.4 (a) and (e), a large value of average number of transferred nucleons is seen for
40Ca+124Sn at the impact parameter region close to the fusion critical impact parameter, while the

average number of transferred nucleons is small for 48Ca+124Sn.

We show in Fig. 3.4 (b) and (f) the neutron-to-proton ratios, N/Z, of the PLF and the TLF.

For the PLF, it is given by N
(n)
PLF/N

(p)
PLF, and for the TLF by N

(n)
TLF/N

(p)
TLF. Before the collision, the

N/Z ratio is given by 1.00 for 40Ca, 1.40 for 48Ca, and 1.48 for 124Sn. The N/Z ratio of the PLF

(TLF) is denoted by filled (open) symbols connected with solid (dotted) lines. We also denote the

N/Z ratio of the total system by a horizontal dashed line in the figure, 1.34 for 40Ca+124Sn and 1.46

for 48Ca+124Sn. We find the nucleons are transferred toward the direction of the charge equilibrium.

Namely, protons are transferred from 40Ca to 124Sn, while neutrons are transferred from 124Sn to 40Ca

in the 40Ca+124Sn reaction. The N/Z ratios of the projectile and the target do not differ much for
48Ca+124Sn, and we find a small number of transferred nucleons on average for this reaction. The

average number of transferred nucleons decreases rapidly as the impact parameter increases. For the

impact parameter region larger than b ∼ 6 fm, the average number of transferred nucleons almost

vanishes.

In Fig. 3.4 (c) and (g), we show the average number of nucleons emitted to the continuum,

N
(q)
break-up ≡ (N

(q)
P + N

(q)
T ) − (N

(q)
PLF + N

(q)
TLF), during the time evolution. The average number of
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Figure 3.4: Left panels for 40Ca+124Sn at Elab = 170 MeV and right panels for 48Ca+124Sn at Elab =

174 MeV. (a) and (e): Average number of transferred nucleons from the target to the projectile. (b)

and (f): Neutron-to-proton ratios, N/Z, of the PLF and the TLF after collision. (c) and (g): Average

number of nucleons emitted to the continuum. (d) and (h): Fluctuation of transferred nucleon number.

The horizontal axis is the impact parameter b. In (b) and (f), the equilibrium N/Z value of the total

system is indicated by a horizontal dashed line. The figure was taken from Ref. [173].
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Figure 3.5: Comparison of calculated results for different initial orientations of 124Sn in the
40Ca+124Sn reaction at Elab = 170 MeV. (a): Average number of transferred nucleons from the

target to the projectile. (b): Neutron-to-proton ratios, N/Z, of the PLF and the TLF after colli-

sion. The horizontal axis is the impact parameter b. The initial orientations of 124Sn are indicated in

legends. The figure was taken from Ref. [173].

neutrons (protons) emitted to the continuum is denoted by filled (open) symbols connected with solid

(dotted) lines. As seen in the figure, the number of emitted nucleons is very small. The maximum

value, about 0.02, is seen at the impact parameter close to the fusion critical impact parameter.

In Fig. 3.4 (d) and (h), we show the fluctuation of the transferred nucleon number. The expression

for the fluctuation is given by Eq. (A.5.9). The fluctuation of the transferred neutron (proton) number

is denoted by filled (open) symbols connected with solid (dotted) lines. We find the fluctuation

decreases as the impact parameter increases. The fluctuation decreases more slowly than the average

number of transferred nucleons as a function of impact parameter. We also find the fluctuation of
48Ca+124Sn is somewhat smaller than but comparable in magnitude to that of 40Ca+124Sn, although

the average number is vanishingly small for 48Ca+124Sn.

As mentioned in the beginning of this Section, we placed the 124Sn nucleus which is oblately

deformed with β ∼ 0.11 so that the symmetry axis is perpendicular to the reaction plane in the

initial configuration. Namely, the symmetry axis of 124Sn is set parallel to the z-axis. To take fully

account of the deformation effect, we should achieve an average over initial orientations of the 124Sn.

However, since calculations of a number of initial orientations require huge computational costs, we

do not achieve the orientation average but show results of a specific initial orientation. We here briefly

discuss the difference of the reaction dynamics depending on the initial orientations.

In Fig. 3.5, we show the average number of transferred nucleons in (a) and the neutron-to-proton

ratios, N/Z, of the PLF and the TLF after collision in (b), for three cases of different initial orientations

of 124Sn in the 40Ca+124Sn reaction. Red triangles are the same results as those shown in Fig. 3.4 (a)
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Figure 3.6: Neutron (left panels) and proton (right panels) transfer probabilities as functions of

impact parameter b. (a) and (b): Results for the reactions of 40Ca+124Sn at Elab = 170 MeV. (c) and

(d): Results for the reactions of 48Ca+124Sn at Elab = 174 MeV. The positive (negative) number of

transferred nucleons represents the number of nucleons added to (removed from) the projectile. Shaded

regions at small impact parameter (b ≤ 3.95 fm for 40Ca+124Sn and b ≤ 3.93 fm for 48Ca+124Sn)

correspond to the fusion reactions. The figure was taken from Ref. [173].

and (b) where the symmetry axis of 124Sn is chosen parallel to the z-axis. Green circles correspond to

the cases of the symmetry axis set parallel to the y-axis (the direction of impact parameter vector).

Blue diamonds correspond to the cases of the symmetry axis set parallel to the x-axis (the incident

direction).

From the figure, we find a rather small difference among three cases of different initial orientations

of 124Sn. The prominent difference appears only at small impact parameter region. It comes from

the difference of the fusion critical impact parameters. Since 124Sn is oblately deformed, the Coulomb

barrier height is the largest when the symmetry axis of the 124Sn is parallel to the x-axis (the incident

direction).

(b) Transfer probabilities

We next show transfer probabilities as functions of impact parameter which are obtained from the final

wave functions using the PNP technique of Eq. (3.1.11). The nucleon transfer probabilities, P
(q)
n (b),

are shown in Fig. 3.6 (linear scale) and in Fig. 3.7 (logarithmic scale). Top panels of Fig. 3.6 ((a) and

(b)) and top panels of Fig. 3.7 ((a), (b), (c), and (d)) show results of the 40Ca+124Sn reaction, while

lower panels of Fig. 3.6 ((c) and (d)) and lower panels of Fig. 3.7 ((e), (f), (g), and (h)) show results

of the 48Ca+124Sn reaction. In these figures, shaded regions at small impact parameter (b ≤ 3.95 fm

for 40Ca+124Sn and b ≤ 3.93 fm for 48Ca+124Sn) correspond to the fusion reactions. The positive

(negative) number of transferred nucleons represents the number of nucleons added to (removed from)

the projectile.
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Figure 3.7: Transfer probabilities in Fig. 3.6 are shown in logarithmic scale. Nucleon transfer

probabilities opposite to the direction of the charge equilibrium, which are not included in Fig. 3.6,

are shown as well. The figure was taken from Ref. [173].
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Figure 3.8: Cross sections for transfer channels classified according to the change of the proton number

of the PLF from 40Ca, as functions of neutron number of the PLF for the 40Ca+124Sn reaction at

Elab = 170 MeV. Red filled circles denote measured cross sections and red solid lines denote results of

the TDHF calculations. The number of transferred protons is indicated as (xp) (−6 ≤ x ≤ +1). The

measured cross sections have been reported in Ref. [40]. The figure was taken from Ref. [173].

From the figure, we find that probabilities of single-nucleon transfer (green dashed lines) extend

to a large impact parameter region. As the number of transferred nucleons increases, the reaction

probability is sizable only at a small impact parameter region, close to the fusion critical impact

parameter.

The directions of the transfer processes are the same as those we observed in the average number

of transferred nucleons in Fig. 3.4 (a) and (e). Namely, in the case of 40Ca+124Sn (Fig. 3.6 (a) and

(b)), protons are transferred from 40Ca to 124Sn and neutrons are transferred from 124Sn to 40Ca, the

directions toward the charge equilibrium. We note that the transfer probabilities toward the opposite

directions, proton transfer from 124Sn to 40Ca and neutron transfer from 40Ca to 124Sn, are very

small and are hardly seen in the linear scale figure (Fig. 3.6 (a) and (b)). In the logarithmic scale

(Fig. 3.7 (a), (b), (c), and (d)), we find the transfer probabilities toward the opposite direction to

the charge equilibrium are smaller than those toward the charge equilibrium by at least an order of

magnitude. In the case of 48Ca+124Sn reaction (Fig. 3.6 (c) and (d), Fig. 3.7 (e), (f), (g), and (h)),

the transfer probabilities toward both directions are the same order of magnitude. This is consistent

with the fact that the average number of transferred nucleons is very small as shown in Fig. 3.4 (e).

(c) Transfer cross sections

Integrating the transfer probabilities over impact parameter, we obtain transfer cross sections. The

results are shown in Fig. 3.8 for 40Ca+124Sn and in Fig. 3.9 for 48Ca+124Sn.

We first examine the 40Ca+124Sn reaction. Figure 3.8 shows the transfer cross sections classified

according to the change of the proton number of the PLF from 40Ca, as functions of neutron number

of the PLF. Red filled circles denote measured cross sections and red solid lines denote results of the

TDHF calculations. We show transfer cross sections of one proton added to (+1p) through six proton
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of the PLF from 48Ca, as functions of neutron number of the PLF for the 48Ca+124Sn reaction at

Elab = 174 MeV. Red filled circles denote measured cross sections and red solid lines denote results of

the TDHF calculations. The number of transferred protons is indicated as (xp) (−2 ≤ x ≤ +2). The

measured cross sections have been reported in Ref. [43]. The figure was taken from Ref. [173].

removed from (−6p) 40Ca.

We find the experimental data are reasonably reproduced by the TDHF calculations for cross

sections without proton transfer shown in (0p) panel, although the cross sections are somewhat un-

derestimated as the number of transferred neutrons increases. Zero- to four-neutron pick-up channels

shown in (−1p), (−2p), and (−3p) panels are also reproduced reasonably. The calculated cross sec-

tions toward the direction opposite to the charge equilibrium are small, consistent with the observation

in transfer probabilities shown in Fig. 3.7 (a) and (d).

As the number of transferred protons increases, there appear some discrepancies between the

TDHF calculations and the measurements. When more than one protons are transferred, the TDHF

calculation underestimates measured cross sections of neutron removal channels (N < 20). For five-

and six-proton removal channels, (−5p) and (−6p), the TDHF cross sections become too small com-

pared with the measurements. We also find a shift of the peak position toward the larger neutron

number.

In Ref. [40], cross sections calculated by the GRAZING code [67] were compared with the mea-

surements. In the GRAZING calculation, a similar discrepancy was observed. As the origin of the

discrepancy, the significance of the evaporation effects has been mentioned [40]. We will compare our

results with those of the GRAZING calculations in Sec. 3.3.

We note that particle evaporation processes are not taken into account sufficiently in the present

calculation. In Fig. 3.1 (b), we find the TKEL of as large as 25 MeV at a small impact parameter

region where appreciable MNT probabilities are found. The amount of the TKEL is sufficiently large

to emit some nucleons to the continuum. However, as we saw in Fig. 3.4 (c), the average number

of nucleons emitted to the continuum is very small, the maximum value is only 0.02. Although we

have not yet estimated the number of evaporated nucleons, the inclusion of the evaporation processes

is expected to reduce the discrepancy as follows. Neutron evaporation processes will shift the peak

position of the transfer cross sections toward the smaller neutron number (left direction in Fig. 3.8).

We may also expect that proton evaporation processes will shift cross section of n-proton removal

channels to (n+ 1)-proton removal channels.

Figure 3.9 shows transfer cross sections of 48Ca+124Sn reaction. The cross sections obtained from

the TDHF calculations are in good agreement with the experimental data for zero- and one-proton

transfer channels, (0p) and (±1p). For two-proton transfer channels (±2p), however, our TDHF
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Figure 3.10: Deflection function (a) and total kinetic energy loss (b) as functions of impact parameter

b for the reactions of 40Ca+208Pb at Elab = 235 and 249 MeV. Results for the reactions at Elab =

235 MeV are denoted by red filled triangles connected with solid lines, while results for the reactions

at Elab = 249 MeV are denoted by green open circles connected with dashed lines. In (a), we also

show deflection functions for the pure Coulomb trajectories at Elab = 235 MeV by a red dotted line

and at Elab = 249 MeV by a green two-dot chain line. The figure was taken from Ref. [173].

calculations underestimate the cross sections. In the case of two-proton removal channels (−2p), the
peak position shifts toward larger neutron number, while in the case of two-proton pickup channels

(+2p), the peak position shifts toward smaller neutron number. The underestimation in the (−2p)
channels may be remedied by taking into account the neutron evaporation processes as in the case

of 40Ca+124Sn reaction. However, the underestimation in the (+2p) channels may not. A similar

discrepancy was reported in the GRAZING calculation [43]. In Ref. [43], more complex mechanisms

such as neutron-proton pair transfer and/or α-cluster transfer have been advocated for the origin of

the discrepancy.

3.2.2 40Ca+208Pb reaction

In this Subsection, we present results for the reactions of 40Ca+208Pb at Elab = 235 and 249 MeV

(Ec.m. ≃ 197.1 and 208.8 MeV), for which measurements have been reported in Ref. [50]. This

system has ZPZT = 1640, close to 1600. Therefore, we expect an appearance of the indication of

the fusion-hindrance. We estimate the Coulomb barrier height of this system using the frozen-density

approximation, giving VB ≈ 178.4 MeV. Since the collision energies are higher than the barrier height,

we find finite values of the fusion critical impact parameter bf , as in the 40, 48Ca+124Sn reactions. They

are given by bf = 3.81 and 4.55 fm at Elab = 235 and 249 MeV, respectively.
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Figure 3.11: Snapshots of density distribution of the 40Ca+208Pb reaction at Elab = 249 MeV and

b = 4.56 fm, just outside the fusion critical impact parameter. The figure was taken from Ref. [173].

(a) Overview of the reactions

We first present an overview of the reaction dynamics. In Fig. 3.10, we show the deflection function in

(a) and the TKEL in (b), as functions of impact parameter. Results for the reaction at Elab = 235 MeV

are denoted by red filled triangles connected with solid lines, while results for the reaction at Elab =

249 MeV are denoted by green open circles connected with dotted lines. In Fig. 3.10 (a), we also show

deflection functions for the pure Coulomb trajectories at Elab = 235 MeV by a red dotted line and at

Elab = 249 MeV by a green two-dot chain line. In this system, we find an increase of the TKEL up

to around 50 MeV and 60 MeV for the incident energies of 235 MeV and 249 MeV, respectively. This

maximum value of TKEL is about a factor of two larger than the case of 40, 48Ca+124Sn reactions. We

find the difference of the TKEL between these systems, 40Ca+208Pb and 40, 48Ca+124Sn, comes from

properties of the neck whose formation is observed when the TKEL becomes substantial.

In Fig. 3.11, we show snapshots of density distribution for the 40Ca+208Pb reaction at Elab =

249 MeV and b = 4.56 fm, just outside the fusion critical impact parameter. The neck is seen to be

formed solidly for a long period from t = 200 fm/c to 3000 fm/c. This process may be regarded as a

QF. As will be shown below, a number of nucleons are transferred from 208Pb to 40Ca at this impact

parameter.

The period of the neck formation is longer in the present 40Ca+208Pb case than that in the
40, 48Ca+124Sn cases. We find the neck formation for the periods of 1000-3000 fm/c and more for the

present system depending on the impact parameter, while it is at most 300 fm/c in the 40, 48Ca+124Sn

systems. We consider this difference is related to the different ZPZT values of these systems. Since

ZPZT ≳ 1600 in the present system, fusion reactions are hindered by the QF process. Namely, there

appears a certain impact parameter region in which binary final fragments are produced after a rather

solid neck formation during the collision.

The Coulomb rainbow angle is θr ≃ 99◦ for the reaction at Elab = 235 MeV and θr ≃ 86◦ for

the reaction at Elab = 249 MeV, respectively. The deflection function becomes negative at the small

impact parameter region, reaching −200◦ just outside bf . In Fig. 3.12, we compare the Coulomb

rainbow angles for the 40Ca+208Pb reactions at Elab = 235 and 249 MeV with measured differential

cross sections which have been reported in Ref. [50]. Red filled triangles denote measured cross sections

for Elab = 235 MeV, while green open circles denote those for Elab = 249 MeV. The Coulomb rainbow
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angle in the center-of-mass frame for the 40Ca+208Pb reactions at Elab = 235 and 249 MeV. The
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vertical lines for Elab = 235 (249) MeV. They are compared with measured differential cross sections,

red filled triangles (green open circles) for Elab = 235 (249) MeV, which have been reported in Ref. [50].

The figure was taken from Ref. [173].

angle obtained from the TDHF trajectories is denoted by red solid (green dotted) vertical lines for

Elab = 235 (249) MeV. We find the peak positions of measured angular distributions are reasonably

reproduced by the TDHF calculation.

Figure 3.13 shows the average number of transferred nucleons in (a), the N/Z ratios of the PLF and

the TLF in (b), the average number of nucleons emitted to the continuum in (c), and the fluctuation

of the transferred nucleon number in (d), as functions of impact parameter. In each panel, triangles

represent results for Elab = 235 MeV and circles represent results for Elab = 249 MeV.

In Fig. 3.13 (a), the average number of transferred neutrons is shown by filled symbols connected

with solid lines, while the average number of transferred protons is shown by open symbols connected

with dotted lines. Positive values indicate the increase of the projectile nucleons (transfer from 208Pb

to 40Ca) and negative values indicate the decrease (transfer from 40Ca to 208Pb). As seen from the

figure, the average number of transferred protons shows a minimum at a certain impact parameter

(b = 4.0 fm for Elab = 235 MeV and b = 5.0 fm for Elab = 249 MeV). Outside this impact parameter,

the nucleon transfer process proceeds toward the direction of the charge equilibrium of the projectile

and the target. Inside this impact parameter, neutrons are still transferred toward the same direction.

However, the number of transferred protons decreases and becomes positive, which corresponds to the

transfer from 208Pb to 40Ca.

At first sight, the direction of the proton transfer at small impact parameter region is opposite

to the direction of the charge equilibrium. However, it is not the case as can be understood from

Fig. 3.13 (b) which shows the neutron-to-proton ratios, N/Z, of the PLF (filled symbols connected

with solid lines) and the TLF (open symbols connected with dotted lines), which are obtained from

the average numbers of the nucleons shown in Fig. 3.13 (a). Before collision, the N/Z ratio is given

by 1.00 for 40Ca and 1.54 for 208Pb. In Fig. 3.13 (b), the N/Z ratio of the total system, 1.43, is shown

by a horizontal dashed line. As seen from the figure, the nucleon transfer processes proceed toward

the direction of the charge equilibrium for both the PLF and the TLF at all impact parameter region

outside the fusion critical impact parameter. Even though the average number of transferred protons

shows complex behavior at small impact parameter region, the N/Z ratios of the PLF and the TLF
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monotonically approach to the fully equilibrated value of 1.43 as the impact parameter decreases.
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Figure 3.13: The 40Ca+208Pb reactions at Elab = 235 and 249 MeV. (a): Average number of

transferred nucleons from the target to the projectile. (b): Neutron-to-proton ratios, N/Z, of the

PLF and the TLF after collision. (c): Average number of nucleons emitted to the continuum. (d):

Fluctuation of transferred nucleon number. The horizontal axis is the impact parameter b. Results

for the reactions at Elab = 235 MeV are denoted by triangles, while results for the reactions at Elab =

249 MeV are denoted by circles. In (b), the equilibrium N/Z value of the total system, 1.43, is

indicated by a horizontal dashed line. The figure was taken from Ref. [173].
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The change of sign of the average number of transferred protons at small impact parameter region

is found to be related to the formation of a rather solid neck. When the neck is broken, we find that

most part of the neck is absorbed by the lighter fragment (cf. Fig. 3.11). Since the neck is composed

of both neutrons and protons, the absorption of the nucleons in the neck region results in the increase

of average number of nucleons in the PLF for both neutrons and protons (see Fig. 3.13 (a)).

In Fig. 3.13 (c), we show the average number of nucleons emitted to the continuum during the

time evolution. The average number of neutrons (protons) emitted to the continuum is denoted by

filled (open) symbols connected with solid (dotted) lines. We count it by subtracting the number of

nucleons inside a sphere of 14 fm for the TLF and that inside a sphere of 10 fm for the PLF from the

total number of nucleons, 248. The average number of emitted nucleons is again very small, at most

0.1 around the fusion critical impact parameter.

In Fig. 3.13 (d), we show the fluctuation of the transferred nucleon number. The fluctuation of

transferred neutron (proton) number is denoted by filled (open) symbols connected with solid (dotted)

lines. The fluctuation increases monotonically as the impact parameter decreases, reaching the max-

imum value roughly 1.3 around the fusion critical impact parameter. Although the average number

of transferred protons is small at the small impact parameter region, the fluctuation of transferred

proton number has value as large as that of neutrons. This fact indicates that single-particle wave

functions of protons are exchanged actively between the projectile and the target, although the number

of transferred protons is small on average.

(b) Transfer probabilities

The nucleon transfer probabilities, P
(q)
n (b), are shown in Fig. 3.14. Top panels ((a), (b), (c), and (d))

show results at Elab = 235 MeV, while lower panels ((e), (f), (g), and (h)) show results at Elab = 249

MeV. In the figure, shaded regions at small impact parameter (b ≤ 3.81 fm for Elab = 235 MeV and

b ≤ 4.55 fm for Elab = 249 MeV) correspond to the fusion reactions. The positive (negative) number

of transferred nucleons represents the number of nucleons added to (removed from) the projectile. In

the left panels ((a), (c), (e), and (g)), we show transfer probabilities, (0n) to (+4n) for neutrons and

(0p) to (−4p) for protons. In the right panels ((b), (d), (f), and (h)), we show transfer probabilities,

(+1n) to (+9n) for neutrons and (−4p) to (+4p) for protons, at small impact parameter regions just

outside the fusion critical impact parameter. Probabilities of neutron transfer from 40Ca to 208Pb are

very small and are not shown.

As in the case of 40, 48Ca+124Sn reactions, we find that probabilities of single-nucleon transfer

(green dashed lines) extend to a large impact parameter region. Reaction probabilities for MNT

processes become appreciable at a small impact parameter region close to the fusion critical impact

parameter. The transfer probabilities toward the charge equilibrium are large in most cases. At a

small impact parameter region just outside the fusion critical impact parameter, however, we find

substantial probabilities for the proton transfer processes opposite to the charge equilibrium as seen

in the right panels of Fig. 3.14 ((b), (d), (f), and (h)). This is related to the increase of the average

number of transferred protons at small impact parameter region which was seen in Fig. 3.13 (a).
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Figure 3.14: Neutron and proton transfer probabilities as functions of impact parameter b for the
40Ca+208Pb reactions. (a), (b), (c), and (d): Results at Elab = 235 MeV. (e), (f), (g), and (h): Results

at Elab = 249 MeV. The positive (negative) number of transferred nucleons represents the number of

nucleons added to (removed from) the projectile. Note that horizontal scales are different between the

left and the right panels. Shaded regions at small impact parameter (b ≤ 3.81 fm for Elab = 235 MeV

and b ≤ 4.55 fm for Elab = 249 MeV) correspond to the fusion reactions. The figure was taken from

Ref. [173].
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Figure 3.15: Transfer cross sections for the 40Ca+208Pb reactions at Elab = 235 and 249 MeV. Red

filled triangles (green open circles) denote measured cross sections at Elab = 235 (249) MeV. Red

solid (green dotted) lines denote results of the TDHF calculations at Elab = 235 (249) MeV. The

number of transferred protons (positive number for the transfer from 208Pb to 40Ca) is indicated as

(xp) (−6 ≤ x ≤ +5). The measured cross sections have been reported in Ref. [50] The figure was

taken from Ref. [173]∗∗.

(c) Transfer cross sections

We show transfer cross sections in Figs. 3.15 and 3.16. Each panel of Fig. 3.15 shows cross sections

classified according to the change of the proton number of the PLF from 40Ca which is indicated by

(xp) (−6 ≤ x ≤ +5), as functions of neutron number of the PLF. Each panel of Fig. 3.16 shows

cross sections classified according to the change of the neutron number of the PLF from 40Ca which

is indicated by (xn) (−5 ≤ x ≤ +9), as functions of proton number of the PLF. Red filled triangles

denote measured cross sections for Elab = 235 MeV, while green open circles denote those for Elab =

249 MeV. Cross sections calculated by the TDHF are denoted by red solid (green dotted) lines for

Elab = 235 (249) MeV. As seen in the average number of transferred nucleons in Fig. 3.13 (a) and in

the transfer probabilities in Fig. 3.14, the transfer cross sections toward the direction of the charge

equilibrium dominate.

In (0p) and (−1p) panels of Fig. 3.15, the TDHF calculation is seen to reproduce the measured

∗∗A mistake was found in Fig. 15 of Ref. [173]: In panel (−6p) in Ref. [173], cross sections for (−7p) channel are shown.

Erratum will be published. Figure 3.15 shows correct cross sections.
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Figure 3.16: The same transfer cross sections for the 40Ca+208Pb reactions as those in Fig. 14.

The number of transferred neutrons is indicated as (xn) (−5 ≤ x ≤ +9). The figure was taken from

Ref. [173].

cross sections up to six-neutron transfer. As the number of transferred protons increases, (−2p) to

(−6p), the cross sections in the TDHF calculation show a maximum at a neutron number more than

that of 40Ca. Compared with measured cross sections, the TDHF results shift toward larger values of

neutron number. This behavior is similar to the case of 40Ca+124Sn reaction. Looking at the transfer

cross sections for a fixed number of transferred neutrons in Fig. 3.16, the TDHF calculations reproduce

(+1n) and (+2n) panels rather well.

As seen in Fig. 3.15, the TDHF calculations provide substantial cross sections for proton pickup

reactions, (+1p) to (+5p), which is the transfer toward the opposite direction of the charge equilibrium

expected from the initial N/Z ratios. The cross sections show a peak around the neutron number 28.

The TDHF calculations also provide substantial cross sections for many neutron pickup reactions (see

bottom row of Fig. 3.16). The cross sections show a peak around the proton number 20. These cross

sections come from an impact parameter region close to the fusion critical impact parameter. As seen

in Fig. 3.13 (a), a large average number of transferred neutrons up to 10 is seen while the average

number of transferred protons has small value. We note that the collision close to the fusion critical

impact parameter accompanies large TKEL, and should suffer substantial evaporation effects which

are not treated in the present analyses.

The TDHF calculation systematically underestimates the cross section of neutron transfer pro-

cesses from 40Ca to 208Pb, (−1n) to (−5n) (see top row of Fig. 3.16). Although these processes are

against the charge equilibrium, substantial cross sections are observed experimentally. In the TDHF

calculation, cross sections of neutron transfer channels opposite to the charge equilibrium are several
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Figure 3.17: Deflection function (a) and total kinetic energy loss (b) as functions of impact parameter

b for the reactions of 58Ni+208Pb at Elab = 328.4 MeV. In (a), we show a deflection function for the

pure Coulomb trajectory by a dotted line. The figure was taken from Ref. [173].

orders of magnitude smaller than the measurements. In Ref. [50], it has been argued that the neutron

evaporation after collision is responsible for these channels.

3.2.3 58Ni+208Pb reaction

As a final case, we present results for the 58Ni+208Pb reaction at Elab = 328.4 MeV (Ec.m. ≃
256.8 MeV), for which measurements are reported in Ref. [47]. Since this system has ZPZT = 2296

exceeding the critical value 1600, we may expect an appearance of the QF process at a small impact

parameter region. Using the frozen-density approximation, the Coulomb barrier height is estimated

to be VB ≈ 247.6 MeV, which is lower than the center-of-mass energy. We find the fusion critical

impact parameter bf given by 1.38 fm for this reaction. To decide whether the nucleus once gets fused

eventually decays into fragments or not, we continue to calculate the time evolution up to 4000 fm/c

after two nuclei touches. If the fused system keeps a compact form for this period, we regard the

process as fusion.

(a) Overview of the reaction

We first present an overview of the reaction dynamics. In Fig. 3.17, we show the deflection function

in (a) and the TKEL in (b), as functions of impact parameter. In (a), we also show a deflection

function for the pure Coulomb trajectory by a dotted line. The Coulomb rainbow occurs at the impact

parameter of 2.5 fm and the rainbow angle is θr ≃ 121◦. In Fig. 3.18, we compare the Coulomb rainbow

angle with measured differential cross sections which have been reported in Ref. [47]. Red filled circles

denote measured cross sections and blue solid vertical lines denote the Coulomb rainbow angle. From
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Ref. [47]. The figure was taken from Ref. [173].

the figure, we find the measured differential cross sections show rather flat distributions compared with

lighter systems. This may be related to a rather small curvature of the deflection function around the

Coulomb rainbow angle obtained from the TDHF trajectories as seen in Fig. 3.17 (a).

The TKEL shows a behavior different from lighter systems. The maximum TKEL is about 50-

60 MeV, similar to the value observed in 40Ca+208Pb reaction. However, there is a large impact

parameter region, from 1.39 fm to 2.75 fm, in which the TKEL takes approximately the same value.

In Fig. 3.19, we show snapshots of density distribution for the 58Ni+208Pb reaction at the impact

parameter of 1.39 fm, just outside the fusion critical impact parameter. In the course of the collision,

colliding nuclei form a rather thick neck and excurse for a long period connected by the neck. We find

the two nuclei are connected for a period as long as 3600 fm/c. For collisions in the impact parameter

region where the TKEL takes values around 50-60 MeV, we find a formation of a similar thick neck

which persists rather long period. These reactions are considered to correspond to the QF.

Figure 3.20 shows the average number of transferred nucleons in (a), the N/Z ratios of the PLF and

the TLF in (b), the average number of nucleons emitted to the continuum in (c), and the fluctuation

of the transferred nucleons in (d), as functions of impact parameter.

In Fig. 3.20 (a), the average number of transferred neutrons is shown by red filled circles connected

with solid lines, while the average number of transferred protons is shown by green open circles

connected with dotted lines. Positive numbers indicate the increase of the projectile nucleons (transfer

from 208Pb to 58Ni) and negative numbers indicate the decrease (transfer from 58Ni to 208Pb). From

the figure, we find the average number of transferred protons shows a minimum at b = 2.75 fm. We note

that this value coincides with the impact parameter inside which the TKEL becomes almost constant

in Fig. 3.17 (b). A similar minimum was also seen in the 40Ca+208Pb case, as shown in Fig. 3.13 (a).

Outside this impact parameter, nucleons are transferred toward the direction of the charge equilibrium

expected from the initial N/Z ratios. In the impact parameter region, 1.55 fm ≤ b ≤ 2.75 fm, the

average number of transferred nucleons increases as the impact parameter decreases for both neutrons

and protons. A similar behavior was also seen in 40Ca+208Pb reaction as in Fig. 3.13 (a).

At the impact parameter region b < 1.85 fm, the average number of transferred protons becomes

positive, opposite to the direction of the charge equilibrium of the initial system. However, the nucleon

transfer still proceeds toward the charge equilibrium of both the PLF and the TLF after the collision.

63



Chapter 3 TDHF Calculations for MNT Reactions

Figure 3.19: Snapshots of density distribution of the 58Ni+208Pb reaction at Elab = 328.4 MeV and

b = 1.39 fm, just outside the fusion critical impact parameter. The figure was taken from Ref. [173].

This is clearly seen in Fig. 3.20 (b) which shows the N/Z ratios of the PLF and the TLF after collision.

The N/Z ratio of the PLF (TLF) is denoted by red filled (green open) circles connected with solid

(dotted) lines. As seen from the figure, the N/Z ratios of both the PLF and the TLF become closer

to the N/Z ratio of the total system, 1.42, which is represented by a horizontal dashed line.

As mentioned in the case of 40Ca+208Pb reactions, the change in the average number of transferred

protons across the impact parameter b ∼ 3 fm is related to the formation of the neck. Outside b ∼ 3 fm,

the neck is not formed and two nuclei are separated even at the closest approach. In such case, nucleons

are transferred toward the direction of the charge equilibrium expected from the initial N/Z ratios.

Inside b ∼ 3 fm, the neck is formed between two nuclei. Then the transfer of nucleons proceeds in

two steps. Before the formation of the neck, the transfer of nucleons proceeds toward the charge

equilibrium of the initial system in the same way as that in b > 3 fm. After the formation of the neck,

an exchange of a large number of nucleons occurs at the time of the breaking of the neck. Depending

on the position of the neck breaking, the transfer of nucleons is expected in either directions, from

the target to the projectile or the reverse. Since the neck is formed with both protons and neutrons,

the nucleon transfer in the neck breaking process accompanies both protons and neutrons in the same

direction.

Looking at Fig. 3.20 (a), we find the increase of the average numbers of transferred nucleons of

both neutrons and protons as the impact parameter decreases below b = 2.75 fm. This indicates that

the neck is broken at the position close to the target. Both protons and neutrons in the neck region

are absorbed by the projectile. This mechanism explains the reason why the number of transferred

protons increases as the impact parameter decreases in Fig. 3.20 (a). This transfer process associated

with the neck breaking was also seen in the 40, 48Ca+124Sn and the 40Ca+208Pb reactions.

At very small impact parameter region, 1.40 fm ≤ b ≤ 1.50 fm, the average number of transferred

neutrons shows a large fluctuation. The average number of transferred protons also shows the fluc-

tuation, correlated with that of neutrons. These fluctuations occur by changes of the breaking point

of the neck. When the neck is broken close to the target, a large number of nucleons are transferred

from the target to the projectile, while the neck is broken at a midpoint between the projectile and

the target, the number of transferred nucleons becomes small.
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Figure 3.20: The 58Ni+208Pb reaction at Elab = 328.4 MeV. (a): Average number of transferred
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Figure 3.21: Neutron and proton transfer probabilities as functions of impact parameter b for the

reactions of 58Ni+208Pb at Elab = 328.4 MeV. Figure (a) and (b) show probabilities of neutrons,

while figure (c) and (d) show those of protons. The positive (negative) number of transferred nucleons

represents the number of nucleons added to (removed from) the projectile. Note that horizontal

scales are different between the left and the right panels. A shaded region at small impact parameter

(b ≤ 1.38 fm) corresponds to the fusion reactions. The figure was taken from Ref. [173].

Figure 3.20 (c) shows the average number of nucleons emitted to the continuum during the time

evolution. The average number of neutrons (protons) emitted to the continuum is denoted by red

filled (green open) circles connected with solid (dotted) lines. As in other systems, we calculate it

by subtracting the average number of nucleons inside a sphere of 14 fm for the TLF and that inside

a sphere of 10 fm for the PLF from the total number of nucleons, 266. Again the number is rather

small, about 0.12 at the maximum.

Figure 3.20 (d) shows the fluctuation of the transferred nucleon number. The fluctuation of

transferred neutron (proton) number is denoted by red filled (green open) circles connected with solid

(dotted) lines. They show a different behavior across the impact parameter around 3 fm, indicating

a qualitative change of the dynamics. Outside this impact parameter where protons and neutrons

are transferred in different directions, the fluctuation of transferred neutron number is larger than

that of protons. Inside this impact parameter, although the average number of transferred neutrons

is much larger than that of protons, the fluctuation is almost the same. This indicates that although

the average number of transferred protons is small, there is a strong mixture of single-particle orbitals

of protons because of the formation and breaking of the neck.

(b) Transfer probabilities

We next show transfer probabilities of the 58Ni+208Pb reaction as functions of impact parameter,

which are shown in Fig. 3.21. The small impact parameter region (b ≤ 1.38 fm) corresponding to the

fusion reaction are shaded. The positive (negative) number of the transferred nucleons represents the
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Figure 3.22: Transfer cross sections for the 58Ni+208Pb reaction at Elab = 328.4 MeV. Red filled

circles denote measured cross sections and red solid lines denote results of the TDHF calculations.

The number of transferred protons (positive number for the transfer from 208Pb to 58Ni) is indicated

as (xp) (−6 ≤ x ≤ +5). The measured cross sections have been reported in Ref. [47]. The figure was

taken from Ref. [173].

number of nucleons added to (removed from) the projectile. The upper (lower) panels show neutron

(proton) transfer probabilities for each transfer channel. In the left panels ((a) and (c)), we show

transfer probabilities, (0n) to (+6n) for neutrons and (0p) to (−4p) for protons. They correspond to

the transfer processes toward the charge equilibrium of the initial system. In the right panels ((b) and

(d)), we show transfer probabilities, (+7n) to (+13n) for neutrons and (+1p) to (+5p) for protons,

which dominate in the small impact parameter region, b ≤ 2.75 fm. Probabilities of neutron transfer

from 58Ni to 208Pb are very small and are not shown.

In contrast to the previous cases of 40, 48Ca+124Sn and 40Ca+208Pb, probabilities of transfer pro-

cesses involving more than 6 neutrons are seen in rather wide impact parameter region, 1.39 fm ≤ b ≤
2.75 fm, where the formation of the thick neck is observed. In Fig. 3.17 (b), a large value of TKEL was

also seen in the impact parameter region of b < 3 fm, indicating the significance of the evaporation

effects.

As in previous cases, probabilities of the processes accompanying small number of exchanged

nucleons show large spatial tail. The transfer probabilities for channels toward the charge equilibrium

are large in most cases. The zero-proton transfer probability (0p, red solid line) in Fig. 3.21 (c)

decreases as the impact parameter decreases, shows minimum at b ∼ 3 fm, and again increases at

smaller impact parameter region. This behavior is consistent with the behavior of the average number

of transferred protons seen in Fig. 3.20 (a). Although neutron transfer probabilities to the direction

opposite to the charge equilibrium of the initial system are vanishingly small, we find appreciable

probabilities of proton transfer opposite to the charge equilibrium of the initial system, as is seen from
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Figure 3.23: The same transfer cross sections for the 58Ni+208Pb reaction as those in Fig. 21. The

number of transferred neutrons is indicated as (xn) (−4 ≤ x ≤ +10). The figure was taken from

Ref. [173].

Fig. 3.21 (d). This feature is again consistent with the behavior of the average number of transferred

protons shown in Fig. 3.20 (a).

(c) Transfer cross sections

We show transfer cross sections in Fig. 3.22 and Fig. 3.23. Each panel of Fig. 3.22 shows cross sections

classified according to the change of the proton number of the PLF from 58Ni, as functions of neutron

number of the PLF. Each panels of Fig. 3.23 shows cross sections classified according to the change

of the neutron number of the PLF from 58Ni, as functions of proton number of the PLF. Red filled

circles denote measured cross sections and red solid lines denote results of the TDHF calculations.

Again, reaction cross sections with relatively large values, such as (0p) and (−1p) panels of Fig. 3.22
and (+1n) and (+2n) panels of Fig. 3.23, are described reasonably well by the TDHF calculation.

In Fig. 3.22, as the transferred proton number increases, the calculation underestimates the mea-

sured cross section. The peak position of the cross section shifts toward larger neutron number

compared with the measurements. A similar behavior was also seen in other systems. This discrep-

ancy is considered to be partly originated from neutron evaporation processes which we have not yet

taken into account.

In (0p) and (−1p) panels of Fig. 3.22, the TDHF calculations overestimate the cross section for

channels accompanying large number of transferred neutrons (neutron number of PLF more than 34).

We also find abundant cross sections for (+1p) to (+5p) processes, opposite to the charge equilibrium

direction for the initial system and accompanying a large number of transferred neutrons. They come

from reactions at small impact parameter region, b < 3 fm, in which the transfer of nucleons associated

with the neck breaking is appreciable.

In Fig. 3.23, we find an underestimation of cross sections for negative neutron transfer (−xn)
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Figure 3.24: Transfer cross sections for the 40Ca+124Sn reaction at Elab =170 MeV. Red filled circles

denote measured cross sections, red solid lines denote results of the TDHF calculations, and green

crosses (blue open diamonds) connected with dotted lines denote calculated results using the GRAZING

code without (with) the neutron evaporation effect. The number of transferred protons is indicated

as (xp) (−6 ≤ x ≤ +1). The measured cross sections and the GRAZING results have been reported in

Ref. [40]. The figure was taken from Ref. [173].

(neutron transfer from 58Ni to 208Pb). On the other hand, almost constant cross sections are obtained

for positive neutron transfer (+xn) (from 208Pb to 58Ni), up to the transfer of 10 neutrons. The

underestimation of the negative neutron transfer channels may be explained by the evaporation effects

as discussed in Ref. [47]. The cross sections for the positive neutron transfer channels originate from

reactions at small impact parameter which accompany large TKEL. Therefore, they may also suffer

the evaporation effects.

3.3 Comparison with Other Calculations

In this Section, we compare our results of the TDHF calculations with those by other theories. MNT

cross sections have been extensively and successfully analyzed by direct reaction theories such as

GRAZING [67] and CWKB [68]. In both theories, relative motion of colliding nuclei is treated in the

semiclassical approximation. The probabilities of the MNT processes are treated with a statistical

assumption using single-particle transfer probabilities evaluated with the time-dependent perturbation

theory. We compare our results with those of the GRAZING for 40, 48Ca+124Sn reactions which have

been reported in Refs. [40, 43].

In Figs. 3.24 and 3.25, we show transfer cross sections for the reactions of 40Ca+124Sn and
48Ca+124Sn, respectively. Each panel of these figures shows cross sections for transfer channels classi-

fied according to the change of the proton number of the PLF as functions of neutron number of the

PLF. Red filled circles denote measured cross sections and red solid lines denote results of our TDHF

calculations. Green crosses and blue open diamonds connected with dotted lines denote results of
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Figure 3.25: Transfer cross sections for the 48Ca+124Sn reaction at Elab =174 MeV. Red filled circles

denote measured cross sections, red solid lines denote results of the TDHF calculations, and green

crosses (blue open diamonds) connected with dotted lines denote calculated results using the GRAZING

code without (with) the neutron evaporation effect. The number of transferred protons is indicated

as (xp) (−2 ≤ x ≤ +2). The measured cross sections and the GRAZING results have been reported in

Ref. [43]. The figure was taken from Ref. [173].

the GRAZING calculation. The latter symbols, blue open diamonds, show cross sections including the

neutron evaporation effect, while the former symbols, green crosses, without the evaporation effect.

For the 40Ca+124Sn reaction shown in Fig. 3.24, one find that the cross sections by our calculation

and those by the GRAZING are very close to each other for the processes shown in the panels of

(0p), (−1p), (−2p), (−3p), (−4p), and (−5p). Cross sections accompanying many proton transfer,

(−6p), are better described by the GRAZING compared with the TDHF. In both TDHF and GRAZING

calculations, the peak positions of the cross sections are shifted toward large number of neutrons in the

(−5p) and (−6p) panels. The discrepancy is slightly remedied by including the neutron evaporation

effect in the GRAZING calculation.

For the 48Ca+124Sn reaction shown in Fig. 3.25, we again find a good coincidence between the

TDHF results and those of the GRAZING for (0p), (±1p), and (−2p) channels. For (+2p) channels,

TDHF calculation gives better description than the GRAZING. In both TDHF and GRAZING calcula-

tions, the cross sections shift toward the direction of small neutron number for (+2p) panel compared

with measurements, while toward the direction of large neutron number for (−2p) panel. In Ref. [43],

the effect of the neutron evaporation has been evaluated to be small for this system.

We notice that there are similar failures in the TDHF and the GRAZING calculations for the

cross sections of channels accompanying transfer of large number of protons. It seems that they

are caused by a common problem, although two theories are relied upon very different basis. One

possible origin of the failure is an insufficient inclusion of the correlation effects beyond the mean-field

theory. In the TDHF calculation, the many-body wave function is always assumed to be a single Slater

determinant and correlations beyond the mean-field is not included. In the GRAZING calculation, MNT

probabilities are evaluated from single-nucleon transfer probabilities with a statistical assumption,

ignoring correlation effects among nucleons.

We next consider an approach based on Langevin-type equations of motion which has been orig-

inally developed for and applied to fission dynamics [182, 183] and has been recently extended to

apply to MNT reactions [69, 70]. We consider the 58Ni+208Pb reaction for which an application of

the Langevin approach has been reported in Ref. [58].

In the Langevin approach, MNT processes are treated as sequential processes of single-nucleon
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Figure 3.26: Cross sections for transfer channels of pure proton stripping without neutron transfer

(left) and pure neutron pickup without proton transfer (right) for the 58Ni+208Pb reaction at Elab =

328.4 MeV. Red filled circles denote measured cross sections [47], red solid lines denote results of the

TDHF calculations, blue dotted lines denote results of the Langevin calculation [58], and green open

triangles connected with dotted lines denote results of the CWKB calculation [47]. The figure was

taken from Ref. [173].

transfers. In the theory, an empirical parameter describing nucleon transfer rate is introduced. Fig-

ure 3.26 shows cross sections for transfer channels of pure proton-stripping without neutron transfer

(left) and pure neutron-pickup without proton transfer (right). Red filled circles denote measured

cross sections, red solid lines denote results of our TDHF calculations, and blue dotted lines denote

results of the Langevin approach reported in Ref. [58].

In the case of pure neutron-pickup channels, (0p), the TDHF calculation gives a better description

than the Langevin theory for cross sections up to four-neutron transfer. The TDHF calculation

overestimates the cross sections for more than three neutrons, because of the QF process at small

impact parameter region as discussed in Sec. 3.2.3. On the other hand, cross sections of pure proton-

stripping channels, (0n), are much better described by the Langevin theory than the TDHF, except

for one-proton transfer channel.

Figure 3.27 shows transfer cross sections for several proton stripping channels. Again, red filled

circles denote measured cross sections, red solid lines denote results of our TDHF calculations, and

blue dotted lines denote results of the Langevin approach. For these channels, the Langevin calculation

gives a much better description for the transfer cross sections than the TDHF calculation. We should,

however, note that an adjustable parameter describing the nucleon transfer rate is introduced in the

Langevin approach, while no empirical parameter is introduced in the TDHF calculation once the

Skyrme interaction is specified. In the calculation of the Langevin theory, evaporation effects are

already included in the calculation.

For the 58Ni+208Pb reaction, an analysis using the CWKB theory has also been reported in

Ref. [47]. In the CWKB theory, the MNT processes are treated in a similar way to the GRAZING

theory, evaluating statistically using single-nucleon transfer probabilities which are calculated by the

first-order perturbation theory. In Figs. 3.26 and 3.27, the CWKB cross sections are shown by green

open triangles connected with dotted lines. In Ref. [47], three results of cross sections have been

reported: in a simple CWKB theory, adding the proton pair transfer effect, and taking account of

evaporation effects in addition to the proton pair transfer effect. We show in these two figures the

simplest version of the calculation without the proton pair transfer effect and the evaporation.

As seen from Fig. 3.26, the CWKB cross sections are very close to those of the TDHF except for
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Figure 3.27: Cross sections for transfer channels of (xp) (−3 ≤ x ≤ −1) for the 58Ni+208Pb reaction

at Elab = 328.4 MeV. The horizontal axis is the number of neutrons in the PLF. Red filled circles

denote measured cross sections [47], red solid lines denote results of the TDHF calculations, blue

dotted lines denote results of the Langevin calculation [58], and green open triangles connected with

dotted lines denote results of the CWKB calculation [47]. The figure was taken from Ref. [173].

∆N ≥ 5 in the (0p) panel. In Fig. 3.27, the CWKB cross sections are seen to be too small as the

number of transferred protons increases. In Ref. [47], proton pair transfer processes are introduced and

added to the simple CWKB cross sections to examine the effect as a possible origin of the discrepancy.

3.4 Summary and Concluding Remarks on Chapter 3

In this Chapter, we showed results of fully microscopic calculations for the MNT processes in low-

energy heavy ion reactions in the TDHF theory. We performed calculations for the reactions of
40, 48Ca+124Sn at Elab = 170, 174 MeV, 40Ca+208Pb at Elab = 235 and 249 MeV, and 58Ni+208Pb at

Elab = 328.4 MeV, for which MNT cross sections were measured experimentally [40, 43, 47, 50]. We

used the PNP technique [115] to calculate the transfer probabilities as functions of impact parameter

from the TDHF wave function after collision. From the reaction probabilities, we evaluated cross

sections for various transfer channels.

The systems we investigated, 40, 48Ca+124Sn, 40Ca+208Pb, and 58Ni+208Pb showed different be-

haviors in the MNT processes characterized by the N/Z ratios of the projectile and the target, and

by the product of the charge numbers, ZPZT.

In the collisions with different N/Z ratios between the projectile and target nuclei (40Ca+124Sn,
40Ca+208Pb, and 58Ni+208Pb), we find a fast transfer of a few nucleons when the impact parameter

is sufficiently large. The nucleons are transferred toward the direction of charge equilibrium expected

from the N/Z ratios of the projectile and the target. This means that protons and neutrons are

transferred in the opposite directions. When the N/Z ratios are almost equal between the projectile

and target nuclei (48Ca+124Sn), we find a few nucleons are exchanged symmetrically.

As the impact parameter decreases, a neck is formed at the contact of two nuclei. Then the transfer

process proceeds in two steps. At the beginning of the reaction before the formation of the neck, a

few nucleons are transferred in the same way as described above. After forming the neck, the transfer

of a number of nucleons occurs as a result of the neck breaking when two nuclei dissociate. Because
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both neutrons and protons in the neck are transferred simultaneously in this mechanism, neutrons

and protons are transferred in the same direction.

As the charge number product ZPZT increases, there appears an impact parameter region where

a thick neck is formed. We may regard these reactions with a thick neck formation as an indication

of emergence of the QF process reflecting the suppression of the fusion reaction. As mentioned above,

both neutrons and protons are transferred in the same direction when the neck is broken at the time

of dissociation. A large energy transfer is also accompanied from the nucleus-nucleus relative motion

to the internal excitations.

Comparisons with measured cross sections show that the TDHF calculations describe cross sections

reasonably well for transfer processes of a few nucleons between the projectile and the target. As the

number of exchanged nucleons increases, the agreement becomes less accurate. When more than a

few protons are transferred, cross sections as functions of the number of transferred neutrons show a

peak at the neutron number more than that in the measurements. The magnitude of the calculated

cross sections becomes too small compared with the measurements. This discrepancy is expected to

be, to some extent, resolved when we introduce nucleon evaporation effects in our calculations. We

will address this problem in the following Chapters (Chapters 4 and 5).

We have compared transfer cross sections of the TDHF calculations with those by other theories.

We find that results of the TDHF calculations are rather close to those of direct reaction model

calculations such as GRAZING and CWKB. We should note that the Skyrme Hamiltonian used in the

TDHF calculation is entirely determined from the ground state calculations and there is no parameter

introduced to describe nuclear dynamics. We thus conclude that the fully microscopic TDHF theory

can describe the MNT cross sections in the quality comparable to existing direct reaction theories.

As mentioned above, there are several discrepancies between the calculated cross sections and the

measurements. Among possible origins of the discrepancy, we should first take into account effects of

particle evaporation. Because the evaporation processes take place in a much longer timescale than the

reaction mechanism shown here, it is not realistic to achieve a direct evaluation of those deexcitation

processes by following the TDHF time-evolution for such a long time. Instead, we will estimate them

using a statistical model, using excitation energy of the final fragments calculated from the TDHF wave

function after collision as inputs. To this end, in Chapter 4, we will develop a formalism to calculate

excitation energy of reaction products in each transfer channel by extending the PNP technique. In

Chapter 5, we will examine the effects of particle evaporation on MNT cross sections employing a

statistical model using the excitation energy evaluated by the extended PNP method as an input.
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Chapter 4

EXTENSION OF THE PNP

METHOD TO STUDY PROPERTIES

OF REACTION PRODUCTS

In Chapter 3, we have shown that MNT cross sections can be quantitatively described by the TDHF

theory combined with the PNP technique with an accuracy comparable to calculations by other exist-

ing theories such as GRAZING [67] and CWKB [68], which are based on semiclassical approximation,

and the dynamical model based on Langevin-type equations of motion [69, 70]. However, we have

not taken into account effects of particle evaporation from primary reaction products. Since reaction

products in MNT processes would have a substantial excitation energy, secondary deexcitation pro-

cesses through transfer-induced fission, particle evaporation, and γ-particle emissions will take place

before they are detected by an experimental apparatus. A significance of evaporation effects has been

advocated both experimentally [40, 43, 47, 50] and theoretically [56, 57].

In this Chapter, we develop a theoretical framework to calculate excitation energy of produced

nuclei which is needed to evaluate the effect of particle evaporation on production cross sections in

the TDHF theory†.

Since a timescale of particle evaporation is several orders of magnitude longer than the reaction

timescale which is simulated in the usual TDHF calculation, a direct calculation of evaporation pro-

cesses solving the TDHF time evolution would be computationally demanding. A possible alternative

approach to include effects of particle evaporation is use of a statistical model of particle evaporation.

The basic inputs of the statistical model are excitation energy and angular momentum of a decaying

excited nucleus [185]. The above mentioned existing theories also use some statistical model to include

effects of particle evaporation [67, 68, 69, 70].

To evaluate effects of particle evaporation on MNT cross sections in the TDHF theory, we need to

calculate excitation energy and angular momentum of reaction products in the TDHF wave function

after collision. In this Chapter, we develop a theoretical framework to calculate expectation values

of arbitrary operators in the TDHF wave function after collision extending the PNP technique. The

main idea of the method is to define an operator for one of reaction products in the TDHF wave

function after collision. By taking an expectation value of the operator as commonly performed in

nuclear structure calculations [136], we will get information on properties of reaction products in each

transfer channel.

To show how our method works in practice, the method is applied to 24O+16O reactions for

two quantities, angular momentum and excitation energy. From the results of PNP analysis, we

†This Chapter is essentially based on our publication of Ref. [184].
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find reasonable transfer mechanisms in the TDHF calculation. These features could not be seen from

ordinary expectation values without the PNP. Using the extended PNP method and a statistical model

of particle evaporation, the effects of particle evaporation on MNT cross sections will be examined in

Chapter 5.

This Chapter is organized as follows. In Sec. 4.1, we describe a general formalism to calculate

expectation values of operators in the TDHF wave function after collision with the PNP. In Sec. 4.2,

we apply the method to 24O+16O reactions, as an illustrative example. In Sec. 4.3, a summary and

concluding remarks on this Chapter are presented.

4.1 Formulation

4.1.1 Particle-number projection method

We consider microscopic TDHF calculations of low-energy heavy ion reactions in which two fragments,

a PLF and a TLF, are produced. In this Section, we develop a general formalism to calculate expecta-

tion values of operators for one of the fragments, either PLF or TLF, with the PNP. We first describe

the formalism assuming that the system is composed of N identical fermions. An extension to include

two kinds of fermions, neutrons and protons, is straightforward.

We assume that the fragments are well separated spatially after collision at the final stage of the

TDHF calculation. We define two spatial regions, V and V̄ . The spatial region V includes a fragment

to be analyzed. V̄ is the complement of V , which includes the other fragment.

We denote the TDHF wave function after collision as Ψ(x1, · · · , xN ), where x denotes a set of the

spatial and the spin coordinates, x ≡ (r, σ). The wave function Ψ is, in general, not an eigenstate

of the particle-number operator in the spatial region V but a superposition of states with different

particle numbers in V . It can be expressed as

Ψ(x1, · · · , xN ) =
N∑

n=0

Ψn(x1, · · · , xN ), (4.1.1)

where Ψn denotes a particle-number projected wave function,

Ψn(x1, · · · , xN ) = P̂nΨ(x1, · · · , xN ). (4.1.2)

Ψn is a component of Ψ having n particles in the spatial region V and N − n particles in the spatial

region V̄ . The operator P̂n is the PNP operator defined by [115, 173]

P̂n =
∑

s({τi}:V n
P V N−n

T )

Θτ1(r1) · · ·ΘτN (rN ) (4.1.3)

=
1

2π

∫ 2π

0
dθ ei(n−N̂V )θ, (4.1.4)

where s({τi} : V n
P V

N−n
T ) indicates that a sum over the sequence τ1τ2 · · · τN should be taken for all

possible combinations that V appears n times and V̄ appears N − n times. We have introduced a

space division function, Θτ (r), and a particle-number operator in the spatial region τ , N̂τ , which are

defined by

Θτ (r) =

{
1 if r ∈ τ,
0 if r /∈ τ,

(4.1.5)

and

N̂τ =

∫
τ
dr

N∑
i=1

δ(r − ri) =

N∑
i=1

Θτ (ri), (4.1.6)
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where τ represents the spatial region either V or V̄ .

We consider a general operator Ô and decompose it into two operators according to the spatial

regions:

Ô = ÔV + ÔV̄ . (4.1.7)

The operator ÔV represents a part of the operator Ô acting to the particle when it is in the spatial

region V . The operator ÔV̄ represents the remaining part of the operator Ô. Any one-body operator

which is local in space, Ô(1) =
∑N

i=1 ô
(1)(riσi), can be decomposed as

Ô(1) =
N∑
i=1

(
ΘV (ri) + ΘV̄ (ri)

)
ô(1)(riσi)

= Ô(1)
V + Ô(1)

V̄
, (4.1.8)

where σi denotes the spin coordinate of a particle i. In the same way, a two-body operator, Ô(2) =∑N
i<j ô

(2)(riσi, rjσj), can be decomposed as

Ô(2) =
N∑
i<j

(
ΘV (ri) + ΘV̄ (ri)

)(
ΘV (rj) + ΘV̄ (rj)

)
ô(2)(riσi, rjσj)

=

N∑
i<j

(
ΘV (ri)ΘV (rj) + ΘV̄ (ri)ΘV̄ (rj)

+ΘV (ri)ΘV̄ (rj) + ΘV̄ (ri)ΘV (rj)
)
ô(2)(riσi, rjσj)

= Ô(2)
V + Ô(2)

V̄
+ Ô(2)

V V̄
. (4.1.9)

The first (second) term represents two-body interactions which act when both particles i and j are in

the spatial region V (V̄ ). The third term represents two-body interactions which act when a particle

i is in the spatial region V and a particle j is in the spatial region V̄ . For wave functions after

collision in which two fragments are well separated, the third term can be ignored if the operator

is short-range two-body interactions. When we calculate excitation energies of fragment nuclei, we

ignore long-ranged Coulomb interactions acting protons belonging to different fragments.

The expectation value of the operator Ô in the fragment which is composed of n particles and

locates in the spatial region V is given by the expectation value of the operator ÔV in the wave

function Ψn,

OV
n =

⟨
Ψn

∣∣ÔV

∣∣Ψn

⟩⟨
Ψn

∣∣Ψn

⟩ . (4.1.10)

The bracket
⟨
Ψn

∣∣ÔV

∣∣Ψn

⟩
is defined by

⟨
Ψn

∣∣ÔV

∣∣Ψn

⟩
≡
∫
dx1 · · ·

∫
dxN Ψ∗

n(x1, · · · , xN ) ÔV Ψn(x1, · · · , xN ), (4.1.11)

where the integral over x includes an integration over space and a sum over spin states,
∫
dx ≡

∑
σ

∫
dr.

Here and hereafter, we often use the bracket notation to simplify equations.

The expectation value of the operator ÔV without PNP is given by OV =
⟨
Ψ
∣∣ÔV

∣∣Ψ⟩. It is related
to ÔV

n by

OV =

N∑
n=0

PnOV
n , (4.1.12)

where Pn is defined by Pn =
⟨
Ψn

∣∣Ψn

⟩
=
⟨
Ψ
∣∣P̂n

∣∣Ψ⟩. To derive Eq. (4.1.12), we used identities∑N
n=0 P̂n = 1, P̂nP̂n′ = δnn′P̂n, and [ÔV , P̂n] = 0.
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4.1.2 Formulae for the Slater determinant

We present formulae of expectation values which are useful for the TDHF wave function Ψ given by

a single Slater determinant composed of single-particle wave functions ψi(x),

Ψ(x1, · · · , xN ) =
1√
N !

det
{
ψi(xj)

}
. (4.1.13)

Using the PNP operator of Eq. (4.1.4), the probability Pn can be calculated as [115, 173]

Pn =
1

2π

∫ 2π

0
dθ einθ

⟨
Ψ
∣∣e−iN̂V θ

∣∣Ψ⟩
=

1

2π

∫ 2π

0
dθ einθ detB(θ). (4.1.14)

B(θ) denotes an N -dimensional matrix,(
B(θ)

)
ij
=

∫
dxψ∗

i (x)ψj(x, θ), (4.1.15)

where ψi(x, θ) is defined by

ψi(x, θ) ≡
(
ΘV̄ (r) + e−iθΘV (r)

)
ψi(x). (4.1.16)

Using Eqs. (4.1.4) and (4.1.10), the expectation value OV
n is expressed as

OV
n =

1

2πPn

∫ 2π

0
dθ einθ

⟨
Ψ
∣∣ÔV e

−iN̂V θ
∣∣Ψ⟩. (4.1.17)

In the case of one- and two-body operators, Ô(1)
V and Ô(2)

V , in Eqs. (4.1.8) and (4.1.9), expectation

values can be calculated by [186]

OV (1)
n =

1

2πPn

∫ 2π

0
dθ einθ detB(θ)

N∑
i=1

∫
V
dx ψ∗

i (x) ô
(1)(x)ψ̃i(x, θ), (4.1.18)

OV (2)
n =

1

2πPn

∫ 2π

0
dθ einθ detB(θ)

N∑
i<j

{∫
V
dx

∫
V
dx′ψ∗

i (x)ψ
∗
j (x

′) ô(2)(x, x′) ψ̃i(x, θ)ψ̃j(x
′, θ)

−
∫
V
dx

∫
V
dx′ψ∗

i (x)ψ
∗
j (x

′) ô(2)(x, x′) ψ̃j(x, θ)ψ̃i(x
′, θ)

}
,

(4.1.19)

where ψ̃i(x, θ) is defined by

ψ̃i(x, θ) ≡
N∑
k=1

ψk(x, θ)
(
B−1(θ)

)
ki
. (4.1.20)

We note that {ψ̃i} are biorthonormal to {ψi}, i .e.
∫
dxψ∗

i (x)ψ̃j(x, θ) = δij , as described in Ap-

pendix A.6.

4.1.3 Application to the TDHF wave function

In actual TDHF calculations, the many-body wave function Ψ is given by a product of two Slater

determinants, Ψ = ΨνΨπ, where Ψν is for neutrons and Ψπ is for protons. We present formulae of

expectation values for this wave function. We denote the PNP operator for neutrons (protons) as P̂
(n)
N
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(P̂
(p)
Z ), where N (Z) is the number of neutrons (protons) in the spatial region V . The probability that

N neutrons and Z protons are in the spatial region V is then given by a product of probabilities for

neutrons and protons,

PN,Z =
⟨
Ψ
∣∣P̂ (n)

N P̂
(p)
Z

∣∣Ψ⟩
=

⟨
Ψν

∣∣P̂ (n)
N

∣∣Ψν

⟩ ⟨
Ψπ

∣∣P̂ (p)
Z

∣∣Ψπ

⟩
= P

(n)
N P

(p)
Z . (4.1.21)

We first consider expectation values for a one-body operator. We note that any one-body operator

can be written as a sum of operators for neutrons and for protons, Ô(1)
V = Ô(1,n)

V + Ô(1,p)
V . Thus the

expectation value of the one-body operator Ô(1)
V is given by a sum of two terms. For the fragment

nucleus specified by N and Z, we have

OV (1)
N,Z =

⟨
Ψ
∣∣Ô(1)

V P̂
(n)
N P̂

(p)
Z

∣∣Ψ⟩⟨
Ψ
∣∣P̂ (n)

N P̂
(p)
Z

∣∣Ψ⟩
=

⟨
Ψν

∣∣Ô(1,n)
V P̂

(n)
N

∣∣Ψν

⟩⟨
Ψν

∣∣P̂ (n)
N

∣∣Ψν

⟩ +

⟨
Ψπ

∣∣Ô(1,p)
V P̂

(p)
Z

∣∣Ψπ

⟩⟨
Ψπ

∣∣P̂ (p)
Z

∣∣Ψπ

⟩
= OV (1,n)

N +OV (1,p)
Z . (4.1.22)

OV (1,q)
n is defined by

OV (1,q)
n =

1

2πP
(q)
n

∫ 2π

0
dθ einθ

⟨
Ψq

∣∣Ô(1,q)
V e−iN̂

(q)
V θ
∣∣Ψq

⟩
, (4.1.23)

where N̂
(q)
V denotes the particle-number operator for neutrons (q = n) and for protons (q = p) in the

spatial region V . We will use these formulae, Eqs. (4.1.22) and (4.1.23), to calculate expectation values

of the kinetic energy operator included in the Hamiltonian and of the angular momentum operator.

For a two-body operator, expectation values are not simply given by a sum of neutron and proton

contributions, since two-body operators act between neutrons and protons. Therefore, we apply the

PNP operators for both neutrons and protons simultaneously,

OV (2)
N,Z =

1

(2π)2P
(n)
N P

(p)
Z

∫ 2π

0
dθ

∫ 2π

0
dφ ei(Nθ+Zφ)

⟨
Ψ
∣∣Ô(2)

V e−i(N̂
(n)
V θ+N̂

(p)
V φ)

∣∣Ψ⟩. (4.1.24)

We will use the above formula to evaluate excitation energy of nuclei produced through transfer

processes.

To evaluate the excitation energy, we need to exclude the energy associated with the center-of-mass

motion. For this purpose, we calculate the energy expectation value using Eqs. (4.1.21)-(4.1.24) in

the coordinate system which moves with the fragment nucleus. In practice, we multiply all the single-

particle wave functions by e−iKµ·r/Aµ , where Kµ is given by Kµ = MµṘµ(tf )/ℏ, with Mµ, Aµ, and

Ṙµ(tf ) being the average mass, the average nucleon number, and the average velocity of the fragment

(µ = PLF or TLF) in the spatial region V at time tf . We calculate the velocity of the fragment by

Ṙµ(tf ) ≡
[
Rµ(tf +∆t)−Rµ(tf −∆t)

]
/(2∆t).

We denote the calculated energy expectation value in the fragment nucleus composed ofN neutrons

and Z protons as EVN,Z . We separately achieve ground state calculations for the fragment nucleus

composed of N neutrons and Z protons, which we denote as Eg.s.
N,Z . We evaluate an excitation energy

of the fragment nucleus by

E∗V
N,Z(E, b) ≡ EVN,Z(E, b)− E

g.s.
N,Z , (4.1.25)

79



Chapter 4 Extension of the PNP Method to Study Properties of Reaction Products

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

S
in

g
le

-p
ar

ti
cl

e 
en

er
g
y
 (

M
eV

)

(a)

Neutron Proton

16
O

s1/2

d5/2

p1/2

p3/2

s1/2

p1/2

p3/2

s1/2

(b)

Neutron Proton

24
O

s1/2

d5/2

p1/2

p3/2

s1/2

s1/2

d5/2

p1/2

p3/2

s1/2

Figure 4.1: Single-particle energies of occupied orbitals for neutrons (thick red solid lines) and protons

(thick green dotted lines) in 16O and 24O are shown in the panels (a) and (b), respectively. Single-

particle energies of unoccupied orbitals are also shown by thin dotted lines. The figure was taken from

Ref. [184].

where E and b denote the incident relative energy and the impact parameter, respectively.

In the ground state calculation, we employ a mass correction in the kinetic energy operator,
ℏ2
2m →

ℏ2
2m(1 − 1

N+Z ), to take into account the center-of-mass correction. The same correction is

applied in evaluating the expectation value of the kinetic energy operator using Eqs. (4.1.22) and

(4.1.23), depending on numbers of neutrons and protons, N and Z, in the fragment nucleus.

4.2 An Illustrative Example: 24O+16O Reaction

To illustrate usefulness of the PNP method described in Sec. 4.1, we analyze properties of fragment

nuclei in 24O+16O reactions described by the TDHF theory. For 24O, pairing correlation may be

important. In Ref. [187], the pairing interaction is reported to be negligible in the ground state,

while finite contribution is reported in Ref. [188]. In this Chapter, we restrict ourselves to treatments

ignoring pairing effects. We note that reactions including neutron-rich oxygen isotopes have been well-

studied in the TDHF theory as a typical reaction involving light unstable nuclei [96, 97, 102, 189]. We

will investigate expectation values of the angular momentum operator and average excitation energies.

We consider reactions in which two fragments are generated after collision. We call the 24O-like

fragment nucleus as the PLF and the 16O-like fragment nucleus as the TLF. We describe the reaction

in the center-of-mass frame. We choose xy-plane as the reaction plane setting the incident direction

parallel to the x axis. The projectile, 24O, moves toward the negative-x direction, while the target, 16O,

moves toward the positive-x direction. The impact parameter vector is set parallel to the positive-y

direction.

4.2.1 Computational details

We use our own computational code of TDHF calculation for nuclear reactions, as in Ref. [173]. For

this study, we use spatial grid points of Nx ×Ny ×Nz = 90× 80× 26 with 0.8-fm mesh spacing. As

an initial condition, two nuclei are placed at the distance of 32 fm in the x direction. The initial wave

functions of projectile and target nuclei are prepared in a box with Nx×Ny ×Nz = 40× 40× 26 grid

points. We calculate time evolution until a distance between the centers of the PLF and the TLF
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Figure 4.2: Deflection angle Θ in the center-of-mass frame (a) and total kinetic energy loss (b)

are shown as functions of the distance of closest approach, d = d(E, b). The figure was taken from

Ref. [184].

exceeds 32 fm. For the PNP analysis, integrals over θ are performed by employing the trapezoidal rule

discretizing the interval [0, 2π] into M equal grids. We find that M = 30 is sufficient for the 24O+16O

system. All the results reported here are calculated using the Skyrme SLyIII.0.8 parameter set [146].

4.2.2 Ground states

We calculate ground states of 16O and 24O nuclei, which are both spherical in the self-consistent

solutions. Figure 4.1 shows single-particle energies of neutrons (red solid lines) and protons (green

dotted lines) in 16O in panel (a) and in 24O in panel (b). Occupied orbitals are shown by thick lines,

while unoccupied orbitals are shown by thin lines. As recognized from the figure, there are neutron

orbitals characterized by small binding energies in neutron-rich 24O nucleus. All proton orbitals in
24O are deeply bound.

4.2.3 Reaction dynamics

We first provide an overview of the reaction dynamics in 24O+16O reactions. In Fig. 4.2, the deflection

angle Θ in the center-of-mass frame and the TKEL are shown in the panels (a) and (b), respectively,

as functions of the distance of closest approach, d. We evaluate Θ and TKEL from the momenta of

two fragment nuclei and the Coulomb energy between them at the final stage of the TDHF calculation

where two nuclei are well separated.

We employ the distance of closest approach d, instead of the impact parameter b. They are related

by

d =
ZPZTe

2

2E
+

√(ZPZTe2

2E

)2
+ b2, (4.2.1)

where E denotes the incident relative energy. ZP and ZT denote the proton numbers of the projectile

and the target, respectively. We consider it is useful to use d, because transfer reactions take place

at around the distance of closest approach. For head-on collisions, calculated results are indicated by

b = 0 and are plotted against d which is related to the incident relative energy E by d = ZPZTe
2/E.
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We find the fusion reaction takes place at d = 9.4 fm for head-on collision (b = 0) which corresponds

to the incident energy of Elab ∼ 24.5 MeV. For non-central collisions at incident energies of Elab = 2, 4,

and 8 MeV/nucleon, the fusion reaction is found to take place at d = 8.7, 8.3, and 7.5 fm, respectively.

The deflection angle is positive for reactions at the incident energy of 2 MeV/nucleon because of

the Coulomb repulsion, as seen in Fig. 4.2 (a). As the distance of closest approach decreases, the

nuclear attractive interaction acts to decrease the deflection angle. It becomes negative for d < 8 fm

at the incident energy of 8 MeV/nucleon. In the panel (b), we see an increase of the TKEL at the

small-d region where we observed negative deflection angles.

4.2.4 Transfer probability

In Fig 4.3, we show transfer probabilities calculated using Eq. (4.1.21). Red circles show probabilities

for head-on collisions (b = 0) with several values of d. Green triangles, blue squares, and purple

diamonds show probabilities as functions of d for incident energies Elab = 2, 4, and 8 MeV/nucleon,

respectively.

In the calculations, we adopted two choices for the spatial region V . For the probabilities observing

a PLF, which are shown in the right panels of Fig. 4.3, we adopted a sphere with a radius of 16 fm

around the PLF for the spatial region V . For the probabilities observing a TLF shown in the left

panels of Fig. 4.3, a sphere with a radius of 16 fm around the TLF is used. We have confirmed that

obtained results are almost independent of the chosen radius R of the spatial region V , if R is taken

in the range of 15 fm < R < 20 fm. We will use this radius for evaluation of expectation values of

angular momentum and excitation energies.

Figure 4.3 (a) and (b) show probabilities of one-proton transfer processes, while (c) and (d) show

probabilities of two-proton transfer processes. We note that, from the above choices of V for the PLF

and the TLF, the probabilities of proton removal from 16O ((a) and (c)) should be coincide with the

probabilities of proton addition to 24O ((b) and (d)), if the breakup processes can be neglected. As

seen from the figure, (a) and (b) are very close to each other, indicating that the breakup processes

are indeed negligible. We also find that (c) and (d) are close to each other. On the other hand, in the

case of neutron transfer channels, one-neutron transfer in panels (e) and (f) and two-neutron transfer

in panels (g) and (h), we find that the probability of neutron removal from 24O is much larger than

that of neutron addition to 16O, especially for reactions at Elab = 8 MeV/nucleon. This fact indicates

that there are substantial probabilities of breakup processes for neutrons.

In Fig. 4.3, we find that transfer probabilities decrease as the incident energy increases. Comparing

probabilities of neutron and proton transfer processes, neutron transfer probabilities are much larger

than proton transfer probabilities at the same distance of closest approach and the same incident

energy. We also find that the slope of probabilities for protons against the distance of closest approach

is much steeper than that for neutrons. These features are consistent with orbital energies of the

two colliding nuclei in their ground states which are shown in Fig. 4.1. Since there are neutrons

bound weakly in 24O, transfer probabilities of neutrons are much larger than those of protons. Since

these weekly bound neutrons are spatially extended in 24O, we find a long tail of neutron transfer

probabilities.

At the highest incident energy of Elab = 8 MeV/nucleon, the proton transfer probability is maxi-

mum around d = 8 fm. The probability decreases as the distance of closest approach decreases. The

decrease at the small-d region indicates the increase of probabilities for other channels with transfers

of a larger number of protons.
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Figure 4.3: Transfer probabilities with respect to the TLF (left) and the PLF (right) are shown as

functions of the distance of closest approach, d = d(E, b). The figure was taken from Ref. [184].
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4.2.5 Angular momentum

In this Subsection, we investigate expectation values of the angular momentum operator in the frag-

ment nuclei. We will use the same definition for V as that in the previous Subsection, spheres with

a radius of 16 fm around the center-of-mass of the PLF and the TLF. We consider the angular mo-

mentum operator in the spatial region V , ĴV = Ĵ
(n)
V + Ĵ

(p)
V . The operator Ĵ

(q)
V denotes the angular

momentum operator for neutrons (q = n) and for protons (q = p) in the spatial region V , given by

Ĵ
(q)
V =

∑
i∈q ΘV (ri) ĵi =

∑
i∈q ΘV (ri)

[
(r̂i−Rµ)× p̂i+ ŝi

]
. Rµ is the center-of-mass coordinate of the

fragment (µ = PLF or TLF).

Figure 4.4 shows expectation values of the angular momentum operators in the PLF and the TLF

composed of specific numbers of neutrons and protons. A component perpendicular to the reaction

plane is shown. Left panels show expectation values in the TLF, while right panels show those in the

PLF. For reactions at Elab = 8 MeV/nucleon, expectation values at the small-d region, d < 8 fm, are

always positive irrespective of the numbers of transferred nucleons. This fact supports a macroscopic

picture of a friction converting the angular momentum from the nucleus-nucleus relative motion to

the internal ones.

In the following, we discuss results at relatively large-d region (d > 9 fm). In these reactions, the

distance of closest approach is much larger than the sum of radii of two colliding nuclei, and transfer

processes are considered to proceed as single-particle dynamics. TDHF calculations may describe

either above-barrier transfer or quantum tunneling below the barrier. In nucleon removal channels

((a), (c), (f), and (h)), we find that the expectation values of the angular momentum operator are very

small irrespective of either neutron(s) or proton(s) is(are) removed, either from 16O or 24O. This fact

may be understood from properties of orbitals. For 16O, orbitals of the smallest binding energy are

1p1/2 for both neutrons and protons. For 24O, they are 2s1/2 for neutrons and 1p1/2 for protons. We

thus find that the orbitals of the smallest binding energy are characterized by small angular momenta.

Since nucleon removals from spatially extending single-particle orbitals are expected to take place for

orbitals with the smallest binding energy, removal of nucleons from these orbitals may not leave large

values of angular momentum in nucleon removed nuclei.

In nucleon addition channels ((b), (d), (e), and (g)), we find finite positive values of angular

momentum in all channels. The expectation values increase as the incident energy increases. They

do not depend much on the distance of closest approach d. These features may be understood by

the following intuitive considerations. Let us consider a transfer of one nucleon from 24O to 16O. We

assume that the nucleon transfer takes place when two nuclei are at the distance of closest approach.

Ignoring the interaction potential by nuclear force, the relative velocity of two nuclei is approximately

given by

vrel =

√
2

µ

(
E − ZPZTe2

d

)
, (4.2.2)

where E and µ denote the incident relative energy and the reduced mass, respectively. In the rest

frame of 16O nucleus, we assume that the transferred nucleon has the same velocity as the relative

velocity vrel, ignoring the internal motion in 24O. This may be reasonable, since we observed very

small expectation values of the angular momentum in nucleon removed fragments, as seen in Fig. 4.4

(a), (c), (f), and (h). If the transferred nucleon stays at the surface of 16O, the transferred nucleon

brings the angular momentum,

lz = Rmvrel, (4.2.3)

into 16O, where m is the nucleon mass and R is the radius of 16O which we estimate by a simple

formula, R = r0A
1/3, with r0 = 1.2 fm and A = 16.

In Fig. 4.5, we show the angular momentum lz evaluated using Eqs. (4.2.2) and (4.2.3) as func-

tions of the distance of closest approach d for several energies. The estimated values of the angular
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Figure 4.4: Expectation values of the angular momentum operator for fragment nuclei in each transfer

channel are shown as functions of the distance of closest approach, d = d(E, b). The figure was taken

from Ref. [184].

85



Chapter 4 Extension of the PNP Method to Study Properties of Reaction Products

 0

 2

 4

 6

 8

 7  8  9  10  11  12
l z

 (
h)

d (fm)

− E=8
E=4
E=2

Figure 4.5: The angular momentum carried into 16O by an added nucleon evaluated by Eqs. (4.2.2)

and (4.2.3) is shown as a function of the distance of closest approach, d = d(E, b). The figure was

taken from Ref. [184].

momentum coincide quantitatively with the calculated results in channels of one-neutron addition to
16O, shown in Fig. 4.4 (e). The estimated angular momentum depends little on the distance of closest

approach d, since the Coulomb potential in Eq. (4.2.2) gives only a minor effect except for a case of

very low incident energy. The angular momentum is roughly proportional to the square root of the

energy. In the case of two-nucleon transfer, the angular momentum carried into 16O is given by twice

of lz. This reasonably explains the observation in the panel (g).

4.2.6 Excitation energy

In Fig. 4.6, we show excitation energies of fragment nuclei evaluated using Eq. (4.1.25) as functions

of the distance of closest approach d. Left panels show the excitation energies of the TLF, while

right panels show the excitation energies of the PLF. As in previous figures, there are two kinds of

calculations: Red circles show results of head-on collisions (b = 0) varying the incident energy. Green

triangles, blue squares, and purple diamonds show results for fixed incident energies, Elab = 2, 4, and

8 MeV/nucleon, respectively, changing the impact parameter b.

As we mentioned below Eq. (4.1.25), we take into account the center-of-mass correction in cal-

culating energies of fragment nuclei and reference energies of ground states in Eq. (4.1.25), while we

ignore it in the time evolution calculations. For the quasielastic channels without nucleon transfer,

we find very small average excitation energies at large-d region, d > 9 fm, as shown in the panels (i)

and (j). This fact may indicate that the inconsistency between the treatments of the center-of-mass

correction in evaluating excitation energies will not bring any serious problems.

In all channels, we find an increase of the excitation energy in a small-d region, d < 8 fm, where

we find an appreciable TKEL in Fig. 4.2 (b). At a large-d region, d > 9 fm, we have found the

small TKEL in Fig. 4.2 (b). However, behavior of the excitation energy depends much on the transfer

channels, as is evident from Fig. 4.6.

In nucleon removal channels ((a), (c), (f), and (h)), we find that excitation energies are rather

small. In either one-neutron removal from 24O in (f) or one-proton removal from 16O in (a), the

average excitation energy is less than 3 MeV. This indicates that the nucleon is removed dominantly

from the highest occupied orbital. In two-nucleon removal channels ((c) and (h)), the excitation energy

becomes somewhat large, about 5-10 MeV in two-proton removal from 16O in (c). The excitation

energies after nucleon removal are almost independent of the incident energy. This suggests that

nucleons are removed gently even at higher incident energies.

Contrarily, in nucleon addition channels ((b), (d), (e), and (g)), we find that excitation energies
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depend much on the incident energy. A similar feature was also seen in the angular momentum shown

in Fig. 4.4, where the added nucleon carries an angular momentum associated with the translational

relative motion into the fragment. The expectation values of the angular momentum were also found

to increase as the incident energy increases. This fact may be related to the increase of the excitation

energies as the incident energy increases in nucleon addition channels: The transferred nucleons must

stay at orbitals of higher angular momenta as the incident energy increases. The energies of orbitals

with higher angular momenta are high.

For nucleon addition channels ((b), (d), (e), and (g)), we observe an increase of excitation energies

as the distance of closest approach increases. One may consider that this fact contradicts to an

intuitive picture that an excitation energy will be smaller as the distance of closest approach increases

since two nuclei cannot collide violently. We examine this behavior for head-on collisions (b = 0).

As shown by red circles in the panels (b), (d), (e), and (g), the excitation energies are very small at

d = 9.5 fm. This distance of closest approach corresponds to slightly outside the boundary of the

fusion reaction. As the distance of closest approach increases (this corresponds to a decrease of the

incident energy in the head-on collision), the excitation energies increase.

This puzzling behavior can be understood by the following consideration. As we have shown in

Fig. 4.1, the Fermi energies of neutrons and protons in 24O and 16O are rather different because of

the excess neutrons in neutron-rich 24O. When a nucleon is transferred at a large distance of closest

approach which is much larger than the sum of the radius of two colliding nuclei, the nucleon transfer

is expected to take place between orbitals which are close in energy. The energy-conserving transfer

processes must cause excitations of produced fragments if a neutron-rich nuclei is involved in the

reaction.

Let us consider one-proton transfer from 16O to 24O in head-on collisions, which are shown by red

circles in the panel (b). The transfer takes place dominantly for a proton in the highest occupied orbital

of 16O, 1p1/2 at −10.6 MeV as shown in Fig. 4.1 (a). In Fig. 4.1 (b), we find proton orbitals at a similar

orbital energy, 2s1/2 at −9.9 MeV. The proton highest occupied orbital of 24O is 1p1/2 at −24.3 MeV

and there are 1d5/2 unoccupied orbitals at −15.8 MeV. Since one of the 1d5/2 orbitals is occupied in the

ground state of 25F, we expect the excitation energy, E∗ ∼ ε(24O;π2s1/2)−ε(24O;π1d5/2) = 5.9 MeV.

This energy difference almost coincides with the average excitation energy of 25F shown in the panel

(b) at the large-d region.

We next consider one-neutron transfer from 24O to 16O in head-on collisions, which are shown

by red circles in the panel (e). The highest occupied neutron orbital in 24O is 2s1/2 at −3.1 MeV

as shown in Fig. 4.1 (b). In Fig. 4.1 (a), there are neutron unoccupied orbitals in 16O at a similar

energy, 2s1/2 at −2.4 MeV. Since the lowest neutron unoccupied orbital in 16O is 1d5/2 orbital at

−5.5 MeV which is occupied in the ground state of 17O, we expect the excitation energy, E∗ ∼
ε(16O; ν2s1/2) − ε(16O; ν1d5/2) = 3.1 MeV. This energy difference almost coincides with the average

excitation energy of 17O shown in the panel (e) at the large-d region.

In the above considerations, we may understand the transfer mechanism in terms of orbital prop-

erties in the ground state: the highest occupied orbitals dominantly contribute to the transfer process.

We note that, in Ref. [189], single-particle transfer dynamics in 24O+16O reaction has been examined

analyzing density contributions from individual orbitals. The result reported in Ref. [189] is consistent

with the above conclusion.

We make a final comment on an abrupt increase of excitation energy seen at the largest d value,

12 fm, and the highest incident energy, 8 MeV/nucleon in panels (b) and (d). We consider that

they are due to a numerical failure. We note that probabilities of these processes are very small, as

confirmed in Fig. 4.3.
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Figure 4.6: Average excitation energies of fragment nuclei in each transfer channel are shown as

functions of the distance of closest approach, d = d(E, b). The figure was taken from Ref. [184].
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4.3 Summary and Concluding Remarks on Chapter 4

In the TDHF theory, low-energy heavy ion reactions are described by a time evolution of a single

Slater-determinant wave function. At the final stage of calculation, the wave function can be regarded

as a superposition of a number of channels with different particle numbers and quantum states. To

obtain detailed information on reaction products, projection operator techniques will be useful. In

this Chapter, we developed a method to calculate expectation values of operators with the PNP to

investigate properties of reaction products after collision.

To demonstrate usefulness of our method, we applied the method to one- and two-nucleon transfer

processes in 24O+16O reactions. We analyzed expectation values of the angular momentum operator

and average excitation energies of produced nuclei. For fragment nuclei after nucleon removal, we found

small values of angular momentum and excitation energy, suggesting a gentle removal of nucleons. For

fragment nuclei with added nucleons, we found substantial expectation values of angular momentum

and average excitation energies. We have found that the expectation value of the angular momentum

of produced nuclei is proportional to the relative velocity of the two colliding nuclei at the turning

point. The excitation energy can be understood by a transfer of nucleons between approximately

degenerate orbitals of projectile and target nuclei.

The above example clearly shows the usefulness of the present method for microscopic investiga-

tions of reaction mechanisms in heavy ion reactions. The formalism will also be useful to estimate

effects of particle evaporation after MNT processes, which are difficult to describe directly in the

TDHF calculation because of the very long timescale of the evaporation processes. In the next Chap-

ter (Chapter 5), we will examine effects of particle evaporation on MNT cross sections utilizing the

method developed in this Chapter.
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Chapter 5

EFFECTS OF PARTICLE

EVAPORATION ON MNT CROSS

SECTIONS

In Chapter 3, we presented results of the TDHF calculations for MNT processes in 40,48Ca+124Sn,
40Ca+208Pb, and 58Ni+208Pb reactions. From the results, we found that the TDHF calculations can

reproduce measured cross sections quantitatively, when the number of transferred nucleons is small.

However, as the number of transferred nucleons increases, a peak position of the calculated cross

sections shifts toward larger neutron and proton number sides compared with the measurements. One

of possible origins of the discrepancy is an insufficient description of particle evaporation processes

in our TDHF calculations. Because we calculated the transfer probabilities and the cross sections

from a TDHF wave function just after two nuclei reseparates (typically, order of 10−21 s after the

reseparation), effects of secondary evaporation processes which occur in a much longer timescale were

not included in the calculated cross sections.

To estimate how many nucleons are to be evaporated from produced fragment nuclei, we need to

evaluate excitation energy of the fragment nuclei in each transfer channel. In Chapter 4, we have

developed a formalism to calculate expectation values of operators in the TDHF wave function after

collision with the PNP. The method enables us to evaluate the average excitation energy and the

expectation value of the angular momentum operator, which are the basic inputs of statistical models

of particle evaporation. In this Chapter, we evaluate effects of particle evaporation using a statistical

model [190] in which the excitation energy obtained from the projection analysis can be used as an

input quantity‡.

It is certainly true that correlation effects included in the TDHF theory are somewhat limited. For

example, isoscalar and isovector pair transfers, α-cluster transfer are not treated. We consider that

MNT cross sections with improved treatment of evaporation processes will help us to uncover what is

lacking and what is needed in our description of the MNT processes. The aim of this Chapter is to

clarify to what extent the TDHF theory can describe MNT cross sections quantitatively, if we include

the effects of particle evaporation.

This Chapter is organized as follows. In Sec. 5.1, we present an outline of our formalism to include

the effects of particle evaporation in the calculation of the production cross sections. In Sec. 5.2,

we show calculated production cross sections for 48Ca+124Sn and 58Ni+208Pb reactions with and

without particle evaporation effects. Possible ways to improve the description of the MNT processes

are discussed. In Sec. 5.3, a summary and concluding remarks on this Chapter are presented.

‡ This Chapter is based on our analysis reported in Ref. [191].
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5.1 How to Evaluate Effects of Particle Evaporation

5.1.1 Excitation energy of reaction products

In Chapter 4, we have extended the PNP technique to calculate expectation values of operators, in the

particle-number projected TDHF wave function after collision. Using the method, we can calculate

energy expectation value of a fragment nucleus composed of N neutrons and Z protons by

Eµ
N,Z =

⟨
Ψ
∣∣ĤV P̂

(n)
N P̂

(p)
Z

∣∣Ψ⟩⟨
Ψ
∣∣P̂ (n)

N P̂
(p)
Z

∣∣Ψ⟩ , (5.1.1)

where µ denotes either PLF or TLF, a fragment nucleus to be analyzed included in the spatial region

V . ĤV ≡ T̂V + V̂V =
∑

iΘV (ri) t̂i+
∑

i<j ΘV (ri)ΘV (rj) v̂ij denotes a Hamiltonian acting only for the

fragment nucleus. As explained in Chapter 4, we remove the energy associated with the center-of-mass

motion of the fragment nucleus by changing the coordinate system to the rest frame of the fragment.

We evaluate the energy expectation value using Eq. (5.1.1). The kinetic energy term for the

fragment nucleus composed of N neutrons and Z protons can be calculated as

T µ
N,Z = T (n)µ

N + T (p)µ
Z , (5.1.2)

where

T (q)µ
n ≡ 1

2πP
(q)
n

∫ 2π

0
dθ einθ detB(q)(θ) ℏ2

2m

∑
i∈q, σ

∫
V
dr ∇ψ∗

i (rσ) · ∇ψ̃i(rσ, θ). (5.1.3)

ψ̃i(rσ, θ) is defined by ψ̃i(rσ, θ) ≡
∑

k∈qi

(
B(qi)(θ)

)−1

ik
ψk(rσ). The center-of-mass correction is simply

taken into account by considering the one-body term, replacing the coefficient of the kinetic energy

operator ℏ2
2m with ℏ2

2m(1− 1
A), where A = N+Z denotes the mass number of the fragment nucleus. The

interaction part is calculated using transition densities, (e.g. the transition proton density is given by

ρ̃(p)(r, θ) ≡
∑

i∈p, σ ψ
∗
i (rσ)ψ̃i(rσ, θ)). The two-body and three-body interaction terms for the fragment

composed of N neutrons and Z protons are calculated as

EµN,Z,int ≡
1

(2π)2P
(n)
N P

(p)
Z

∫ 2π

0
dθ

∫ 2π

0
dφ ei(Nθ+Zφ) detB(θ, φ)

∫
V
dr Ṽ[r, θ, φ], (5.1.4)

where detB(θ, φ) ≡ detB(n)(θ) detB(p)(φ). The Coulomb energy is evaluated using the transition

proton density, ρ̃(p)(r, θ), inside the spatial region V .

We then define the excitation energy of the PLF composed of N neutrons and Z protons by

E∗µ
N,Z(E, b) ≡ E

µ
N,Z(E, b)− E

g.s.
N,Z , (5.1.5)

where

EµN,Z ≡ T
µ
N,Z + EµN,Z,int + E

µ
Z,Coul (5.1.6)

denotes the energy expectation value of the fragment nucleus. Eg.s.
N,Z is the ground state energy of the

nucleus composed of N neutrons and Z protons. In order to evaluate the excitation energy of reaction

products in various transfer channels, we performed ground state calculations for isotopes with the

atomic number 14 ≤ Z ≤ 35 using the Skyrme SLy5 parameter set. Properties of the HF ground

states for those nuclei are summarized in Appendix E.

In this Chapter, we will evaluate effects of particle evaporation on production cross sections for
48Ca+124Sn and 58Ni+208Pb reactions which were analyzed in Chapter 3. Thus, we have already

calculated TDHF wave functions after collision using the SLy5 parameter set [141]. However, there is
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a mathematical problem in evaluating EµN,Z,int, Eq. (5.1.4), using a Skyrme EDF with the fractional-

power density [148, 149, 150], as we mentioned in Sec. 2.1.2. Since the SLy5 parameter set contains a

fractional-power density, we performed the following two types of calculations to examine reliability

of our calculation:

(i) : We evaluate both EµN,Z,int and E
g.s.
N,Z using the SLy5 parameter set. In this case, the Skyrme EDF

used for the TDHF calculations and for the HF ground state calculations becomes the same.

However, there remains the ambiguity because of the use of the fractional-power density.

(ii) : We evaluate EµN,Z,int with the SLyIII.0.8 parameter set [146] using the same TDHF wave function

after collision as in the method (i) (calculated with SLy5). Correspondingly, we evaluate Eg.s.
N,Z

with the SLyIII.0.8 parameter set using the same HF ground state wave function as in the

method (i) (calculated with SLy5). Since the SLyIII.0.8 parameter set contains only integer-

power densities, we can avoid the mathematical problem in evaluating EµN,Z,int.

Although the method (ii) avoid the problem, there arises a mismatch between the Skyrme EDF and

the wave functions. As a result, we find constantly larger energy of EµN,Z,int (about 5-10 MeV) than

the energy evaluated by the method (i) for all transfer channels. We thus also evaluate Eg.s.
N,Z in a

similar way to obtain consistently large ground state energies in the method (ii). The ground state

energies evaluated by the methods (i) and (ii) are shown in 3rd and 11th columns of Tables E.1-E.20

in Appendix E, respectively. We note that the both methods (i) and (ii) give similar values of the

excitation energy and resulting cross sections are almost the same. In the following, we will show

results obtained by applying excitation energies evaluated by the method (ii).

5.1.2 Particle evaporation probabilities

We evaluate the effects of particle evaporation employing a statistical model developed by Dostrovsky

and his coworkers [190]. In this model, evaporation of neutrons, protons, deuterons, tritons, 3He, and

α particles are taken into account. An input of the model is the excitation energy of a nucleus to

be disintegrate by particle emission. For more detail explanation of the model, see Ref. [190] and

references therein.

Using the average excitation energy evaluated from the TDHF wave function after collision using

Eq. (5.1.5) as an input, we simulate evaporation processes. Starting from the excited fragment nucleus,

all possible decay sequences are calculated until emissions of any particle are energetically prohibited.

A decay chain of the evaporation processes from an initial excited state to a final state is called

an evaporation cascade. In each evaporation cascade, kinds and energy of emitting particles are

determined stochastically.

As an example, let us consider a case that we calculate evaporation processes from an excited

fragment nucleus composed of N neutrons and Z protons with excitation energy of E∗µ
N,Z . If a nucleus

composed of N ′ neutrons and Z ′ protons is formed at the end of an evaporation cascade, the total

numbers of evaporated neutrons and protons are given by N −N ′ and Z −Z ′, respectively. We count

the number of cases in which n neutrons and z protons are evaporated until the end of an evaporation

cascade among all the evaporation cascades examined. We then define the evaporation probability for

n-neutron and z-proton emissions by

P evap.
n,z

[
E∗µ

N,Z(b)
]
=

Nn,z

Ncascade
. (5.1.7)

Nn,z denotes the total number of processes in which n neutrons and z protons were emitted until the

end among all the evaporation cascades. Ncascade denotes the total number of evaporation cascades

examined. We note that, because the excitation energy, E∗µ
N,Z , depends on the impact parameter,

resulting evaporation probabilities, P evap.
n,z , also depend on the impact parameter.
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Figure 5.1: Average excitation energy of the PLF in the 48Ca+124Sn reaction at Elab = 174 MeV.

Red open circles, green open triangles, blue crosses, purple open squares denote results at impact

parameters b = 3.94, 4, 5, 6 fm, respectively. Results in transfer channels with small probabilities

smaller than 10−4 are not shown.

5.1.3 Transfer cross sections with evaporation effects

In Chapter 3, we calculated a transfer cross section for the channel in which a fragment nucleus

is composed of N neutrons and Z protons by integrating the probability PN,Z(b) over the impact

parameter,

σtr(N,Z) = 2π

∫ ∞

bmin

b PN,Z(b) db. (5.1.8)

The minimum impact parameter of the integration was taken to be a border dividing fusion and binary

reactions. We assumed that both projectile and target nuclei are spherical, so that the reaction is

specified by the incident energy E and the impact parameter b. In practice, we first examined the

maximum impact parameter, bf , in which fusion reactions take place for a given incident energy. We

then repeated reaction calculations at various impact parameters for the region, b > bf , and calculated

the cross section by numerical quadrature according to Eq. (5.1.8).

To include effects of particle evaporation into the cross sections, we simply extend the expression of

the cross sections by using the evaporation probabilities obtained from the statistical calculation. Let

us denote the evaporation probability for n-neutron and z-proton emission from a fragment µ composed

of N +n neutrons and Z+ z protons having excitation energy of E∗µ
N+n,Z+z as P evap.

n,z

[
E∗PLF

N+n,Z+z

]
. The

residual nucleus after the particle evaporation is composed of N neutrons and Z protons. We calculate

the cross section for a channel where the fragment nucleus is composed of N neutrons and Z protons

including effects of particle evaporation by

σevap.tr (N,Z) = 2π

∫ ∞

bmin

b
∑
n,z

PN+n,Z+z(b) P
evap.
n,z

[
E∗µ

N+n,Z+z(b)
]
db, (5.1.9)

where the summation is taken for all possible n-neutron and z-proton evaporation processes.
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Figure 5.2: Production cross sections of the projectile (48Ca) like fragments in 48Ca+124Sn reaction

at Elab = 174 MeV. Solid (dotted) line shows cross sections calculated by the TDHF theory without

(with) evaporation effects. Measured cross sections [43] are also shown by filled circles.

5.2 Results and Discussion

We show the effects of particle evaporation on production cross sections in the 48Ca+124Sn and
58Ni+208Pb reactions which we analyzed in Chapter 3, as illustrative examples.

In Fig. 5.1, we show average excitation energy of the PLF in the 48Ca+124Sn reaction at Elab =

174 MeV evaluated by Eq. (5.1.5). Each panel shows excitation energy of specific isotopes in each

proton transfer channel. Horizontal axis is the neutron number of the PLF. Results for reactions at

several impact parameters are shown for comparison. Red open circles, green open triangles, blue

crosses, and purple open squares denote results at impact parameters, 3.94 fm, 4 fm, 5 fm, and 6 fm,

respectively. Excitation energy of nuclei with a small production probability smaller than 10−4 is not

shown.

When the impact parameter is small just outside the fusion critical impact parameter (b = 3.94 fm),

we find a finite excitation energy of about 6 MeV for all transfer channels. We find a similar result

for b = 4 fm case. As the impact parameter increases (b = 5 and 6 fm), excitation energy becomes

very small at most 2 MeV. Because the excitation energy of the fragment nuclei for the 48Ca+124Sn

reaction is not so large, we expect a small effect of particle evaporation for this system.

In Fig. 5.2, we show production cross sections of the PLF in the 48Ca+124Sn reaction with and

without the effect of particle evaporation. Red filled circles show measured cross sections [43], while

red solid (blue dotted) lines show results of the TDHF calculation without (with) the evaporation

effect. Cross sections are classified according to the number of transferred protons indicated by (±xp)
in the figure. Horizontal axis is the number of neutrons in the PLF.

From the figure, we find that the effects of particle evaporation are somewhat small as expected

from the observation of small excitation energy in Fig. 5.1. We find a visible effect in the two-proton

removal channel (−2p). Although the particle evaporation modifies the cross sections of the two-

proton removal channel toward a direction consistent with the experimental data, the calculated cross

sections still underestimate the measured cross sections when the number of neutrons in the PLF

becomes small. We note that the GRAZING calculation reported in Ref. [43] shows similar results

indicating a minor effect of particle evaporation (cf. Fig. 3.25).

Next, we show results for the 58Ni+208Pb reaction at Elab = 328.4 MeV. In Fig. 5.3, we show

average excitation energy of the PLF in the 58Ni+208Pb reaction evaluated by Eq. (5.1.5). As in

Fig. 5.1, results for different proton transfer channels are shown in different panels and horizontal

axis denotes the number of neutrons in the PLF. Results for reactions at typical impact parameters,
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Figure 5.3: Average excitation energy of PLF in 58Ni+208Pb reaction at Elab = 328.4 MeV. Red open

circles, green open triangles, blue crosses, purple open squares denote results at impact parameters

b = 1.39, 1.6, 2.75, 4 fm, respectively. Results in transfer channels with small probabilities smaller

than 10−4 are not shown.

b = 1.39, 1.60, 2.75, and 4 fm are shown. Excitation energy of nuclei with a small production

probability smaller than 10−4 is not shown.

When the impact parameter is small just outside the fusion critical impact parameter (b = 1.39 fm),

proton-pickup reactions occur through the neck breaking transfer dynamics. Because the neck breaking

dynamics accompanies a large amount of TKEL as shown in Fig. 3.17 (b), we expect a substantial

excitation in reaction products generated through the neck breaking dynamics. From the figure,

we indeed find a large excitation energy up to around 40 MeV for those nuclei. When the impact

parameter is slightly large (b = 1.6 fm), we find a similar excitation energy for reaction products in

proton-pickup channels. As the impact parameter increases, excitation energy of reaction products

decreases. At an impact parameter of 4 fm, we find somewhat small excitation energy of reaction

products. We find that the average excitation energy is not so much dependent on the number of

transferred nucleons in reactions at a given impact parameter.

In Fig. 5.4, we show production cross sections in the 58Ni+208Pb reaction classified according to

the change of the proton number of the PLF from 58Ni, as functions of the neutron number of the PLF.

Red filled circles denote measured cross sections [47] and red solid (blue dotted) lines denote results of
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Figure 5.4: Production cross sections of the projectile (58Ni) like fragments in 58Ni+208Pb reaction

at Elab = 328.4 MeV. Solid (dotted) line shows cross sections calculated by the TDHF theory without

(with) evaporation effects. Measured cross sections [47] are also shown by filled circles.

the TDHF calculations without (with) effects of particle evaporation. As can be seen from the figure,

the inclusion of effects of particle evaporation modifies the cross sections slightly toward lower neutron

number side consistent with the experimental data. However, as the number of transferred nucleons

increases, there appear discrepancies even when we include evaporation effects.

We conceive several possible origins of the discrepancy as follows. (i) We may consider that,

if there were more particle evaporation of not only neutrons but also protons, the calculated cross

sections would shift toward the desired direction indicated by the experimental data. Because we only

performed the PNP when we evaluate excitation energy of reaction products, the evaluated excitation

energy is averaged over all possible quantum states of the fragment nucleus. We anticipate that there

are certain states having higher excitation energies compared with the average excitation energy. These

states would emit more particles than the average state which we used to evaluate the evaporation

effects. We note that to calculate an excitation-energy distribution by an energy projection is difficult

and we could not investigate this possibility yet. In addition, we assumed that each primary reaction

product becomes a CN keeping its mass and excitation energy. There would also be fast preequilibrium

particle emissions which are not considered in our treatment. Such preequilibrium particle emissions

may also increase the number of emitted particles.

Another possible origin of the discrepancy is (ii) an insufficient description of the MNT processes
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because of the mean-field nature of the TDHF theory. In the TDHF theory, MNT processes are

described by transfer of single-particle wave functions in a single time-dependent mean-field potential.

In reality, we expect a transfer-channel dependent potential. That is, the depth of the potential

would be changed depending on the number of transferred nucleons between two colliding nuclei. For

example, in the 58Ni+208Pb case, when many protons are removed from 58Ni, the depth of the potential

for nucleons inside the projectile-like nucleus should become shallower and it would suppress neutron

transfer from 208Pb to 58Ni. This kind of transfer-channel dependence of the mean-field potential

is not sufficiently included in the description of the TDHF theory. A promising way to improve

the description is a use of time-dependent generator coordinate method (TDGCM) [192, 193]. The

TDGCM is a time-dependent extension of the generator coordinate method (GCM) which has widely

succeeded in calculating static nuclear properties including many-body correlations beyond the mean-

field level [136]. The method based on a time-dependent variational principle with a trial function

which is given by a superposition of time-dependent many-body wave functions. The coefficients of

those time-dependent basis functions (generator coordinates) are determined obeying the variational

principle. By choosing the time-dependent basis functions as a superposition of TDHF wave functions

with a constraint on average number of transferred nucleons or TDHF wave functions for different

projectile-target combinations (e.g. 57Co+209Bi, 56Fe+210Po, and so on, for the 58Ni+208Pb system),

we may get a more sufficient description of the MNT processes. Although we recognize a difficulty

concerning the absence of the many-body Hamiltonian in the TDHF theory with a density-dependent

Skyrme EDF [193], recently, a density-independent functional has been developed [194]. Since the

TDGCM calculation requires only about 10 times larger computational cost compared with the TDHF

theory (of course, it depends on how may generator coordinates we use) and there is a development of

the density-independent functional, it will be a promising tool to improve our description of the MNT

processes.

The other possible origin of the discrepancy is (iii) a luck of correlation effects beyond the mean-

field level. For example, the pairing correlation is known to be important in nuclear structure at

low excitation energy. Although effects of pairing correlations on reaction dynamics have not been

fully understood yet, significant effects on MNT processes have been advocated [47, 50]. The time-

dependent Hartree-Fock-Bogoliubov (TDHFB) theory would provide us a sufficient description of

nuclear dynamics including effects of the pairing correlation [195, 196, 197, 198]. However, because

it requires a tremendous computational cost, the application of the TDHFB theory to the nuclear

collision dynamics is a challenging subject. Recently, a simplified version of the TDHFB theory,

referred to as TDHF+BCS, has been developed and successfully applied to linear responses and

nuclear reactions [199, 200, 201, 202, 203, 204, 205, 206, 207, 208]. A similar analysis of the MNT

reaction using the TDHF+BCS to examine effects of pairing on reaction dynamics is of great interests.

Another possibility is use of the Barian-Vénéroni variational principle which is equivalent to the time-

dependent random phase approximation (TDRPA), which will give us a more better description of

the width of mass distributions in the MNT reaction at a small impact parameter region [176]. Other

sophisticated approaches such as time-dependent density matrix (TDDM) [209, 210, 211, 212] and

stochastic mean-field (SMF) [179, 213, 214, 215] theories would provide us a promising foundation to

include further many-body correlations into the description. Application of these theoretical models

to the MNT reaction is one of the future subjects of this work.
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5.3 Summary and Concluding Remarks on Chapter 5

In this Chapter, we have presented the effects of particle evaporation on MNT cross sections within the

framework of the TDHF theory combined with the PNP. We evaluated excitation energy of a fragment

nucleus in each transfer channel using the extended PNP technique which we have developed in

Chapter 4. As illustrative examples, we showed MNT cross sections for 48Ca+124Sn and 58Ni+208Pb

reactions with and without the effect of particle evaporation, and compared them with measured

cross sections. We have found that the inclusion of the effects of particle evaporation improves the

cross sections toward the direction that the experimental data suggested. However, calculations still

underestimate measured cross sections when a number of protons are transferred. Possible origins of

the discrepancy and some ways to improve the description were discussed.

In summary, in the first part of the thesis (Part I: Chapters 3, 4, and 5), we have examined

whether or not the TDHF theory describes MNT cross sections quantitatively. From the results of

the thorough analyses of MNT processes in several systems for which extensive experimental data are

available, we draw a conclusion that the TDHF theory is capable of describing the MNT reaction

in low-energy heavy ion reactions at energies around the Coulomb barrier reasonably well with an

accuracy comparable to the existing theories, GRAZING, CWKB, and the Langevin-type dynamical

model.

In the next part of the thesis (Part II: Chapters 6, 7, 8, and 9), we will extend the application

of the TDHF theory to reactions involving more heavier nuclei such as 238U. Because of the large

charge product ZPZT of the system, we will find a substantial contribution from the QF process.

Applicability of the TDHF theory to the MNT and QF processes in reactions of very heavy nuclei will

be discussed in Part II.
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Chapter 6

MNT AND QF PROCESSES IN
64Ni+238U REACTION

In the first part of the thesis (Part I: Chapters 3, 4, and 5), we have investigated MNT processes in low-

energy heavy ion reactions for several systems employing the TDHF theory. In Chapter 3, we showed

that MNT cross sections can be reasonably described by the TDHF theory combined with the PNP

technique. In Chapter 4, we developed a formalism to calculate expectation values of operators in the

TDHF wave function after collision with the PNP. This method enables us to examine properties of

reaction products. In Chapter 5, we examined effects of particle evaporation on MNT cross sections by

employing a statistical model using excitation energy of reaction products calculated from the TDHF

wave function after collision as an input. From the thorough analyses of MNT processes, we concluded

that the TDHF theory can quantitatively describe the MNT reaction with an accuracy comparable to

other existing theories. Because the TDHF calculation can describe microscopic many-body dynamics

without any artificial parameters adjustable for each colliding system, we consider that the TDHF

theory will be a useful tool for providing a reliable prediction of MNT cross sections.

In this second part of the thesis (Part II: Chapters 6, 7, 8, and 9), we extend the application of the

TDHF theory to reactions involving more heavier nuclei such as 238U. In reactions of heavy nuclei, the

QF process is expected to be a dominant process at a small impact parameter region, because of the

substantial suppression of the fusion reaction by the strong Coulomb repulsion. The main purpose of

this second part is to examine how feasibly the TDHF theory describes the MNT and QF processes

in reactions involving heavy nuclei.

In this Chapter, we investigate MNT and QF processes in 64Ni+238U reaction as our first appli-

cation to reactions involving 238U. The 64Ni+238U reaction at energies around the Coulomb barrier

has been extensively studied experimentally [45, 79, 216, 217]. MNT cross sections were measured by

Corradi et al. [45] in INFN-LNL, Legnaro, Italy. In Fig. 6.1, we show the measured cross sections

(black dots) classified according to the number of transferred protons indicated by (±xp). The minus

sign corresponds to transfer from 64Ni to 238U, while the plus sign corresponds to transfer from 238U

to 64Ni. Their precise experimental data show not only proton-stripping channels but also proton-

pickup channels. The latter process is not expected from the N/Z ratios of the projectile and target

nuclei before the collision. Theoretical analysis using the GRAZING code was also reported in Ref. [45],

which are shown in Fig. 6.1 by histograms. The GRAZING calculation reproduced measured cross

sections reasonably for (0p), (−1p), and (−2p) channels with a similar accuracy for lighter systems

examined in Chapter 3. However, the GRAZING calculation underestimated measured cross sections

for proton-pickup channels, may be due to an inappropriate assumption of the strong absorption in a

small impact parameter region. The 64Ni+238U system has the charge product of ZPZT = 2576 and

the assumption would not be valid if a substantial suppression of the fusion reaction takes place.
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Figure 6.1: Production cross sections for the PLF in the 64Ni+238U reaction at Elab = 390 MeV.

Dots represent measured cross sections, while histograms represent results calculated by the GRAZING

code. The figure was taken from Ref. [45].

Figure 6.2: Yield of measured reaction products in TKE-A plane (upper panels) and a projection of

the yield inside the contour lines in the TKE-A plots on to the A axis (lower panels) in the 64Ni+238U

reactions at Elab = 330, 343, 358, and 382 MeV. These energies correspond to excitation energies of

the CN of 19, 31, 43, and 62 MeV, respectively. The figure was taken from Ref. [216].
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Thus, if the TDHF theory can describe the cross sections for proton-pickup channels, it will be an

indication of a better description of transfer dynamics in the small impact parameter region. To clarify

this argument is one of the main motivations of this investigation.

The 64Ni+238U reaction has also attracted much interests as a possible candidate for producing a

SH nucleus with atomic number Z = 120. To examine whether the reaction 64
28Ni36+

238
92 U146 →302

120Ubn182
is promising or not to produce the SH nucleus with Z = 120, fission fragment mass distributions were

measured at several incident energies by Kozulin et al. [216]. In Fig. 6.2, we show the measured

fragment mass distributions in the 64Ni+238U reaction at four incident energies. Upper panels show

the fragment mass distributions in total kinetic energy (TKE) vs. fragment mass (A) plane. While

lower panels show a projection of the yield inside the contour line in the TKE-A plot onto the A axis.

As the incident energy increases, the measured mass distributions show a mass drift mode toward

the mass symmetry. However, even at the highest incident energy examined, Elab = 382 MeV, which

corresponds to 62 MeV excitation energy of the CN, completely mass symmetric fragments around

A ∼ 151 were hardly produced. We may expect substantial yields of the mass symmetric fragments

if the CN was formed. Therefore, regarding the experimental results, Kozulin et al. concluded that

this reaction is not suitable for producing the SH nucleus with Z = 120. We are interested in to

what extent the TDHF theory reproduces measured trends of QF processes. From comparisons of

calculated cross sections and TKE-A distributions with those of measurements, we discuss reaction

dynamics of MNT and QF processes in the TDHF theory.

This Chapter is organized as follows. In Sec. 6.1, we briefly describe some computational details of

the TDHF calculations presented in this Chapter. In Sec. 6.2, we show MNT cross sections calculated

by the TDHF theory combined with the PNP in comparison with the experimental data. In Sec. 6.3,

we make a further comparison of the TKE-A distribution evaluated by the TDHF calculation with

the measurements. In Sec. 6.4, we investigate energy dependence of the QF dynamics in head-on

collisions of 64Ni+238U for two orientations of 238U, the tip and side collisions. In Sec. 6.5, a summary

and concluding remarks on this Chapter are presented.

6.1 Computational Details

We use our computational code of the TDHF calculation for heavy ion reactions as in Part I. We use

a Skyrme EDF with the SLy5 parameter set [141]. We use a numerical box with 30 × 30 × 30 grid

points to calculate HF ground states of projectile and target nuclei. The mesh spacing is set to be

0.8 fm. For the TDHF calculation, a numerical box with 70× 70× 30 grid points is used. The initial

separation distance is set to be 24 fm in the incident direction (parallel to the x-axis). The impact

parameter vector is set parallel to the positive-y direction. For the time evolution operator, the Taylor

expansion method of 4th order is used with a small time step of ∆t = 0.2 fm/c. We stop the time

evolution calculation when the relative distance between two fragment nuclei exceeds a critical value,

26 fm. We have performed the TDHF calculations for an impact parameter region 0 fm ≤ b ≤ 10 fm.

We calculate the reaction with 0.5-fm step for 0 fm ≤ b ≤ 5 fm, while we calculate the reaction with

1-fm step for b > 5 fm. For the PNP analysis, we discretize the integral over the phase factor θ into

M = 300 equal grids and evaluate it utilizing the trapezoidal rule.

From the ground-state calculation, the HF ground state of 238U turns out to be prolate shape with

β ∼ 0.27, while that of 64Ni turns out to be oblate shape with β ∼ 0.11. Concerning the relatively

large deformation of 238U, we performed the TDHF calculations of the 64Ni+238U reaction at three

different initial orientations. We set the symmetry axis of 238U parallel to the x-, y-, and z-axis, while

the symmetry axis of 64Ni is always set parallel to the z-axis (perpendicular to the collision plane).

These initial configurations for the TDHF calculation are shown in Fig. 6.3.
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Figure 6.3: Schematic picture of the initial configurations of our TDHF calculations. We specify

the relative orientation by the direction of symmetry axis of 238U at the initial stage of the TDHF

calculation. In this thesis, we investigate three initial orientations, denoted as x-, y-, and z-direction,

as shown in the panels (a), (b), and (c), respectively.

6.2 MNT Processes

We first present MNT cross sections calculated by the TDHF theory combined with the PNP technique.

Because both projectile and target nuclei are deformed in their HF ground states, we should take an

orientation average to take full account of effects of deformation on MNT cross sections. However,

since the orientation average requires a huge computational cost, we have not achieved the orientation

average. Here we just show contributions from each initial configuration.

In Fig. 6.4, we show MNT cross sections obtained from the TDHF calculations combined with

the PNP in comparison with the experimental data. Red filled circles denote measured cross sections

reported in Ref. [45]. Red solid, green dashed, and blue dotted lines show results of the TDHF

calculation for different initial configurations, the x-, y-, and z-direction configurations, respectively.

Each panel shows cross sections for specific proton transfer channels. The (−xp) indicates that x

protons are transferred from 64Ni to 238U (proton-stripping channels), while the (+xp) indicates that

x protons are transferred from 238U to 64Ni (proton-pickup channels). The horizontal axis is the mass

number A of the lighter (64Ni-like) fragment.

From the figure, we find that the TDHF theory reasonably reproduces measured cross sections for

both proton-stripping (−xp) and proton-pickup (+xp) channels. For the proton-stripping channels,

the TDHF theory quantitatively describe measured cross sections up to around two-proton stripping

reactions (−2p). As the number of removed protons increases, the peak position sifts toward larger

neutron number side compared with that of the measured cross sections. For (−3p), (−4p), (−5p),
and (−6p) channels, we find that cross sections contributed from the y- and z-direction configurations

are much larger than those contributed from the x-direction configuration. When many protons are

transferred, the TDHF calculation underestimates the measured cross sections (see (−4p), (−5p), and
(−6p) panels). This behavior is similar to the cases of MNT processes in lighter systems shown in

Chapter 3. By comparing transfer cross sections of proton-stripping channels (−xp) calculated by the

TDHF theory with those of GRAZING shown in Fig. 6.1, we get the same conclusion as in Chapter 3

that the TDHF theory describes MNT cross sections reasonably well with an accuracy comparable to

the GRAZING calculation.

In contrast, for the proton-pickup channels (+xp), the TDHF theory gives quantitatively much

better descriptions compared with the GRAZING calculation (cf. Fig. 6.1). In the TDHF calculation,

we obtain substantial cross sections not only for one-proton pickup (+1p) but also two-proton pickup

(+2p) channels. The GRAZING calculation underestimates those cross sections, e.g. about two orders
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Figure 6.4: Transfer cross sections for the 64Ni+238U reaction at Elab = 390 MeV. Red filled circles

denote measured cross sections reported in Ref. [45]. Red solid, green dashed, and blue dotted lines

show results of the TDHF calculations for x-, y-, and z-direction configurations, respectively. Effects

of particle evaporation were not taken into account in our calculation.

of magnitude smaller values than the measurements for the two-proton pickup channel (+2p). This

fact may be caused by an insufficient description of a small impact parameter region in the GRAZING

calculation. In the GRAZING code, contributions from the small impact parameter region are neglected

assuming the strong absorption of the flux from MNT channels to more complex mechanisms. Because

of the large charge product, ZPZT = 2576, there may remain a significant contribution to MNT

processes from the small impact parameter region. Because the TDHF theory dose not include any

artificial assumption on the reaction dynamics, we expect more reliable descriptions of the reaction

dynamics in the small impact parameter region. This is one of the advantages of our approach and we

have got a confidence from the much better description of the cross sections of proton-pickup channels

in the 64Ni+238U reaction.

6.3 QF Processes

As a matter of fact, the TDHF calculation gives much more abundant cross sections for proton-pickup

channels not only the one- and two-proton pickup channels, (+1p) and (+2p) shown in Fig. 6.4, but

also channels which correspond to transfer of many protons up to 12-20 from 238U to 64Ni producing

nuclei with Z ∼ 40-50. Transfer cross sections for such a many-proton transfer from 238U to 64Ni were

not measured in the experiment of Ref. [45]. We note that, in Ref. [45], Corradi et al. mentioned

that they actually observed reaction products with the atomic number around Z ∼ 40. However,

quantitative estimates of cross sections could not be achieved, since the experimental setup was not

optimized for those fragments. These reaction products associated with the many-proton transfer

from 238U to 64Ni were interpreted as a contribution from QF processes [45].

In Fig. 6.5, we show average numbers of nucleons in the lighter (64Ni-like, upper panels) and the

heavier (238U-like, lower panels) fragments as functions of the impact parameter, b. Red open circles,
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Figure 6.5: Average numbers of neutrons (left panels) and protons (right panels) in the lighter (64Ni-

like) fragment ((a) and (b)) and in the heavier (238U-like) fragment ((c) and (d)) as functions of the

impact parameter. Red open circles, green crosses, and blue open diamonds connected with lines show

results for different initial configurations, x-, y-, and z-direction cases, respectively.

green crosses, blue open triangles denote results at different initial orientations, the x-, y-, and z-

direction configurations, respectively. When the impact parameter is sufficiently large (b > 5 fm),

the average numbers of nucleons almost coincide with the initial values, N = 36 and Z = 28 for

the 64Ni-like fragment shown in the panels (a) and (b), and N = 146 and Z = 92 for the 238U-like

fragment shown in the panels (c) and (d). What we observed in the cross sections shown in Fig. 6.4

would be contributions from this relatively large impact parameter region, b ≳ 5 fm. We note that

the slightly different behavior at b ∼ 5 fm shown in the panel (b) results in the difference of cross

sections for (−4p), (−5p), and (−6p) channels. The mass drift mode in the small impact parameter

region b < 5 fm is regarded as the QF process.

As the impact parameter decreases, the average number of nucleons in the fragment nuclei changes

suddenly at around b ∼ 5 fm. Both neutrons and protons are transferred from 238U to 64Ni toward the

mass symmetry in the small impact parameter region, b ≲ 5 fm. The behavior of the average numbers

of nucleons as functions of the impact parameter depends much on the initial orientations. When the

symmetry axis of 238U is set perpendicular to the collision plane (z-direction case, shown by blue open
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Figure 6.6: Time evolution of the density on the collision plane in the 64Ni+238U reaction at Elab =

390 MeV and b = 2 fm. Left panels show results for the x-direction configuration, while right panels

show results for the y-direction configuration. The label ‘t = x fm/c’ denotes the elapsed time started

from the initial stage of the TDHF calculation.
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Figure 6.7: The total kinetic energy (TKE) vs. average mass numbers (A) of the PLF and the

TLF in the TDHF calculation of the 64Ni+238U reaction at Elab = 390 MeV. Red open circles, green

crosses, blue open triangles denote results at different initial configurations, x-, y-, and z-direction

configurations, respectively. Gray solid line shows the TKE distribution evaluated by Eq. (6.3.1) which

is based on the Viola systematics [223].

triangles), the change in the average nucleon number is moderate. On the other hand, in the case of

x- and y-direction configurations, the change is dramatic. At around b ∼ 4 fm, the average numbers

of nucleons in the fragment nuclei jump up to N ∼ 56-60 and Z ∼ 30-40 in the lighter fragment and

N ∼ 122-126 and Z ∼ 80-82 in the heavier fragment. In the x-direction case (red open circles), we find

a prominent plateau persisting a wide impact parameter region smaller than 4 fm. A similar behavior

was reported in Ref. [124]. We suspect that a substantial structural effect related to a relatively large

binding energy of spherical 208Pb and prolate 90−100Zr [218, 219, 220] may responsible for this process

as mentioned in Ref. [125]. We note that, in the Langevin approach, substantial effects of structure

were often observed, e.g. effects of large binding energy in doubly magic 208Pb on fission fragment mass

distributions [29, 69, 70, 71, 72, 84]. The substantial effect of doubly magic 208Pb on QF dynamics

is also observed experimentally [221, 222]. While in the y-direction case (green crosses), behavior is

somewhat different showing a massive nucleon flow up to transfer of 56 nucleons from 238U to 64Ni.

This trend is consistent with a statement in Ref. [125]. We note that, for head-on collision (b = 0 fm),

the average number of nucleons changes suddenly in the y-direction configuration. These behaviors

may be understood from a simple geometrical consideration with a very thick neck formation between

two colliding nuclei. In the case of y-direction case, thickness of the neck can be much larger than that

in x-direction case at the small impact parameter region (see, e.g., panels with 800 fm/c in Fig. 6.6).

The thick and long neck formation is substantially suppressed in the head-on collision, because the

system keeps an initial spatial symmetry. Figure 6.6 shows snapshots of the density distribution on

the collision plane for typical two cases of 64Ni+238U reaction at b = 2 fm, from which we may get an

intuitive understanding of the above discussed behavior in x- and y-direction configurations.

To investigate the reality of the QF process obtained from the TDHF calculations, in Fig. 6.7,

we show an average TKE-A plot obtained from the TDHF calculations. It can be compared with

measured TKE-A plot shown in Fig. 6.2. The horizontal axis A is the average number of nucleons

in the lighter (64Ni-like) and the heavier (238U-like) fragments. Red open circles, green crosses, and

blue open triangles connected with lines show results for different initial orientations, the x-, y-, and

z-direction configurations, respectively.

The incident energy of Elab = 390 MeV corresponds to the incident relative energy of 307.4 MeV.

Thus the maxima of TKE around AL ∼ 64 and AH ∼ 238 correspond to the quasielastic scattering.
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Here we have introduced AL and AH which represent the average mass number of lighter and heavier

fragments, respectively. From the figure, we find that, when the TKE becomes smaller than around

240 MeV, the average mass numbers change suddenly toward the direction of the mass symmetry.

For comparison, we also plot the TKE distribution evaluated based on the Viola systematics [223]

including mass-asymmetry dependence [224, 225]. The formula is given by

TKEViola =
0.755ZLZH

A
1/3
L +A

1/3
H

+ 7.3 MeV, (6.3.1)

where ZL(H) is the proton number of the lighter (heavier) fragment. We have assumed that the Z/A

ratio of the fragment nuclei equals to that of the CN and any particle emissions are neglected. As

seen from the figure, we find a reasonable agreement between the TKE obtained from the TDHF

calculations and the Viola systematics. It indicates that the so called full momentum transfer from

the relative energy to internal excitations is achieved and the TKE is roughly determined by the

Coulomb energy at a scission configuration of the dinuclear system.

As shown in Fig. 6.2, we also find a similar mass drift mode in the forth column of the figure which

corresponds to a similar incident energy of Elab = 382 MeV. The two peaks in the measured fragment

mass distributions correspond to AL ∼ 90 and AH ∼ 210. The TDHF calculation shows a similar

mass drift mode in dissipative processes in the 64Ni+238U reaction at the small impact parameter

region, b ≲ 5 fm.

From the results, we conclude that the TDHF theory is capable of describing not only the MNT

process but also the QF process in 64Ni+238U reaction. We have found a reasonable agreement of the

TKE-A distribution obtained from the TDHF calculation with those of the Viola systematics and the

experimental data, which indicates that a sufficient energy dissipation could be described by the so

called one-body dissipation dynamics in the TDHF theory.

6.4 Energy Dependence of QF Dynamics

To get more deeper understandings of the QF processes, we examine energy dependence of the QF

dynamics in 64Ni+238U reaction. For simplicity, we only consider head-on collisions (b = 0 fm). To

examine orientation dependence of the QF dynamics, we calculate head-on collisions at two different

configurations, the x-direction configuration in which the symmetry axis of 238U is set parallel to the

collision axis (corresponds to the tip collision) and the y-direction configuration in which the symmetry

axis of 238U is set parallel to the y-axis (corresponds to the side collision).

In Fig. 6.8, we show average numbers of neutrons and protons in the lighter (64Ni-like) fragment

((a) and (b)) and the heavier (238U-like) fragment ((c) and (d)) as functions of the incident energy.

Red open circles connected with lines show results for the tip collisions, while green crosses connected

with lines show results for the side collisions. The initial neutron and proton numbers of the projectile

and target nuclei are represented by horizontal dotted lines.

As seen from the figure, we find a substantial orientation dependence as well as the incident energy

dependence of the QF dynamics. When the incident energy is sufficiently small, the average numbers

of neutrons and protons in reaction products almost coincide with the initial values. However, when

the incident energy becomes higher than the Coulomb barrier, a drastic change of the neutron and

proton numbers of the fragment nuclei is observed. In tip collisions (red open circles), the neutron and

proton numbers of the fragment nuclei saturate at certain values. In tip collisions, two nuclei cannot

form a compact configuration and the composite system always elongated forming an asymmetric

dumbbell-like shape. Because of the asymmetric dumbbell-like shape, a neck is always developed

forming mass asymmetric fragments.
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On the other hand, results for the side collisions show different behavior. In side collisions (green

crosses), the composite system of the projectile and target nuclei tends to form a compact configura-

tion. In other words, the thickness of the neck formed between colliding nuclei becomes substantially

large forming a mononuclear configuration. Because of the compact mononuclear configuration, a

neck is developed forming mass symmetric fragments. We find a somewhat longer sticking time in

side collisions compared with tip collisions. Especially, we observed capture processes in side collisions

at Elab ≳ 450 MeV, while, we have never observed any capture processes in tip collisions.

To give an intuitive understanding of the QF dynamics, we show the time evolution of the density

in reactions at typical two incident energies, Elab = 362.1 MeV and Elab = 470.7 MeV. Figure 6.9

shows typical QF dynamics for the tip and side collisions in reactions at Elab = 362.1 MeV. In

both cases, a very thick neck is formed between two colliding nuclei (320-480 fm/c). In the side

collision, the dinuclear system keeps its configuration up to around 1600 fm/c. After that, the neck

structure starts shrinking and, eventually, it dissociates (2560 fm/c). On the other hand, in the tip

collision, the dinuclear system forms an elongated neck (480-960 fm/c) and dissociates showing a

relatively short sticking time. A similar dynamics is observed in the plateau region emerged at around

350 MeV < Elab < 500 MeV in Fig. 6.8.

In Fig. 6.10, we show a similar contour plots of the density in reactions at Elab = 470.7 MeV.

As mentioned above, in the tip collision, we see a quite similar behavior of the QF dynamics as

shown in Fig. 6.9. Not only the time-dependent shape evolution but also the sticking time are very

similar to each other. On the other hand, in the side collision, we find a different behavior of reaction

dynamics. Since the incident energy is higher than that of the previous example, two nuclei collides

more deeply (320 fm/c). Then the composite system of the projectile and target nuclei forms a compact

mononuclear configuration (480-6000 fm/c). It is remarkable that, in the side collision, we observed a

capture process forming the SH composite system of Z = 120. We observed similar capture processes

for side collisions at incident energy of Elab ≥ 470.7 MeV. While any capture process has never been

observed in the tip collisions, even if we increase the incident energy up to around 700 MeV.

From these results, we realize that the QF dynamics depends much on the relative orientation of

the two colliding nuclei. In Refs. [226, 227, 228, 229, 230], it was argued that the side collision tends

to form a compact shape leading to a CN formation, while the tip collision would form an elongated

dinuclear system with substantial components of QF processes, consistent with our observed behavior

in the TDHF calculations.
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Figure 6.8: Incident energy dependence of the fragment’s N and Z in head-on collisions of 64Ni+238U.

The ‘x-direction’ means that symmetry axis of 238U is set parallel to the collision axis (tip collision),

while the ‘y-direction’ means that the symmetry axis is set perpendicular to the collision axis (side

collision). Upper panels ((a) and (b)) show average numbers of nucleons in the lighter (6428Ni36-like)

fragment, while lower panels ((c) and (d)) show those in the heavier (23892 U146-like) fragment. The

initial neutron and proton numbers in the projectile and target nuclei are represented by horizontal

dotted lines.
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6.5 Summary and Concluding Remarks on Chapter 6

In this Chapter, we have investigated 64Ni+238U reaction at energies around the Coulomb barrier to

examine to what extent the TDHF theory is feasible in describing MNT and QF processes in such a

heavier system. For the 64Ni+238U reaction, extensive measurements were performed for both MNT

and QF processes [45, 79, 216, 217]

Because the HF ground state of 238U is largely deformed in prolate shape, we performed TDHF

calculations for an impact parameter region 0 fm ≤ b ≤ 10 fm by taking three different initial ori-

entations of 238U. We applied the PNP technique to calculate MNT cross sections and compared

them with experimental data [45]. From the comparison, we have found that the TDHF theory again

nicely reproduces the experimental data with an accuracy comparable to the GRAZING calculation. A

remarkable thing is that the TDHF theory quantitatively reproduce the measured cross sections not

only for proton-stripping channels (64Ni→238U) but also proton-pickup channels (64Ni←238U), where

the latter process is opposite to the direction expected from N/Z ratios of projectile and target nuclei.

The semiclassical GRAZING calculation underestimates the measured cross sections of proton-pickup

channels, because of neglected contributions from the small impact parameter region. This result will

be an evidence of a reasonable description of a transitional regime from quasielastic to more complex

reaction channels in the TDHF theory.

At a small impact parameter region, we found a mass drift mode toward the direction increasing

the mass symmetry in the TDHF calculation. By comparing an average TKE-A distribution obtained

from the TDHF calculations with available experimental data, we found that the mass numbers of

the fragment nuclei in the mass drift mode roughly coincide with the measured TKE-A distribution.

This fact indicates that the TDHF theory is capable of describing QF processes reasonably without

any parameters specific to the reaction dynamics.

To get deeper insight into reaction mechanisms, we have investigated energy dependence of the

QF dynamics in head-on collisions of 64Ni+238U. From the results, we found that the QF dynamics

is strongly affected by the initial orientations of 238U. In side collisions, the composite system of the

projectile and target nuclei tends to form a compact mononuclear-type shape, while an asymmetric

dumbbell-like elongated dinuclear shape is formed in tip collisions. Especially, in side collisions, we

observed capture processes forming a SH nucleus with Z = 120 at incident energies larger than

Elab ∼ 450 MeV. Similar effects of the relative orientation on reaction dynamics were extensively

discussed [226, 227, 228, 229, 230] and consistent with our calculations.

In the QF process, we observed some stabilizing effects which may be related to structure of

fragment nuclei, e.g. a large binding energy of doubly magic 208Pb. In the dynamical model based

on Langevin-type equations of motion, the QF dynamics is described by Langevin dynamics on a

multidimensional potential energy surface (PES) of the composite system [69, 70]. In the model,

significant effects of nuclear structure were observed, especially influence of a large binding energy of

doubly magic nuclei such as 208Pb or 78Ni. Such structural effects generate some substantial valleys on

the landscape of the PES [29, 69, 70, 71, 72, 84], which gather dynamical trajectories. We can calculate

such a PES of the composite system employing the CHF method. We consider that a comparison

between a landscape obtained from the static CHF calculation and the QF dynamics obtained from

the TDHF calculation will be useful for developing further understanding of the QF process.

The results reported in this Chapter show the feasibility of the TDHF theory in describing not only

MNT reactions at peripheral collisions but also QF dynamics in damped collisions at a small impact

parameter region in a microscopic way without any adjustable parameter for the reaction dynamics.

In the next Chapter (Chapter 7), we will show another application of the TDHF theory to reactions

involving 238U, i.e. 238U+100,124,132Sn reactions.
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Section 6.5 Summary and Concluding Remarks on Chapter 6

Figure 6.9: Time evolution of the density on the collision plane (xy-plane) in head-on collisions of
64Ni+238U at Elab ∼ 362.1 MeV. Results for the side collision (y-direction) are shown in left panels,

while results for the tip collision (x-direction) are shown in right panels. Labels ‘t = x fm/c’ indicate

an elapsed time from the initial stage of the TDHF calculation.
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Figure 6.10: Same as Fig. 6.9 but for the case of Elab ∼ 470.7 MeV.
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Chapter 7

MNT AND QF PROCESSES IN
238U+100,124,132Sn REACTIONS

In the second part of the thesis (Part II), we have examined to what extent the TDHF theory rea-

sonably describes MNT and QF processes in reactions involving heavy nuclei. In Chapter 6, we have

investigated 64Ni+238U reaction as the first consideration. From the results, we have found that the

MNT processes are again quantitatively described by the TDHF theory combined with the PNP. It is

worth emphasizing that the TDHF theory reasonably well describes not only proton-stripping chan-

nels, which are expected from N/Z ratios of the initial system, but also proton-pickup channels, which

correspond to the opposite direction. From a comparison of TKE-A distributions obtained from the

TDHF calculations and those of available experimental data, we have found a reasonable agreement

between them. Because the TDHF theory nicely reproduces a measured mass drift mode toward the

mass symmetry which has considered as QF processes, we have got a confidence that the TDHF the-

ory is capable of describing both MNT and QF processes based on a unified microscopic description

without any adjustable parameter specific to the reaction dynamics.

In this Chapter, we investigate 238U+100,124,132Sn reactions as a next example§. About 30 years ago,

pioneering measurements of MNT cross sections in 238U-induced dissipative collisions were achieved by

Mayer et al. at GSI, Darmstadt, Germany [232]. In the measurements for 238U+124Sn reaction, MNT

processes accompanying more than ten protons from 238U to 124Sn were observed. Possible structural

effects were advocated to explain the fact that lighter fragments with neutron number approximately

equal to N = 82 were produced abundantly. Although there have been extensive efforts to clarify the

reaction mechanism both experimentally and theoretically, the origin of the transfer of many protons

had not been clear. One of the main aims of this work is to clarify whether or not the TDHF theory

can reproduce the measured many-proton transfer from 238U to 124Sn, which might be contributed

from the QF induced MNT processes.

To get deeper understanding of the QF process, we also investigate energy dependence of head-

on collisions in 238U+100,124,132Sn systems. Since the N/Z ratios of 100Sn (1.00) , 124Sn (1.48), and
132Sn (1.64) are much smaller than, similar to, and larger than that of 238U (1.59), respectively, we

expect some different features in the QF dynamics. This analysis aims to obtain more information on

microscopic reaction mechanisms of the QF dynamics.

This Chapter is organized as follows. In Sec. 7.1, we describe some computational details utilized for

the TDHF calculations presented in this Chapter. In Sec. 7.2, we investigate MNT and QF processes

in the 238U+124Sn reaction for which experimental data are available. In Sec. 7.3, results of TDHF

calculations for head-on collisions of 238U+100,124,132Sn are shown. Incident energy dependence as well

§Part of this Chapter is based on results reported in our publication of Ref. [231].
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as the system (N/Z ratio) dependence of the QF dynamics are discussed. In Sec. 7.4, a summary and

concluding remarks on this Chapter are presented.

7.1 Computational Details

To describe 238U+100,124,132Sn reactions, we use the computational code of TDHF calculations for

nuclear reactions as in Chapters 3-6. The projectile and target nuclei are calculated using a box with

30× 30× 30 grid points. For reaction calculations, we use a box with 70× 70× 30 grid points for non-

central collisions and 90× 40× 30 grid points for central collisions. We choose the incident direction

parallel to the x-axis, and the direction of the impact parameter vector parallel to positive-y direction.

The reaction plane is thus xy-plane. As the initial condition, we place wave functions of two nuclei

separated by 24 fm in the incident direction. Because the total number of protons included in the

projectile and target nuclei is very large, Z = 92 + 50 = 142, no fusion reactions have been observed

at any impact parameters. At the final stage of calculations, there always appear two fragments, a

PLF and a TLF. We continued time evolution calculations until the relative distance between the two

fragments becomes larger than 28 fm. For all calculations reported in this Chapter, we use Skyrme

SLy5 parameter set [141], as in Ref. [173].

The ground state of 238U is prolately deformed with β ∼ 0.27 and the ground state of 124Sn

is oblately deformed with β ∼ 0.11. The ground state of doubly magic 100,132Sn is of spherical

shape. For the 238U+124Sn reaction, we performed TDHF calculations for three initial configurations

characterized by different orientations of 238U, as in Chapter 6: The symmetry axis of 238U set parallel

to the x-axis (parallel to the collision axis), y-axis (parallel to the impact parameter vector), and z-axis

(perpendicular to the collision plane). The symmetry axis of a slightly deformed 124Sn is always set

parallel to the z-axis. For a quantitative comparison with the measured cross sections, we should take

an average with respect to all possible orientations. However, since the orientation average requires

excessive computational costs, we have not performed yet. Below, we show cross sections for each of

the three initial conditions without the average, as in Chapter 6.

7.2 MNT and QF Processes

In Fig. 7.1, we show production cross sections of 124Sn-like fragments in the A-Z plane. In Fig. 7.1 (a),

(b), and (c), we show cross sections calculated using the PNP technique for different initial configu-

rations. From the results shown in the panels (a), (b), and (c), we find that the distributions of the

calculated cross sections depend much on the initial orientations of the deformed 238U.

When the symmetry axis of 238U is set parallel to the collision axis (x-direction in panel (a)), we

find abundant cross sections widely spreading in the A-Z plane. For a fragment 116
44Ru72 produced by

a transfer of two neutrons and six protons from 124
50Sn74, we find a cross section of 10−3 mb. For a

fragment 150
64Gd86 produced by a transfer of twelve neutrons and fourteen protons to 124

50Sn74, the cross

section is again the same order of magnitude, 10−3 mb.

When the symmetry axis of 238U is set perpendicular to the collision axis (symmetry axis in y- and

z-directions, shown in panels (b) and (c), respectively), the calculated cross sections do not so much

extend in the A-Z plane compared with the case of x-direction shown in panel (a). Cross sections

producing lighter nuclei in the transfer from 124Sn to 238U are almost the same as those in the x-

direction case. However, cross sections to produce heavier nuclei in the transfer from 238U to 124Sn

is substantially suppressed compared with the x-direction case. For example, we find a cross section

of 10−3 mb for the production of 134
56Ba78 which corresponds to a transfer of four neutrons and six
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Section 7.2 MNT and QF Processes

Figure 7.1: Production cross sections of 124Sn-like fragments in the 238U+124Sn reaction at Elab =

5.7 MeV/nucleon are shown in the A-Z plane. (a-c): Results of the TDHF calculations for three

different relative orientations. (d): Experimentally measured cross sections, which was taken from

Ref. [232]. The figure was taken from Ref. [231].

protons to 124
50Sn74. The number of transferred nucleons with the similar magnitude of cross section is

much smaller than the cross section shown in panel (a).

To obtain an intuitive picture for the reaction dynamics, we show, in Fig. 7.2, time evolutions of the

calculated density distribution in the collision plane (xy-plane). We show results of head-on collisions

(b = 0 fm) with two different initial orientations. In the x-direction case, the symmetry axis of 238U

is set parallel to the collision axis. In the y-direction case, symmetry axis of 238U is set perpendicular

to the collision axis. The top panels show initial configurations. We show several snapshots below.

In both x- and y-direction cases, two nuclei touch at around 320 fm/c. In the x-direction case (right

panels), a thick neck is developed between the two colliding nuclei forming an elongated dinuclear

system (480-800 fm/c). When the dinuclear system dissociates (∼ 928 fm/c), the neck is cut at

a position closer to the larger fragment. Consequently, a lot of nucleons in the neck region are

absorbed by the smaller fragment. Since the neck region is composed of both neutrons and protons,

the absorption of nucleons in the neck region results in the transfer of both neutrons and protons in

the same direction. We find that about 11 neutrons and 7 protons are transferred on average in this

reaction, producing fragments resembling 142
57La85 and

219
85At134. In the y-direction case (left panels), on

the other hand, the neck is not so much developed compared with the x-direction case (320-640 fm/c).

As a result, only one-neutron and one-proton are transferred on average from 238U to 124Sn.

In Fig. 7.1 (d), we show measured production cross sections for 124Sn-like fragments in the
238U+124Sn reactions reported in Ref. [232]. As seen in Fig. 7.1 (d), measured cross sections ex-

tend to the mass number A ∼ 148 and the proton number Z ∼ 64. It corresponds to a transfer of 8

neutrons and 14 protons from 238U to 124Sn. As seen in Fig. 7.1 (a), (b), and (c), the large number of

transferred nucleons from 238U to 124Sn in the measurement can only be explained by the x-direction

configuration, the tip collision of a deformed 238U, among the examined three configurations. Our

TDHF calculations strongly suggest that the large number of transferred nucleons, more than ten

protons, from 238U to 124Sn in the measured MNT processes can only be explained in the tip-collision-

induced transfer, associated with the formation and absorption of the elongated thick neck during the

collision.

119
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Figure 7.2: Time evolutions of the density distribution on the collision plane for head-on collisions

of 238U+124Sn at Elab = 5.7 MeV/nucleon at different initial configurations. (Left panels): A case of

the side collision in which the symmetry axis of 238U is set parallel to the y-axis. (Right panels): A

case of the tip collision in which the symmetry axis of 238U is set parallel to the x-axis. The figure

was taken from Ref. [231].
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Figure 7.3: Total kinetic energy (TKE) and average fragment mass (A) in the TKE-A plane obtained

from the TDHF calculations for head-on collisions of 238U+100,124,132Sn. Red circles show results for

the x-direction configuration, while green crosses show results for the y-direction configuration. Gray

solid line shows the TKE distribution evaluated by Eq. (6.3.1) which is based on the Viola systematics

[223].

7.3 Energy and System Dependence of QF Dynamics

To get further information on reaction mechanisms of the QF process, we examine system as well as

energy dependence of the QF dynamics. As in Chapter 6, for simplicity, we consider head-on collisions

(b = 0 fm) at two different initial configurations, the x- and y-direction cases, corresponding to the

tip and side collisions, respectively. We investigate three systems, 238U+100,124,132Sn, to examine,

especially, the N/Z ratio dependence of the QF dynamics. We note that the N/Z ratios of 100Sn,
124Sn, and 132Sn are 1.00, 1.48, and 1.64, respectively, while that of 238U is 1.59. Therefore, we expect

emergence of different features in the reaction dynamics.

7.3.1 Global trends

We performed many TDHF calculations of head-on collisions of 238U+100,124,132Sn by changing the

incident energy. From the results, we can construct the average TKE-A plot from the TDHF cal-

culations. In Fig. 7.3, we show obtained average TKE-A plot for each system. Red open circles

show results for the tip collisions (x-direction), while green crosses show results for the side collisions

(y-direction). The Viola systematics [223] evaluated by Eq. (6.3.1) is also shown by a gray solid curve.

From the figure, we can see a global trend of the reaction dynamics. In side collisions (green

crosses), the average mass numbers of lighter and heavier fragments do not change largely and only

a decrease of TKE is seen. On the other hand, in tip collisions (red open circles), we find that

the average mass numbers of fragment nuclei show a substantial TKE dependence. As seen from

the figure, the fragment mass tends to be more mass asymmetric compared with the initial mass

asymmetry. This asymmetrizing trend indicates that there appear inverse QF processes in tip collisions

of 238U+100,124,132Sn. We note that the average TKE-A distribution follows reasonably the Viola

systematics. To get more deeper insight into the reaction dynamics, let us see in some detail the

energy dependence of the reaction dynamics in respective systems.
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7.3.2 238U+124Sn reaction

In Fig. 7.4, we show the average numbers of nucleons in the fragment nuclei in head-on collisions of
238U+124Sn as functions of the incident energy. Upper panels show the average numbers of neutrons

(a) and protons (b) in the heavier (238U-like) fragment. Lower panels show the average numbers of

neutrons (c) and protons (d) in the lighter (124Sn-like) fragment. Red open circles show results for the

tip collisions, while green crosses show results for the side collisions. The initial neutron and proton

numbers of the projectile and target nuclei are shown by horizontal dotted lines.

Let us first focus on the side collisions represented by green crosses. From the figure (Fig. 7.4), we

find that the average number of nucleons in side collisions (green crosses) is not so much dependent

on the incident energy. The larger decrease in the neutron number of the heavier fragment shown

in (a) compared with the increase in the lighter fragment shown in (c) indicates substantial neutron

emissions to the continuum from 238U. This behavior is very much different from the 64Ni+238U

reaction examined in Chapter 6. For the 64Ni+238U reaction, we observed a substantial mass drift

mode toward the direction increasing the mass symmetry (Fig. 6.8). This difference may come from

the different total number of protons included in the system. Because, in the 64Ni+238U reaction,

total number of protons of the system is Z = 120, the composite system still has a chance to form

a mononuclear shape resulting in a capture process. Such a compact mononuclear shape eventually

dissociates producing mass symmetric fragments. In contrast, the 238U+124Sn system contains 142

protons in total and the composite system may no longer have any chance to form a mononuclear

system which corresponds to a capture process.

On the other hand, in the tip collision case, the situation is quite different. When the incident

energy is sufficiently small, the average number of nucleons coincides with the initial values, N = 146

and Z = 92 in the heavier fragment and N = 74 and Z = 50 in the lighter fragment. As the incident

energy increases, the average number of nucleons changes suddenly at around Elab = 5.5 MeV/nucleon.

At an energy region, 5.5 MeV/nucleon ≲ Elab ≲ 7 MeV/nucleon, the average number of nucleons in the

fragment nuclei shows a prominent plateau as a function of the incident energy. We observed a similar

sudden jump and a plateau structure in 64Ni+238U reaction as shown in Figs. 6.5 and 6.8. Furthermore,

in the 238U+124Sn reaction, the QF dynamics changes dramatically when the incident energy becomes

higher than Elab ∼ 7 MeV/nucleon. As the incident energy increases from Elab ∼ 7 MeV/nucleon, the

direction of transfer is inverted. At Elab ∼ 9 MeV/nucleon, the average number of nucleons reaches

a maxima/minima in the heavier/lighter fragment. In this case, the QF process proceeds toward the

direction increasing the mass asymmetry, corresponding to the inverse QF process.

In Fig. 7.7, we show time evolution of the density on the collision plane in 238U+124Sn reaction

at Elab ∼ 9 MeV/nucleon, where we observed the inverse QF process for the tip collision. In the side

collision (left panels), the neck structure is not so much developed as in lower incident energy case

shown in Fig. 7.2. In this case, the average number of transferred nucleons is very small on average.

On the other hand, in the tip collision (right panels), we find completely different behavior in the

transfer dynamics. After two nuclei collide, the surface of the density of the composite system vibrate

strongly showing two nodes at different positions (t = 320 fm/c). Then, one of the nodes located

at lighter nucleus side (the left side in the figure) develops suddenly to form a neck structure and it

eventually dissociates at a position close to the lighter nucleus (t = 320-960 fm/c). In this case, about

16 neutrons and 12 protons are transferred from 124Sn to 238U producing 266
104Rf162 on average. This

is a typical dynamics of the inverse QF dynamics in 238U+100,124,132Sn reactions. We anticipate that

there may be a substantial stabilizing effect for a large octopole deformation in Z ∼ 100 region, which

may partly responsible for the appearance of the inverse QF process.

To examine system dependence of the QF dynamics, let us next show results for other two systems,
238U+100,132Sn.
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Figure 7.4: Incident energy dependence of the fragment’sN and Z in head-on collisions of 238U+124Sn.

The ‘x-direction’ means that symmetry axis of 238U is set parallel to the collision axis (tip collision),

while the ‘y-direction’ means that the symmetry axis is set perpendicular to the collision axis (side

collision). Upper panels ((a) and (b)) show average numbers of nucleons in the heavier (23892 U146-like)

fragment, while lower panels ((c) and (d)) show those in the lighter (12450 Sn74-like) fragment. The initial

neutron and proton numbers in the projectile and target nuclei are represented by horizontal dotted

lines.
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7.3.3 238U+132Sn reaction

In Fig. 7.5, we show the same quantities as in Fig. 7.4, but for 238U+132Sn reaction: Upper panels

for the heavier (238U-like) fragment, while lower panels for the lighter (132Sn-like) fragment. Red

open circles and green crosses show results for the tip and side collisions, respectively. Left panels

show the average number of neutrons and right panels show the average number of protons in each

fragment. The initial neutron and proton numbers in the projectile and target nuclei are represented

by horizontal dotted lines.

From the figure (Fig. 7.5), in the side collision case, we again find that the average number of

nucleons is not so much dependent on the incident energy, as in the 238U+124Sn system shown in

Fig. 7.4. In the tip collision case, we find a similar behavior, a sudden jump and a plateau structure

followed by inverse QF processes as in the 238U+124Sn system, except for two cases at Elab ∼ 8.5

and 10 MeV/nucleon. It is worth mentioning that, nevertheless the N/Z ratio of 132Sn exceeds

that of 238U, the direction of nucleon transfer at the plateau region is the same as in the case of
238U+124Sn. It indicates that, in the QF process where two nuclei stick together for a relatively long

timescale compared with that of nucleons’ internuclear motions, the QF dynamics with a thick neck

formation would responsible for the direction of nucleon transfer rather than the initial N/Z ratios of

the projectile and target nuclei (Of course, the charge equilibration process takes place, but the neck

breaking dynamics determines the direction of transfer of both neutrons and protons).

It is remarkable that a neutron-rich fermium isotope, 264
100Fm164, is generated through the inverse

QF process at Elab ∼ 8 MeV/nucleon, as a primary fragment in the TDHF calculation. Although such

fragments produced by inverse QF processes must accompany huge excitation energy and suffer from

disintegration processes, this result is encouraging for the further investigations to produce neutron-

rich transuranium nuclei whose production is difficult by other reactions.

In Fig. 7.8, we show time evolution of the density on the collision plane in the tip collisions of
238U+132Sn at three different incident energies, Elab ∼ 7, 8, and 9 MeV/nucleon. As shown in Fig. 7.5,

these incident energies show quite different numbers of nucleons in the fragment nuclei.

Let us first take a look at the Elab ∼ 7 MeV/nucleon case shown in the left panels of the figure.

This reaction shows an ordinary QF process, a mass transfer toward the mass symmetry. We find

that the shape evolution is very similar to the case of 238U+124Sn at Elab = 5.7 MeV/nucleon shown

in Fig. 7.2.

In the middle panels, we show the Elab ∼ 8 MeV/nucleon case which results in the inverse QF

process. This shape evolution is very similar to the case of 238U+124Sn at Elab = 9 MeV/nucleon shown

in the right panels of Fig. 7.7. Again, the tip collision induces a rippling mode of the density and

forms a neck structure at a position close to the smaller nucleus showing quite asymmetric structure

during the collision (t = 320-1120 fm/c).

In the case of Elab ∼ 9 MeV/nucleon shown in the right panels of the figure, the dynamics is

somewhat different from the previous case. After the collision, a similar surface rippling mode is seen

(t = 320 fm/c). After that, up to around t = 640 fm/c, the system develops in a similar way to the

previous case. However, at t = 800 fm/c, the neck structure changes slightly and starts to dissociate

forming more mass symmetric fragments (t = 960-1280 fm/c).

In this way, appearance and disappearance of the inverse QF process show a sensitive incident

energy dependence in the tip collisions of 238U+132Sn. From careful observations, we suspect that there

are interplays between (i) the surface vibration mode induced by the collision which may responsible

for a determination of the position of a neck formed at the initial stage of the dinuclear system

formation, (ii) internuclear motions of nucleons inside the deformed mean-field potential, (iii) some

structural effects of the composite system and those in the fragment nuclei. We note that Zagrebaev

et al. predicted an mechanism of inverse QF process which originates from a substantial stabilization
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effect of doubly magic 208Pb in the exit channel [29, 69, 70, 71, 72, 84]. Whereas the inverse QF

dynamics we observed in the TDHF calculations for 238U+100,124,132Sn is expected to have a different

origin which, to the author’s knowledge, has not been investigated so far.

7.3.4 238U+100Sn reaction

In Fig. 7.6, we show results of the TDHF calculation for head-on collisions of 238U+100Sn. Since the

N/Z ratio of 100Sn, 50/50 = 1.00, is very much different from that of 238U, 146/92 ∼ 1.59, we expect

substantial transfer modes toward the direction of the charge equilibrium of the system.

First, we focus on results of the side collisions, where we have observed a week incident energy

dependence in the previous 238U+124,132Sn cases shown in Figs. 7.4 and 7.5. From the figure (Fig. 7.6),

we find different behavior of the average numbers of nucleons in the fragment nuclei as functions of

the incident energy. In this case, we find that neutrons and protons tend to transfer toward the

opposite directions, the direction of the charge equilibrium of the system (238U→100Sn for neutrons,
238U←100Sn for protons), at least for Elab ≲ 10 MeV/nucleons. As the incident energy increases, the

proton transfer toward the direction of the charge equilibrium of the initial system is suppressed. A

similar behavior has been observed in the case of MNT processes examined in Chapter 3, indicating a

significant effect of the neck breaking dynamics after a sufficient charge equilibration, which induces

transfer of both neutrons and protons in the same direction.

In the tip collision case, we find to some extent similar behavior to those in the 238U+124,132Sn

systems, although the average number of protons looks different because of the substantial charge

equilibration process. As the incident energy increases, the average number of neutrons shown in

(a) and (c) changes rapidly as a function of the incident energy, while the change is somewhat small

in the case of protons shown in (b) and (d). In the intermediate energy region, 6.5 MeV/nucleon

≲ Elab ≲ 9 MeV/nucleon, the average number of nucleons takes a similar value (except for a hump at

around Elab ∼ 7 MeV/nucleon). When we increase the incident energy further, inverse QF processes

take place. Because 100Sn is of neutron-deficient compared with 124,132Sn and the neck breaking

transfer dynamics takes place after a sufficient charge equilibration, the average number of neutrons

is almost the same as that of the projectile and target nuclei in this inverse QF process. Therefore,

only the proton number is changed drastically compared with the initial nuclei, 100Sn and 238U.

It is worth mentioning that we find neutron-deficient transuranium nuclei, e.g. 252
104Rf148 at Elab ∼

12 MeV/nucleon, as a primary fragment in the TDHF calculation. In this way, we expect that the

inverse QF process will be a unique tool to produce exotic unstable nuclei which have not been

produced by other reactions.
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Figure 7.5: Same as Fig. 7.4 but for the 238U+132Sn system.
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Figure 7.7: Time evolution of the density on the collision plane in head-on collisions of 238U+124Sn

at Elab ∼ 9 MeV/nucleon (d = 9 fm). Left panels show result for the y-direction configuration

(side collision), while right panels show results for the x-direction configuration (tip collision). Labels

‘t = x fm/c’ indicate an elapsed time from the initial stage of the TDHF calculation.
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7.4 Summary and Concluding Remarks on Chapter 7

In this Chapter, we have investigated the MNT and QF processes in 238U+100,124,132Sn reactions, as

a next application of the TDHF theory to reactions involving 238U. For the 238U+124Sn reaction at

Elab = 5.7 MeV/nucleon, measurements of MNT processes were achieved [232], showing substantial

MNT cross sections accompanying more than ten-proton transfer from 238U to 124Sn. From the

calculation, we have found that the amount of transferred nucleons depends much on the relative

orientation between the deformation axis of 238U and the relative vector connecting centers of 238U

and 124Sn nuclei. We have found a formation of thick neck when the 238U collides from its tip with
124Sn. However, the neck formation is substantially suppressed when 238U collides from its side. We

have found that a large number of protons are transferred in the tip collision. This is caused by the

breaking of the neck and subsequent absorption of nucleons in the neck region. We thus conclude that

the measured MNT processes involving about ten protons originate from the neck breaking transfer

dynamics in the tip collisions of a deformed 238U nucleus. This correspondence between the results of

the TDHF calculations and experimental data will also be an evidence which shows the applicability

of the TDHF theory in describing MNT and QF processes in reactions involving heavy nuclei.

To get further insight into the transfer dynamics associated with the neck breaking dynamics, we

investigated incident energy dependence of head-on collisions of 238U+124Sn taking two different initial

orientations of 238U corresponding to the tip and side collisions. From the results, we have found that

the neck formation is always suppressed irrespective of the incident energy when 238U collides from

its side. On the other hand, when 238U collides from its tip, a drastic change in the transfer dynamics

is observed. When we increase the incident energy, a breaking point of the neck changes suddenly

resulting in a change of direction of nucleon transfer. A number of nucleons inside the neck region are

transferred to heavier nucleus, the 238U-like fragment, forming transuranium nuclei after the collision.

It corresponds to the inverse QF process.

To investigate a projectile-target combination dependence, especially, the initial N/Z ratio depen-

dence of the QF dynamics, we also performed similar calculations for head-on collisions of 238U+100,132Sn.
238U and 124Sn have a similar value of N/Z ratio, 1.59 and 1.48, respectively. Since 100Sn has N/Z

ratio of 1.00, we expect a significant effect of the charge equilibration process in the 238U+100Sn reac-

tion. While, since 132Sn has N/Z ratio of 1.64 which is greater than that of 238U, we expect transfer

of neutrons and protons toward the opposite direction to other two cases. From the results, we find

that a globally similar behavior of the average number of nucleons in the fragment nuclei. In the
238U+100Sn system, we have found an emergence of the charge equilibration process as expected from

the quite different N/Z ratios between the projectile and the target.

We note that for all three systems, 238U+100,124,132Sn, we have observed the inverse QF process in

which reaction products become more mass asymmetric compared with initial masses of nuclei before

the collision. In the inverse QF process, we have found productions of neutron-rich transuranium

nuclei in 238U+124,132Sn and neutron-deficient transuranium nuclei in 238U+100Sn as primary reaction

products in the TDHF calculations. We consider that these results are encouraging to search for a

peculiar QF dynamics in the TDHF theory, which enables us to access exotic unstable nuclei whose

production have not been achieved by other reactions.
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Figure 7.8: Time evolution of the density on the collision plane in head-on collisions of 238U+132Sn.

Results for the x-direction configuration (tip collision) at three different incident energies are shown

for comparison. Panels in the left and right columns show results at Elab ∼ 7 and 9 MeV/nucleon,

respectively, resulting in ordinary QF process. While panels in the middle column show results at

Elab ∼ 8 MeV/nucleon, resulting in an inverse QF process. Labels ‘t = x fm/c’ indicate an elapsed

time from the initial stage of the TDHF calculation.
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Chapter 8

SEARCH FOR OPTIMUM

CONDITIONS FOR 136Xe+198Pt

REACTION TO PRODUCE

OBJECTIVE UNSTABLE NUCLEI

In this second part of the thesis (Part II), we have investigated MNT and QF processes in reactions

involving heavy nuclei such as 238U employing the TDHF theory. In Chapter 6, we analyzed 64Ni+238U

reaction for which extensive experimental data of both MNT and QF processes are available [45,

79, 216, 217]. From the results, we found that the TDHF theory is capable of describing not only

MNT reactions in peripheral collisions but also QF processes in dissipative collisions of heavy nuclei.

The measured MNT cross sections for the 64Ni+238U reaction have been nicely reproduced by the

TDHF theory combined with the PNP technique. By comparing an average TKE-A distribution

obtained from the TDHF calculations with available experimental data, we found that the TDHF

theory reasonably describes a mass drift mode toward the direction increasing the mass symmetry,

which has been considered as QF processes. This fact shows the applicability of the TDHF theory to

such dissipative collisions in reactions involving heavy nuclei.

In Chapter 7, we analyzed 238U+100,124,132Sn reactions. For the 238U+124Sn reaction, production

cross sections for the lighter (124Sn-like) fragment were measured experimentally [232]. The exper-

imental data indicate that about 10 protons were transferred from 238U to 124Sn. From the TDHF

calculations, we revealed that the measured many-proton transfer from 238U to 124Sn can be explained

by a tip collision induced neck breaking transfer dynamics. When 238U collides from its tip, a thick and

long neck is formed between two colliding nuclei, while the neck formation is substantially suppressed

when 238U collides from its side. After the thick and long neck formation, the dinuclear system disso-

ciate producing two individual nuclei. Depending on the scission point of the neck, nucleons involved

in the neck structure are absorbed by one of the fragments. This neck breaking transfer dynamics

explains the measured massive proton-flow from 238U to 124Sn.

From these analyses, we have gained a confidence that the TDHF theory gives us a reasonable

description of both MNT and QF dynamics in dissipative collisions of heavy nuclei. Because the TDHF

theory provides a unified microscopic description of the reaction dynamics without any adjustable

parameters, the TDHF theory would be a promising tool for predicting optimum conditions to produce

objective nuclei. As a final topic of the thesis, we present tentative results of the TDHF calculations on

the way to achieve our main aim, a theoretical prediction of optimum conditions to produce objective

nuclei. In this Chapter, we investigate 136Xe+198Pt reaction which is considered to be useful to
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produce neutron-rich unstable nuclei around the neutron magic number N = 126 whose properties

have a crucial impact on the r-process path of the nucleosynthesis.

This Chapter is organized as follows. In Sec. 8.1, we show some computational details utilized in

the TDHF calculations shown in this Chapter. In Sec. 8.2, we show results of a systematic calculation

of MNT and QF processes in 136Xe+198Pt reactions for various initial conditions. In Sec. 8.3, a

summary and concluding remarks on this Chapter are presented.

8.1 Computational Details

We use our own computational code of the TDHF calculations of heavy ion reactions as in the previous

Chapters. We discretize three-dimensional Cartesian coordinates into a uniform mesh to represent

single-particle wave functions without any symmetry restriction. For the static HF calculation of

projectile and target nuclei, we use 30 × 30 × 30 grid points with a mesh spacing of 0.8 fm. The

11-point finite difference-formula is used to calculate first and second derivatives. For the TDHF

calculations, we use a numerical box with 70 × 70 × 30 grid points. The initial separation distance

is set to be 25 fm in the incident direction parallel to the x-axis. For the time evolution operator,

the fourth-order Taylor expansion method is utilized with ∆t = 0.2 fm/c. Because the total number

of protons in the 136Xe+198Pt system is very large, Z = 54 + 78 = 132, we have not observed any

capture process at all initial conditions examined. We calculate the TDHF time evolution until the

relative distance between centers of two fragment nuclei exceeds 27-30 fm, where two fragment nuclei

are well separated spatially.

8.2 MNT and QF Processes

To find optimum conditions to produce objective nuclei, we performed a systematic TDHF calculation

for 136Xe+198Pt reactions at various incident energies and impact parameters. We calculated reactions

at Elab = 6, 7, 8, 9, 9.5, and 10 MeV/nucleon and b = 0-10 fm.

In Fig. 8.1, we show the time evolution of the density of the two colliding nuclei in 136Xe+198Pt

reactions at three typical initial conditions. From left to right, we show results at Elab = 8, 9,

10 MeV/nucleon and b = 5, 4, 3 fm, respectively. The label ‘x fm/c’ in each panel indicates an elapsed

time started from the initial stage of the TDHF calculation shown in the top panels (0 fm/c).

Let us first focus on the Elab = 8 MeV/nucleon and b = 5 fm case shown in left panels of Fig. 8.1.

After tow nuclei collide, a very thick neck structure is formed between tow colliding nuclei (t = 200-

800 fm/c). When the composite system dissociates, the greater part of the neck is absorbed by the

lighter nucleus located on the left-top side of the panel (t = 800-1000 fm/c). As a result of the

absorption of nucleons inside the neck region, about 10 neutrons and 6 protons are transferred from
198Pt to 136Xe producing 152

60 Nd92 on average. This process would be regarded as an ordinary QF

process, a mass drift mode toward the mass symmetry of the system.

Next, let us take a look at the Elab = 9 MeV/nucleon and b = 4 fm case shown in middle panels

of the figure. Compared with the previous case, the incident energy becomes higher and the impact

parameter becomes smaller. Because of this change in the initial condition, two nuclei collide more

deeply inducing a rippling mode on the surface of the density distribution of the composite system

(t = 200-400 fm/c). After that, a neck structure start to develop at a position close to the lighter

nucleus (t = 400-800 fm/c). When the neck dissociates, the most part of the neck structure is, in

this case, absorbed by the heavier nucleus located on the right-bottom side in the panels (t = 800-

1241 fm/c). As a result of the absorption of nucleons inside the neck region, about 5 neutrons and 4

protons are transferred from 136Xe to 198Pt producing 207
82 Pb125 on average. Thus, unlike the previous
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case, there emerges an inverse QF process, a massive nucleon transfer toward the direction increasing

the mass asymmetry.

The final typical example is the Elab = 10 MeV/nucleon and b = 3 fm case shown in right panels

of the figure. Compared with the previous two cases, again, the incident energy becomes higher

and the impact parameter becomes smaller. Because of this change, two nuclei collide much more

violently and form an almost mononuclear-type configuration as seen in panels t = 200-600 fm/c.

That is, the composite system has no clear necking structure and we hardly regard it as a dinuclear

system composed of two subsystems of projectile-like and target-like nuclei (t = 600 fm/c). Then the

composite mononuclear system starts to dissociate making a neck structure at almost the middle point

of the system (t = 1000-1600 fm/c). In this case, about 19 neutrons and 10 protons are transferred

from 198Pt to 136Xe producing 165
64 Gd101 on average. In this case, the system approaches toward the

mass symmetry reflecting the formation of the mononuclear configuration of the composite system,

which may correspond to a deep QF process [233, 234, 235, 236, 237].

As we saw in the typical three examples, the direction of transfer as well as the amount of trans-

ferred nucleons depend much on the initial condition. In Fig. 8.2, we show the average number of

nucleons in the heavier fragment obtained from the systematic TDHF calculation of 136Xe+198Pt re-

actions for various incident energies and impact parameters. Red open circles, orange down-pointing

open triangles, green open triangles, blue open squares, magenta crosses, and purple open diamonds

connected with lines show results at Elab = 10, 9.5, 9, 8, 7, and 6 MeV/nucleon, respectively. The

horizontal axis is the impact parameter, b, and results at the same incident energy are connected with

lines and are represented by the same color.

From the figure, we find quite complex behavior of the average number of nucleons in the heavier

fragment. Let us explain the results in order. Because the heavier nucleus, 198Pt has N = 120 and

Z = 78, the average numbers of neutrons and protons coincide with those values when the impact

parameter is sufficiently large (b ≳ 8 fm), corresponding to the quasielastic reactions. As the impact

parameter decreases, two colliding nuclei touch on the course of the reaction. Then, for all incident

energies higher than 6 MeV/nucleon, the average numbers of nucleons in the heavier fragment decrease

compared with the initial values N = 120 and Z = 78. The decrease of the number of nucleons in

the heavier fragment means that those nucleons are transferred from 198Pt to 136Xe, from the heavier

nucleus to the lighter one.

When the incident energy is lower than 9 MeV/nucleon, the average numbers of nucleons in the

heavier fragment tend to approach to the initial values as the impact parameter decreases. On the

other hand, when the incident energy is higher than or equal to 9 MeV/nucleon, the behavior is

markedly different. As the impact parameter decreases, the average numbers of neutrons and protons

in the heavier fragment increase suddenly and exceed the initial values at around b ∼ 5 fm. This

increase of the number of nucleons in the heavier fragment corresponds to the transfer of nucleons

from 136Xe to 198Pt, from the lighter nucleus to the heavier one, corresponding to the inverse QF

process.

At an impact parameter region around b ∼ 4-5 fm, the average numbers of nucleons show a

prominent plateau at around N = 126 and Z = 82. Although we need further detailed analyses

to understand generation mechanisms of the inverse QF process, it would be worth mentioning that

the plateau corresponds to a production of doubly magic 208Pb on average. It may indicate that

there exists certain influence of structural properties of the fragment nuclei in the exit channel on the

QF dynamics. We note that, in analyses based on the dynamical Langevin calculation, substantial

structural effects of the composite system are routinely observed [29, 69, 70, 71, 72, 84]. Also in some

experiments, e.g. 34,36S+238U reactions reported in Refs. [228, 229], a peak at around A ∼ 208 in

fission fragment mass distributions was observed. It could be interpreted in the Langevin model as

a substantial stabilization effect of 208Pb producing a valley on a landscape of PES which gathers a
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Figure 8.1: Time evolution of the

density on the collision plane (xy-

plane) in 136Xe+198Pt collisions at dif-

ferent initial conditions. Panels on the

left column show results at Elab =

8 MeV/nucleon and b = 5 fm. Panels

on the middle column show results at

Elab = 9 MeV/nucleon at b = 4 fm.

Panels on the right column show re-

sults at Elab = 10 MeV/nucleon and

b = 3 fm. Labels ‘x fm/c’ indicate an

elapsed time from the initial stage of the

TDHF calculation.

134



Section 8.2 MNT and QF Processes

 100

 105

 110

 115

 120

 125

 130

 0  2  4  6  8  10

N

b (fm)

(a) Neutron

 65

 70

 75

 80

 85

 0  2  4  6  8  10

Z

b (fm)

(b) Proton
136

Xe+
198

Pt

Elab (MeV/A)

6
7
8
9

9.5
10

Figure 8.2: Average numbers of neutrons (left) and protons (right) in the heavier (198Pt-like) fragment

in 136Xe+198Pt reactions at various initial conditions. The horizontal axis is the impact parameter,

b. Red open circles, orange down-pointing open triangles, green open triangles, blue open squares,

magenta crosses, and purple open diamonds connected with lines show results at Elab = 10, 9.5, 9, 8,

7, and 6 MeV/nucleon, respectively.

bunch of dynamical trajectories. We note that, Zagrebaev et al. extensively discussed similar inverse

QF processes caused by structural effects of 208Pb in 160Gd+186W reaction [72].

In a small impact parameter region (b ≲ 4 fm), the direction of transfer again changes dramatically

for Elab ≥ 9 MeV/nucleon cases. The average numbers of neutrons and protons in the heavier fragment

decrease compared with the initial values N = 120 and Z = 78. This corresponds to the transfer of

nucleons from 198Pt to 136Xe. These mass drift modes emerging in the small impact parameter region

are originated from a mononuclear shape formation followed by a symmetric dissociation, the deep

QF process, similar dynamics shown in right panels of Fig. 8.1.

Regarding the results shown above, we might conclude that the QF processes in 136Xe+198Pt

reaction are very much complicated showing the complex initial condition dependence. We note that,

however, we find another aspect of the QF process, which would provide us a much simplified picture

of the reaction dynamics.

In Fig. 8.3, we show the same results as shown in Fig. 8.2, the average number of nucleons in the

heavier fragment, but now, we have changed the horizontal axis from the impact parameter b to the

distance of closest approach d = d(E, b) (Eq. (4.2.1)) of the Rutherford trajectory. We then find that
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Figure 8.3: The same results as Fig. 8.2 but the horizontal axis is changed to the distance of closest

approach of the Rutherford trajectory, d, specified by Elab and b.
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Figure 8.4: Total kinetic energy (TKE) and average fragment mass (A) in the TKE-A plane ob-

tained from the TDHF calculations for 136Xe+198Pt reaction at various incident energies and impact

parameters. Gray solid line shows the TKE distribution evaluated by Eq. (6.3.1) which is based on

the Viola systematics [223].

the average numbers of nucleons at different incident energies and impact parameters show a similar

behavior as a function of the distance of closest approach, d. As the distance of closest approach

decreases, the direction of nucleon transfer changes at certain d-values, d ∼ 12 fm (198Pt→136Xe),

d ∼ 10 fm (198Pt←136Xe), and d ∼ 9 fm (198Pt→136Xe). This fact may indicate that the angular

momentum carried into the composite system is not important in determining the QF dynamics.

The QF dynamics may be characterized by the radial motion of the two colliding nuclei. As we

saw in Fig. 8.1, the shape of the composite system of the projectile and target nuclei depends on the

violentness of the collision, reflecting induced rippling motion on the surface of the density distribution.

Combined with the observation of the inverse QF processes producing 208Pb-like nucleus and the

systematic behavior shown in Fig. 8.3, we anticipate that some structural properties of the composite

system at the turning point, e.g. shape of vibrating surface of the composite system, elongation,

thickness, and position of the necking structure, would determine the fate of the composite system

dissociating in the QF dynamics. A possible way to examine such structural effects of the composite

system is to calculate a PES of 334
132X202, e.g. in Q20-Q30 plane, by the CHF method. Comparisons

between the dynamical trajectories obtained from the TDHF calculations with the PES will provide

us a more deeper understanding of the QF process. To understand microscopic reaction mechanisms

and to predict optimum conditions to produce objective nuclei, we hope to try such analyses in future.

Next, let us take a look at the TKE-A distribution. In Fig. 8.4, we show the average TKE-A

distribution in the 136Xe+198Pt reactions. Red open circles, orange down-pointing open triangles,

green open triangles, blue open squares, magenta crosses, and purple open diamonds connected with

lines show results at Elab = 10, 9.5, 9, 8, 7, and 6 MeV/nucleon, respectively. Results at the same

incident energy are connected with lines and are represented by the same color. We also show the

Viola systematics [223] evaluated by Eq. (6.3.1) by a gray solid curve.

From the figure, we find a reasonable agreement between the TKE-A distributions obtained from

the TDHF calculations and that of the Viola systematics. We find that the ordinary QF process

observed at a relatively large-d region (d ∼ 11 fm, see Fig. 8.3) occurs before the full momentum

transfer is achieved. On the other hand, the inverse QF processes, the mass drift mode toward

the direction increasing the mass asymmetry, and the deep QF process producing mass symmetric

fragments take place after the full momentum transfer is achieved.
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Figure 8.5: Primary production cross sections for the heavier (198Pt-like) fragments in 136Xe+198Pt

reaction at Elab = 8 (lower panels) and 10 MeV/nucleon (upper panels) obtained from the TDHF

calculation combined with the PNP. Left panels ((a) and (c)) show cross sections for proton-pickup

channels, while right panels ((b) and (d)) show cross sections for proton-stripping channels. Horizontal

axis denotes the mass number of the fragment. Cross sections of 0- to ±10-proton transfer channels

are shown.

As a final topic of this Chapter, we show production cross sections for primary fragments of

heavier (198Pt-like) fragments in the 136Xe+198Pt reactions at typical two incident energies, Elab = 8

and 10 MeV/nucleon. Figure 8.5 shows the cross sections calculated by the TDHF theory combined

with the PNP technique. Upper panels show results at Elab = 10 MeV/nucleon, while lower panels

show results at Elab = 8 MeV/nucleon. Left panels ((a) and (c)) show cross sections for proton-pickup

channels (transfer from 198Pt to 136Xe), while right panels ((b) and (d)) show cross sections for proton-

stripping channels (transfer from 136Xe to 198Pt). Horizontal axis is the mass number of the primary

reaction products.

In the lower incident energy case (Elab = 8 MeV/nucleon, lower panels), the cross sections dis-

tribute around the initial mass number, A = 198. Because of the ordinary QF process observed at a

large-d region (d ∼ 11 fm), the cross sections have larger values for proton-pickup channels shown in

(c). On the other hand, in the higher incident energy case (Elab = 10 MeV/nucleon, upper panels),

the resulting cross sections for primary fragments show apparently different distributions. Because

of the existence of the inverse QF process at an intermediate-d region (d ∼ 10 fm) and the deep QF

process at a small-d region (d ≲ 9 fm), the cross sections extend much wider than those of the lower

incident energy case. We note that, although the higher incident energy case shows much larger and

abundant cross sections for various kinds of nuclei, the reaction products in the inverse and deep QF

processes must have a high excitation energy and will suffer from subsequent disintegration processes.

137



Chapter 8 Search for Optimum Conditions for 136Xe+198Pt Reaction to Produce Objective . . .

Thus, we should consider a trade-off condition, smaller production cross sections with smaller effects

of disintegration processes or larger production cross sections with larger effects of disintegration pro-

cesses. To make a reliable prediction of the cross sections, we should estimate effects of subsequent

decay processes not only particle evaporation but also induced fission. It is one of the subjects which

we hope to investigate in future.

8.3 Summary and Concluding Remarks on Chapter 8

From the results shown in the other Chapters, we have obtained a confidence that the TDHF theory

can reasonably describe not only MNT reactions at peripheral collisions but also QF processes in

dissipative collisions of heavy nuclei at a small impact parameter region. In this Chapter, we presented

tentative results toward the main goal of this study, a theoretical prediction of optimum conditions to

produce objective nuclei. To this end, we performed a systematic TDHF calculation for 136Xe+198Pt

reactions at various initial conditions. The 136Xe+198Pt reaction has been considered as a candidate

to produce neutron-rich unstable nuclei around the neutron magic number N = 126 whose properties

have a crucial impact on the r-process path of the nucleosynthesis.

From the results, we have found that the direction of nucleon transfer and the scission point of

the neck structure depend much on the initial condition, incident energy and impact parameter. At

a certain initial condition, we observed ordinary QF processes, the mass drift mode to produce mass

symmetric fragments. In addition, we also observed inverse QF processes, where many nucleons are

transferred from the lighter nucleus to the heavier one. The appearance of QF and inverse QF processes

seemed to depend both incident energy and impact parameter, and the QF dynamics showed complex

behavior as functions of the impact parameter.

A remarkable fact is that the average numbers of neutrons and protons in the fragment nuclei

show a similar behavior as a function of the distance of closest approach of the Rutherford trajectory.

This fact suggests us some important messages about mechanisms of the QF process. It indicates

that the angular momentum carried into the composite system plays a minor role in determining a

dynamical path of the QF process. In other words, it indicates that the radial motion of the two

colliding nuclei is an important factor which characterizes a scission point of the neck. The value

of distance of closest approach would be a measure of how deeply two nuclei collide. From careful

observations of the density distribution, the violentness of the collision seems to be related to a surface

vibration mode induced by the collision. We anticipate that the shape of the composite system at

the turning point is one of the key ingredients which determines the path of the QF process. The QF

dynamics seems also to be related to an interplay between such a macroscopic shape of the mean-field

potential and microscopic internal degrees of freedom. Structural properties of the composite system

as well as quantum states of nucleons and their dynamics would responsible for the QF path. We note

that the inverse QF process in the 136Xe+198Pt reactions observed in the TDHF calculation would be

related to doubly magic nature of 208Pb in the exit channel, consistent with results of the successful

Langevin calculations [72].

At present, still we have not understood the detailed underlying mechanisms of the QF and inverse

QF processes, we expect that further investigations of QF dynamics in the TDHF theory will provide

us useful information on the QF processes. Because the TDHF theory provides a parameter-free

microscopic description of the complex reaction dynamics, we consider that the TDHF theory will be

a promising tool to elucidate novel reaction dynamics which enables us to produce exotic unstable

nuclei whose production has not been achieved by known reactions. To predict quantitative cross

sections for reaction products of the QF processes, we should include not only effects of particle

evaporation but also effects of induced fission, which we have not yet included in the present analyses.
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Chapter 9

SUMMARY AND PROSPECT

The main aims of this work are (i) to develop microscopic understandings of multinucleon transfer

(MNT) and quasifission (QF) processes which have recently been considered to be a useful means

to produce unstable nuclei whose production is difficult by other methods and (ii) to theoretically

predict optimum conditions, i.e. projectile-target combinations and incident energies, to produce those

objective unstable nuclei.

To achieve these aims of this work, we have investigated MNT and QF processes in heavy ion

reactions at low energies around the Coulomb barrier employing a microscopic framework of the time-

dependent Hartree-Fock (TDHF) theory. The TDHF theory provides a fully microscopic description

of nuclear dynamics and has been successfully applied to study giant resonances and heavy ion reac-

tions. Although continuous and extensive efforts have been devoted for improving the method and

for extending its applications, MNT and QF processes had not been studied seriously in the TDHF

theory (very recently, some works on QF in TDHF were reported). It was not at all obvious whether

the microscopic TDHF theory describes the MNT and QF processes reasonably. Therefore, we first

tried to investigate the applicability of the TDHF theory in describing the MNT reaction.

To examine the feasibility of the TDHF theory in describing the MNT reaction, we investigated

MNT processes in 40,48Ca+124Sn, 40Ca+208Pb, and 58Ni+208Pb reactions, for which precise measure-

ments of MNT cross sections were achieved. In addition to the fact that the extensive experimental

data are available for these systems, we considered it will be interesting to examine different features

depending on the N/Z asymmetry and the charge product ZPZT. It is well known that a charge equili-

bration process takes place in heavy ion reactions with a large N/Z asymmetry between projectile and

target nuclei. Since the examined systems have different N/Z ratios (40Ca+124Sn, 40Ca+208Pb, and
58Ni+208Pb systems have large N/Z asymmetries, while 48Ca+124Sn does not), we expected different

properties of the reaction dynamics. It is also well known that the charge product, ZPZT, affects

much on the reaction dynamics. When the value of ZPZT exceeds a critical value around 1600-1800,

emergence of fusion reactions are substantially suppressed and the system needs an extra energy to

get fused. Because the examined systems have different ZPZT values, 1000 for 40,48Ca+124Sn, 1640

for 40Ca+208Pb, and 2296 for 58Ni+208Pb, they are expected to show different features of the reaction

dynamics.

From the results, we found different features of reaction dynamics as expected. When the N/Z

asymmetry is small (48Ca+124Sn), transfer processes proceed symmetrically showing very small av-

erage numbers of transferred nucleons. On the other hand, when the N/Z asymmetry is large

(40Ca+124Sn, 40Ca+208Pb, and 58Ni+208Pb), neutrons and protons are transferred in opposite di-

rections, toward the direction of the charge equilibrium of the system. We also found that, as the

charge product ZPZT increases, two nuclei are reseparated after a thick neck formation, indicating

the suppression of fusion reaction. We found that, when the dinuclear system connected by the thick
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neck dissociates, nucleons inside the neck region are absorbed by the smaller fragment. Because the

neck region is composed of both neutrons and protons, the absorption of the neck region results in

transfer of both neutrons and protons in the same direction. We regarded the appearance of the neck

breaking dynamics as an indication of the QF process. We consider that this process is intimately

related to the suppression of the fusion reaction.

To make a direct comparison between the results of the TDHF calculations and measurements,

we need to calculate cross sections for each transfer channel. To calculate MNT cross sections, we

extracted transfer probabilities from the TDHF wave function after collision using a particle-number

projection (PNP) technique. By extending the PNP technique, we also evaluated average excitation

energy of reaction products in each transfer channel. Combining transfer probabilities with evapora-

tion probabilities which were evaluated by employing a statistical model using the excitation energy

obtained from the TDHF wave function as an input, we calculated MNT cross sections including ef-

fects of particle evaporation. From the comparison, we concluded that the TDHF theory can describe

MNT cross sections quantitatively with an accuracy comparable to the existing successful theories,

GRAZING, complex WKB, and a dynamical model based on Langevin-type equations of motion.

The extended PNP method enables us to calculate expectation values of arbitrary operators for

reaction products described by the particle-number projected TDHF wave function after collision.

Using the method, we can analyze properties of reaction products, which could not be achieved by

analyzing ordinary expectation values without the PNP. To show usefulness of the method, we ana-

lyzed 24O+16O reaction as an illustrative example. We calculated expectation values of the angular

momentum operator and average excitation energies using the particle-number projected TDHF wave

function after collision. From the results, we obtained following microscopic understanding of transfer

processes. When nucleons are added to a nucleus, the transferred nucleon carries an angular mo-

mentum associated with the relative motion of colliding nuclei into the nucleus which received the

transferred nucleons. When nucleons are removed from a nucleus, a very small change is found for

angular momentum in the nucleus from which the nucleons are removed. This fact may be explained

by a picture that the highest occupied nucleons, which are in 2s1/2 or 1p1/2 orbitals in the present

case, are dominantly transferred in the nucleon removal processes. Because those highest occupied

orbitals have a small orbital angular momentum, a gentle removal of those nucleons may not cause a

large change of angular momentum in the nucleon removed nucleus.

From the average excitation energy, we obtained a picture for transfer processes consistent with

that mentioned above, namely, the gentle removal of valence nucleons induces a very small excitation in

the nucleon-removed nucleus. On the other hand, the nucleon-received nucleus gets a finite excitation

energy, because the added nucleons stay at higher-energy single-particle orbitals compared with those

of the ground state. We note that it is very difficult to obtain these microscopic transfer mechanisms

in ordinary analyses using expectation values without the PNP.

Regarding the results described above, we are confident that it is feasible to study MNT processes

in low-energy heavy ion reactions employing the TDHF theory. As a next step, we investigated the

applicability of the TDHF theory to QF processes in reactions involving more heavier nuclei such as
238U. We studied 64Ni+238U and 238U+100,124,132Sn reactions for which extensive measurements were

performed (except for reactions involving 100,132Sn).

For the 64Ni+238U reaction, precise experimental data of MNT cross sections are available. We

calculated MNT cross sections using the TDHF theory combined with the PNP technique. Because
238U nucleus is largely deformed in prolate shape, we performed TDHF calculations for three different

initial orientations of 238U. From the results, we again found that the TDHF theory reproduces

measured MNT cross sections quantitatively with a similar accuracy to the lighter systems examined

previously. In this case, the TDHF theory reasonably describes measured MNT cross sections not only

proton stripping-channels, which are expected as a charge equilibration process, but also proton-pickup
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channels, which are underestimated by the semiclassical GRAZING calculation. The underestimation

of proton-pickup cross sections by the GRAZING calculation may be due to a neglected contribution

from reactions at small impact parameters. Because the present system has a large charge product,

ZPZT = 2576, there could be certain contributions to MNT processes from reactions at small impact

parameters. We consider that this result will be an evidence of a reasonable description of a transitional

regime from quasielastic to more complex reaction channels in the TDHF theory.

For the 64Ni+238U reaction, measurements of fission fragment mass distributions including contri-

butions from QF processes were achieved. In those experiments, a mass drift mode toward the mass

symmetry was observed. We found that the TDHF theory describes the mass drift mode in reactions

at small impact parameters. By comparing the total kinetic energy (TKE) vs. the fragment mass

(A) plots of measurements with those obtained from the TDHF calculations, we found a reasonable

agreement between them. We also found that the TKE-A distribution obtained from the TDHF calcu-

lation follows nicely the well-known Viola systematics. This fact also supports that the TDHF theory

can provide us a unified microscopic description of the dissipative QF process without any empirical

parameters specific to the reaction dynamics. We note that results of the TDHF calculation showed

a prominent plateau behavior in average number of nucleons of fragment nuclei as a function of the

impact parameter, which might be related to a substantial stability of doubly magic 208Pb in the exit

channel.

To get further understandings of the QF process, we investigated incident energy dependence of

the QF process in head-on collisions of 64Ni+238U. Calculations were performed for two orientations of
238U, the tip collisions where the symmetry axis of prolately deformed 238U is set parallel to the collision

axis, and the side collisions where the symmetry axis of 238U is set perpendicular to the collision axis.

From the results, we found different nature of the QF dynamics depending on the orientations of
238U. In the side collisions, the composite system of the projectile and target nuclei tends to form

mass symmetric fragments. We found that, in side collisions, the composite system forms a compact

configuration when two nuclei collide making a very thick neck structure. The formation of the very

thick neck causes mass transfer from 238U to 64Ni through the neck breaking transfer dynamics. As the

incident energy increases, we found occurrence of capture processes producing a superheavy nucleus

with atomic number Z = 120, 64
28Ni36+

238
92 U146 →302

120Ubn182, consistent with the symmetrizing trend.

On the other hand, in tip collisions, we observed different QF dynamics. The composite system cannot

form a compact configuration. The composite system always has an elongated shape irrespective of

the incident energy. As a result, we never observed any capture processes in the tip collisions. In this

way, the QF dynamics in the TDHF theory shows a strong orientation dependence of the reaction

dynamics.

For 238U+124Sn reaction, production cross sections were measured experimentally about 30 years

ago. The experimental data show a mass drift mode toward the mass symmetry including about ten-

proton transfer from 238U to 124Sn. However, the reaction mechanism of such proton transfer processes

had not been clear. We thus performed the TDHF calculations for 238U+124Sn reaction at three

different initial orientations of 238U. From the results, we again found a strong orientation dependence

of the reaction dynamics in 238U+124Sn. In the tip collisions, a thick and long neck structure is

formed between the two colliding nuclei, while the neck formation is substantially suppressed in the

side collisions. In the tip collisions, the thick and long neck formation and its breaking induce transfer

of both neutrons and protons inside the neck structure from 238U to 124Sn. We concluded that

the experimentally measured massive nucleon transfer from 238U to 124Sn is originated from the tip

collision. That is, the neck breaking transfer dynamics, a thick and long neck formation followed by

subsequent absorption of the nucleons inside the neck region, is responsible for the observed massive

nucleon transfer.

We also investigated incident energy dependence of the QF dynamics in head-on collisions. To
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investigate system dependence of the QF dynamics, especially initial N/Z ratio dependence, we per-

formed the TDHF calculations for 238U+100,124,132Sn reactions for two initial orientations of 238U, the

tip collisions and the side collisions. From the results, we observed several new features of the QF

dynamics. In the side collisions of 238U+124,132Sn, we found that the number of transferred nucleons

is always small irrespective of the incident energy. Even when two nuclei collides violently, the neck

is not so much developed. After the collision, nuclei similar to projectile and target, U- and Sn-like

fragments, were produced. This trend is different from the 64Ni+238U system for which we observed

a symmetrizing trend in side collisions. The difference may be due to the quite large total number of

protons in the 238U+124,132Sn systems, Z = 142. In this case, the composite system may no longer

have a chance to form a compact mononuclear configuration leading to a capture process because of

the strong Coulomb repulsion.

In the tip collisions of 238U+124,132Sn, we observed different QF dynamics from that observed in

the side collisions. As the incident energy increases, we found an emergence of an inverse QF process,

a mass drift mode toward the direction increasing the mass asymmetry compared with that before the

collision. Transfer of many (up to about 26) nucleons from 124,132Sn to 238U was observed, producing

neutron-rich transuranium nuclei as primary reaction products, e.g. 264100Fm164 in the 238U+132Sn colli-

sion. Of course, the reaction products produced through the inverse QF process must be highly excited

and suffer from substantial disintegration processes of fission and particle evaporation. However, we

consider that this result is encouraging for extending the TDHF calculations further to find a novel

reaction dynamics to produce exotic unstable nuclei.

In the case of 238U+100Sn, we observed substantial effects of charge equilibration processes at

incident energies around and above the Coulomb barrier, because of the large N/Z asymmetry. In both

tip and side collisions, neutrons and protons are transferred toward the direction of charge equilibrium

of the system. As the incident energy increases, we again observed the inverse QF process. It is worth

mentioning that, in this case, neutron-deficient transuranium nuclei, e.g. 252
104Rf148, are produced as

primary reaction products. In this way, the inverse QF process may provide us a unique opportunity

to produce new transuranium nuclei which have not yet been produced by other reactions.

Finally, as one of main goals of this work, we have conducted a search for optimum conditions

to produce objective unstable nuclei in 136Xe+198Pt reaction which has been considered to be a

useful means to produce neutron-rich nuclei around the N = 126 region. We performed a systematic

TDHF calculation for 136Xe+198Pt reactions at various incident energies and impact parameters.

From the results, we found that the QF dynamics in the 136Xe+198Pt reaction depends much on the

initial conditions. At certain initial conditions, we observed the inverse QF process producing 208Pb-

like heavier fragment on average. We also found that the results at different incident energies and

impact parameters can be summarized into one figure if we plot them as a function of the distance

of closest approach of the Rutherford trajectory. It indicates that the angular momentum carried

into the composite system plays a minor role in determining a dynamical path of the QF process.

We anticipate that the QF dynamics is characterized by some structural properties of the composite

system of the projectile and target nuclei at the turning point, e.g. shape with vibrating surface,

elongation, thickness of the neck, mass asymmetry, and so on. From these results, we consider that

we should take into consideration not only initial N/Z ratios of the projectile and target nuclei but

also structural properties of the composite system during the collision, to find optimum conditions for

producing objective nuclei through QF processes.

There remain several subjects which we hope to address in future as natural extensions of the

present work.

(i) Estimation of transfer induced fission. In this work, we only considered particle evaporation

processes as deexcitation processes. However, reaction products, especially heavier ones, may also

decay through fission. Because now we can calculate the expectation value of the angular momentum of
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reaction products in each transfer channel using the extended PNP method, we can, in principle, adopt

some statistical model to estimate effects of transfer induced fission as well as particle evaporation. In

recent experiments, detections of both projectile-like and target-like fragments are becoming feasible,

which enable us to estimate survival probability against fission [47]. Inclusion of transfer induced

fission processes will provide us a more realistic prediction of cross sections. From detailed comparison

between the prediction and measurements, we will be able to get further information on the reaction

mechanisms.

(ii) Investigation of effects of structure of a composite system of projectile and target nuclei and

reaction products. In the results for 238U+100,124,132Sn reactions, we observed the inverse QF process in

which exotic transuranium nuclei were produced as a primary reaction product. From time evolution

of the density of colliding nuclei, we found possible effects of surface vibration modes induced by the

collision and a large octupole deformation of produced transuranium nuclei. We also observed inverse

QF processes in 136Xe+198Pt reaction which may be related to a stabilization effect of doubly magic
208Pb in the exit channel. These results indicate an importance of structural effects of the composite

system and the fragment nuclei in the exit channel in determining dynamical paths of the QF processes.

We consider that, to examine those structural effects on the QF dynamics, calculations of PES of the

composite system by the CHF method will be useful. By comparing dynamical trajectories obtained

from the TDHF calculations with the landscape of the PES, we may get further insight into microscopic

mechanisms of the QF process.

(iii) Extension of the projection analysis to include the parity and angular momentum projections.

We extended the PNP method to calculate expectation values of operators in the particle-number

projected TDHF wave function after collision. The method enables us to examine properties of

reaction products in each transfer channel. In principle, it would be possible to include not only

the PNP but also the parity and angular momentum projections in our formalism. Recently, γ-ray

spectroscopic study of reaction products of MNT processes were achieved [48, 51]. In the measurements

reported in Ref. [51], reaction products with small total kinetic energy loss show γ-ray spectra from

low-lying Jπ = 2+ and 4+ states, while those with large total kinetic energy loss show much abundant

spectra corresponding to transitions between high-spin states up to 16+ state. We anticipate that if we

include the parity and angular momentum projections in addition to the PNP in our formalism, we can

investigate which states are populated through MNT processes directly from the TDHF wave function

after collision. Such analyses will also provide us further information on the reaction mechanisms.

(iv) Extension of the theoretical framework. In the present work, we investigated the applicability

of the TDHF theory to MNT and QF processes in low-energy heavy ion reactions. Of course, the

TDHF theory is an approximate framework and the description is not fully realistic. We consider

that we can develop more realistic theoretical frameworks. One of the most important missing physics

in the TDHF theory is the pairing correlation. Although it is yet unclear to what extent the paired

nucleons survive during the heavy ion reactions, their existence and importance have been well estab-

lished in various properties of nuclei in their ground state and low-energy excited states. To include

the pairing correlation in nuclear dynamics theoretically, the time-dependent Hartree-Fock-Bogoliubov

(TDHFB) theory would be the best candidate, although it requires a vast computational cost. Re-

cently, TDHF+BCS theory which is a simplified version of the TDHFB theory has been developed

(BCS: Bardeen-Cooper-Schrieffer). Analyses of MNT and QF processes in low-energy heavy ion reac-

tions including the pairing correlation employing these models would be an important subject. Other

possible extensions of the theoretical framework are use of theories beyond the mean-field, e.g. Barian-

Vénéroni variational principle which is equivalent to the time-dependent random phase approximation

(TDRPA). The TDRPA method will improve the description of fluctuation of the number of trans-

ferred nucleons. The time-dependent generator coordinate method (TDGCM) is another candidate.

The TDGCM would improve description of MNT processes by introducing different mean-field poten-
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tials associated with time-dependent generator coordinates depending on the number of transferred

nucleons. Other sophisticated formalisms such as time-dependent density matrix (TDDM) or the

stochastic mean-field (SMF) theories which may contain rich many-body correlations in describing

nuclear dynamics will also be a promising tool to get further insight into reaction mechanisms.

In conclusion, the TDHF theory turns out to be a valuable tool to study both MNT reactions

and QF processes in low-energy heavy ion reactions at energies around the Coulomb barrier. As is

well known, the TDHF theory provides a reasonable description of expectation values of a one-body

operator such as the average number of transferred nucleons. With the aid of the PNP technique,

we can get transfer probabilities around the average value. We can obtain transfer cross sections by

integrating the transfer probabilities over the impact parameter. Thus, the calculated cross sections

are expected to be reliable for main transfer channels with large probabilities around the average value.

In reactions of very heavy nuclei, fusion processes become no longer possible because of the strong

Coulomb repulsion. Then, the QF process becomes the most dominant process. Such a dominant

process can be reasonably described by the average trajectory in the TDHF theory. In this way, the

TDHF theory can provide us reasonable descriptions of MNT and QF processes, as demonstrated in

the present thesis.

To appropriately describe the MNT and QF processes, various complex physics should be taken into

account, e.g. time-dependent deformation of fragment nuclei as well as deformation of the composite

system, dynamics of the neck formation and its breaking, nucleon transfer, energy dissipations, nuclear

shell effects, and so on. Because the TDHF theory provides a parameter-free unified microscopic

descriptions of nuclear many-body dynamics, it will be a promising tool to study complex low-energy

nuclear dynamics. To get a microscopic understanding of reaction mechanisms and to find novel

reaction dynamics for producing exotic unstable nuclei, we shall extend this study as far as possible.

We hope readers will find something interesting from the thesis and this work will contribute to extend

our understandings of the nature as well as the atomic nuclei.
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Appendix A

Useful Formulae for the Slater

Determinant

In the HF theory, a many-body wave function of the system with N particles are described by a single

Slater determinant,

Φ(r1, · · · , rN ) =
1√
N !

∣∣∣∣∣∣∣
ϕ1(r1) · · · ϕ1(rN )

...
...

ϕN (r1) · · · ϕN (rN )

∣∣∣∣∣∣∣
=

1√
N !

∑
ξ

sgn(ξ)ϕξ1(r1) · · ·ϕξN (rN )

≡ 1√
N !

det{ϕi(rj)},

where the spatial functions ϕi(r) (i = 1, · · · , N) denote the single-particle wave functions which are

orthonormal to each other. The spin and isospin degrees of freedom are neglected for simplicity. The

notation det{ϕi(rj)} appearing in the right hand side of above equation represents a determinant of

an N -dimensional matrix which has a matrix element ϕi(rj) on i th row and j th column. In this

Chapter, we present several treatments for the Slater determinant.

A.1 Overlap between two Slater determinants

We consider an overlap between two different Slater determinants, Φ(r1, · · · , rN ) = 1√
N !

det{ϕi(rj)}
and Ψ(r1, · · · , rN ) = 1√

N !
det{ψi(rj)}, which is given by

⟨Φ|Ψ⟩ = 1

N !

∫
dr1 · · ·

∫
drN

∑
ξ

sgn(ξ)ϕ∗ξ1(r1) · · ·ϕ
∗
ξN

(rN ) det{ψi(rj)}, (A.1.1)

where ξ represent a sequence of {ξ1, · · · , ξN}. The summation over ξ refers all possible permutations

of the sequence {ξ1, · · · , ξN}, i.e., N ! patterns. The sgn(ξ) multiplies (−1) when two single-particle

wave functions are exchanged. Using the fact that the absolute value of a determinant is unchanged

under the exchange of two rows or two columns, we can show that all N ! patterns of the permutations
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have the same value of the integral of Eq. (A.1.1). We find

⟨Φ|Ψ⟩ =

∫
dr1 · · ·

∫
drN ϕ∗1(r1) · · ·ϕ∗N (rN ) det{ψi(rj)}

=
∑
ξ

sgn(ξ)

∫
dr1 ϕ

∗
1(r1)ψξ1(r1) · · ·

∫
drN ϕ∗N (rN )ψξN (rN )

=

∣∣∣∣∣∣∣
⟨ϕ1|ψ1⟩ · · · ⟨ϕ1|ψN ⟩

...
...

⟨ϕN |ψ1⟩ · · · ⟨ϕN |ψN ⟩

∣∣∣∣∣∣∣
= det{⟨ϕi|ψj⟩}. (A.1.2)

In the case of Φ(r1, · · · , rN ) = Ψ(r1, · · · , rN ), Eq. (A.1.2) leads ⟨Φ|Φ⟩ = 1 because of the orthonor-

mality of the single-particle wave functions. It represents the normalization of the many-body wave

function in the whole space.

A.2 Expectation value of a one-body operator

Let us denote an arbitrary one-body operator as T̂ =
∑N

i=1 t̂(ri). Here we consider the expectation

value of the one-body operator for the Slater determinant,

⟨Φ| T̂ |Φ⟩ = 1

N !

∫
dr1 · · ·

∫
drN

∑
ξ

sgn(ξ)ϕ∗ξ1(r1) · · ·ϕ
∗
ξN

(rN ) T̂ det{ϕi(rj)}. (A.2.1)

Since the one-body operator T̂ has nothing to do with the exchange of coordinate indexes, we can

show that the equivalence of the all possible terms in the summation over ξ because of the same reason

that Eq. (A.1.1) could be Eq. (A.1.2). We find

⟨Φ| T̂ |Φ⟩ =

∫
dr1 · · ·

∫
drN ϕ∗1(r1) · · ·ϕ∗N (rN ) T̂ det{ϕi(rj)}

=

N∑
i=1

∑
ξ

sgn(ξ) ⟨ϕ1|ϕξ1⟩ · · ·
⟨
ϕi−1

∣∣ϕξi−1

⟩
⟨ϕi| t̂ |ϕξi⟩

⟨
ϕi+1

∣∣ϕξi+1

⟩
· · · ⟨ϕN |ϕξN ⟩

=
N∑
i=1

∑
ξ

sgn(ξ) tiξi δ1,ξ1 · · · δi−1,ξi−1
δi+1,ξi+1

· · · δN,ξN , (A.2.2)

with the one-body matrix elements,

tij ≡
∫
dr ϕ∗i (r)t̂(r)ϕj(r). (A.2.3)

Eq. (A.2.2) has nonzero value only if ξi = i (i = 1, · · · , N). We then obtain

⟨Φ| T̂ |Φ⟩ =
N∑
i=1

tii. (A.2.4)

In this way, the expectation value of the one-body operator for the Slater determinant is given by a

sum of expectation values for the single-particle wave functions.
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A.3 Expectation value of a two-body operator

Let us denote an arbitrary two-body operator as V̂ =
∑

i<j v̂(ri, rj). We next consider the expectation

value of the two-body operator for the Slater determinant,

⟨Φ| V̂ |Φ⟩ = 1

N !

∫
dr1 · · ·

∫
drN

∑
ξ

sgn(ξ)ϕ∗ξ1(r1) · · ·ϕ
∗
ξN

(rN ) V̂ detϕi(rj). (A.3.1)

Assuming that the two-body operator v̂(r1, r2) equals to v̂(r2, r1), we obtain, in an analogous way for

the one-body operator,

⟨Φ| V̂ |Φ⟩ =

∫
dr1 · · ·

∫
drN ϕ∗1(r1) · · ·ϕ∗N (rN ) V̂ det{ϕi(rj)}

=
∑
i<j

∑
ξ

sgn(ξ) vijξiξj
⟨
ϕ1
∣∣ϕξ1⟩ · · · ⟨ϕi−1

∣∣ϕξi−1

⟩⟨
ϕi+1

∣∣ϕξi+1

⟩
· · ·
⟨
ϕj−1

∣∣ϕξj−1

⟩⟨
ϕj+1

∣∣ϕξj+1

⟩
· · ·
⟨
ϕN
∣∣ϕξN ⟩

=
∑
i<j

∑
ξ

sgn(ξ) vijξiξjδ1,ξ1 · · · δi−1,ξi−1
δi+1,ξi+1

· · · δj−1,ξj−1
δj+1,ξj+1

· · · δN,ξN , (A.3.2)

with the two-body matrix elements,

vijkl ≡
∫
dr

∫
dr′ ϕ∗i (r)ϕ

∗
j (r

′)v̂(r, r′)ϕk(r)ϕl(r
′). (A.3.3)

Eq. (A.3.2) has nonzero value for two cases: One is the case that ξi = i, ξj = j, and ξk = k (k ̸= i, j)

without permutation, the other is the case that ξi = j, ξj = i, and ξk = k (k ̸= i, j) with one

permutation. We then obtain

⟨Φ| V̂ |Φ⟩ =
∑
i<j

v̄ijij , (A.3.4)

where we introduce the anti-symmetrized two-body matrix elements, v̄ijkl ≡ vijkl − vijlk.

A.4 Derivation of the Hartree-Fock equation

Eqs. (A.2.4) and (A.3.4) show that the expectation value of the Hamiltonian,

Ĥ =

N∑
i=1

t̂(ri) +
∑
i<j

v̂(ri, rj), (A.4.1)

for the Slater determinant takes the following form:

⟨Φ| Ĥ |Φ⟩ =
N∑
i=1

tii +
∑
i<j

v̄ijij . (A.4.2)

We can derive the HF equation by performing a variation of Eq. (A.4.2) with respect to the single-

particle wave functions, i.e.,

δ

δϕ∗α(r)

[
⟨Φ| Ĥ |Φ⟩ −

∑
ij

εij

(⟨
ϕi
∣∣ϕj⟩− δij)] = 0, (A.4.3)

151



Appendix A Useful Formulae for the Slater Determinant

where εij are Lagrange multipliers to ensure the orthonormalization condition for the single-particle

wave functions. The variation of the expectation value of the one-body operator Eq. (A.2.4) leads

δ

δϕ∗i (r)
⟨Φ| T̂ |Φ⟩ =

N∑
j=1

∫
dr′

δϕ∗j (r
′)

δϕ∗i (r)
t̂(r′)ϕj(r

′)

=
N∑
j=1

∫
dr′ δij δ(r − r′)t̂(r′)ϕj(r

′)

= t̂(r)ϕi(r). (A.4.4)

In the same way, the variation of the expectation value of the two-body operator Eq. (A.3.4) is

calculated as

δ

δϕ∗i (r)
⟨Φ| V̂ |Φ⟩ =

∑
k<l

∫
dr′
∫
dr′′

{
δϕ∗k(r

′)

δϕ∗i (r)
ϕ∗l (r

′′) + ϕ∗k(r
′)
δϕ∗l (r

′′)

δϕ∗i (r)

}
×v̂(r′, r′′)

(
ϕk(r

′)ϕl(r
′′)− ϕl(r′)ϕk(r′′)

)
=

1

2

∑
k,l

∫
dr′
∫
dr′′
{
δki δ(r − r′)ϕ∗l (r

′′) + δli δ(r − r′′)ϕ∗k(r
′)
}

×v̂(r′, r′′)
(
ϕk(r

′)ϕl(r
′′)− ϕl(r′)ϕk(r′′)

)
=

1

2

N∑
j=1

∫
dr′
{
ϕ∗j (r

′)v̂(r, r′)
(
ϕi(r)ϕj(r

′)− ϕj(r)ϕi(r′)
)

+ϕ∗j (r
′)v̂(r′, r)

(
ϕj(r

′)ϕi(r)− ϕi(r′)ϕj(r)
)}
. (A.4.5)

Since the two terms appearing in the parentheses, { }, of the last row are equivalent to each other, we

find

δ

δϕ∗i (r)
⟨Φ| V̂ |Φ⟩ =

N∑
j=1

{∫
dr′ v̂(r, r′)ϕ∗j (r

′)ϕj(r
′)ϕi(r)−

∫
dr′ v̂(r, r′)ϕj(r)ϕ

∗
j (r

′)ϕi(r
′)

}

≡ Γ̂H(r)ϕi(r)−
∫
dr′ Γ̂F(r, r

′)ϕi(r
′). (A.4.6)

We have introduced the so called Hartree potential ΓH(r) and Fock potential ΓF(r, r
′) as follows:

ΓH(r) ≡
∫
dr′v̂(r, r′)ρ(r′), ρ(r) ≡

N∑
i=1

∣∣ϕi(r)∣∣2, (A.4.7)

ΓF(r, r
′) ≡ v̂(r, r′)ρ(r, r′), ρ(r, r′) ≡

N∑
i=1

ϕi(r)ϕ
∗
i (r

′). (A.4.8)

In this way, we obtain the relation

t̂(r)ϕi(r) + Γ̂H(r)ϕi(r)−
∫
dr′ Γ̂F(r, r

′)ϕi(r
′) =

∑
j

εijϕi(r), (A.4.9)

where the term appearing on the right hand side is originated from the term for the constraint on

the orthonormalization condition. We note that the many-body wave function is unchanged under

arbitrary unitary transformations for the single-particle wave functions. We thus use this gauge degree

of freedom to diagonalize the single-particle Hamiltonian. As a result, we obtain the HF equation∫
dr′ ĥHF(r, r

′)ϕi(r
′) = εiϕi(r), (A.4.10)
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where εi ≡ εii. The single-particle Hamiltonian is defined by

ĥHF(r, r
′) ≡

[
t̂(r′) + Γ̂H(r

′)
]
δ(r − r′)− Γ̂F(r, r

′). (A.4.11)

A.5 Average number of transferred nucleons and its fluc-

tuation

To evaluate the average number of transferred nucleons, we introduce the number operator in a spacial

region V as

N̂V ≡
∫
N
dr n̂(r) =

N∑
i=1

ΘV (ri). (A.5.1)

The n̂(r) represents the number density operator,

n̂(r) =

N∑
i=1

δ(r − ri). (A.5.2)

The ΘV (r) is a space division function defined by

Θτ (r) =

{
1 for r ∈ τ,
0 for r /∈ τ.

(A.5.3)

Because the number density operator is a one-body operator, we can evaluate the expectation value

for the Slater determinant in the same way as Eq. (A.2.4). We find

⟨Φ| N̂V |Φ⟩ =

∫
V
dr ⟨Φ| n̂(r) |Φ⟩

=
N∑
i=1

⟨ϕi|ΘV |ϕi⟩

=

∫
V
dr ρ(r). (A.5.4)

The average number of transferred nucleons is evaluated by comparing the expectation value of

Eq. (A.5.4) with the number of nucleons of the nucleus before the collision. If we take the spacial

region V as the whole space, Eq. (A.5.4) becomes

⟨Φ| N̂ |Φ⟩ =
N∑
i=1

⟨ϕi|ϕi⟩ = N. (A.5.5)

That is, it coincides with the total number of nucleons of the system.

We can also evaluate the fluctuation in the average number of transferred nucleons,

σ ≡
√
⟨Φ|
(
N̂V

)2 |Φ⟩ − ⟨Φ| N̂V |Φ⟩2. (A.5.6)

The expectation value of the square of the number operator in the spatial region V is evaluated as

⟨Φ|
(
N̂V

)2 |Φ⟩ =
N∑

i,j=1

⟨Φ|ΘV (ri)ΘV (rj) |Φ⟩

=
N∑
i=1

⟨Φ|ΘV (ri) |Φ⟩+
N∑
i ̸=j

⟨Φ|ΘV (ri)ΘV (rj) |Φ⟩ , (A.5.7)
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where the first term after the last equality represents the i = j part, which coincides with Eq. (A.5.4).

We have used a relation
[
ΘV (ri)

]2
= ΘV (ri). The second term in the last row of Eq. (A.5.7) can be

regarded as a two-body operator. We find

N∑
i̸=j

⟨Φ|ΘV (ri)ΘV (rj) |Φ⟩ =
∑
ij

∫
dr

∫
dr′ϕ∗i (r)ϕ

∗
j (r

′)
{
ϕi(r)ϕj(r

′)− ϕj(r)ϕi(r′)
}

×ΘV (r)ΘV (r
′)

=

∫
drρ(r)ΘV (r)

∫
dr′ρ(r′)ΘV (r

′)

−
∑
ij

∫
drϕ∗i (r)ϕj(r)ΘV (r)

∫
dr′ϕ∗j (r

′)ϕi(r
′)ΘV (r

′)

= ⟨Φ| N̂V |Φ⟩2 −
∑
ij

∣∣⟨ϕi|ϕj⟩V ∣∣2 . (A.5.8)

From Eqs. (A.5.7) and (A.5.8), we obtain

σ =

√∫
V
dr ρ(r)−

∑
ij

∣∣⟨ϕi|ϕj⟩V ∣∣2. (A.5.9)

Let us slightly rewrite Eq. (A.5.9) as

σ =

{ N∑
i=1

⟨ϕi|ϕi⟩V −
∑
i,j

∣∣⟨ϕi|ϕj⟩V ∣∣2}− 1
2

=

{ N∑
i=1

⟨ϕi|ϕi⟩ (1− ⟨ϕi|ϕi⟩V )−
∑
i̸=j

∣∣⟨ϕi|ϕj⟩V ∣∣2}− 1
2

, (A.5.10)

which has maximum value σ =
√

N
4 when ⟨ϕi|ϕj⟩V = 0 (i ̸= j) and ⟨ϕi|ϕi⟩V = 0.5 (i = 1, · · · , N).

Experimentally, widths of fragment mass distribution were measured which exceed the upper limit.

Thus this upper limit of the fluctuation of an expectation value of a one-body operator is known as

one of the drawbacks of the HF theory. If we take the spatial region V as the whole space, Eq. (A.5.9)

becomes

σ =

√
⟨Φ| N̂V |Φ⟩ −

∑
ij

∣∣∣⟨ϕi|ϕj⟩∣∣∣2 =√⟨Φ| N̂V |Φ⟩ −N = 0. (A.5.11)

A.6 Formulae for two different Slater determinants

We consider two Slater determinants Φ and Ψ, which are composed of different sets of single-particle

wave functions {ϕi} and {ψi}, respectively. When these two sets of single-particle wave functions are

not orthonormal to each other, i.e.
⟨
ϕi
∣∣ψj

⟩
̸= δij , we cannot adopt formulae presented in the previous

Sections. We actually encounter such a situation, for example, when we calculate expectation values

of operators in a particle-number projected TDHF wave function after collision. It is then useful

to introduce a transformation for single-particle wave functions {ψi} to be orthonormal to {ϕi}, as
follows.

We introduce a new set of single-particle wave functions {ψ̃i}. They are related to {ψi} by a

transformation,

ψ̃i(r) ≡
N∑
j=1

ψj(r)B−1
ji , (A.6.1)
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where B is an N -dimensional matrix. B−1 denotes the inverse matrix of the B. At present, we do not

know the explicit form of the matrix B. We shall determine the form of B so as to fulfill the relation,⟨
ϕi
∣∣ψ̃i

⟩
= δij . (A.6.2)

Recalling the identity

B−1B =


B−1
11 B−1

12 · · · B−1
1N

B−1
21 B−1

22 · · · B−1
2N

...
...

. . .
...

B−1
N1 B−1

N2 · · · B−1
NN



B11 B12 · · · B1N
B21 B22 · · · B2N
...

...
. . .

...

BN1 BN2 · · · BNN



=


∑

k B
−1
1k Bk1

∑
k B

−1
1k Bk2 · · ·

∑
k B

−1
1k BkN∑

k B
−1
2k Bk1

∑
k B

−1
2k Bk2 · · ·

∑
k B

−1
2k BkN

...
...

. . .
...∑

k B
−1
NkBk1

∑
k B

−1
NkBk2 · · ·

∑
k B

−1
NkBkN

 = I, (A.6.3)

we see
∑

k B
−1
ik Bkj = δij . Multiplying Eq. (A.6.1) by Bik and taking a summation over the index i, we

find
N∑
i=1

ψ̃i(r)Bik =
N∑
j=1

ψj(r)
N∑
i=1

B−1
ji Bik︸ ︷︷ ︸

=δjk

= ψk(r). (A.6.4)

We then multiply ϕ∗l (r) from the left side of Eq. (A.6.4) and integrate over the coordinate r to

determine the matrix elements of B:
N∑
i=1

⟨
ϕl
∣∣ψ̃i

⟩
Bik = Blk =

⟨
ϕl
∣∣ψk

⟩
, (A.6.5)

where the first equality follows from the requirement, Eq. (A.6.2).

Ones we get the explicit form of the matrix B, we can construct a set of biorthonormal single-

particle wave functions {ψ̃i} by Eq. (A.6.1). The Slater determinant Ψ turns out to be

Ψ(r1, · · · , rN ) =
1√
N !

det
{
ψi(rj)

}
=

1√
N !

det
{∑

kψ̃k(rj)Bki
}

=
1√
N !

det
{
tAB

}
=

1√
N !

det tA detB =
1√
N !

detA detB

= detB Ψ̃(r1, · · · , rN ), (A.6.6)

where we introduced an N -dimensional matrix A composed of matrix elements Aij = ψ̃i(rj), just for

convenience. Ψ̃ is defined by

Ψ̃(r1, · · · , rN ) =
1√
N !

det{ψ̃i(rj)}. (A.6.7)

Using Eq. (A.6.6), we can rewrite any transition matrix elements as⟨
Φ
∣∣Ô∣∣Ψ⟩ = detB

⟨
Φ
∣∣Ô∣∣Ψ̃⟩. (A.6.8)

Because now Φ and Ψ̃ are composed of single-particle wave functions {ϕi} and {ψ̃i}, respectively,
which are biorthonormal to each other, we can evaluate

⟨
Φ
∣∣Ô∣∣Ψ̃⟩ using formulae given in the previous

Sections.
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Appendix B

Detailed Derivation of the Skyrme

Hartree-Fock Equation

In this Chapter, we present a detailed derivation of the HF equation with a Skyrme-type effective

interaction. In Sec. B.1, we give definitions of various densities and relations between them which are

useful to derive the Skyrme HF equation. In Sec. B.2, we derive the expression of the expectation

value of the Skyrme Hamiltonian, the Skyrme EDF. In Sec. B.3, we perform a variation of the energy

expectation value to derive the Skyrme HF equation.

B.1 Preparation

Before deriving the Skyrme EDF and the Skyrme HF equation, we first define the following densities:

ρ(r) ≡
∑
i σ

ϕ∗i (rσ)ϕi(rσ), (B.1.1)

s(r) ≡
∑
i σ1 σ2

ϕ∗i (rσ1)ϕi(rσ2) ⟨σ1| σ̂ |σ2⟩ , (B.1.2)

τ(r) ≡
∑
i σ

∇ϕ∗i (rσ) · ∇ϕi(rσ), (B.1.3)

T (r) ≡
∑
i σ1 σ2

{∇ϕ∗i (rσ1) · ∇ϕi(rσ2)} ⟨σ1| σ̂ |σ2⟩ , (B.1.4)

j(r) ≡ 1

2i

∑
i σ

{ϕ∗i (rσ)∇ϕi(rσ)− ϕi(rσ)∇ϕ∗i (rσ)} , (B.1.5)

Jµν(r) ≡
1

2i

∑
i σ1 σ2

{ϕ∗i (rσ1)∂µϕi(rσ2)− ϕi(rσ2)∂µϕ∗i (rσ1)} ⟨σ1| σ̂ν |σ2⟩ , (B.1.6)

J(r) ≡
(
J23(r)− J32(r), J31(r)− J13(r), J12(r)− J21(r)

)
. (B.1.7)

The function ϕi(rσ) denotes a spin σ (↑ or ↓) component of the single-particle wave function of i th

nucleon (i = 1, · · · , A),(
ϕi(r ↑)
ϕi(r ↓)

)
= ϕi(r ↑)

(
1

0

)
+ ϕi(r ↓)

(
0

1

)
=
∑
σ

ϕi(rσ)χσ(i). (B.1.8)
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χσ(i) denotes the spin part of the single-particle wave function of ith nucleon, which is an eigenstate

of Ŝz = σ̂z/2 with eigenvalues σ = ±1/2:

∣∣σ⟩ ≡ χσ =



(
1

0

)
for σ = +1/2 (↑),(

0

1

)
for σ = −1/2 (↓).

(B.1.9)

The operator σ̂ = (σ̂x, σ̂y, σ̂z) denotes the Pauli spin matrices,

σ̂x =

(
0 1

1 0

)
, σ̂y =

(
0 i

−i 0

)
, σ̂z =

(
1 0

0 −1

)
, (B.1.10)

which act only on the spin space. From these definitions, we find the following relations:

σ̂x
∣∣σ⟩ =

∣∣−σ⟩, (B.1.11)

σ̂y
∣∣σ⟩ = 2iσ

∣∣−σ⟩, (B.1.12)

σ̂z
∣∣σ⟩ = 2σ

∣∣σ⟩. (B.1.13)

The bracket in s, T , and Jµν is defined as
⟨
σ1
∣∣σ̂∣∣σ2⟩ ≡ χ†

σ1σ̂χσ2 . For each component of the Pauli

spin matrix, we find

⟨
σ1
∣∣σ̂∣∣σ2⟩ =

(
δσ1−σ2 , −2iσ1δσ1−σ2 , 2σ1δσ1σ2

)
. (B.1.14)

In the standard HF theory, each single-particle wave function is assumed to have its own intrinsic

isospin qi, where qi = n for neutrons or qi = p for protons. It is crucial when we calculate the exchange

term in the expectation value of a two-body operator, because this assumption eliminates exchange

terms between nucleons with different isospins. We will comeback to this point later. The operator

∇ =
(
∂/∂x, ∂/∂y, ∂/∂z

)
denotes a nabla operator which acts only on a neighboring spatial function

sitting on its right side, i.e. ∇f(r)g(r) = g(r)∇f(r). These densities ρ, τ , j, s, T , and Jµν are

referred to as (matter) density, kinetic energy density, current (density), spin density, spin kinetic

energy density, and spin current pseudotensor (density), respectively. J(r) denotes the antisymmetric

part of the spin current pseudotensor Jµν having components Jλ(r) =
∑

µν ελµνJµν(r). All these

densities are real by definition.

We also define following densities with isospin dependence
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ρ(q)(r) ≡
∑
i∈q σ

ϕ∗i (rσ)ϕi(rσ), (B.1.15)

s(q)(r) ≡
∑

i∈q σ1 σ2

ϕ∗i (rσ1)ϕi(rσ2) ⟨σ1| σ̂ |σ2⟩ , (B.1.16)

τ (q)(r) ≡
∑
i∈q σ

∇ϕ∗i (rσ) · ∇ϕi(rσ), (B.1.17)

T (q)(r) ≡
∑

i∈q σ1 σ2

{∇ϕ∗i (rσ1) · ∇ϕi(rσ2)} ⟨σ1| σ̂ |σ2⟩ , (B.1.18)

j(q)(r) ≡ 1

2i

∑
i∈q σ
{ϕ∗i (rσ)∇ϕi(rσ)− ϕi(rσ)∇ϕ∗i (rσ)} , (B.1.19)

J (q)
µν (r) ≡

1

2i

∑
i∈q σ1 σ2

{ϕ∗i (rσ1)∂µϕi(rσ2)− ϕi(rσ2)∂µϕ∗i (rσ1)} ⟨σ1| σ̂ν |σ2⟩ , (B.1.20)

J (q)(r) ≡
(
J
(q)
23 (r)− J (q)

32 (r), J
(q)
31 (r)− J (q)

13 (r), J
(q)
12 (r)− J (q)

21 (r)
)
, (B.1.21)

and with spin dependence

ρσ1σ2(r) ≡
∑
i

ϕ∗i (rσ1)ϕi(rσ2), (B.1.22)

ρ(q)σ1σ2
(r) ≡

∑
i∈q

ϕ∗i (rσ1)ϕi(rσ2), (B.1.23)

τσ1σ2(r) ≡
∑
i σ1 σ2

∇ϕ∗i (rσ1) · ∇ϕi(rσ2), (B.1.24)

τ (q)σ1σ2
(r) ≡

∑
i∈q σ1 σ2

∇ϕ∗i (rσ1) · ∇ϕi(rσ2), (B.1.25)

jσ1σ2(r) ≡
1

2i

∑
i

{ϕ∗i (rσ1)∇ϕi(rσ2)− ϕi(rσ2)∇ϕ∗i (rσ1)} , (B.1.26)

j(q)σ1σ2
(r) ≡ 1

2i

∑
i∈q
{ϕ∗i (rσ1)∇ϕi(rσ2)− ϕi(rσ2)∇ϕ∗i (rσ1)} , (B.1.27)

where the summation
∑

i∈q is taken over particle index i with a condition that the isospin of ith

particle should coincide with the isospin q, i.e. qi = q.

We next derive relations among these densities which are useful to derive the Skyrme EDF and

the Skyrme HF equation. From Eq. (B.1.14), there follows a relation

⟨
σ1
∣∣σ̂∣∣σ2⟩ · ⟨σ3∣∣σ̂∣∣σ4⟩ =

∑
µ

⟨
σ1
∣∣σ̂µ∣∣σ2⟩⟨σ3∣∣σ̂µ∣∣σ4⟩

= δσ1−σ2δσ3−σ4 − 4σ1σ3δσ1−σ2δσ3−σ4 + 4σ1σ3δσ1σ2δσ3σ4

= 2δσ1−σ2−σ3σ4 + δσ1σ2σ3σ4 − δσ1σ2−σ3−σ4 , (B.1.28)
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Appendix B Detailed Derivation of the Skyrme Hartree-Fock Equation

where we have introduced a shorthand notation, δσ1σ2σ3σ4 = δσ1σ2δσ3σ4δσ1σ3 . Using Eq. (B.1.28), we

can rewrite a squared spin density s2(r) as

s2(r) =
∑
iσ1σ2

ϕ∗i (rσ1)ϕi(rσ2)
⟨
σ1
∣∣σ̂∣∣σ2⟩ · ∑

jσ3σ4

ϕ∗j (rσ3)ϕj(rσ4)
⟨
σ3
∣∣σ̂∣∣σ4⟩

=
∑
ijσ

{
2ϕ∗i (rσ)ϕi(r − σ)ϕ∗j (r − σ)ϕj(rσ) + ϕ∗i (rσ)ϕi(rσ)ϕ

∗
j (rσ)ϕj(rσ)

−ϕ∗i (rσ)ϕi(rσ)ϕ∗j (r − σ)ϕj(r − σ)
}

= 2
∑
ijσ

{
ϕ∗i (rσ)ϕi(r − σ)ϕ∗j (r − σ)ϕj(rσ) + ϕ∗i (rσ)ϕi(rσ)ϕ

∗
j (rσ)ϕj(rσ)

}
−
∑
ijσ

{
ϕ∗i (rσ)ϕi(rσ)ϕ

∗
j (r − σ)ϕj(r − σ) + ϕ∗i (rσ)ϕi(rσ)ϕ

∗
j (rσ)ϕj(rσ)

}
= 2

∑
ijσ1σ2

{
ϕ∗i (rσ1)ϕi(rσ2)ϕ

∗
j (rσ2)ϕj(rσ1)

}
−
∑
ijσ

ϕ∗i (rσ)ϕi(rσ)
{
ϕ∗j (r − σ)ϕj(r − σ) + ϕ∗j (rσ)ϕj(rσ)

}
= 2

∑
σ1σ2

∑
i

ϕ∗i (rσ1)ϕi(rσ2)
∑
j

ϕ∗j (rσ2)ϕj(rσ1)

−
∑
iσ1

ϕ∗i (rσ1)ϕi(rσ1)
∑
jσ2

ϕ∗j (rσ2)ϕj(rσ2)

= 2
∑
σ1σ2

ρσ1σ2(r)ρσ2σ1(r)− ρ2(r),

where, in the forth equality, we changed a summation over σ to summations over σ1 and σ2. We then

obtain following relations:

s2(r) = 2
∑
σ1 σ2

ρσ1σ2(r)ρσ2σ1(r)− ρ2(r), (B.1.29)

s(q)2(r) = 2
∑
σ1 σ2

ρ(q)σ1σ2
(r)ρ(q)σ2σ1

(r)− ρ(q)2(r). (B.1.30)

In the same way, we can also obtain

T 2(r) = 2
∑
σ1 σ2

τσ1σ2(r)τσ2σ1(r)− τ2(r), (B.1.31)

T (q)2(r) = 2
∑
σ1 σ2

τ (q)σ1σ2
(r)τ (q)σ2σ1

(r)− τ (q)2(r), (B.1.32)

s(r) · T (r) = 2
∑
σ1 σ2

ρσ1σ2(r)τσ2σ1(r)− ρ(r)τ(r), (B.1.33)

s(q)(r) · T (q)(r) = 2
∑
σ1 σ2

ρ(q)σ1σ2
(r)τ (q)σ2σ1

(r)− ρ(q)(r)τ (q)(r). (B.1.34)

Noting the following expressions of tensor components

∂µsν(r) =
∑
σ1σ2

∂µρσ1σ2(r)
⟨
σ1
∣∣σ̂ν∣∣σ2⟩, (B.1.35)

Jµν(r) =
∑
σ1σ2

jµ,σ1σ2(r)
⟨
σ1
∣∣σ̂ν∣∣σ2⟩, (B.1.36)
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we find similar relations for the sum of square of these tensor components,

∑
µν

(
∂µsν(r)

)2
=

∑
µ

{∑
σ1σ2

∂µρσ1σ2(r)
⟨
σ1
∣∣σ̂∣∣σ2⟩ · ∑

σ3σ4

∂µρσ3σ4(r)
⟨
σ3
∣∣σ̂∣∣σ4⟩}

=
∑
µ

{
2
∑
σ1σ2

∂µρσ1σ2(r)∂µρσ2σ1(r)−
(
∂µρ(r)

)2}
= 2

∑
σ1σ2

∇ρσ1σ2(r) · ∇ρσ2σ1(r)−
(
∇ρ(r)

)2
. (B.1.37)

We can rewrite
∑

µν

(
Jµν(r)

)2
in the same way. We then obtain

∑
µν

(
∂µsν(r)

)2
= 2

∑
σ1σ2

∇ρσ1σ2(r) · ∇ρσ2σ1(r)−
(
∇ρ(r)

)2
, (B.1.38)

∑
µν

(
∂µs

(q)
ν (r)

)2
= 2

∑
σ1σ2

∇ρ(q)σ1σ2
(r) · ∇ρ(q)σ2σ1

(r)−
(
∇ρ(q)(r)

)2
, (B.1.39)

∑
µν

(
Jµν(r)

)2
= 2

∑
σ1σ2

jσ1σ2(r) · jσ2σ1(r)− j2(r), (B.1.40)

∑
µν

(
J (q)
µν (r)

)2
= 2

∑
σ1σ2

j(q)σ1σ2
(r) · j(q)σ2σ1

(r)− j(q)2(r). (B.1.41)

From equations for the gradient of the matter densities ρ(r) and ρσ1σ2(r) and the spin density s(r),

∇ρ(r) =
∑
i σ

{
ϕi(rσ)∇ϕ∗i (rσ) + ϕ∗i (rσ)∇ϕi(rσ)

}
, (B.1.42)

∇ρσ1σ2(r) =
∑
i

{
ϕi(rσ2)∇ϕ∗i (rσ1) + ϕ∗i (rσ1)∇ϕi(rσ2)

}
, (B.1.43)

∂µsν(r) =
∑
i σ1σ2

{
ϕi(rσ2)∂µϕ

∗
i (rσ1) + ϕ∗i (rσ1)∂µϕi(rσ2)

}⟨
σ1
∣∣σ̂ν∣∣σ2⟩, (B.1.44)

combined with the definitions of j(r) Eq. (B.1.5), jσ1σ2(r) Eq. (B.1.26), and Jµν(r) Eq. (B.1.6), we

find

1

2
∇ρ(r) + ij(r) =

∑
i σ

ϕ∗i (rσ)∇ϕi(rσ), (B.1.45)

1

2
∇ρ(r)− ij(r) =

∑
i σ

ϕi(rσ)∇ϕ∗i (rσ), (B.1.46)

1

2
∇ρσ1σ2(r) + ijσ1σ2(r) =

∑
i

ϕ∗i (rσ1)∇ϕi(rσ2), (B.1.47)

1

2
∇ρσ1σ2(r)− ijσ1σ2(r) =

∑
i

ϕi(rσ2)∇ϕ∗i (rσ1), (B.1.48)

1

2
∂µsν(r) + iJµν(r) =

∑
i σ1σ2

ϕ∗i (rσ1)∂µϕi(rσ2)
⟨
σ1
∣∣σ̂ν∣∣σ2⟩, (B.1.49)

1

2
∂µsν(r)− iJµν(r) =

∑
i σ1σ2

ϕi(rσ2)∂µϕ
∗
i (rσ1)

⟨
σ1
∣∣σ̂ν∣∣σ2⟩. (B.1.50)
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We denote a Laplacian operator as △ = ∇2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 which acts only on a

neighboring spatial function sitting on its right side, i.e. △f(r)g(r) = g(r)△ f(r). Using an equation

for the Laplacian of the matter density,

△ ρ(r) =
∑
i σ

{
ϕi(rσ)△ ϕ∗i (rσ) + ϕ∗i (rσ)△ ϕi(rσ) + 2∇ϕ∗i (rσ) · ∇ϕi(rσ)

}
, (B.1.51)

and the definition of τ(r), Eq. (B.1.3), we find

△ ρ(r)− 2τ(r) =
∑
i σ

{
ϕ∗i (rσ)△ ϕi(rσ) + ϕi(rσ)△ ϕ∗i (rσ)

}
, (B.1.52)

△ρσ1σ2(r)− 2τσ1σ2(r) =
∑
i

{
ϕ∗i (rσ1)△ ϕi(rσ2) + ϕi(rσ2)△ ϕ∗i (rσ1)

}
. (B.1.53)

Recalling the formulae of the vector analysis

∇× (fA) = f(∇×A)−A× (∇f), (B.1.54)

∇× (∇f) = 0, (B.1.55)

where f = f(r) and A = A(r) denote arbitrary scalar and vector spatial functions, respectively, we

find

∇× j(r) =
1

2i

∑
i σ

∇×
{
ϕ∗i (rσ)∇ϕi(rσ)− ϕi(rσ)∇ϕ∗i (rσ)

}
=

1

2i

∑
i σ

{
ϕ∗i (rσ)∇×

(
∇ϕi(rσ)

)
−∇ϕi(rσ)×∇ϕ∗i (rσ)

−ϕi(rσ)∇×
(
∇ϕ∗i (rσ)

)
+∇ϕ∗i (rσ)×∇ϕi(rσ)

}
=

1

i

∑
i σ

∇ϕ∗i (rσ)×∇ϕi(rσ)

and

∇ · J(r) =
∑
λµν

ελµν∂λJµν(r)

=
1

2i

∑
λµν

ελµν
∑
i σ1 σ2

∂λ

{
ϕ∗i (rσ1)∂µϕi(rσ2)− ϕi(rσ2)∂µϕ∗i (rσ1)

}
⟨σ1| σ̂ν |σ2⟩

=
1

2i

∑
λµν

ελµν
∑
i σ1 σ2

{
∂λϕ

∗
i (rσ1)∂µϕi(rσ2) + ϕ∗i (rσ1)∂λ∂µϕi(rσ2)

−∂λϕi(rσ2)∂µϕ∗i (rσ1)− ϕi(rσ2)∂λ∂µϕ∗i (rσ1)
}
⟨σ1| σ̂ν |σ2⟩

=
1

i

∑
i σ1 σ2

∑
λµν

ελµν∂λϕ
∗
i (rσ1)∂µϕi(rσ2) ⟨σ1| σ̂ν |σ2⟩

=
1

i

∑
i σ1 σ2

{
∇ϕ∗i (rσ1)×∇ϕi(rσ2)

}
· ⟨σ1| σ̂ |σ2⟩ ,

where, in the fourth equality, we used anti-symmetric nature of the Levi-Civita tensor, which leads

ελµν∂µ∂νf(r) = 0. To summarize, we have
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i∇× j(r) =
∑
i σ

∇ϕ∗i (rσ)×∇ϕi(rσ), (B.1.56)

i∇× j(q)(r) =
∑
i∈q σ

∇ϕ∗i (rσ)×∇ϕi(rσ), (B.1.57)

i∇ · J(r) =
∑
i σ1 σ2

{
∇ϕ∗i (rσ1)×∇ϕi(rσ2)

}
· ⟨σ1| σ̂ |σ2⟩ , (B.1.58)

i∇ · J (q)(r) =
∑

i∈q σ1 σ2

{
∇ϕ∗i (rσ1)×∇ϕi(rσ2)

}
· ⟨σ1| σ̂ |σ2⟩ . (B.1.59)

B.2 Derivation of the Skyrme energy density functional

In this Section, we derive the Skyrme EDF using the relations presented in the previous Section.

We describe the expectation value of the Skyrme effective interaction, Eq. (2.1.12), for the Slater

determinant. What we need to calculate is the expectation value of a two-body interaction operator

given by ⟨
Φ
∣∣V̂ ∣∣Φ⟩ = 1

2

∑
ij

{
⟨ϕiϕj | v̂ |ϕiϕj⟩︸ ︷︷ ︸

direct term

−⟨ϕiϕj | v̂ |ϕjϕi⟩︸ ︷︷ ︸
exchange term

}
, (B.2.1)

where we refer to the first (second) term as the direct (exchange) term.

Here we use a bracket notation defined as follows: We suppose that each single-particle wave

function is represented by a two-component spinor,

ϕ̃†i (r) =
(
ϕ∗i (r ↑) ϕ∗i (r ↓)

)
, ϕ̃i(r) =

(
ϕi(r ↑)
ϕi(r ↓)

)
. (B.2.2)

We define a bracket notation for the single-particle expectation value of arbitrary one- and two-body

operators, respectively, as ⟨
ϕi
∣∣ô∣∣ϕj⟩ ≡ ∫

dr ϕ̃†i (r) ô ϕ̃j(r), (B.2.3)⟨
ϕiϕj

∣∣ô∣∣ϕkϕl⟩ ≡ ∫
dr

∫
dr′ ϕ̃†i (r)ϕ̃

†
j(r

′) ô ϕ̃k(r)ϕ̃l(r
′). (B.2.4)

When those operators have no spin-dependence, we have⟨
ϕi
∣∣ô∣∣ϕj⟩ =

∑
σ

∫
dr ϕ∗i (rσ)ô(r)ϕj(rσ), (B.2.5)

⟨
ϕiϕj

∣∣ô∣∣ϕkϕl⟩ =
∑
σ1σ2

∫
dr1

∫
dr2 ϕ

∗
i (r1σ1)ϕ

∗
j (r2σ2) ô(r1, r2)ϕk(r1σ1)ϕl(r2σ2). (B.2.6)

When those operators have spin-dependence, e.g. ô(r)σ̂ and ô(r, r′)
(
σ̂ + σ̂′), we have⟨

ϕi
∣∣ô σ̂∣∣ϕj⟩ =

∑
σ1σ2

∫
dr ϕ∗i (rσ1) ô(r)ϕj(rσ2)

⟨
σ1
∣∣σ̂∣∣σ2⟩, (B.2.7)

⟨ϕiϕj | ô
(
σ̂ + σ̂′) |ϕkϕl⟩ =

∑
σ1σ′

1σ2σ′
2

∫
dr1

∫
dr2 ϕ

∗
i (r1σ1)ϕ

∗
j (r2σ2) ô(r1, r2)ϕk(r1σ

′
1)ϕl(r2σ

′
2)

×
(⟨
σ1
∣∣σ̂∣∣σ′1⟩δσ2σ′

2
+ δσ1σ′

1

⟨
σ2
∣∣σ̂∣∣σ′2⟩). (B.2.8)

In the following, we calculate the expectation value Eq. (B.2.1) for the Skyrme effective interaction

given in Eq. (2.1.12).
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The t0 and t3 terms (central and density-dependent
terms, respectively)

First, we calculate the expectation values of the t0 and t3 terms,

V̂0 ≡
∑
i<j

t0(1 + x0P̂σ) δ(ri − rj),

V̂3 ≡
∑
i<j

1

6
t3 ρ

α
(ri + rj

2

)(
1 + x3P̂σ

)
δ(ri − rj).

We first calculate the direct term in
⟨
Φ
∣∣V̂0∣∣Φ⟩. The first and second terms in V̂0 without and with the

spin exchange operator P̂σ lead, respectively,∑
i<j

⟨
ϕiϕj

∣∣δ(r − r′)
∣∣ϕiϕj⟩ =

1

2

∑
ijσσ′

∫
dr

∫
dr′ ϕ∗i (rσ)ϕ

∗
j (r

′σ′) δ(r − r′)ϕi(rσ)ϕj(r
′σ′)

=
1

2

∫
dr
∑
iσ

ϕ∗i (rσ)ϕi(rσ)
∑
jσ′

ϕ∗j (rσ
′)ϕj(rσ

′)

=
1

2

∫
drρ2(r), (B.2.9)

and ∑
i<j

⟨
ϕiϕj

∣∣δ(r − r′)P̂σ

∣∣ϕiϕj⟩ =
1

2

∑
ijσσ′

∫
dr

∫
dr′ ϕ∗i (rσ)ϕ

∗
j (r

′σ′) δ(r − r′)ϕi(rσ
′)ϕj(r

′σ)

=
1

2

∫
dr
∑
σσ′

∑
i

ϕ∗i (rσ)ϕi(rσ
′)
∑
j

ϕ∗j (rσ
′)ϕj(rσ)

=
1

2

∫
dr
∑
σσ′

ρσσ′(r)ρσ′σ(r)

=
1

4

∫
dr

[
s2(r) + ρ2(r)

]
. (B.2.10)

In the last equality, we have used Eq. (B.1.29). When we calculate the exchange term, we use the

identity,
∣∣ϕjϕi⟩ = P̂rP̂σP̂τ

∣∣ϕiϕj⟩ = P̂rP̂σδqiqj
∣∣ϕiϕj⟩. The last equality reflects the fact that, in our

formalism, each nucleon has its own intrinsic isospin and the exchange term can act only for nucleons

with the same isospin. The exchange term in
⟨
Φ
∣∣V̂0∣∣Φ⟩ without and with the spin exchange operator

P̂σ are, respectively, calculated as∑
i<j

⟨
ϕiϕj

∣∣δ(r − r′)
∣∣ϕjϕi⟩ =

∑
i<j

⟨
ϕiϕj

∣∣δ(r − r′)P̂rP̂σδqiqj
∣∣ϕiϕj⟩

=
1

4

∫
dr
∑
q

{
s(q)2(r) + ρ(q)2(r)

}
, (B.2.11)

where we have used Eq. (B.1.30), and∑
i<j

⟨
ϕiϕj

∣∣δ(r − r′)P̂σ

∣∣ϕjϕi⟩ =
∑
i<j

⟨
ϕiϕj

∣∣δ(r − r)P̂rδqiqj
∣∣ϕiϕj⟩

=
1

2

∫
dr
∑
q

ρ(q)2(r). (B.2.12)

We have used the identity,
(
P̂σ

)2
= 1. We note that the existence of the spatial coordinates ex-

change operator, P̂r, does not affect the calculation, because now interactions are symmetric under

the exchange of the spatial coordinates.
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Although the t3 term, V̂3, contains an additional density dependence ρα compared with the V̂0, we

can calculate the expectation value of the V̂3 in the same way as the t0 term case. By summing up

these results, Eqs. (B.2.9)-(B.2.12), multiplying by proper coefficients, the expectation values of the

t0 and t3 terms are found to be

t0 term :⟨
Φ
∣∣V̂0∣∣Φ⟩ =

⟨
Φ
∣∣∑
i<j

t0(1 + x0P̂σ)δ(ri − rj)
∣∣Φ⟩

=
1

2
t0

∫
dr

[(
1 +

1

2
x0

)
ρ2(r) +

1

2
x0s

2(r)−
∑
q

{(1
2
+ x0

)
ρ(q)2(r) +

1

2
s(q)2(r)

}]
, (B.2.13)

t3 term :⟨
Φ
∣∣V̂3∣∣Φ⟩ =

⟨
Φ
∣∣∑
i<j

1

6
t3 ρ

α
(ri + rj

2

)(
1 + x3P̂σ

)
δ(ri − rj)

∣∣Φ⟩
=

1

12
t3

∫
dr ρα(r)

[(
1 +

1

2
x3

)
ρ2(r) +

1

2
x3s

2(r)−
∑
q

{(1
2
+ x3

)
ρ(q)2(r) +

1

2
s(q)2(r)

}]
.

(B.2.14)
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The t1 term (one of the non-local term)

We next consider the expectation value of the t1 term,

V̂1 ≡
∑
i<j

1

2
t1(1 + x1P̂σ)

{
δ(ri − rj) k̂

2 + k̂′2 δ(ri − rj)
}
. (B.2.15)

Again, we first calculate the direct term in
⟨
Φ
∣∣V̂1∣∣Φ⟩. The direct term of the first term without the

spin exchange operator P̂σ is calculated as

∑
i<j

⟨
ϕiϕj

∣∣{δ(r − r′)k̂2 + k̂′2δ(r − r′)
}∣∣ϕiϕj⟩

= −1

8

∑
ijσσ′

∫
dr

∫
dr′
{
ϕ∗i (rσ)ϕ

∗
j (r

′σ′) δ(r − r′)
(−→
∇2 +

−→
∇′2 − 2

−→
∇ ·
−→
∇′
)
ϕi(rσ)ϕj(r

′σ′)

+ϕ∗i (rσ)ϕ
∗
j (r

′σ′)
(←−∇2 +

←−∇′2 − 2
←−∇ ·←−∇′

)
δ(r − r′)ϕi(rσ)ϕj(r

′σ′)
}

= −1

4

∑
ijσσ′

∫
dr
{
ϕ∗i (rσ)△ ϕi(rσ)ϕ

∗
j (rσ

′)ϕj(rσ
′)− ϕ∗i (rσ)∇ϕi(rσ) · ϕ∗j (rσ′)∇ϕj(rσ

′)

+△ ϕ∗i (rσ)ϕi(rσ)ϕ
∗
j (rσ

′)ϕj(rσ
′)−∇ϕ∗i (rσ)ϕi(rσ) · ∇ϕ∗j (rσ

′)ϕj(rσ
′)
}

= −1

4

∫
dr

{∑
iσ

(
ϕ∗i (rσ)△ ϕi(rσ) + ϕi(rσ)△ ϕ∗i (rσ)

)∑
jσ′

ϕ∗j (rσ
′)ϕj(rσ

′)

−
∑
iσ

ϕ∗i (rσ)∇ϕi(rσ) ·
∑
jσ′

ϕ∗j (rσ
′)∇ϕj(rσ

′)

−
∑
iσ

ϕi(rσ)∇ϕ∗i (rσ) ·
∑
jσ′

ϕj(rσ
′)∇ϕ∗j (rσ

′)

}

= −1

4

∫
dr

{(
△ρ(r)− 2τ(r)

)
ρ(r)−

(1
2
∇ρ(r) + ij(r)

)2
−
(1
2
∇ρ(r)− ij(r)

)2}

= −1

4

∫
dr

{
ρ(r)△ ρ(r)− 2ρ(r)τ(r)− 1

2

(
∇ρ(r)

)2
+ 2j2(r)

}

=
1

2

∫
dr

[
−3

4
ρ(r)△ ρ(r) + ρ(r)τ(r)− j2(r)

]
, (B.2.16)

where, in the fourth equality, we have used Eqs. (B.1.52), (B.1.45), and (B.1.46). In the last equality,

we have taken integration by parts

∫
dr∇ρ(r) · ∇ρ(r) = ρ(r)∇ρ(r)

∣∣∣
r→∞

−
∫
dr ρ(r)△ ρ(r), (B.2.17)

where the first term vanishes because of the finiteness of the density distribution, ρ(r)
r→∞−→ 0. The
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B.2 Derivation of the Skyrme energy density functional

direct term of the second term with the spin exchange operator P̂σ is calculated as

∑
i<j

⟨
ϕiϕj

∣∣{δ(r − r′)k̂2 + k̂′2δ(r − r′)
}
P̂σ

∣∣ϕiϕj⟩
= −1

8

∑
ijσσ′

∫
dr

∫
dr′
{
ϕ∗i (rσ)ϕ

∗
j (r

′σ′) δ(r − r′)
(−→∇2 +

−→∇′2 − 2
−→∇ ·−→∇′

)
ϕi(rσ

′)ϕj(r
′σ)

+ϕ∗i (rσ)ϕ
∗
j (r

′σ′)
(←−∇2 +

←−∇′2 − 2
←−∇ ·←−∇′

)
δ(r − r′)ϕi(rσ

′)ϕj(r
′σ)
}

= −1

4

∑
σσ′

∫
dr

{∑
i

(
ϕ∗i (rσ)△ ϕi(rσ

′) + ϕi(rσ
′)△ ϕ∗i (rσ)

)∑
j

ϕ∗j (rσ
′)ϕj(rσ)

−
∑
i

ϕ∗i (rσ)∇ϕi(rσ
′) ·
∑
j

ϕ∗j (rσ
′)∇ϕj(rσ)

−
∑
i

ϕi(rσ
′)∇ϕ∗i (rσ) ·

∑
j

ϕj(rσ)∇ϕ∗j (rσ
′)

}

= −1

4

∑
σσ′

∫
dr

{(
△ρσσ′(r)− 2τσσ′(r)

)
ρσ′σ(r)

−
(1
2
∇ρσσ′(r) + ijσσ′(r)

)(1
2
∇ρσ′σ(r) + ijσ′σ(r)

)
−
(1
2
∇ρσσ′(r)− ijσσ′(r)

)(1
2
∇ρσ′σ(r)− ijσ′σ(r)

)}
= −1

4

∑
σσ′

∫
dr
{
ρσ′σ(r)△ ρσσ′(r)− 2ρσ′σ(r)τσσ′(r)− 1

2
∇ρσσ′(r) · ∇ρσ′σ(r) + 2jσσ′(r) · jσ′σ(r)

}
= −1

4

∑
σσ′

∫
dr
{
−3

2
∇ρσσ′(r) · ∇ρσ′σ(r)− 2ρσ′σ(r)τσσ′(r) + 2jσσ′(r) · jσ′σ(r)

}

= −1

4

∫
dr

{
−3

4

[(
∇ρ(r)

)2
+
∑
µν

(
∂µsν(r)

)2]
−
[
ρ(r)τ(r) + s(r) · T (r)

]
+
[
j2(r) +

∑
µν

(
Jµν(r)

)2]}
=

1

4

∫
dr

[
−3

4
ρ(r)△ ρ(r)− 3

4
s(r) ·△s(r)

+
(
ρ(r)τ(r)− j2(r)

)
+
(
s(r) · T (r)−←→J 2(r)

)]
, (B.2.18)

where, in the third equality, we have used Eqs. (B.1.53), (B.1.47), and (B.1.48) and, in the sixth

equality, we have used Eqs. (B.1.38), (B.1.33), and (B.1.40). In the last equality, we have taken

integration by parts of Eq. (B.2.17) and

∫
dr
∑
µν

∂µsν(r)∂µsν(r) =
∑
µν

sν(r)∂µsν(r)
∣∣∣
r→∞

−
∫
dr
∑
µν

sν(r)∂
2
µsν(r)

= −
∫
drs(r) ·△s(r). (B.2.19)

The Laplacian of the spin density, △s(r), denotes the spin density with components △sν(r), that
is, the Laplacian is considered to act to each component of s(r). The exchange terms in ⟨Φ| V̂1 |Φ⟩
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without and with the spin exchange operator P̂σ are, respectively, calculated as∑
i<j

⟨
ϕiϕj

∣∣{δ(r − r′)k̂2 + k̂′2δ(r − r′)
}∣∣ϕjϕi⟩

=
∑
i<j

⟨
ϕiϕj

∣∣{δ(r − r′)k̂2 + k̂′2δ(r − r′)
}
P̂rP̂σδqiqj

∣∣ϕiϕj⟩
=

1

4

∫
dr
∑
q

{
−3

4
ρ(q)(r)△ ρ(q)(r)− 3

4
s(q)(r) ·△s(q)(r)

+
(
ρ(q)(r)τ (q)(r)− j(q)2(r)

)
+
(
s(q)(r) · T (q)(r)−←→J (q)2(r)

)}
(B.2.20)

and ∑
i<j

⟨
ϕiϕj

∣∣{δ(r − r′)k̂2 + k̂′2δ(r − r′)
}
P̂σ

∣∣ϕjϕi⟩
=

∑
i<j

⟨
ϕiϕj

∣∣{δ(r − r′)k̂2 + k̂′2δ(r − r′)
}
P̂rδqiqj

∣∣ϕiϕj⟩
=

1

2

∫
dr
∑
q

{
−3

4
ρ(q)(r)△ ρ(q)(r) + ρ(q)(r)τ (q)(r)− j(q)2(r)

}
. (B.2.21)

We note that the existence of the spatial coordinates exchange operator, P̂r, does not affect the

calculation, because the operator is symmetric under the exchange of the spatial coordinates as in the

case of t0 and t3 terms.

By summing up these results, Eqs. (B.2.16), (B.2.18), (B.2.20), and (B.2.21), multiplying by proper

coefficients, the expectation value of the t1 term of the Skyrme effective interaction is found to be

t1 term :⟨
Φ
∣∣V̂1∣∣Φ⟩ =

⟨
Φ
∣∣∑
i<j

1

2
t1(1 + x1P̂σ)

{
δ(ri − rj)k̂

2 + k̂′2δ(ri − rj)
}∣∣Φ⟩

=
1

4
t1

∫
dr

[
−3

4

(
1 +

1

2
x1

)
ρ(r)△ ρ(r)− 3

8
x1s(r) ·△s(r)

+
(
1 +

1

2
x1

){
ρ(r)τ(r)− j2(r)

}
+

1

2
x1
{
s(r) · T (r)−

←→
J 2(r)

}
−
∑
q

{
−3

4

(1
2
+ x1

)
ρ(q)(r)△ ρ(q)(r)− 3

8
s(q)(r) ·△s(q)(r)

+
(1
2
+ x1

){
ρ(q)(r)τ (q)(r)− j(q)2(r)

}
+
1

2

{
s(q)(r) · T (q)(r)−←→J (q)2(r)

}}]
. (B.2.22)
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The t2 term (the other non-local term)

We next calculate the expectation value of the t2 term,

V̂2 ≡
∑
i<j

t2(1 + x2P̂σ)k̂
′ · δ(ri − rj) k̂. (B.2.23)

We first consider the direct term in
⟨
Φ
∣∣V̂2∣∣Φ⟩. The direct term of the first term in V̂2 without the spin

exchange operator P̂σ is calculated as

∑
i<j

⟨
ϕiϕj

∣∣k̂′ · δ(r − r′)k̂
∣∣ϕiϕj⟩

=
1

8

∑
ijσσ′

∫
dr

∫
dr′ϕ∗i (rσ)ϕ

∗
j (r

′σ′)
(←−
∇ −

←−
∇′) · δ(r − r′)

(−→
∇ −

−→
∇′)ϕi(rσ)ϕj(r′σ′)

=
1

8

∑
ijσσ′

∫
dr

{(
∇ϕ∗i (rσ)ϕ

∗
j (rσ

′)− ϕ∗i (rσ)∇ϕ∗j (rσ
′)
)

·
(
∇ϕi(rσ)ϕj(rσ

′)− ϕi(rσ)∇ϕj(rσ
′)
)}

=
1

8

∑
ijσσ′

∫
dr
{
∇ϕ∗i (rσ) · ∇ϕi(rσ)ϕ

∗
j (rσ

′)ϕj(rσ
′)−∇ϕ∗i (rσ)ϕi(rσ) · ϕ∗j (rσ′)∇ϕj(rσ

′)

−ϕ∗i (rσ)∇ϕi(rσ) · ∇ϕ∗j (rσ
′)ϕj(rσ

′) + ϕ∗i (rσ)ϕi(rσ)∇ϕ∗j (rσ
′) · ∇ϕj(rσ

′)
}

=
1

8

∫
dr

{∑
iσ

∇ϕ∗i (rσ) · ∇ϕi(rσ)
∑
jσ′

ϕ∗j (rσ
′)ϕj(rσ

′)

−
∑
iσ

ϕi(rσ)∇ϕ∗i (rσ) ·
∑
jσ′

ϕ∗j (rσ
′)∇ϕj(rσ

′)

−
∑
iσ

ϕ∗i (rσ)∇ϕi(rσ) ·
∑
jσ′

ϕj(rσ
′)∇ϕ∗j (rσ

′)

+
∑
iσ

ϕ∗i (rσ)ϕi(rσ)
∑
jσ′

∇ϕ∗j (rσ
′) · ∇ϕj(rσ

′)

}

=
1

4

∫
dr

{
ρ(r)τ(r)−

(1
2
∇ρ(r)− ij(r)

)
·
(1
2
∇ρ(r) + ij(r)

)}

=
1

4

∫
dr

[
ρ(r)τ(r)− j2(r) +

1

4
ρ(r)△ ρ(r)

]
, (B.2.24)

where, in the fifth equality, we have utilized the relations of Eqs. (B.1.46) and (B.1.45). In the last

equality, we have taken the integration by parts of Eq. (B.2.17). The direct term of the second term
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in V̂2 with the spin exchange operator P̂σ is calculated as

∑
i<j

⟨
ϕiϕj

∣∣k̂′ · δ(r − r′)k̂ P̂σ

∣∣ϕiϕj⟩
=

1

8

∑
ijσσ′

∫
dr

∫
dr′ϕ∗i (rσ)ϕ

∗
j (r

′σ′)
(←−∇ −←−∇′) · δ(r − r′)

(−→∇ −−→∇′)ϕi(rσ′)ϕj(r′σ)
=

1

8

∫
dr

{∑
iσ

∇ϕ∗i (rσ) · ∇ϕi(rσ
′)
∑
jσ′

ϕ∗j (rσ
′)ϕj(rσ)

−
∑
iσ

ϕi(rσ
′)∇ϕ∗i (rσ) ·

∑
jσ′

ϕ∗j (rσ
′)∇ϕj(rσ)

−
∑
iσ

ϕ∗i (rσ)∇ϕi(rσ
′) ·
∑
jσ′

ϕj(rσ)∇ϕ∗j (rσ
′)

+
∑
iσ

ϕ∗i (rσ)ϕi(rσ
′)
∑
jσ′

∇ϕ∗j (rσ
′) · ∇ϕj(rσ)

}

=
1

8

∑
σσ′

∫
dr

{
ρσ′σ(r)τσσ′(r)−

(1
2
∇ρσσ′(r)− ijσσ′(r)

)
·
(1
2
∇ρσ′σ(r) + ijσ′σ(r)

)
−
(1
2
∇ρσσ′(r) + ijσσ′(r)

)
·
(1
2
∇ρσ′σ(r)− ijσ′σ(r)

)
+ ρσσ′(r)τσ′σ(r)

}

=
1

4

∑
σσ′

∫
dr
{
ρσσ′(r)τσ′σ(r)−

1

4
∇ρσσ′(r) · ∇ρσ′σ(r)− jσσ′(r) · jσ′σ(r)

}

=
1

4

∫
dr

[
1

2

{
ρ(r)τ(r) + s(r) · T (r)

}
−1

8

{(
∇ρ(r)

)2
+
∑
µν

(
∂µsν(r)

)2}
− 1

2

{
j2(r) +

∑
µν

(
Jµν(r)

)2}]

=
1

8

∫
dr

[
ρ(r)τ(r)− j2(r) + s(r) · T (r)−

←→
J 2(r) +

1

4

(
ρ(r)△ ρ(r) + s(r) ·△s(r)

)]
,

(B.2.25)

where, in the third equality, we have used the relations of Eqs. (B.1.48) and (B.1.47). In the fifth

equality, we have used the relations of Eqs. (B.1.33), (B.1.38), and (B.1.40). The exchange terms of

the first and second terms in V̂2 without and with the spin exchange operator are calculated as

∑
i<j

⟨
ϕiϕj

∣∣k̂′ · δ(r − r′)k̂
∣∣ϕjϕi⟩

=
∑
i<j

⟨
ϕiϕj

∣∣k̂′ · δ(r − r′)k̂ P̂rP̂σδqiqj
∣∣ϕiϕj⟩

= −
∫
dr
∑
q

{1
8

(
ρ(q)(r)τ (q)(r)− j(q)2(r)

)
+

1

8

(
s(q)(r) · T (q)(r)−

←→
J (q)2(r)

)
+

1

32

(
ρ(q)(r)△ ρ(q)(r) + s(q)(r) ·△s(q)(r)

)}
(B.2.26)
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and ∑
i<j

⟨
ϕiϕj

∣∣k̂′ · δ(r − r′)k̂ P̂σ

∣∣ϕiϕj⟩
=

∑
i<j

⟨
ϕiϕj

∣∣k̂′ · δ(r − r′)k̂ P̂rδqiqj
∣∣ϕiϕj⟩

= −1

4

∫
dr
∑
q

{
ρ(q)(r)τ (q)(r)− j(q)2(r) +

1

4
ρ(q)(r)△ ρ(q)(r)

}
. (B.2.27)

We note that the existence of the spatial coordinates exchange operator, P̂r, in this case, generates an

additional minus sign for the whole result compared with the direct term, because now the operator

V̂2 contains k̂ acting to the right which is antisymmetric under the exchange of the spatial coordinates

in the ket states.

By summing up these results, Eqs. (B.2.24)-(B.2.27), multiplying by proper coefficients, the ex-

pectation value of the t2 term of the Skyrme effective interaction is found to be

t2 term :⟨
Φ
∣∣V̂2∣∣Φ⟩ =

⟨
Φ
∣∣∑
i<j

t2(1 + x2P̂σ)k̂
′ · δ(ri − rj)k̂

∣∣Φ⟩
=

1

2
t2

∫
dr

[
1

8

(
1 +

1

2
x2

)
ρ(r)△ ρ(r) +

1

16
x2s(r) ·△s(r)

+
1

2

(
1 +

1

2
x2

){
ρ(r)τ(r)− j2(r)

}
+

1

4
x2
{
s(r) · T (r)−←→J 2(r)

}
+
∑
q

{ 1

8

(1
2
+ x2

)
ρ(q)(r)△ ρ(q)(r) +

1

16
s(q)(r) ·△s(q)(r)

+
1

2

(1
2
+ x2

){
ρ(q)(r)τ (q)(r)− j(q)2(r)

}
+
1

4

{
s(q)(r) · T (q)(r)−←→J (q)2(r)

}}]
. (B.2.28)
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The W0 (or t4) term (the spin-orbit term)

Finally, we consider the expectation value of the spin-orbit term,

V̂so ≡
∑
i<j

iW0(σ̂i + σ̂j) ·
{
k̂′ × δ(ri − rj)k̂

}
. (B.2.29)

The direct term in
⟨
Φ
∣∣V̂so∣∣Φ⟩ is calculated as∑

i<j

⟨
ϕiϕj

∣∣(σ̂ + σ̂′) ·
{
k̂′ × δ(r − r′)k̂

}∣∣ϕiϕj⟩
=

1

8

∑
ijσ1σ′

1σ2σ′
2

∫
dr

∫
dr′
{
ϕ∗i (rσ1)ϕ

∗
j (r

′σ2)
(←−∇ −←−∇′)× δ(r − r′)

(−→∇ −−→∇′)ϕi(rσ′1)ϕj(r′σ′2)}
·
(⟨
σ1
∣∣σ̂∣∣σ′1⟩⟨σ2∣∣σ′2⟩+ ⟨σ1∣∣σ′1⟩⟨σ2∣∣σ̂∣∣σ′2⟩)

=
1

8

∑
ijσ1σ′

1σ2σ′
2

∫
dr
(
∇ϕ∗i (rσ1)ϕ

∗
j (rσ2)− ϕ∗i (rσ1)∇ϕ∗j (rσ2)

)
×
(
∇ϕi(rσ

′
1)ϕj(rσ

′
2)− ϕi(rσ′1)∇ϕj(rσ

′
2)
)
·
(⟨
σ1
∣∣σ̂∣∣σ′1⟩δσ2σ′

2
+ δσ1σ′

1

⟨
σ2
∣∣σ̂∣∣σ′2⟩)

=
1

4

∑
ijσ1σ′

1σ2σ′
2

∫
dr
{
∇ϕ∗i (rσ1)×∇ϕi(rσ

′
1)ϕ

∗
j (rσ2)ϕj(rσ

′
2)

−∇ϕ∗i (rσ1)ϕi(rσ
′
1)× ϕ∗j (rσ2)∇ϕj(rσ

′
2)
}

·
(⟨
σ1
∣∣σ̂∣∣σ′1⟩δσ2σ′

2
+ δσ1σ′

1

⟨
σ2
∣∣σ̂∣∣σ′2⟩)

=
1

4

∫
dr

{∑
iσ1σ′

1

∇ϕ∗i (rσ1)×∇ϕi(rσ
′
1)
⟨
σ1
∣∣σ̂∣∣σ′1⟩∑

jσ2

ϕ∗j (rσ2)ϕj(rσ2)

+
∑
iσ1

∇ϕ∗i (rσ1)×∇ϕi(rσ1)
∑
jσ2σ′

ϕ∗j (rσ2)ϕj(rσ
′
2)
⟨
σ2
∣∣σ̂∣∣σ′2⟩

+
∑
iσ1σ′

1

ϕi(rσ
′
1)∇ϕ∗i (rσ1)×

⟨
σ1
∣∣σ̂∣∣σ′1⟩ ·∑

jσ2

ϕ∗j (rσ2)∇ϕj(rσ2)

−
∑
jσ2σ′

2

ϕ∗j (rσ2)∇ϕj(rσ
′
2)×

⟨
σ2
∣∣σ̂∣∣σ′2⟩ ·∑

iσ1

ϕi(rσ1)∇ϕ∗i (rσ1)

}

=
1

4

∫
dr

{
iρ(r)∇ · J(r) + is(r)∇× j(r)

+
∑
λµν

ελµν

(1
2
∂µsν(r)− iJµν(r)

)(1
2
∂λρ(r) + ijλ(r)

)
−
∑
λµν

ελµν

(1
2
∂µsν(r) + iJµν(r)

)(1
2
∂λρ(r)− ijλ(r)

)}

=
i

4

∫
dr

{
ρ(r)∇ · J(r) + s(r) · ∇× j(r) +

∑
λµν

ελµν

{
∂µsν(r)jλ(r)− Jµν(r)∂λρ(r)

}}

=
i

4

∫
dr

{
ρ(r)∇ · J(r) + s(r) · ∇× j(r) +

∑
λµν

ελµν

{
sλ(r)∂µjν(r) + ∂λJµν(r)ρ(r)

}}

=
i

2

∫
dr

{
ρ(r)∇ · J(r) + s(r) · ∇× j(r)

}
, (B.2.30)

where, in the fourth equality, we have used the identity of triple vector products, (A × B) · C =

(B×C) ·A = (C ×A) ·B. In the fifth equality, we have used the relations, Eqs. (B.1.58), (B.1.56),

(B.1.50), and (B.1.49). In the seventh equality, we have taken two integrations by parts.
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The exchange term in ⟨Φ| V̂so |Φ⟩ can be calculated in the same way as the direct term. We note

that the existence of the spatial coordinates exchange operator, P̂r, generates an additional minus

sign for the whole result compared with the direct term, because the operator V̂so contains k̂ acting to

the right which is antisymmetric under the exchange of the spatial coordinates in the ket states. We

also note that the spin exchange operator P̂σ does not affect the calculation, because the spin part of

the operator V̂so is (σ̂i + σ̂j) which is symmetric under the exchange of the spin coordinates in the

ket states. Thus the result is given by

∑
i<j

⟨
ϕiϕj

∣∣(σ̂ + σ̂′) ·
{
k̂′ × δ(r − r′)k̂

}∣∣ϕjϕi⟩
=

∑
i<j

⟨
ϕiϕj

∣∣(σ̂ + σ̂′) ·
{
k̂′ × δ(r − r′)k̂

}
P̂rP̂σP̂qiqj

∣∣ϕiϕj⟩
= − i

2

∫
dr
∑
q

{
ρ(q)(r)∇ · J (q)(r) + s(q)(r) · ∇× j(q)(r)

}
. (B.2.31)

The expectation value of the spin-orbit term of the Skyrme effective interaction, which proportional

to the coefficient W0, leads

spin-orbit term :⟨
Φ
∣∣∑
i<j

iW0(σ̂i + σ̂j) ·
{
k̂′ × δ(ri − rj)k̂

}∣∣Φ⟩

= −1

2
W0

∫
dr

[
ρ(r)∇ · J(r) + s(r) · ∇× j(r)

+
∑
q

{
ρ(q)(r)∇ · J (q)(r) + s(q)(r) · ∇× j(q)(r)

}]
. (B.2.32)
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The kinetic and Coulomb terms

In the HF theory, the Hamiltonian of the system contains the kinetic energy operator T̂ =∑
i t̂(ri) =

∑
i
−ℏ2
2m△i, where m denotes the nucleon mass and △i is a Laplacian operator for the

coordinates ri. Since T̂ is a one-body operator, its expectation value is calculated as⟨
Φ
∣∣T̂ ∣∣Φ⟩ = − ℏ2

2m

∫
dr
∑
iσ

ϕ∗i (rσ)△ ϕi(rσ)

=
ℏ2

2m

∫
dr
∑
iσ

∇ϕ∗i (rσ) · ∇ϕi(rσ)

=
ℏ2

2m

∫
dr τ(r), (B.2.33)

where, in the second equality, we have taken an integration by parts.

In addition to the nuclear force, the Coulomb interaction acts between protons. The Coulomb

interaction is given by

V̂Coul =
∑
i<j

v̂Coul(ri, rj) =
∑
i<j

e2∣∣ri − rj
∣∣δqipδqjp. (B.2.34)

The direct term in
⟨
Φ
∣∣V̂Coul

∣∣Φ⟩ is calculated as

Edir
Coul ≡

∑
i<j

⟨
ϕiϕj

∣∣v̂Coul

∣∣ϕiϕj⟩
=

e2

2

∑
i,j∈p, σσ′

∫
dr

∫
dr′

ϕ∗i (rσ)ϕ
∗
j (r

′σ′)ϕi(rσ)ϕj(r
′σ′)∣∣r − r′

∣∣
=

e2

2

∫
dr
∑
i∈p, σ

ϕ∗i (rσ)ϕi(rσ)

∫
dr′

1∣∣r − r′
∣∣ ∑

j∈p, σ′

ϕ∗j (r
′σ′)ϕj(r

′σ′)

=
e2

2

∫
dr ρ(p)(r)

∫
dr′

ρ(p)(r′)∣∣r − r′
∣∣ . (B.2.35)

The exchange term in
⟨
Φ
∣∣V̂Coul

∣∣Φ⟩,
Eexc

Coul ≡
∑
i<j

⟨
ϕiϕj

∣∣v̂Coul

∣∣ϕjϕi⟩ = e2

2

∑
i,j∈p, σσ′

∫
dr

∫
dr′

ϕ∗i (rσ)ϕ
∗
j (r

′σ′)ϕj(rσ)ϕi(r
′σ′)∣∣r − r′

∣∣ ,

is usually approximated by the so called Slater approximation [151]. By using the Coulomb exchange

energy for a homogeneous nuclear matter which is corresponding to the so called local-density approx-

imation (LDA), we obtain

Eexc,LDA
Coul = −3

4

(
3

π

) 1
3

e2
∫
dr
[
ρ(p)(r)

] 4
3 . (B.2.36)

We thus calculate the Coulomb energy as

ECoul ≡
∫
drHCoul(r), (B.2.37)

where the Coulomb energy density, HCoul(r), is defined by

HCoul(r) =
e2

2
ρ(p)(r)

{∫
dr′

ρ(p)(r′)∣∣r − r′
∣∣ − 3

2

(
3

π

) 1
3 [
ρ(p)(r)

] 1
3

}
. (B.2.38)
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B.2 Derivation of the Skyrme energy density functional

The resulting Skyrme EDF

By summing up these equations derived above, we obtain the Skyrme EDF:

ESHF[ρ, τ, j, s,T ,
←→
J ] =

⟨
Φ
∣∣ĤSkyrme

∣∣Φ⟩ = ∫ drH(r), (B.2.39)

with the Skyrme Hamiltonian density, H(r), which takes the following form:

H(r) =
ℏ2

2m
τ(r) +B1ρ

2(r) +B2

∑
q

ρ(q)2(r)

+ B3

[
ρ(r)τ(r)− j2(r)

]
+B4

∑
q

[
ρ(q)(r)τ (q)(r)− j(q)2(r)

]
+ B5ρ(r)△ ρ(r) +B6

∑
q

ρ(q)(r)△ ρ(q)(r) +B7ρ
α(r)ρ2(r) +B8ρ

α(r)
∑
q

ρ(q)2(r)

+ B9

[
ρ(r)∇ · J(r) + s(r) · (∇× j(r)) +

∑
q

{
ρ(q)(r)∇ · J (q)(r) + s(q)(r) ·

(
∇× j(q)(r)

)}]

+ B10s
2(r) +B11

∑
q

s(q)2(r) +B12ρ
α(r)s2(r) +B13

∑
q

ρ(q)α(r)s(q)2(r)

+ B14

[
s(r) · T (r)−

←→
J 2(r)

]
+B15s(r) ·△s(r)

+ B16

∑
q

[
s(q)(r) · T (q)(r)−

←→
J (q)2(r)

]
+B17

∑
q

s(q)(r) ·△s(q)(r) +HCoul(r). (B.2.40)

The coefficients B1, · · · , B17 are defined as follows:

B1 =
1

2
t0

(
1 +

1

2
x0

)
, B2 = −

1

2
t0

(1
2
+ x0

)
, B3 =

1

4

{
t1

(
1 +

1

2
x1

)
+ t2

(
1 +

1

2
x2

)}
,

B4 = −1

4

{
t1

(1
2
+ x1

)
− t2

(1
2
+ x2

)}
, B5 = −

1

16

{
3t1

(
1 +

1

2
x1

)
− t2

(
1 +

1

2
x2

)}
,

B6 =
1

16

{
3t1

(1
2
+ x1

)
+ t2

(1
2
+ x2

)}
, B7 =

1

12
t3

(
1 +

1

2
x3

)
, B8 = −

1

12
t3

(1
2
+ x3

)
,

B9 = −1

2
W0, B10 =

1

4
t0x0, B11 = −

1

4
t0, B12 =

1

24
t3x3, B13 = −

1

24
t3,

B14 =
1

8
(t1x1 + t2x2), B15 = −

1

32
(3t1x1 − t2x2), B16 = −

1

8
(t1 − t2), B17 =

1

32
(3t1 + t2).

In the following, we shall perform the variation of Eq. (A.4.3) with the Skyrme EDF, Eq. (B.2.39), to

derive the Skyrme HF equation.
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B.3 Derivation of the Skyrme Hartree-Fock equations

In this Section, we perform the variation calculations for the Skyrme EDF Eq. (B.2.40) for each term.

The kinetic term

The kinetic term is proportional to the kinetic energy density τ(r). The variation of the kinetic

energy density τ(r) is calculated as

δ

δϕ∗i (rσ)

∫
dr′ τ(r′) =

δ

δϕ∗i (rσ)

∫
dr′
∑
j σ′

∇ϕ∗j (r
′σ′) · ∇ϕj(r

′σ′)

= −
∫
dr′
∑
j σ′

δϕ∗j (r
′σ′)

δϕ∗i (rσ)
△ ϕj(r

′σ′)

= −△ ϕi(rσ), (B.3.1)

where, in the second equality, we have taken an integration by parts to remove a nabla operator, ∇,

from the ϕ∗j (r
′σ′). Here and hereafter, we frequently employ an identity,

δϕ∗j (r
′σ′)

δϕ∗i (rσ)
= δ(r − r′)δijδσσ′ .

The Coulomb term

From the variation of the Coulomb term, we readily obtain

δ

δϕ∗i (rσ)

∫
dr′HCoul(r

′) = e2

{∫
dr′

ρ(p)(r′)∣∣r − r′
∣∣ −

(
3

π

) 1
3 [
ρ(p)(r)

] 1
3

}
δqip ϕi(rσ). (B.3.2)

The B1, B2, B5−8 terms

The B1 and B2 terms are proportional to the square of the densities, ρ2(r) and
∑

q ρ
(q)2(r), respec-

tively. The B5 and B6 terms are proportional to the product of the matter density and its Laplacian,

ρ(r)△ρ(r) and
∑

q ρ
(q)(r)△ρ(q)(r), respectively. The B7 and B8 terms are proportional to the prod-

uct of αth power of the matter density and the squared density, ρα(r)ρ2(r) and ρα(r)
∑

q ρ
(q)2(r),

respectively. Since they are composed only of the product of densities ρ(r), we can simply evalu-

ate variations of them using a formula for the variation of the density. The variation of the density

ρ(r′) =
∑

jσ′ ϕ∗j (r
′σ′)ϕj(r

′σ′) is calculated as

δ

δϕ∗i (rσ)
ρ(r′) = δ(r − r′)ϕi(rσ), (B.3.3)

δ

δϕ∗i (rσ)
ρ(q)(r′) = δ(r − r′)δqqi ϕi(rσ). (B.3.4)

Then, using the Eq. (B.3.3), the variation of the squared density ρ2(r) is calculated as

δ

δϕ∗i (rσ)

∫
dr′ρ2(r′) = 2

∫
dr′ρ(r′)

δρ(r′)

δϕ∗i (rσ)

= 2ρ(r)ϕi(rσ). (B.3.5)

176



B.3 Derivation of the Skyrme Hartree-Fock equations

In the same way, using the Eq. (B.3.4), we obtain

δ

δϕ∗i (rσ)

∫
dr′
∑
q

ρ(q)2(r′) = 2ρ(qi)(r)ϕi(rσ). (B.3.6)

The variation of ρ(r)△ ρ(r) and
∑

q ρ
(q)(r)△ ρ(q)(r) are, respectively, calculated as

δ

δϕ∗i (rσ)

∫
dr′ρ(r′)△ ρ(r′) =

∫
dr′
{
δρ(r′)

δϕ∗i (rσ)
△ ρ(r′) +△ρ(r′) δρ(r

′)

δϕ∗i (rσ)

}

= 2△ ρ(r)ϕi(rσ), (B.3.7)

δ

δϕ∗i (rσ)

∫
dr′
∑
q

ρ(q)(r′)△ ρ(q)(r′) = 2△ ρ(qi)(r)ϕi(rσ), (B.3.8)

where, in the first equality, we have taken an integration by parts to remove the Laplacian operator

△ from ρ(r′) sitting on the right side. Lastly, the variation of ρα(r)ρ2(r) and ρα(r)ρ(q)2(r) are,

respectively, calculated as

δ

δϕ∗i (rσ)

∫
dr′ρ(α+2)(r′) = (α+ 2)

∫
dr′ρ(α+1)(r′)

δρ(r′)

δϕ∗i (rσ)

= (α+ 2)ρ(α+1)(r)ϕi(rσ), (B.3.9)

δ

δϕ∗i (rσ)

∫
dr′ρα(r′)

∑
q

ρ(q)2(r′) =

∫
dr′
{
αρ(α−1)(r′)

δρ(r′)

δϕ∗i (rσ)

∑
q

ρ(q)2(r′)

+2ρα(r′)
∑
q

ρ(q)(r′)
δρ(q)(r′)

δϕ∗i (rσ)

}

= αρ(α−1)(r)
∑
q

ρ(q)2(r)ϕi(rσ) + 2ρα(r)ρ(qi)(r)ϕi(rσ).

(B.3.10)

In this way, we have obtained the following expressions for the variations of B1, B2, and B5−8

terms:
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B1 term :
δ

δϕ∗i (rσ)

∫
dr′ρ2(r′) = 2ρ(r)ϕi(rσ), (B.3.11)

B2 term :
δ

δϕ∗i (rσ)

∫
dr′
∑
q

ρ(q)2(r′) = 2ρ(qi)(r)ϕi(rσ), (B.3.12)

B5 term :
δ

δϕ∗i (rσ)

∫
dr′ρ(r′)△ ρ(r′) = 2△ ρ(r)ϕi(rσ), (B.3.13)

B6 term :
δ

δϕ∗i (rσ)

∫
dr′
∑
q

ρ(q)(r′)△ ρ(q)(r′) = 2△ ρ(qi)(r)ϕi(rσ), (B.3.14)

B7 term :
δ

δϕ∗i (rσ)

∫
dr′ρ(α+2)(r′) = (α+ 2)ρ(α+1)(r)ϕi(rσ), (B.3.15)

B8 term :
δ

δϕ∗i (rσ)

∫
dr′ρα(r′)

∑
q

ρ(q)2(r′) = αρ(α−1)(r)
∑
q

ρ(q)2(r)ϕi(rσ)

+2ρα(r)ρ(qi)(r)ϕi(rσ). (B.3.16)

The B10−13, B15, and B17 terms

In the above Subsection, we have calculated the variations of B1,2,5−8 terms in the Skyrme EDF,

where we just used a formula of the variation of the density ρ(r). There are similar terms in the

Skyrme EDF for the spin density s(r). The B10 and B11 terms are proportional to the square of

the spin densities, s2(r) and
∑

q s
(q)2(r), respectively. The B15 and B17 terms are proportional to

the product of the spin density and its Laplacian, s(r)△ s(r) and
∑

q s
(q)(r)△ s(q)(r), respectively.

The B12 and B13 terms are proportional to the product of αth power of the matter density and the

squared spin density, ρα(r)s2(r) and ρα(r)
∑

q s
(q)2(r), respectively. Since they are composed only

of the product of matter and spin densities, ρ(r) and s(r), we can again simply evaluate variations

of them using the formulae for the variation of the matter density and that of the spin density. The

variation of the spin density s(r′) =
∑

jσ1σ2
ϕ∗j (r

′σ1)ϕj(r
′σ2)

⟨
σ1
∣∣σ̂∣∣σ2⟩ is calculated as

δ

δϕ∗i (rσ)
s(r′) = δ(r − r′)

∑
σ′

⟨
σ
∣∣σ̂∣∣σ′⟩ϕi(rσ′), (B.3.17)

δ

δϕ∗i (rσ)
s(q)(r′) = δ(r − r′)δqqi

∑
σ′

⟨
σ
∣∣σ̂∣∣σ′⟩ϕi(rσ′). (B.3.18)

Using these equations, Eqs. (B.3.17) and (B.3.18), we calculate the variation of s2(r) and
∑

q s
(q)2(r)

as

δ

δϕ∗i (rσ)

∫
dr′s2(r′) = 2

∫
dr′s(r′)

δs(r′)

δϕ∗i (rσ)

= 2s(r) ·
∑
σ′

⟨
σ
∣∣σ̂∣∣σ′⟩ϕi(rσ′), (B.3.19)

δ

δϕ∗i (rσ)

∫
dr′
∑
q

s(q)2(r′) = 2s(qi)(r) ·
∑
σ′

⟨
σ
∣∣σ̂∣∣σ′⟩ϕi(rσ′). (B.3.20)
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In the same way, the variations of s(r) ·△s(r) and
∑

q s
(q)(r) ·△s(q)(r) are calculated as

δ

δϕ∗i (rσ)

∫
dr′s(r′) ·△s(r′) =

∫
dr′
{
δs(r′)

δϕ∗i (rσ)
·△s(r′) +△s(r′) · δs(r′)

δϕ∗i (rσ)

}
= 2△ s(r) ·

∑
σ′

⟨
σ
∣∣σ̂∣∣σ′⟩ϕi(rσ′), (B.3.21)

δ

δϕ∗i (rσ)

∫
dr′
∑
q

s(q)(r′) ·△s(q)(r′) = 2△ s(qi)(r) ·
∑
σ′

⟨
σ
∣∣σ̂∣∣σ′⟩ϕi(rσ′), (B.3.22)

where, in the first equality, we have taken two integrations by parts to remove the Laplacian operator

from s(r′) sitting on the right side. Lastly, the variations of ρα(r)s2(r) and ρα(r)
∑

q s
(q)2(r) are

calculated as follows:

δ

δϕ∗i (rσ)

∫
dr′ρα(r′)s2(r′) =

∫
dr′
{
αρ(α−1)(r′)

δρ(r′)

δϕ∗i (rσ)
s2(r′) + 2ρα(r′)s(r′) · δs(r′)

δϕ∗i (rσ)

}
= αρ(α−1)(r)s2(r)ϕi(rσ)

+2ρα(r)s(r) ·
∑
σ′

⟨
σ
∣∣ σ̂ ∣∣σ′⟩ ϕi(rσ′), (B.3.23)

δ

δϕ∗i (rσ)

∫
dr′ρα(r′)

∑
q

s(q)2(r′) = αρ(α−1)(r)
∑
q

s(q)2(r)ϕi(rσ)

+2ρα(r)s(qi)(r) ·
∑
σ′

⟨
σ
∣∣ σ̂ ∣∣σ′⟩ ϕi(rσ′). (B.3.24)

In this way, we have obtained the following expressions for the variations of B10−13,15,17 terms:

B10 term :
δ

δϕ∗i (rσ)

∫
dr′s2(r′) = 2s(r) ·

∑
σ′

⟨
σ
∣∣σ̂∣∣σ′⟩ϕi(rσ′), (B.3.25)

B11 term :
δ

δϕ∗i (rσ)

∫
dr′
∑
q

s(q)2(r′) = 2s(qi)(r) ·
∑
σ′

⟨
σ
∣∣σ̂∣∣σ′⟩ϕi(rσ′), (B.3.26)

B12 term :
δ

δϕ∗i (rσ)

∫
dr′ρα(r′)s2(r′) = αρ(α−1)(r)s2(r)ϕi(rσ)

+2ρα(r)s(r) ·
∑
σ′

⟨
σ
∣∣ σ̂ ∣∣σ′⟩ ϕi(rσ′),

B13 term : (B.3.27)

δ

δϕ∗i (rσ)

∫
dr′ρα(r′)

∑
q

s(q)2(r′) = αρ(α−1)(r)
∑
q

s(q)2(r)ϕi(rσ)

+2ρα(r)s(qi)(r) ·
∑
σ′

⟨
σ
∣∣ σ̂ ∣∣σ′⟩ ϕi(rσ′),

(B.3.28)

B15 term :
δ

δϕ∗i (rσ)

∫
dr′s(r′) ·△s(r′) = 2△ s(r) ·

∑
σ′

⟨
σ
∣∣σ̂∣∣σ′⟩ϕi(rσ′), (B.3.29)

B17 term :

δ

δϕ∗i (rσ)

∫
dr′
∑
q

s(q)(r′) ·△s(q)(r′) = 2△ s(qi)(r) ·
∑
σ′

⟨
σ
∣∣σ̂∣∣σ′⟩ϕi(rσ′). (B.3.30)
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The B3 and B4 terms

The B3 and B4 terms in the Skyrme EDF are proportional to ρ(r)τ(r) − j2(r) and
∑

q ρ
(q)(r)

τ (q)(r)− j(q)2(r), respectively. Here we consider the first term, ρ(r)τ(r), and the second term, j2(r),

separately. The variation of the first term can be expressed as

δ

δϕ∗i (rσ)

∫
dr′ρ(r′)τ(r′) =

∫
dr′
{
δρ(r′)

δϕ∗i (rσ)
τ(r′) + ρ(r′)

δτ(r′)

δϕ∗i (rσ)

}
. (B.3.31)

Using the variation of ρ(r) Eq. (B.3.3), the first term in the curly brackets is calculated as∫
dr′

δρ(r′)

δϕ∗i (rσ)
τ(r′) = τ(r)ϕi(rσ). (B.3.32)

The second term in the curly bracket in Eq. (B.3.31) is calculated as follows:∫
dr′ρ(r′)

δτ(r′)

δϕ∗i (rσ)
=

∫
dr′ρ(r′)

δ

δϕ∗i (rσ)

∑
jσ′

{
∇ϕ∗j (r

′σ′) · ∇ϕj(r
′σ′)
}

= −
∫
dr′
∑
jσ′

{
δϕ∗j (r

′σ′)

δϕ∗i (rσ)
∇ ·

(
ρ(r′)∇ϕj(r

′σ′)
)}

= −
{−→
∇ρ(r) ·

−→
∇
}
ϕi(rσ), (B.3.33)

where we have introduced the operator
−→∇ which acts on all the spatial functions sitting on the right

side, i.e.
−→
∇f(r)g(r) = ∇f(r) g(r) + f(r)∇g(r). The variation of the remaining second term j2(r)

is calculated as

δ

δϕ∗i (rσ)

∫
dr′j2(r′) = 2

∫
dr′j(r′) · δj(r′)

δϕ∗i (rσ)

=
1

i

∫
dr′j(r′) · δ

δϕ∗i (rσ)

∑
jσ′

{
ϕ∗j (r

′σ′)∇ϕj(r
′σ′)− ϕj(r′σ′)∇ϕ∗j (r

′σ′)
}

=
1

i
j(r) · ∇ϕi(rσ) +

1

i

∫
dr′
∑
jσ′

{
δϕ∗j (r

′σ′)

δϕ∗i (rσ)
∇ ·

(
j(r′)ϕj(r

′σ′)
)}

= −i
{−→
∇ · j(r) + j(r) ·

−→
∇
}
ϕi(rσ). (B.3.34)

The B4 term can be calculated in the same way as the B3 term. Summarizing above equations, the

variation of B3 and B4 is expressed as

B3 term :
δ

δϕ∗i (rσ)

∫
dr′
{
ρ(r′)τ(r′)− j2(r′)

}

=

[
−
−→∇ρ(r) ·−→∇ + τ(r) + i

{−→∇ · j(r) + j(r) ·−→∇
}]

ϕi(rσ), (B.3.35)

B4 term :
δ

δϕ∗i (rσ)

∫
dr′
∑
q

{
ρ(q)(r′)τ (q)(r′)− j(q)2(r′)

}

=

[
−
−→∇ρ(qi)(r) ·−→∇ + τ (qi)(r) + i

{−→∇ · j(qi)(r) + j(qi)(r) ·−→∇
}]

ϕi(rσ).

(B.3.36)
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The spin-orbit term (the B9 term)

The spin-orbit term in the Skyrme EDF, ELS =
∫
drHLS(r), contains a Hamiltonian density,

HLS(r) ≡ B9

{
ρ(r)∇·J(r)+s(r) ·∇×j(r)+

∑
q

ρ(q)(r)∇·J (q)(r)+s(q)(r) ·∇×j(q)(r)
}
. (B.3.37)

The variation of the first term in ELS can be expressed as

δ

δϕ∗i (rσ)

∫
dr′ρ(r′)∇ · J(r′) =

∫
dr′
{
δρ(r′)

δϕ∗i (rσ)
∇ · J(r′)−∇ρ(r′) · δJ(r′)

δϕ∗i (rσ)

}
. (B.3.38)

Using the variation of ρ(r) Eq. (B.3.3), the first term in the curly brackets is calculated as∫
dr′

δρ(r′)

δϕ∗i (rσ)
∇ · J(r′) = ∇ · J(r)ϕi(rσ). (B.3.39)

The second term in the curly bracket in Eq. (B.3.38) is calculated as

−
∫
dr′∇ρ(r′) · δJ(r′)

δϕ∗i (rσ)
= − 1

2i

∫
dr′
∑
λµν

ελµν∂λρ(r
′)
∑
jσ1σ2

⟨
σ1
∣∣σ̂ν∣∣σ2⟩

δ

δϕ∗i (rσ)

{
ϕ∗j (r

′σ1)∂µϕj(r
′σ2)− ϕj(r′σ2)∂µϕ∗j (r′σ1)

}
= −1

i

∑
λµν

ελµν∂λρ(r)
∑
σ′

⟨
σ
∣∣σ̂ν∣∣σ′⟩ ∂µϕi(rσ′)

= −i∇ρ(r) ·
∑
σ′

⟨
σ
∣∣σ̂∣∣σ′⟩×∇ϕi(rσ

′), (B.3.40)

where, in the second equality, we have taken an integration by parts for the second term in the curly

bracket and used the antisymmetric nature of the Levi-Civita tensor which leads ελµν∂µ∂λρ(r
′) = 0.

The variation of the second term in ELS is expressed as

δ

δϕ∗i (rσ)

∫
dr′s(r′) · ∇× j(r′) =

δ

δϕ∗i (rσ)

∫
dr′
∑
λµν

ελµνsλ(r
′)∂µjν(r

′)

=

∫
dr′
∑
λµν

ελµν

{
δsλ(r

′)

δϕ∗i (rσ)
∂µjν(r

′)− ∂µsλ(r′)
δjν(r

′)

δϕ∗i (rσ)

}
.

(B.3.41)

The first term in the curly bracket in Eq. (B.3.41) is calculated by using the variation of s(r)

Eq. (B.3.17) as∫
dr′
∑
λµν

ελµν
δsλ(r

′)

δϕ∗i (rσ)
∂µjν(r

′) =
∑
λµν

ελµν∂µjν(r)
∑
σ′

⟨
σ
∣∣σ̂λ∣∣σ′⟩ϕi(rσ′)

= ∇× j(r) ·
∑
σ′

⟨
σ
∣∣σ̂∣∣σ′⟩ϕi(rσ′). (B.3.42)

The second term in the curly bracket in Eq. (B.3.41) is calculated as
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−
∫
dr′
∑
λµν

ελµν∂µsλ(r
′)
δjν(r

′)

δϕ∗i (rσ)
= − 1

2i

∫
dr′
∑
λµν

ελµν∂µsλ(r
′)
∑
jσ′

δ

δϕ∗i (rσ)

{
ϕ∗j (r

′σ′)∂νϕj(r
′σ′)− ϕj(r′σ′)∂νϕ∗j (r′σ′)

}
= −1

i

∑
λµν

ελµν∂µsλ(r)∂νϕi(rσ)

= −i∇× s(r) · ∇ϕi(rσ), (B.3.43)

where, in the second equality, we have taken an integration by parts and used the antisymmetric

nature of the Levi-Civita tensor. The variations of the third and forth terms in ELS can be calculated

in the same way. By combining the above results, we obtain

B9 term :

δ

δϕ∗i (rσ)

∫
dr′ ĤLS(r

′) = B9

∑
σ′

[ {
∇ · J(r) +∇ · J (qi)(r)

}
δσσ′

−i
{
∇ρ(r) +∇ρ(qi)(r)

}
·
⟨
σ
∣∣σ̂∣∣σ′⟩×∇

+
{
∇× j(r) +∇× j(qi)(r)

}
·
⟨
σ
∣∣σ̂∣∣σ′⟩

−i
{
∇× s(r) +∇× s(qi)(r)

}
· ∇δσσ′

]
ϕi(rσ

′).

(B.3.44)

The B14 and B16 terms

Lastly, we consider the B14 and B16 terms in the Skyrme EDF, which are proportional to s(r) ·
T (r) −

←→
J 2(r) and

∑
q s

(q)(r) · T (q)(r) −
←→
J (q)2(r), respectively. The variation of the first term

s(r) · T (r) is expressed as

δ

δϕ∗i (rσ)

∫
dr′s(r′) · T (r′) =

∫
dr′
{
δs(r′)

δϕ∗i (rσ)
· T (r′) + s(r′) · δT (r′)

δϕ∗i (rσ)

}
. (B.3.45)

The variation of the first term in the curly bracket in Eq. (B.3.45) is calculated by using Eq. (B.3.17)

as ∫
dr′

δs(r′)

δϕ∗i (rσ)
· T (r′) = T (r) ·

∑
σ′

⟨
σ
∣∣ σ̂ ∣∣σ′⟩ ϕi(rσ′). (B.3.46)

The variation of the second term in the curly bracket in Eq. (B.3.45) is calculated as∫
dr′s(r′) · δT (r′)

δϕ∗i (rσ)
=

∫
dr′
∑
ν

sν(r
′)

δ

δϕ∗i (rσ)

∑
jσ1σ2

{
∇ϕ∗j (r

′σ1) · ∇ϕj(r
′σ2)

}⟨
σ1
∣∣σ̂ν∣∣σ2⟩

= −
∫
dr′
∑
ν

∑
jσ1σ2

δϕ∗j (r
′σ1)

δϕ∗i (rσ)
∇ ·

(
sν(r

′)∇ϕj(r
′σ2)

)⟨
σ1
∣∣σ̂ν∣∣σ2⟩

= −
∑
σ′

∑
ν

∇ ·
(
sν(r

′)∇
)⟨
σ
∣∣σ̂ν∣∣σ′⟩ϕi(rσ′). (B.3.47)
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The variation of the second term is calculated as follows:

− δ

δϕ∗i (rσ)

∫
dr′
←→
J 2(r′) = −2

∫
dr′
∑
µν

Jµν(r
′)
δJµν(r

′)

δϕ∗i (rσ)

= −1

i

∫
dr′
∑
µν

Jµν(r
′)
∑
jσ1σ2

⟨
σ1
∣∣σ̂ν∣∣σ2⟩

δ

δϕ∗i (rσ)

{
ϕ∗j (r

′σ1)∂µϕj(r
′σ2)− ϕj(r′σ2)∂µϕ∗j (r′σ1)

}
= i

∑
µν

Jµν(r)
∑
σ′

⟨
σ
∣∣σ̂ν∣∣σ′⟩ ∂µϕi(rσ′)

+i
∑
µν

∑
σ′

⟨
σ
∣∣σ̂ν∣∣σ′⟩∂µ(Jµν(r)ϕj(rσ′))

= i
∑
µν

{−→
∇µJµν(r) + Jµν(r)

−→
∇µ

}∑
σ′

⟨
σ
∣∣σ̂ν∣∣σ′⟩ϕi(rσ′),

(B.3.48)

where, in the third equality, we have taken an integration by parts for the second term in the curly

brackets. The B16 term can be calculated in the same way as the B14 term. We then obtain the

following expressions for the variations of the B14 and B16 terms in the Skyrme EDF:

B14 term :

δ

δϕ∗i (rσ)

∫
dr
{
s(r) · T (r)−←→J 2(r)

}
=
∑
ν σ

[
−
−→
∇sν(r

′) ·
−→
∇ + Tν(r

′) + i
∑
µ

{−→
∇µJµν(r) + Jµν(r)

−→
∇µ

}] ⟨
σ
∣∣ σ̂ν ∣∣σ′⟩ϕi(rσ′),

(B.3.49)

B16 term :

δ

δϕ∗i (rσ)

∫
dr
∑
q

{
s(q)(r) · T (q)(r)−←→J (q)2(r)

}

=
∑
ν σ

[
−
−→∇s(qi)ν (r′) ·−→∇ + T (qi)

ν (r′) + i
∑
µ

{−→∇µJ
(qi)
µν (r) + J (qi)

µν (r)
−→∇µ

}] ⟨
σ
∣∣ σ̂ν ∣∣σ′⟩ϕi(rσ′).

(B.3.50)

183



Appendix B Detailed Derivation of the Skyrme Hartree-Fock Equation

The resulting Skyrme HF equation

As a result, we obtain the Skyrme Hartree-Fock equations for single-particle wave functions:

∑
σ′

ĥ
(qi)
SHF(rσσ

′)ϕi(rσ
′) = εi ϕi(rσ), (B.3.51)

where the single-particle Hamiltonian is given by

ĥ
(q)
SHF(rσσ

′) = − ℏ2

2m
△ δσσ′ + ĥ(q)even(rσσ

′) + ĥ
(q)
odd(rσσ

′). (B.3.52)

The time-even and time-odd parts of the single-particle Hamiltonian are defined by

ĥ
(q)
even(rσσ′) = −

−→
∇ ·M (q)(r)

−→
∇δσσ′ + U (q)(r)δσσ′ +

1

2i

(←→
∇σσσ′ ·

←→
B (q)(r) +

←→
B (q)(r) ·

←→
∇σσσ′

)
,

(B.3.53)

ĥ
(q)
odd(rσσ

′) = −
−→∇ ·

(
σσσ′ ·C(q)(r)

)−→∇ + σσσ′ ·Σ(q)(r) +
1

2i

(−→∇ · I(q)(r) + I(q)(r) ·−→∇
)
δσσ′ .

(B.3.54)

We introduced a shorthand notation, σσσ′ ≡
⟨
σ
∣∣σ̂∣∣σ′⟩. We defined two rank-2 tensors,

←→
∇ which

denotes a tensor having components ∇µν ≡
∑

λ εµνλ
−→
∇λ and

←→
∇σσσ′ which denotes a tensor having

components ∇µσν, σσ′ . We note that the differential operators, ∇ and △, act only on a neighboring

spatial function, while
−→
∇ acts all the spatial functions sitting on the right side of

−→
∇. Time-even

mean-field potentials are defined by

M (q)(r) = B3ρ(r) +B4ρ
(q)(r), (B.3.55)

U (q)(r) = 2
{
B1ρ(r) +B2ρ

(q)(r)
}
+B3τ(r) +B4τ

(q)(r)

+ 2
{
B5 △ ρ(r) +B6 △ ρ(q)(r)

}
+B9∇ ·

{
J(r) + J (q)(r)

}
+ B7(α+ 2)ρα+1(r) +B8

{
αρα−1(r)

(
ρ(n)2(r) + ρ(p)2(r)

)
+ 2ρα(r)ρ(q)(r)

}
+ αρα−1(r)

{
B12s

2(r) +B13

(
s(n)2(r) + s(p)2(r)

)}
+ VCoul(r) δqp, (B.3.56)

←→
B (q)(r) = −2

{
B14
←→
J (r) +B16

←→
J (q)(r)

}
−B9

←→
∇
{
ρ(r) + ρ(q)(r)

}
, (B.3.57)

where the Coulomb potential VCoul(r) is given by

VCoul(r) = e2

{∫
dr′

ρ(p)(r′)∣∣r − r′
∣∣ −

(
3

π

) 1
3 [
ρ(p)(r)

] 1
3

}
. (B.3.58)
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While time-odd mean-field potentials are defined by

I(q)(r) = −2
{
B3j(r) +B4j

(q)(r)
}
+B9∇×

{
s(r) + s(q)(r)

}
, (B.3.59)

C(q)(r) = B14s(r) +B16s
(q)(r), (B.3.60)

Σ(q)(r) = 2
{
B10s(r) +B11s

(q)(r)
}
+B14T (r) +B16T

(q)(r)

+ 2
{
B15 △ s(r) +B17 △ s(q)(r)

}
+B9∇×

{
j(r) + j(q)(r)

}
+ 2ρα(r)

{
B12s(r) +B13s

(q)(r)
}
. (B.3.61)

To simplify the notation of the single-particle Hamiltonian, we have used relations for tensorial func-

tions. As a matter of principle, we describe below some notations used to define the Skyrme single-

particle Hamiltonian.

The scalar product between two tensors,
←→
A and

←→
B , having components, Aµν and Bµν , respectively,

is defined by ←→
A · ←→B ≡

∑
µν

AµνBµν . (B.3.62)

We have introduced two tensors,
←→
∇σσσ′ and

←→
∇ . The

←→
∇σσσ′ has components

−→
∇µσν, σσ′ , while the

tensor
←→∇ has components

∇µν ≡
∑
λ

εµνλ
−→∇λ. (B.3.63)

There follows the following relation:

←→∇ ·←→A =
∑
µν

∇µνAµν =
∑
µνλ

εµνλ∇λAµν = ∇ ·A, (B.3.64)

where A =
(
A23 − A32, A31 − A13, A12 − A21

)
is the antisymmetric part of the tensor

←→
A . Using

above relations, we find

1

2i

(←→∇σσσ′ · ←→B (q)(r) +
←→
B (q)(r) · ←→∇σσσ′

)
=

1

2i

∑
µν

{−→∇µσν, σσ′ B(q)
µν (r) +B(q)

µν (r)
−→∇µσν, σσ′

}
=

1

2i

∑
µν

σν, σσ′

{−→
∇µB

(q)
µν (r) +B(q)

µν (r)
−→
∇µ

}
= i
∑
µν

{
B14
−→∇µJµν(r) +B16

−→∇µJ
(q)
µν (r) +B14Jµν(r)

−→∇µ +B16J
(q)
µν (r)

−→∇µ

}
σν, σσ′

− 1

2i

∑
µνλ

B9 εµνλ

{−→
∇µ∇λ

(
ρ(r) + ρ(q)(r)

)
+∇λ

(
ρ(r) + ρ(q)(r)

)−→
∇µ

}
σν, σσ′

= iB14

∑
µν

{−→
∇µJµν(r) + Jµν(r)

−→
∇µ

}
+ iB16

∑
µν

{−→
∇µJ

(q)
µν (r) + J (q)

µν (r)
−→
∇µ

}
−iB9∇

(
ρ(r) + ρ(q)(r)

)
· σσσ′ ×∇, (B.3.65)

which coincide with the third terms in Eqs. (B.3.49) and (B.3.50) and the second term in Eq. (B.3.44).
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Finally, we make a small proof for the notation of the single-particle Hamiltonian containing the

mean-field I(r):

1

2i

(−→
∇ · I(q)(r) + I(q)(r) ·

−→
∇
)

= iB3

{−→
∇ · j(r) + j(r) ·

−→
∇
}
+ iB4

{−→
∇ · j(q)(r) + j(r)(q) ·

−→
∇
}

+
1

2i
B9

(
∇ ·∇×

{
s(r) + s(q)(r)

}︸ ︷︷ ︸
=0

+2∇×
{
s(r) + s(q)(r)

}
· ∇
)
, (B.3.66)

which coincide with the third terms in Eqs. (B.3.35) and (B.3.36) and the fourth term in Eq. (B.3.44).

Other mean-field potentials, M (q)(r), U (q)(r), C(q)(r), and Σ(q)(r), are defined straightforwardly.
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Appendix C

Constrained Hartree-Fock Method

We are interested in not only a ground state of nuclei but also states with different properties such

as energies, deformations, angular momenta, and so on. For example, to investigate adiabatic fis-

sion paths, we calculate a multidimensional PES as functions of e.g. nuclear elongation, asymmetry,

deformation of fragments, and thickness of a neck. To calculate such a PES, we need to minimize

energy with certain constraints, namely, we minimize energy requiring some expectation values to

be specific values. In this Chapter, we explain how to achieve such a Hartree-Fock calculation with

certain constraints.

C.1 Linear constraint

The most simple way to minimize energy with certain constraints is a variational calculation with

Lagrange multipliers. Here, we consider the case where we require expectation values of one-body

operators Q̂k =
∑N

i=1 q̂k(ri) become qk, (k = 1, · · · , Nc)⟨
Φ
∣∣Q̂∣∣Φ⟩ = q, (C.1.1)

where
∣∣Φ⟩ is a many-body wave function of the system. To achieve this, we transform a Hamiltonian

of the system, Ĥ, as follows:

Ĥ ′ = Ĥ − λ · Q̂, (C.1.2)

where λ = (λ1, · · · , λNc) is a set of the Lagrange multipliers. Denoting the expectation value of

transformed Hamiltonian as E′(λ), there follows

E′(λ) =
⟨
Φ(λ)

∣∣Ĥ ′∣∣Φ(λ)⟩
=

⟨
Φ(λ)

∣∣Ĥ∣∣Φ(λ)⟩− λ ·
⟨
Φ(λ)

∣∣Q̂∣∣Φ(λ)⟩
= E(λ)− λ ·Q(λ), (C.1.3)

where Q =
∑N

i=1

⟨
ϕi
∣∣q̂∣∣ϕi⟩ and ϕi denotes the single-particle wave function. According to the varia-

tional principle, we require E′ to be stationary under any variations,

δE′ = δ
⟨
Φ(λ)

∣∣Ĥ∣∣Φ(λ)⟩− λ · δ
⟨
Φ(λ)

∣∣Q̂∣∣Φ(λ)⟩ = 0. (C.1.4)

If we conduct variations of E′ for qk, we find

∂E

∂qk
= λk

∂Qk

∂qk
= λk. (C.1.5)

At the last equality, we used the required relation,
⟨
Φ
∣∣Q̂k

∣∣Φ⟩ = qk. Above relation indicates that, in

the CHF approach with liner constraints, we calculate a state which satisfies ∂E/∂qk = λk for a given
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Figure C.1: Schematic picture for the constrained Hartree-Fock calculation with a linear constraint.

A solid curve denotes energy surface of the original system.

fixed value of λk. Figure C.1 shows a schematic picture of CHF calculation with a linear constraint.

In the figure, we show an energy surface E(q) as a function of q. For a fixed value of λ = λc, we can

calculate a state at ∂E(q)/∂q = λc. It corresponds to an energy minimization calculation on a new

potential energy surface E′ rotated by α = tanλc.

We note that, in the CHF calculation with linear constraints, what we can adjust is not the

expectation values q =
⟨
Φ
∣∣Q̂∣∣Φ⟩ but the slope of energy surface, ∂E/∂q. According to this fact, the

CHF approach with linear constraints no longer works, when the fixed λ locates at a vicinity of the

inflection point or the energy surface E(q) has a positive second derivative. In the former case, there

are many solutions with same λ having slightly different values of q. In the latter case, there is no

stationary solution around such an energy maximum.

C.2 Quadratic constraint

Contrary to the case of linear constraints, we can calculate the energy for any values of q by adopting

quadratic constraints. In the CHF approach with quadratic constraints, we consider a minimization

problem of the following energy:

E′′(q) =
⟨
Φ(q)

∣∣Ĥ∣∣Φ(q)⟩+ 1

2
C
(⟨

Φ(q)
∣∣Q̂∣∣Φ(q)⟩− µ

)2
, (C.2.1)

where µ = (µ1, · · · , µNc) is a set of arbitrary parameters. In Fig. C.2, we schematically show the

new energy surface E′′ as a function of q. As seen in the figure, we can calculate a state with

qk =
⟨
Φ
∣∣Q̂k

∣∣Φ⟩ ∼ µk. By conducting a variation of E′′ for qk, we find

∂E′′(q)

∂qk
=
∂E(q)

∂qk
+ C

(⟨
Φ(q)

∣∣Q̂k

∣∣Φ(q)⟩− µk) = 0, (C.2.2)

where we again used the required relation,
⟨
Φ
∣∣Q̂k

∣∣Φ⟩ = qk. The above equation is equivalent to the

linear constraints with λ = −C
(⟨
Φ
∣∣Q̂∣∣Φ⟩−µ

)
. Thus this CHF calculation with quadratic constraints

gives the same energy surface to that calculated with linear constraints. Calculating variation of
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Figure C.2: Same as Fig. C.1 but for a quadratic constraint.

Eq. (C.2.2) for qk, we obtain

∂µk
∂qk

= 1 +
1

C

∂2E′′(q)

∂q2k
, (C.2.3)

where 1 = ∂Qk/∂qk. Therefore, for sufficiently large value of C satisfying C >
∣∣∂2E/∂q2k∣∣, µk becomes

monotonic function of qk. It ensures the existence of stable solution at a given µk.

C.3 Constrained imaginary-time method

Another way to achieve minimization with certain constraints is the constrained imaginary time

method. In the method, we determine the Lagrange multipliers so as to satisfy
⟨
Φ
∣∣Q̂∣∣Φ⟩ = q at

every imaginary-time step. As we done in practice, we give formulae for the constrained imaginary

time method putting constraints on
⟨
Φ
∣∣Q̂∣∣Φ⟩ = q and orthonormality of single-particle wave functions,⟨

ϕi
∣∣ϕj⟩ = δij . The variational principle with these constraints requires the following relation:

δ

[⟨
Φ
∣∣Ĥ∣∣Φ⟩⟨
Φ
∣∣Φ⟩ −∑

k

ηk

(⟨
Φ
∣∣Q̂k

∣∣Φ⟩−Qk

)
−
∑
ij

εij

(⟨
ϕi
∣∣ϕj⟩− δij)] = 0, (C.3.1)

where ηk and εij are the Lagrange multipliers. By conducing the variation Eq. (C.3.1) with respect

to the single-particle wave function, ϕ∗i (rσ), we find

δE

δϕ∗i (rσ)
−
∑
k

ηkq̂k(r)ϕi(rσ)−
∑
j

εijϕj(rσ) = 0, (C.3.2)

where E denotes the total energy, E =
⟨
Φ
∣∣Ĥ∣∣Φ⟩/⟨Φ∣∣Φ⟩. Then, the infinitesimal imaginary time

evolution is given by

ϕ
(n+1)
i (x) = ϕ

(n)
i (x)−∆τ g

(n)
i (x), (C.3.3)
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where x denotes a set of the spatial and the spin coordinates, x = (r, σ). The superscript (n) indicates

imaginary time, τ = in∆t. The function g
(n)
i (x) is defined as

g
(n)
i (x) ≡ f

(n)
i (x)−

∑
k

ηkq̂k(r)ϕ
(n)
i (x)−

∑
j

εijϕ
(n)
j (x), (C.3.4)

f
(n)
i (x) ≡ δE(n)

δϕ∗i (x)
=

δ

δϕ∗i (x)

⟨
Φ(n)

∣∣Ĥ∣∣Φ(n)
⟩⟨

Φ(n)
∣∣Φ(n)

⟩ , (C.3.5)

where E(n) and Φ(n) are the total energy and the many-body wave function at imaginary time τ =

in∆t. In the following, we shall determine the Lagrange multipliers ηk and εij so as to satisfy subsidiary

conditions,
⟨
Φ
∣∣Q̂k

∣∣Φ⟩ = Qk and
⟨
ϕi
∣∣ϕj⟩ = δij .

We first require that the condition
⟨
Φ
∣∣Q̂k

∣∣Φ⟩ = Qk is satisfied after an imaginary time evolution:

⟨
Φ(n+1)

∣∣Q̂k

∣∣Φ(n+1)
⟩

=

A∑
i=1

⟨
ϕ
(n+1)
i

∣∣q̂k∣∣ϕ(n+1)
i

⟩
=

A∑
i=1

{⟨
ϕ
(n)
i

∣∣q̂k∣∣ϕ(n)i

⟩
−∆τ

(⟨
ϕ
(n)
i

∣∣q̂k∣∣g(n)i

⟩
+
⟨
g
(n)
i

∣∣q̂k∣∣ϕ(n)i

⟩)
+
(
∆τ
)2⟨

g
(n)
i

∣∣q̂k∣∣g(n)i

⟩}
=

⟨
Q

(n)
k

⟩
−∆τ

A∑
i=1

(⟨
ϕ
(n)
i

∣∣q̂k∣∣f (n)i

⟩
+
⟨
f
(n)
i

∣∣q̂k∣∣ϕ(n)i

⟩)
+∆τ

A∑
i=1

∑
l

(
ηl
⟨
ϕ
(n)
i

∣∣q̂kq̂l∣∣ϕ(n)i

⟩
+ η∗l

⟨
ϕ
(n)
i

∣∣q̂lq̂k∣∣ϕ(n)i

⟩)
+∆τ

∑
ij

(
εij
⟨
ϕ
(n)
i

∣∣q̂k∣∣ϕ(n)j

⟩
+ ε∗ij

⟨
ϕ
(n)
j

∣∣q̂k∣∣ϕ(n)i

⟩)

=
⟨
Q

(n)
k

⟩
−∆τ

A∑
i=1

(⟨
ϕ
(n)
i

∣∣q̂k∣∣f (n)i

⟩
+
⟨
f
(n)
i

∣∣q̂k∣∣ϕ(n)i

⟩)
+2∆τ

∑
l

ηl

A∑
i=1

⟨
ϕ
(n)
i

∣∣q̂kq̂l∣∣ϕ(n)i

⟩
+ 2∆τ

∑
ij

εij
⟨
ϕ
(n)
i

∣∣q̂k∣∣ϕ(n)j

⟩
≡ Qk, (C.3.6)

where, in the third equality, we have assumed that ηk is real, η∗k = ηk. In the fourth equality, we have

assumed that constraint operators commute each other, [q̂k, q̂l] = 0, and εij is hermitian, εij = ε∗ji.

In the same way, we require that the condition
⟨
ϕi
∣∣ϕj⟩ = δij is satisfied after the imaginary time
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evolution:

⟨
ϕ
(n+1)
i

∣∣ϕ(n+1)
j

⟩
=

⟨
ϕ
(n)
i

∣∣ϕ(n)j

⟩︸ ︷︷ ︸
=δij

−∆τ
(⟨
ϕ
(n)
i

∣∣f (n)j

⟩
+
⟨
f
(n)
i

∣∣ϕ(n)j

⟩)
+2∆τ

∑
k

ηk
⟨
ϕ
(n)
i

∣∣q̂k∣∣ϕ(n)j

⟩
+∆τ

A∑
k=1

(
εjk
⟨
ϕ
(n)
i

∣∣ϕ(n)k

⟩︸ ︷︷ ︸
=δik

+ε∗ik
⟨
ϕ
(n)
k

∣∣ϕ(n)j

⟩)︸ ︷︷ ︸
=δkj

= δij −∆τ
(⟨
ϕ
(n)
i

∣∣f (n)j

⟩
+
⟨
f
(n)
i

∣∣ϕ(n)j

⟩)
+2∆τ

∑
k

ηk
⟨
ϕ
(n)
i

∣∣q̂k∣∣ϕ(n)j

⟩
+ 2∆τ εji

≡ δij , (C.3.7)

where we have assumed that the orthonormality of single-particle wave functions at imaginary time

τ = in∆t,
⟨
ϕ
(n)
i

∣∣ϕ(n)j

⟩
= δij , is satisfied. Because of this assumption, in practical calculations, we have

to ensure the orthonormality employing the Schmidt’s orthogonalization method at every imaginary-

time step.

We make small modifications for Eqs. (C.3.6) and (C.3.7). From the requirement for the expecta-

tion values of Q̂k, Eq. (C.3.6), we find

∑
l

ηl

A∑
i=1

⟨
ϕ
(n)
i

∣∣q̂kq̂l∣∣ϕ(n)i

⟩
=

1

2∆τ

(
Qk −

⟨
Q̂k

⟩(n))
+

1

2

A∑
i=1

(⟨
ϕ
(n)
i

∣∣q̂k∣∣f (n)i

⟩
+
⟨
f
(n)
i

∣∣q̂k∣∣ϕ(n)i

⟩)
−
∑
ij

εji
⟨
ϕ
(n)
j

∣∣q̂k∣∣ϕ(n)i

⟩
. (C.3.8)

From the requirement for the orthonormal relation, Eq. (C.3.7), we find

εji =
1

2

(⟨
ϕ
(n)
i

∣∣f (n)j

⟩
+
⟨
f
(n)
i

∣∣ϕ(n)j

⟩)
−
∑
k

ηk
⟨
ϕ
(n)
i

∣∣q̂k∣∣ϕ(t)j

⟩
. (C.3.9)

By substituting Eq. (C.3.9) into Eq. (C.3.8) to eliminate εji, we obtain a linear equation to determine

the Lagrange multipliers ηk which ensures the requirements, Eqs. (C.3.6) and (C.3.7):

∑
l

ηl

A∑
i=1

⟨
ϕ
(n)
i

∣∣q̂kq̂l∣∣ϕ(n)i

⟩
=

1

2∆τ

(
Qk −

⟨
Q̂k

⟩(n))
+

1

2

A∑
i=1

(⟨
ϕ
(n)
i

∣∣q̂k∣∣f (n)i

⟩
+
⟨
f
(n)
i

∣∣q̂k∣∣ϕ(n)i

⟩)
−
∑
ij

[
1

2

(⟨
ϕ
(n)
i

∣∣f (n)j

⟩
+
⟨
f
(n)
i

∣∣ϕ(n)j

⟩)
−
∑
l

ηl
⟨
ϕ
(n)
i

∣∣q̂l∣∣ϕ(n)j

⟩]⟨
ϕ
(n)
j

∣∣q̂k∣∣ϕ(n)i

⟩
⇔
∑
l

ηl

{ A∑
i=1

⟨
ϕ
(n)
i

∣∣q̂kq̂l∣∣ϕ(n)i

⟩
−
∑
ij

⟨
ϕ
(n)
i

∣∣q̂k∣∣ϕ(n)j

⟩⟨
ϕ
(n)
j

∣∣q̂l∣∣ϕ(t)i

⟩}

=
1

2∆τ

(
Qk −

⟨
Q̂k

⟩(n))
+

A∑
i=1

ℜ
[⟨
ϕ
(n)
i

∣∣q̂k∣∣f (n)i

⟩]
−
∑
ij

1

2

(⟨
ϕ
(n)
i

∣∣f (n)j

⟩
+
⟨
f
(n)
i

∣∣ϕ(n)j

⟩)⟨
ϕ
(n)
j

∣∣q̂k∣∣ϕ(n)i

⟩
⇔
∑
l

Akl ηl = Bk, (C.3.10)
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where

Akl ≡
A∑
i=1

⟨
ϕ
(n)
i

∣∣q̂kq̂l∣∣ϕ(n)i

⟩
−
∑
ij

⟨
ϕ
(n)
i

∣∣q̂k∣∣ϕ(n)j

⟩⟨
ϕ
(n)
j

∣∣q̂l∣∣ϕ(t)i

⟩
(C.3.11)

Bk ≡ 1

2∆τ

(
Qk −

⟨
Q̂k

⟩(n))
+

A∑
i=1

ℜ
[⟨
ϕ
(n)
i

∣∣q̂k∣∣f (n)i

⟩]
−
∑
ij

1

2

(⟨
ϕ
(n)
i

∣∣f (n)j

⟩
+
⟨
f
(n)
i

∣∣ϕ(n)j

⟩)⟨
ϕ
(n)
j

∣∣q̂k∣∣ϕ(n)i

⟩
. (C.3.12)

By solving Eq. (C.3.10) for ηk, we can get the Lagrange multipliers which ensure requirements,⟨
Φ(n+1)

∣∣Q̂∣∣Φ(n+1)
⟩
= Q and

⟨
ϕi
∣∣ϕj⟩ = δij , at each imaginary-time step. In practice, we calculate

the inverse of the matrix A to solve the equation Eq. (C.3.10) for η.

C.4 Constraint operators

We have used the following constraint operators in practical calculations.

• Center-of-mass coordinates:

x̂, ŷ, ẑ. (C.4.1)

These constraints are used to fix a nucleus at the center of a numerical box.

• Principal axes:

x̂ŷ, ŷẑ, ẑx̂. (C.4.2)

We usually require ⟨x̂ŷ⟩ = ⟨ŷẑ⟩ = ⟨ẑx̂⟩ = 0 in order to set principal axes of a nucleus parallel to

the x-, y-, and z-axis.

• Multipole moments:

Q̂20 =

√
5

16π

(
2ẑ2 − x̂2 − ŷ2

)
, (C.4.3)

Q̂22 =

√
15

16π

(
x̂2 − ŷ2

)
, (C.4.4)

Q̂30 =

√
7

16π

(
2ẑ2 − 3x̂2 − 3ŷ2

)
ẑ, (C.4.5)

...

In practice, we use constraints on Q̂20 and Q̂22 in order to impose constraints on deformation

parameters, β and γ. They are given by

β =
4π

5

1

A ⟨r⟩2
√⟨

Q̂20

⟩2
+
⟨
Q̂22

⟩2
, (C.4.6)

γ = arctan

[⟨
Q̂22

⟩⟨
Q̂20

⟩] 360

2π
[deg], (C.4.7)

where ⟨r⟩ denotes the root-mean-square radius. In a static HF calculation, we first calculate

states imposing constraints on β = 0 and β = 0.1 and 0.2 with γ = 0◦, 30◦, and 60◦. We then

release those constraints and re-minimize the energy. After getting convergent results, we regard

a least energy state as a HF ground state.
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Appendix D

Calculation of the Coulomb Potential

for an Isolated System

In this Chapter, we present a method to calculate the Coulomb potential V (r) of a charge density

distribution ρp(r) in the finite numerical box of

0 < x ≤ Lx, 0 < y ≤ Ly, 0 < z ≤ Lz.

The Coulomb potential takes the form

V (r) =

∫
dr′

e2

|r − r′|
ρp(r

′).

This method is known as Hockney’s method [152].

D.1 Preparation

D.1.1 Decomposition of the Coulomb potential

We decompose the Coulomb potential into two parts, the long-range part and the short-range part.

Using error function, we define these two parts as follows:

1

r
=

1

r
erf(

r

Rc
) +

1

r

{
1− erf(

r

Rc
)

}
≡ GL(r) +GS(r) (D.1.1)

with

GL(r) =
1

r
erf(

r

Rc
), (D.1.2)

GS(r) =
1

r
erfc(

r

Rc
). (D.1.3)

The error functions are defined by

erf(r) =
2√
π

∫ x

0
e−t2dt, (D.1.4)

erfc(r) = 1− erf(r). (D.1.5)
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D.1.2 Assumption of periodicity

We assume that ρp(r) is a periodic function of a length 2L,

ρ(r) ≡

{
ρp(r) (0 < r ≤ L),

0 (L < r ≤ 2L).
(D.1.6)

Then we can represent ρ(r) and GL(r) as a Fourier series

ρ(x) =

∞∑
k=−∞

ρ̃ke
i 2πk
2L

x , ρ̃k =
1

2L

∫ 2L

0
dx ρ(x)e−i 2πk

2L
x, (D.1.7)

GL(x) =
∞∑

k=−∞
G̃L

k e
i 2πk
2L

x , G̃L
k =

1

2L

∫ L

−L
dxGL(x)e−i 2πk

2L
x. (D.1.8)

Here, we consider one-dimensional case for simplicity. An extension to three-dimensional case is

straightforward. Actually, the spatial integral for the inverse transformation is performed by discretiz-

ing the interval of the integral. Defining these quantities,

ρi ≡ ρ(xi) , GL
i ≡ GL(xi), (D.1.9)

i = 1, · · · , 2N , xi = iH , 2NH = 2L , (D.1.10)

we find

ρ̃k =
1

2L

N∑
i=1

ρie
−i 2πk

2L
xiH

=
1

2N

N∑
i=1

ρie
−i 2πki

2N , (D.1.11)

GL
k =

1

2N

N∑
i=−N+1

GL
i e

−i 2πki
2N . (D.1.12)

Since ρi = 0 (N < i ≤ 2N), the summation over grid points i takes i = 1, · · · , N .

D.2 Calculation of the long-range part of the Coulomb

potential

We denote the long-range part of the Coulomb potential as V L(x) which takes the form

V L(x) = e2
∫ 2L

0
dx′GL(x− x′)ρ(x′). (D.2.1)

It is difficult to evaluate the spatial integral in the infinitely large space because of the long-range

nature of the Coulomb interaction. We thus substitute the Fourier series representation of ρ(x) and

GL(x) into Eq. (D.2.1). We find

V L(x) = e2
∫ 2L

0
dx′

{ ∞∑
k=−∞

G̃L
k e

i 2πk
2L

(x−x′)

}{ ∞∑
l=−∞

ρ̃le
i 2πl
2L

x′

}

= e2
∞∑

k=−∞

∞∑
l=−∞

G̃L
k ρ̃le

i 2πk
2L

x

∫ 2L

0
dx′e−i

2π(k−l)
2L

x′

= 2Le2
∞∑

k=−∞
G̃L

k ρ̃ke
i 2πk
2L

x. (D.2.2)
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D.3 Calculation of the short-range part of the Coulomb

potential

We denote the short-range part of the Coulomb potential as V S(x) which takes the form

V S(x) = e2
∫
dx′GS(x− x′)ρ(x′). (D.3.1)

In this case, we first perform the Fourier transformation for ρ(x) and GS(x)

ρ(x) =
1

2π

∫
dq ρ̃(q)eiqx , ρ̃(q) =

∫
dx ρ(x)e−iqx, (D.3.2)

GS(x) =
1

2π

∫
dq G̃S(q)eiqx , G̃S(q) =

∫
dxGS(x)e−iqx. (D.3.3)

We also use the Fourier series representation of Eq. (D.1.11) for the inverse transformation of ρ(r).

We then find

ρ̃(q) =
∞∑

k=−∞
ρ̃k

∫
dxe−i(q− 2πk

2L
x)

= 2π

∞∑
k=−∞

ρ̃kδ(q − πk/L). (D.3.4)

Using Eqs. (D.3.2), (D.3.3), and (D.3.4), the short-range part of the Coulomb potential is calculated

as

V S(x) = e2
∫ 2L

0
dx′
{∫

dq G̃S(q)eiq(x−x′)

}{∫
dq′ρ̃(q′)eiq

′x′
}

=
e2

(2π)2

∫
dq

∫
dq′G̃S(q)ρ̃(q′)eiqx

∫
dx′e−i(q−q′)x′

=
e2

2π

∫
dq G̃S(q)ρ̃(q)eiqx

= e2
∞∑

k=−∞
ρ̃k

∫
dq G̃S(q)eiqxδ(q − πk

L
)

= e2
∞∑

k=−∞
G̃S(

πk

L
)ρ̃ke

i πk
L

x

= 2Le2
∞∑

k=−∞
G̃S

k ρ̃ke
i πk
L

x. (D.3.5)

We have introduced a notation

G̃S
k ≡

1

2L
G̃S(

πk

L
). (D.3.6)

D.4 Calculation of the Coulomb potential for the iso-

lated system

To summarize, the Coulomb potential V (x) can be calculated as

V (x) = V L(x) + V S(x)

= 2Le2
∞∑

k=−∞
(G̃L

k + G̃S
k )ρ̃ke

i πk
L

x. (D.4.1)
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For three-dimensional calculation, the Coulomb potential of the charge density ρq(r) is calculated as

follows:

ix = 1, · · · , Nx , iy = 1, · · · , Ny , iz = 1, · · · , Nz, (D.4.2)

Lx = NxH , Ly = NyH , Lz = NzH, (D.4.3)

V (r) = (2Lx2Ly2Lz)e
2

N⃗∑
k⃗=−N⃗+1

(G̃L
k⃗
+ G̃S

k⃗
)ρ̃

k⃗
exp

[
iπ

(
kxix
Nx

+
kyiy
Ny

+
kziz
Nz

)]
, (D.4.4)

ρ̃
k⃗

=
1

2Nx2Ny2Nz

N⃗∑
i⃗=1

ρ⃗i exp

[
−iπ

(
kxix
Nx

+
kyiy
Ny

+
kziz
Nz

)]
, (D.4.5)

G̃L
k⃗

=
1

2Nx2Ny2Nz

N⃗∑
i⃗=−N⃗+1

GL
i⃗
exp

[
−iπ

(
kxix
Nx

+
kyiy
Ny

+
kziz
Nz

)]
, (D.4.6)

G̃S
k⃗

=
1

2Lx2Ly2Lz
G̃S
(πk⃗
L⃗

)
. (D.4.7)

In practice, we work with the following relations:

GL(r) =
1

r
erf

(
r

Rc

)
=

1

r

2√
π

∫ r/Rc

0
e−t2dt

r→0−→ 2√
πRc

, (D.4.8)

G̃S(q) =

∫
drGS(r)e−q·r

=

∫
dr

∫
rdθ

∫
r sinθ dφ

1

r
erfc

(
r

Rc

)
e−iqrcosθ

=
4π

q

∫ ∞

0
dr sin(qr) erfc

(
r

Rc

)
=

4πRc

q

∫ ∞

0
dr sin(qRcx) erfc(x) (x ≡ r/Rc), (D.4.9)

G̃S(q)
q→0−→ 4πR2

c

∫ ∞

0
dxx erfc(x). (D.4.10)
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Appendix E

Ground State Properties Calculated

with the Skyrme SLy5 Parameter Set

In Chapter 5, we examined effects of particle evaporation on MNT cross sections for 48Ca+124Sn and
58Ni+208Pb reactions. To calculate average excitation energies of reaction products in each transfer

channel, we calculated the energy of HF ground state for each nucleus. Here, we present properties of

HF ground states obtained from the calculations.

To calculate HF ground states, we performed β-γ CHF calculations. We first minimize the total

energy imposing constraints of β = 0 and β = 0.1 and 0.2 with γ = 0◦, 30◦, and 60◦. We then release

those constraints on β and γ and re-minimize the energy. We regarded a least energy state as the HF

ground state.

For odd-even, even-odd, and odd-odd nuclei, we adopted the so called equal-filling approximation,

where the occupation probability of the last occupied nucleon is forced be 0.5 so as to equally fill

both the highest occupied orbital and its time-reversal partner. We then calculate densities with the

occupation probability, e.g. ρ(r) =
∑

iσ ni
∣∣ϕi(rσ)∣∣2, where ni denotes the occupation probability of

ith orbital.

In Tables E.1-E.20, we summarize obtained results for every nucleus. We denote the ground state

energy calculated by using SLy5 parameter set [141] as Eg.s. which is shown in 4th column in the

table. The Eg.s.(SLyIII.0.8) shown in 11th column of the table is defined by

Eg.s.(SLyIII.0.8) ≡
⟨
Φg.s.(SLy5)

∣∣ĤSkyrme(SLyIII.0.8)
∣∣Φg.s.(SLy5)

⟩
, (E.0.1)

where
∣∣Φg.s.(SLy5)

⟩
denotes the wave function in the HF ground state calculated by using SLy5

parameter set. ĤSkyrme(SLyIII.0.8) denotes the Skyrme Hamiltonian with SLyIII.0.8 parameter set

[146]. The energy Eg.s.(SLyIII.0.8) was used to evaluate the average excitation energy of reaction

products presented in Chapter 5.
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Appendix E Ground State Properties Calculated with the Skyrme SLy5 Parameter Set

Table E.1: Ground state properties of silicon (upper table) and phosphors (lower table) isotopes

calculated with Skyrme SLy5 parameter set [141]. We use Nx ×Ny ×Nz = 26 × 26 × 26 grid points

with 0.8-fm mesh. The 11-point high-order finite difference method is used for derivatives. The

one-body center-of-mass correction was taken into account.

14Si

Z N A Eg.s. β γ (deg) εn(1) εp(1) εn(N) εp(Z) Eg.s.(SLyIII.0.8)

14 14 28 -234.324 0.274 60.0 -45.751 -39.587 -15.723 -10.434 -230.223

14 15 29 -244.242 0.179 60.0 -46.538 -41.257 -11.036 -11.268 -239.873

14 16 30 -255.705 0.002 － -47.392 -42.729 -12.253 -12.832 -249.875

14 17 31 -263.305 0.087 60.0 -46.628 -43.242 -8.382 -13.546 -258.047

14 18 32 -271.244 0.137 60.0 -45.846 -43.664 -8.578 -14.556 -266.427

14 19 33 -278.141 0.051 60.0 -45.642 -44.559 -7.765 -15.774 -273.317

14 20 34 -285.612 0.000 － -45.187 -45.198 -8.141 -17.044 -280.840

14 21 35 -288.995 0.067 60.0 -45.307 -45.933 -4.087 -17.753 -284.245

14 22 36 -292.927 0.163 0.2 -45.311 -46.472 -5.033 -17.606 -287.868

14 23 37 -297.143 0.201 0.4 -45.416 -47.146 -4.748 -18.174 -291.979

14 24 38 -301.510 0.237 0.0 -45.515 -47.794 -4.915 -18.718 -296.154

14 25 39 -304.743 0.230 11.3 -45.703 -48.508 -3.796 -19.873 -299.254

14 26 40 -308.351 0.247 25.1 -45.652 -48.895 -4.281 -21.051 -302.343

14 27 41 -311.129 0.243 45.2 -45.672 -49.332 -3.745 -23.068 -304.673

14 28 42 -314.935 0.265 60.0 -45.606 -49.694 -4.472 -24.703 -307.716

14 29 43 -315.640 0.233 59.8 -45.991 -50.455 -1.284 -25.268 -308.043

14 30 44 -316.777 0.208 44.5 -46.287 -51.166 -1.864 -25.451 -308.620

15P

Z N A Eg.s. β γ (deg) εn(1) εp(1) εn(N) εp(Z) Eg.s.(SLyIII.0.8)

15 14 29 -238.859 0.184 60.0 -47.330 -39.804 -16.505 -5.422 -233.984

15 15 30 -251.050 0.000 － -47.833 -41.202 -12.878 -7.287 -245.870

15 16 31 -263.312 0.000 － -47.776 -41.887 -12.822 -7.905 -256.627

15 17 32 -272.102 0.074 59.5 -47.146 -42.452 -9.478 -9.050 -266.062

15 18 33 -281.144 0.120 59.9 -46.495 -42.941 -9.643 -10.126 -275.676

15 19 34 -289.276 0.048 59.2 -46.206 -43.706 -8.895 -11.283 -283.866

15 20 35 -297.855 0.000 － -45.788 -44.326 -9.202 -12.341 -292.573

15 21 36 -302.222 0.061 59.4 -45.952 -45.088 -4.983 -13.314 -297.053

15 22 37 -307.258 0.169 0.6 -45.927 -45.620 -6.056 -14.445 -302.207

15 23 38 -312.590 0.209 0.3 -46.014 -46.283 -5.859 -15.563 -307.633

15 24 39 -318.081 0.245 0.0 -46.098 -46.922 -6.021 -16.680 -313.098

15 25 40 -322.348 0.234 0.0 -46.332 -47.694 -4.676 -17.710 -317.407

15 26 41 -326.602 0.235 13.6 -46.443 -48.298 -4.836 -18.516 -321.440

15 27 42 -329.512 0.216 34.3 -46.592 -48.882 -3.799 -18.703 -323.860

15 28 43 -333.461 0.227 59.5 -46.652 -49.344 -4.923 -18.768 -326.805

15 29 44 -335.437 0.206 46.4 -46.867 -49.988 -2.611 -20.074 -328.507

15 30 45 -337.937 0.193 30.6 -47.067 -50.630 -3.174 -21.402 -330.417
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Table E.2: Same as Table E.1 but for sulfur (upper table) and chlorine (lower table) isotopes.

16S

Z N A Eg.s. β γ (deg) εn(1) εp(1) εn(N) εp(Z) Eg.s.(SLyIII.0.8)

16 14 30 -244.497 0.000 － -48.815 -40.125 -18.145 -6.275 -237.732

16 15 31 -257.545 0.000 － -48.414 -40.656 -13.503 -6.873 -250.423

16 16 32 -270.433 0.000 － -48.225 -41.233 -13.398 -7.461 -262.091

16 17 33 -280.369 0.069 59.3 -47.673 -41.804 -10.568 -8.560 -272.873

16 18 34 -290.496 0.111 59.7 -47.114 -42.314 -10.693 -9.606 -283.852

16 19 35 -299.761 0.048 59.4 -46.794 -43.031 -9.953 -10.692 -293.019

16 20 36 -309.392 0.000 － -46.410 -43.648 -10.223 -11.705 -302.759

16 21 37 -314.752 0.081 1.3 -46.558 -44.350 -6.155 -12.706 -308.683

16 22 38 -320.926 0.179 0.2 -46.524 -44.845 -7.126 -13.812 -315.687

16 23 39 -327.392 0.220 0.2 -46.588 -45.478 -6.981 -14.940 -322.508

16 24 40 -334.009 0.256 0.0 -46.654 -46.098 -7.125 -16.055 -329.278

16 25 41 -339.303 0.246 0.0 -46.863 -46.838 -5.672 -17.065 -334.711

16 26 42 -344.523 0.237 0.0 -47.059 -47.538 -5.616 -18.040 -340.001

16 27 43 -348.332 0.262 0.0 -46.940 -47.942 -4.337 -19.035 -342.977

16 28 44 -351.713 0.181 45.2 -47.614 -48.973 -4.929 -18.637 -345.883

16 29 45 -355.456 0.236 0.0 -47.301 -49.215 -3.612 -20.580 -348.876

16 30 46 -358.881 0.185 0.0 -47.765 -50.065 -4.022 -21.094 -351.991

17Cl

Z N A Eg.s. β γ (deg) εn(1) εp(1) εn(N) εp(Z) Eg.s.(SLyIII.0.8)

17 14 31 -246.224 0.091 59.7 -49.175 -39.030 -18.747 -2.373 -239.489

17 15 32 -260.432 0.076 59.3 -48.849 -39.690 -14.623 -3.437 -253.418

17 16 33 -274.445 0.068 59.6 -48.677 -40.342 -14.478 -4.497 -266.432

17 17 34 -286.200 0.109 59.9 -48.077 -40.861 -12.265 -6.194 -279.194

17 18 35 -297.962 0.135 60.0 -47.517 -41.366 -12.239 -7.740 -291.786

17 19 36 -308.147 0.074 60.0 -47.244 -42.111 -10.888 -8.629 -301.876

17 20 37 -318.752 0.027 58.3 -46.886 -42.748 -11.195 -9.561 -312.569

17 21 38 -325.417 0.076 60.0 -47.042 -43.478 -7.147 -10.848 -319.684

17 22 39 -332.248 0.151 0.9 -47.087 -44.080 -7.679 -11.510 -326.887

17 23 40 -339.427 0.187 0.6 -47.187 -44.741 -7.642 -12.239 -334.380

17 24 41 -346.686 0.221 0.2 -47.280 -45.381 -7.732 -12.884 -341.799

17 25 42 -352.925 0.212 0.2 -47.499 -46.121 -6.593 -13.814 -348.211

17 26 43 -359.062 0.204 0.3 -47.707 -46.824 -6.509 -14.717 -354.454

17 27 44 -363.837 0.171 28.5 -47.959 -47.540 -5.482 -16.288 -359.216

17 28 45 -369.283 0.159 59.9 -48.232 -48.250 -6.237 -17.645 -364.056

17 29 46 -373.032 0.163 42.5 -48.231 -48.706 -4.288 -18.160 -367.310

17 30 47 -377.094 0.173 29.2 -48.253 -49.173 -4.614 -18.507 -370.470

17 31 48 -379.894 0.153 42.4 -48.331 -49.632 -3.329 -19.498 -372.213

17 32 49 -383.026 0.139 59.2 -48.425 -50.082 -3.583 -20.275 -373.917
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Appendix E Ground State Properties Calculated with the Skyrme SLy5 Parameter Set

Table E.3: Same as Tables E.1 and E.2 but for argon isotopes.

18Ar

Z N A Eg.s. β γ (deg) εn(1) εp(1) εn(N) εp(Z) Eg.s.(SLyIII.0.8)

18 14 32 -248.047 0.144 60.0 -49.417 -37.910 -19.680 -2.317 -241.193

18 15 33 -263.303 0.123 59.8 -49.197 -38.706 -15.654 -3.333 -256.302

18 16 34 -278.363 0.111 59.9 -49.057 -39.448 -15.487 -4.343 -270.667

18 17 35 -291.748 0.135 60.0 -48.461 -39.959 -13.807 -5.883 -285.039

18 18 36 -305.027 0.153 60.0 -47.911 -40.465 -13.692 -7.334 -299.152

18 19 37 -316.101 0.096 60.0 -47.672 -41.230 -11.774 -8.197 -310.183

18 20 38 -327.625 0.048 59.3 -47.345 -41.889 -12.128 -9.078 -321.789

18 21 39 -335.560 0.092 59.8 -47.474 -42.594 -8.355 -10.315 -330.286

18 22 40 -343.479 0.128 60.0 -47.575 -43.245 -8.335 -11.467 -338.803

18 23 41 -351.073 0.150 29.6 -47.731 -43.976 -8.116 -12.140 -346.410

18 24 42 -358.954 0.189 0.2 -47.892 -44.712 -8.357 -12.477 -353.721

18 25 43 -366.129 0.182 10.7 -48.094 -45.425 -7.526 -13.448 -361.255

18 26 44 -373.235 0.183 20.5 -48.235 -46.057 -7.487 -14.434 -368.716

18 27 45 -379.534 0.162 42.0 -48.435 -46.724 -6.894 -15.894 -375.344

18 28 46 -386.197 0.164 60.0 -48.612 -47.366 -7.063 -16.961 -381.891

18 29 47 -389.649 0.105 0.1 -48.943 -48.136 -4.882 -17.064 -384.203

18 30 48 -395.114 0.159 59.9 -48.787 -48.407 -4.876 -18.365 -389.232

18 31 49 -398.843 0.158 59.8 -48.710 -48.816 -4.127 -19.040 -391.953

18 32 50 -402.664 0.158 60.0 -48.666 -49.222 -4.216 -19.692 -394.593

18 33 51 -404.969 0.183 60.0 -48.158 -49.399 -2.764 -20.772 -396.930

18 34 52 -407.507 0.203 60.0 -47.686 -49.585 -2.974 -21.715 -399.338
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Table E.4: Same as Tables E.1-E.3 but for potassium isotopes.

19K

Z N A Eg.s. β γ (deg) εn(1) εp(1) εn(N) εp(Z) Eg.s.(SLyIII.0.8)

19 14 33 -248.466 0.054 57.8 -50.249 -37.370 -20.874 -1.160 -241.010

19 15 34 -264.964 0.050 59.5 -49.872 -38.066 -16.812 -2.282 -257.462

19 16 35 -281.162 0.047 59.7 -49.679 -38.766 -16.577 -3.335 -272.840

19 17 36 -295.452 0.074 60.0 -49.123 -39.311 -14.684 -4.255 -288.108

19 18 37 -309.616 0.097 60.0 -48.596 -39.837 -14.556 -5.128 -303.162

19 19 38 -322.796 0.054 60.0 -48.223 -40.478 -13.678 -7.036 -316.699

19 20 39 -336.085 0.021 60.0 -47.829 -41.067 -13.736 -8.666 -330.414

19 21 40 -344.593 0.059 60.0 -47.980 -41.804 -8.868 -9.272 -339.393

19 22 41 -352.998 0.092 59.8 -48.108 -42.492 -8.775 -9.788 -348.324

19 23 42 -361.404 0.119 5.1 -48.275 -43.242 -8.938 -10.627 -356.704

19 24 43 -369.924 0.148 0.2 -48.412 -43.926 -8.910 -11.225 -365.402

19 25 44 -378.032 0.140 0.3 -48.626 -44.655 -8.415 -12.155 -373.794

19 26 45 -385.985 0.133 0.4 -48.830 -45.349 -8.279 -13.057 -381.964

19 27 46 -393.308 0.085 0.2 -49.125 -46.096 -7.783 -14.423 -389.575

19 28 47 -400.896 0.056 59.9 -49.347 -46.768 -8.059 -15.466 -397.435

19 29 48 -405.761 0.082 58.9 -49.350 -47.259 -5.274 -15.732 -401.545

19 30 49 -410.731 0.105 32.9 -49.379 -47.740 -5.459 -16.148 -405.355

19 31 50 -415.183 0.089 59.1 -49.450 -48.224 -4.850 -16.896 -408.847

19 32 51 -419.729 0.073 59.7 -49.562 -48.704 -4.930 -17.765 -412.067

19 33 52 -422.844 0.047 58.6 -49.418 -49.037 -3.498 -18.723 -414.119

19 34 53 -426.057 0.038 50.4 -49.250 -49.334 -3.573 -19.453 -416.010
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Table E.5: Same as Tables E.1-E.4 but for calcium isotopes.

20Ca

Z N A Eg.s. β γ (deg) εn(1) εp(1) εn(N) εp(Z) Eg.s.(SLyIII.0.8)

20 14 34 -249.225 0.000 － -50.775 -36.584 -22.078 -1.294 -241.231

20 15 35 -266.805 0.010 － -50.379 -37.309 -17.846 -2.327 -258.860

20 16 36 -284.036 0.001 － -50.187 -38.036 -17.575 -3.317 -275.285

20 17 37 -299.278 0.027 59.5 -49.662 -38.599 -15.598 -4.268 -291.481

20 18 38 -314.347 0.049 59.5 -49.168 -39.148 -15.426 -5.186 -307.424

20 19 39 -329.293 0.021 59.4 -48.718 -39.722 -15.306 -6.795 -323.072

20 20 40 -344.125 0.000 － -48.292 -40.278 -15.182 -8.241 -338.533

20 21 41 -353.274 0.032 59.9 -48.452 -41.031 -9.444 -8.905 -348.147

20 22 42 -362.231 0.061 59.9 -48.599 -41.743 -9.278 -9.480 -357.595

20 23 43 -371.489 0.081 3.0 -48.756 -42.467 -9.580 -10.342 -367.194

20 24 44 -380.629 0.107 0.0 -48.901 -43.157 -9.485 -10.969 -376.653

20 25 45 -389.665 0.100 0.0 -49.100 -43.874 -9.320 -11.885 -386.055

20 26 46 -398.521 0.094 0.0 -49.292 -44.558 -9.157 -12.775 -395.208

20 27 47 -407.187 0.047 0.0 -49.543 -45.269 -9.090 -14.083 -404.229

20 28 48 -415.991 0.000 － -49.760 -45.938 -9.264 -15.335 -413.273

20 29 49 -421.191 0.033 0.1 -49.794 -46.474 -5.640 -15.722 -417.691

20 30 50 -426.578 0.067 0.4 -49.845 -46.986 -5.865 -16.078 -421.900

20 31 51 -431.858 0.033 0.2 -49.962 -47.516 -5.706 -16.972 -426.292

20 32 52 -437.326 0.001 － -50.096 -48.025 -5.896 -17.829 -430.530

20 33 53 -441.157 0.000 － -49.849 -48.322 -4.168 -18.469 -433.119

20 34 54 -445.015 0.002 － -49.650 -48.618 -4.191 -19.089 -435.591

20 35 55 -447.822 0.037 59.1 -49.323 -48.906 -3.248 -19.529 -438.511

20 36 56 -450.870 0.064 60.0 -48.992 -49.182 -3.463 -19.937 -441.597
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Table E.6: Same as Tables E.1-E.5 but for scandium isotopes.

21Sc

Z N A Eg.s. β γ (deg) εn(1) εp(1) εn(N) εp(Z) Eg.s.(SLyIII.0.8)

21 17 38 -299.023 0.763 59.5 -50.275 -38.356 -16.892 -0.097 -291.105

21 18 39 -315.372 0.092 59.8 -49.762 -38.881 -16.670 -1.309 -308.435

21 19 40 -330.884 0.059 59.8 -49.360 -39.477 -15.911 -1.811 -324.558

21 20 41 -346.361 0.032 59.6 -48.958 -40.041 -15.852 -2.391 -340.662

21 21 42 -357.187 0.061 59.5 -49.102 -40.775 -11.088 -4.031 -351.929

21 22 43 -367.835 0.118 0.8 -49.180 -41.429 -11.256 -5.971 -362.800

21 23 44 -378.462 0.144 0.5 -49.312 -42.125 -10.943 -7.343 -373.772

21 24 45 -388.967 0.169 0.4 -49.439 -42.796 -10.849 -8.696 -384.536

21 25 46 -398.629 0.158 0.1 -49.654 -43.528 -9.943 -9.273 -394.622

21 26 47 -408.119 0.147 0.4 -49.860 -44.226 -9.790 -9.858 -404.477

21 27 48 -417.004 0.096 2.3 -50.125 -44.951 -9.319 -10.030 -413.828

21 28 49 -426.166 0.056 60.0 -50.349 -45.629 -9.682 -10.412 -423.334

21 29 50 -432.365 0.074 59.5 -50.371 -46.174 -6.557 -11.359 -428.756

21 30 51 -438.813 0.112 0.5 -50.353 -46.647 -6.934 -12.403 -433.982

21 31 52 -444.410 0.078 58.8 -50.482 -47.203 -6.174 -12.749 -438.702

21 32 53 -450.270 0.067 59.9 -50.572 -47.694 -6.207 -13.254 -443.269

21 33 54 -454.632 0.051 59.3 -50.393 -48.040 -4.709 -13.639 -446.624

21 34 55 -459.123 0.077 2.5 -50.134 -48.339 -4.921 -14.484 -450.490

21 35 56 -462.913 0.070 58.2 -49.855 -48.632 -4.261 -15.131 -453.927

21 36 57 -466.950 0.092 59.9 -49.498 -48.892 -4.445 -16.084 -458.155
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Table E.7: Same as Tables E.1-E.6 but for titanium isotopes.

22Ti

Z N A Eg.s. β γ (deg) εn(1) εp(1) εn(N) εp(Z) Eg.s.(SLyIII.0.8)

22 17 39 -298.744 0.157 1.4 -50.740 -38.006 -17.504 -0.436 -290.553

22 18 40 -316.122 0.129 60.0 -50.293 -38.592 -17.823 -1.034 -309.195

22 19 41 -332.103 0.092 59.8 -49.944 -39.216 -16.416 -1.454 -325.718

22 20 42 -348.136 0.060 0.1 -49.583 -39.797 -16.596 -2.017 -342.276

22 21 43 -360.651 0.119 0.1 -49.660 -40.463 -13.022 -3.941 -355.031

22 22 44 -373.470 0.184 0.0 -49.666 -41.048 -13.408 -6.095 -367.933

22 23 45 -385.460 0.207 0.1 -49.791 -41.731 -12.288 -7.432 -380.247

22 24 46 -397.311 0.231 0.0 -49.911 -42.391 -12.173 -8.750 -392.325

22 25 47 -407.509 0.216 0.1 -50.142 -43.140 -10.479 -9.247 -403.011

22 26 48 -417.549 0.202 0.1 -50.363 -43.854 -10.339 -9.755 -413.488

22 27 49 -426.572 0.151 1.8 -50.637 -44.596 -9.455 -9.862 -423.079

22 28 50 -436.125 0.112 60.0 -50.834 -45.289 -10.291 -10.228 -433.025

22 29 51 -443.206 0.124 31.0 -50.842 -45.819 -7.589 -11.040 -439.377

22 30 52 -450.744 0.161 0.1 -50.776 -46.258 -7.992 -12.163 -445.928

22 31 53 -456.649 0.128 34.9 -50.868 -46.822 -6.566 -12.433 -450.890

22 32 54 -463.069 0.117 59.8 -50.914 -47.305 -6.773 -12.982 -455.984

22 33 55 -467.919 0.143 59.8 -50.434 -47.511 -5.238 -14.014 -461.149

22 34 56 -473.200 0.128 0.1 -50.544 -47.997 -5.814 -14.279 -465.452

22 35 57 -477.571 0.118 38.1 -50.217 -48.284 -5.001 -14.851 -469.679

22 36 58 -482.441 0.117 60.0 -49.964 -48.587 -5.289 -15.499 -474.190

22 37 59 -486.384 0.108 59.3 -49.673 -48.870 -4.280 -16.006 -478.101

22 38 60 -490.420 0.099 60.0 -49.383 -49.142 -4.370 -16.514 -482.036

22 39 61 -493.918 0.064 59.0 -49.183 -49.448 -4.021 -16.710 -485.080

22 40 62 -497.873 0.029 6.3 -48.951 -49.739 -4.532 -17.006 -488.592
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Table E.8: Same as Tables E.1-E.7 but for vanadium isotopes.

23V

Z N A Eg.s. β γ (deg) εn(1) εp(1) εn(N) εp(Z) Eg.s.(SLyIII.0.8)

23 20 43 -349.899 0.083 0.4 -50.208 -39.556 -17.285 -1.943 -343.859

23 21 44 -363.780 0.146 0.0 -50.264 -40.199 -14.400 -3.304 -357.921

23 22 45 -377.977 0.209 0.0 -50.258 -40.774 -14.770 -4.664 -372.180

23 23 46 -391.218 0.232 0.1 -50.366 -41.440 -13.522 -5.899 -385.759

23 24 47 -404.299 0.256 0.0 -50.470 -42.083 -13.384 -7.110 -399.085

23 25 48 -415.372 0.242 0.0 -50.698 -42.826 -11.340 -7.976 -410.628

23 26 49 -426.268 0.228 0.2 -50.915 -43.534 -11.182 -8.824 -421.945

23 27 50 -435.692 0.179 0.7 -51.187 -44.277 -9.841 -9.217 -431.964

23 28 51 -445.332 0.120 59.2 -51.406 -44.999 -11.044 -9.229 -442.070

23 29 52 -453.669 0.158 3.2 -51.345 -45.462 -8.789 -10.569 -449.759

23 30 53 -462.206 0.188 0.0 -51.257 -45.910 -8.959 -11.542 -457.370

23 31 54 -468.462 0.175 15.7 -51.189 -46.381 -6.792 -12.027 -463.023

23 32 55 -475.151 0.128 59.7 -51.421 -47.005 -7.423 -12.087 -467.911

23 33 56 -480.890 0.150 17.9 -51.133 -47.294 -6.245 -13.122 -474.003

23 34 57 -487.028 0.156 0.8 -50.991 -47.660 -6.686 -13.903 -479.733

23 35 58 -491.805 0.141 25.1 -50.685 -47.958 -5.391 -14.316 -484.348

23 36 59 -497.121 0.125 59.5 -50.468 -48.297 -5.854 -14.661 -489.130

23 37 60 -501.704 0.115 59.9 -50.175 -48.578 -4.914 -15.290 -493.771

23 38 61 -506.375 0.105 59.8 -49.883 -48.847 -4.999 -15.914 -498.436

23 39 62 -510.284 0.069 59.8 -49.703 -49.166 -4.469 -16.312 -501.909

23 40 63 -514.708 0.038 6.3 -49.475 -49.458 -5.003 -16.790 -505.953
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Appendix E Ground State Properties Calculated with the Skyrme SLy5 Parameter Set

Table E.9: Same as Tables E.1-E.8 but for chromium isotopes.

24Cr

Z N A Eg.s. β γ (deg) εn(1) εp(1) εn(N) εp(Z) Eg.s.(SLyIII.0.8)

24 22 46 -382.068 0.233 0.0 -50.824 -40.500 -16.107 -4.274 -375.923

24 23 47 -396.537 0.257 0.0 -50.916 -41.150 -14.732 -5.483 -390.750

24 24 48 -410.821 0.280 0.0 -51.005 -41.779 -14.569 -6.668 -405.305

24 25 49 -422.758 0.266 0.0 -51.231 -42.515 -12.190 -7.521 -417.696

24 26 50 -434.502 0.253 0.0 -51.444 -43.216 -12.014 -8.360 -429.846

24 27 51 -444.316 0.205 0.6 -51.713 -43.959 -10.217 -8.743 -440.282

24 28 52 -454.281 0.153 0.0 -51.966 -44.670 -10.424 -9.102 -450.852

24 29 53 -463.658 0.185 0.1 -51.836 -45.128 -9.773 -10.087 -459.576

24 30 54 -473.169 0.214 0.0 -51.719 -45.561 -9.913 -11.056 -468.278

24 31 55 -480.103 0.222 3.2 -51.454 -45.895 -7.295 -11.826 -475.077

24 32 56 -487.165 0.225 11.1 -51.255 -46.265 -7.462 -12.461 -481.777

24 33 57 -493.695 0.209 2.7 -51.265 -46.754 -6.944 -13.054 -487.779

24 34 58 -500.402 0.186 0.0 -51.374 -47.290 -7.071 -13.486 -493.564

24 35 59 -505.697 0.173 0.1 -51.129 -47.605 -5.608 -14.076 -498.874

24 36 60 -511.263 0.154 28.5 -50.822 -47.906 -6.073 -14.324 -504.055

24 37 61 -516.391 0.121 60.0 -50.653 -48.282 -5.538 -14.668 -508.795

24 38 62 -521.687 0.111 60.0 -50.360 -48.550 -5.618 -15.287 -514.173

24 39 63 -525.995 0.074 59.5 -50.197 -48.880 -4.895 -15.666 -518.072

24 40 64 -530.911 0.050 0.5 -49.974 -49.171 -5.428 -16.164 -522.646

24 41 65 -534.688 0.232 0.0 -50.535 -49.551 -4.823 -18.149 -526.054

24 42 66 -539.346 0.260 0.1 -50.555 -49.889 -5.032 -19.083 -530.610
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Table E.10: Same as Tables E.1-E.9 but for manganese isotopes.

25Mn

Z N A Eg.s. β γ (deg) εn(1) εp(1) εn(N) εp(Z) Eg.s.(SLyIII.0.8)

25 24 49 -414.728 0.268 0.0 -51.658 -41.595 -15.441 -4.015 -409.085

25 25 50 -427.827 0.255 0.0 -51.860 -42.309 -13.333 -5.159 -422.638

25 26 51 -440.704 0.243 0.0 -52.052 -42.988 -13.129 -6.274 -435.924

25 27 52 -451.415 0.194 0.1 -52.318 -43.726 -11.112 -7.159 -447.247

25 28 53 -462.283 0.142 0.4 -52.566 -44.429 -11.330 -8.054 -458.710

25 29 54 -472.374 0.176 0.1 -52.433 -44.892 -10.491 -8.752 -468.095

25 30 55 -482.613 0.206 0.2 -52.315 -45.327 -10.643 -9.467 -477.445

25 31 56 -490.304 0.216 3.8 -52.022 -45.646 -8.045 -10.211 -485.111

25 32 57 -498.147 0.220 14.3 -51.819 -46.012 -8.261 -10.997 -492.618

25 33 58 -505.324 0.207 2.8 -51.772 -46.475 -7.616 -11.629 -499.463

25 34 59 -512.695 0.188 0.0 -51.835 -46.990 -7.717 -12.303 -506.070

25 35 60 -518.661 0.171 0.1 -51.629 -47.326 -6.275 -12.950 -511.994

25 36 61 -524.801 0.158 24.4 -51.330 -47.613 -6.652 -13.525 -517.827

25 37 62 -530.345 0.129 32.5 -51.157 -47.977 -5.980 -14.008 -523.034

25 38 63 -536.189 0.107 57.5 -50.888 -48.281 -6.245 -14.456 -528.925

25 39 64 -541.225 0.076 0.0 -50.763 -48.617 -5.727 -15.270 -533.283

25 40 65 -546.825 0.047 0.0 -50.487 -48.903 -6.033 -15.862 -538.984

25 41 66 -550.983 0.082 4.2 -50.525 -49.265 -4.571 -16.349 -543.264

25 42 67 -555.934 0.252 0.0 -51.094 -49.647 -5.544 -16.549 -547.600

25 43 68 -560.316 0.219 0.0 -50.859 -49.958 -4.833 -17.130 -552.183

25 44 69 -565.084 0.186 0.0 -50.618 -50.258 -5.221 -17.726 -557.039
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Appendix E Ground State Properties Calculated with the Skyrme SLy5 Parameter Set

Table E.11: Same as Tables E.1-E.10 but for iron isotopes.

26Fe

Z N A Eg.s. β γ (deg) εn(1) εp(1) εn(N) εp(Z) Eg.s.(SLyIII.0.8)

26 24 50 -418.160 0.256 0.0 -52.272 -41.405 -16.291 -3.561 -412.348

26 25 51 -432.390 0.244 0.0 -52.452 -42.097 -14.445 -4.673 -427.035

26 26 52 -446.372 0.233 0.0 -52.621 -42.755 -14.215 -5.760 -441.426

26 27 53 -457.964 0.184 0.1 -52.885 -43.487 -11.993 -6.632 -453.619

26 28 54 -469.724 0.130 0.1 -53.126 -44.182 -12.220 -7.514 -465.958

26 29 55 -480.512 0.167 0.1 -52.995 -44.653 -11.195 -8.197 -475.992

26 30 56 -491.467 0.198 0.0 -52.879 -45.092 -11.418 -8.898 -485.971

26 31 57 -499.908 0.209 9.1 -52.580 -45.408 -8.863 -9.652 -494.437

26 32 58 -508.548 0.220 16.2 -52.311 -45.722 -9.041 -10.438 -502.928

26 33 59 -516.349 0.204 6.0 -52.273 -46.206 -8.256 -11.051 -510.459

26 34 60 -524.406 0.188 0.0 -52.280 -46.693 -8.393 -11.726 -517.938

26 35 61 -531.015 0.170 0.1 -52.098 -47.041 -6.920 -12.356 -524.486

26 36 62 -537.755 0.160 20.3 -51.822 -47.325 -7.207 -12.944 -530.980

26 37 63 -543.791 0.132 24.1 -51.655 -47.692 -6.466 -13.447 -536.661

26 38 64 -550.102 0.108 31.2 -51.435 -48.015 -6.705 -13.940 -542.799

26 39 65 -555.908 0.074 0.0 -51.255 -48.349 -6.312 -14.663 -548.244

26 40 66 -562.102 0.046 0.3 -50.976 -48.632 -6.612 -15.227 -554.641

26 41 67 -566.747 0.076 8.6 -51.017 -48.999 -5.019 -15.735 -559.448

26 42 68 -571.924 0.243 0.3 -51.604 -49.401 -6.060 -15.964 -563.963

26 43 69 -576.910 0.146 0.7 -51.088 -49.675 -5.513 -16.646 -569.563

26 44 70 -582.256 0.176 0.2 -51.125 -50.008 -5.703 -17.139 -574.783
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Table E.12: Same as Tables E.1-E.11 but for cobalt isotopes.

27Co

Z N A Eg.s. β γ (deg) εn(1) εp(1) εn(N) εp(Z) Eg.s.(SLyIII.0.8)

27 28 55 -476.256 0.074 0.1 -53.727 -43.979 -14.030 -6.796 -472.389

27 29 56 -487.165 0.118 0.1 -53.647 -44.496 -11.343 -6.860 -482.474

27 30 57 -498.296 0.154 1.2 -53.570 -44.963 -11.555 -6.996 -492.499

27 31 58 -507.424 0.157 19.3 -53.406 -45.369 -9.600 -7.830 -501.216

27 32 59 -516.799 0.164 28.7 -53.261 -45.755 -9.747 -8.666 -509.869

27 33 60 -525.258 0.144 19.3 -53.233 -46.246 -8.850 -9.312 -518.068

27 34 61 -534.005 0.140 0.1 -53.110 -46.657 -9.158 -9.817 -526.531

27 35 62 -541.437 0.134 18.3 -52.783 -46.915 -7.863 -10.643 -534.183

27 36 63 -549.139 0.133 36.3 -52.462 -47.165 -8.055 -11.588 -541.807

27 37 64 -556.123 0.110 40.3 -52.239 -47.499 -7.349 -12.418 -548.826

27 38 65 -563.291 0.093 57.6 -51.944 -47.776 -7.498 -13.194 -556.305

27 39 66 -569.907 0.050 1.4 -51.784 -48.125 -7.274 -13.994 -562.436

27 40 67 -577.049 0.022 0.7 -51.482 -48.386 -7.538 -14.927 -569.914

27 41 68 -581.986 0.050 24.6 -51.522 -48.757 -5.281 -15.256 -575.074

27 42 69 -587.128 0.082 24.9 -51.549 -49.093 -5.525 -15.528 -580.360

27 43 70 -592.531 0.115 2.9 -51.593 -49.446 -5.731 -15.642 -585.737

27 44 71 -598.096 0.145 0.0 -51.628 -49.779 -6.111 -15.846 -591.222

27 45 72 -603.088 0.150 0.0 -51.691 -50.156 -5.227 -16.304 -596.317

27 46 73 -608.055 0.157 0.0 -51.748 -50.519 -5.212 -16.747 -601.313
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Appendix E Ground State Properties Calculated with the Skyrme SLy5 Parameter Set

Table E.13: Same as Tables E.1-E.12 but for nickel isotopes.

28Ni

Z N A Eg.s. β γ (deg) εn(1) εp(1) εn(N) εp(Z) Eg.s.(SLyIII.0.8)

28 28 56 -482.762 0.000 － -54.269 -43.748 -16.019 -6.936 -478.680

28 29 57 -493.654 0.061 0.1 -54.254 -44.324 -11.398 -6.779 -488.779

28 30 58 -504.871 0.105 0.1 -54.228 -44.831 -11.680 -6.808 -498.788

28 31 59 -515.146 0.091 59.3 -54.284 -45.386 -10.771 -8.319 -508.071

28 32 60 -525.682 0.000 － -54.531 -46.064 -11.069 -9.550 -517.491

28 33 61 -534.565 0.154 59.6 -53.595 -45.841 -9.530 -9.442 -526.956

28 34 62 -543.891 0.187 60.0 -53.052 -45.917 -9.698 -10.105 -537.014

28 35 63 -551.941 0.144 58.7 -53.120 -46.514 -8.560 -10.694 -544.711

28 36 64 -560.366 0.112 60.0 -53.092 -46.999 -8.822 -11.351 -552.311

28 37 65 -568.099 0.095 60.0 -52.788 -47.285 -8.053 -11.986 -560.582

28 38 66 -575.919 0.081 60.0 -52.474 -47.547 -8.126 -12.606 -568.885

28 39 67 -583.401 0.034 59.6 -52.254 -47.873 -8.074 -13.531 -576.289

28 40 68 -591.446 0.000 － -51.958 -48.127 -8.439 -14.393 -584.591

28 41 69 -596.741 0.032 59.6 -51.998 -48.500 -5.643 -14.769 -590.155

28 42 70 -602.239 0.063 59.7 -52.023 -48.835 -5.859 -15.164 -595.872

28 43 71 -607.690 0.083 1.7 -52.069 -49.204 -5.969 -15.183 -601.398

28 44 72 -613.466 0.112 0.0 -52.102 -49.539 -6.100 -15.401 -607.173

28 45 73 -618.920 0.118 0.0 -52.163 -49.913 -5.680 -15.864 -612.750

28 46 74 -624.336 0.124 0.0 -52.218 -50.275 -5.649 -16.317 -618.222
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Table E.14: Same as Tables E.1-E.13 but for copper isotopes.

29Cu

Z N A Eg.s. β γ (deg) εn(1) εp(1) εn(N) εp(Z) Eg.s.(SLyIII.0.8)

29 28 57 -484.593 0.060 0.2 -54.751 -43.330 -15.837 -2.192 -479.182

29 29 58 -496.550 0.109 0.1 -54.600 -43.786 -12.402 -3.204 -490.569

29 30 59 -508.812 0.157 0.0 -54.360 -44.126 -12.744 -4.336 -502.285

29 31 60 -519.413 0.159 24.5 -54.252 -44.572 -11.068 -4.842 -512.179

29 32 61 -530.239 0.162 33.5 -54.152 -44.991 -11.151 -5.381 -522.064

29 33 62 -540.143 0.166 57.9 -53.910 -45.308 -10.329 -5.672 -531.726

29 34 63 -550.248 0.192 59.7 -53.411 -45.416 -10.436 -6.428 -542.660

29 35 64 -558.885 0.157 58.0 -53.445 -45.960 -9.094 -7.012 -550.948

29 36 65 -567.855 0.128 53.7 -53.420 -46.435 -9.353 -7.569 -559.235

29 37 66 -576.143 0.111 59.6 -53.150 -46.730 -8.592 -8.091 -568.014

29 38 67 -584.499 0.098 59.8 -52.857 -46.992 -8.652 -8.620 -576.893

29 39 68 -592.139 0.051 59.3 -52.674 -47.339 -8.281 -8.776 -584.351

29 40 69 -600.455 0.016 0.4 -52.417 -47.616 -8.797 -9.016 -592.757

29 41 70 -606.595 0.045 59.4 -52.453 -47.977 -6.465 -9.840 -599.259

29 42 71 -612.931 0.088 6.9 -52.390 -48.257 -6.829 -11.010 -606.071

29 43 72 -619.544 0.116 2.1 -52.391 -48.580 -6.914 -11.968 -612.956

29 44 73 -626.279 0.144 0.0 -52.396 -48.896 -7.184 -12.913 -619.834

29 45 74 -632.392 0.151 0.0 -52.452 -49.258 -6.332 -13.574 -626.129

29 46 75 -638.462 0.157 0.0 -52.505 -49.609 -6.300 -14.232 -632.305
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Appendix E Ground State Properties Calculated with the Skyrme SLy5 Parameter Set

Table E.15: Same as Tables E.1-E.14 but for zinc isotopes.

30Zn

Z N A Eg.s. β γ (deg) εn(1) εp(1) εn(N) εp(Z) Eg.s.(SLyIII.0.8)

30 28 58 -486.469 0.105 0.2 -55.165 -42.904 -15.822 -2.198 -479.358

30 29 59 -499.482 0.158 0.0 -54.817 -43.175 -13.542 -3.284 -492.448

30 30 60 -512.892 0.200 0.0 -54.474 -43.430 -13.877 -4.422 -505.927

30 31 61 -524.086 0.206 15.4 -54.268 -43.799 -11.663 -5.035 -516.866

30 32 62 -535.527 0.214 22.3 -54.059 -44.142 -11.793 -5.650 -528.009

30 33 63 -545.840 0.192 12.8 -54.082 -44.665 -10.768 -6.253 -537.962

30 34 64 -556.541 0.179 0.2 -54.078 -45.144 -11.124 -6.836 -548.103

30 35 65 -565.748 0.164 0.5 -53.876 -45.478 -9.467 -7.286 -557.408

30 36 66 -575.226 0.164 28.5 -53.548 -45.713 -9.840 -7.623 -566.740

30 37 67 -583.759 0.131 39.6 -53.460 -46.160 -8.980 -7.796 -574.944

30 38 68 -592.638 0.112 57.9 -53.241 -46.477 -9.168 -8.187 -584.235

30 39 69 -600.434 0.067 59.3 -53.085 -46.840 -8.460 -8.340 -591.776

30 40 70 -608.991 0.036 0.1 -52.854 -47.133 -9.086 -8.596 -600.181

30 41 71 -616.083 0.078 3.6 -52.768 -47.403 -7.545 -9.663 -608.141

30 42 72 -623.631 0.235 16.3 -52.998 -47.603 -8.223 -12.125 -617.100

30 43 73 -631.140 0.146 0.5 -52.667 -47.972 -7.844 -11.695 -624.308

30 44 74 -638.799 0.172 0.0 -52.659 -48.279 -7.962 -12.607 -632.232

30 45 75 -645.577 0.179 0.0 -52.710 -48.627 -6.994 -13.278 -639.256

30 46 76 -652.311 0.186 0.0 -52.760 -48.968 -6.957 -13.938 -646.151
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Table E.16: Same as Tables E.1-E.15 but for gallium isotopes.

31Ga

Z N A Eg.s. β γ (deg) εn(1) εp(1) εn(N) εp(Z) Eg.s.(SLyIII.0.8)

31 28 59 -487.220 0.094 56.7 -55.624 -42.539 -17.214 -1.094 -478.621

31 29 60 -500.584 0.164 25.3 -55.146 -42.670 -14.065 -1.459 -492.343

31 30 61 -514.593 0.205 14.8 -54.750 -42.880 -14.486 -2.030 -506.817

31 31 62 -526.933 0.218 22.2 -54.452 -43.170 -12.699 -3.085 -519.273

31 32 63 -539.382 0.228 25.6 -54.173 -43.459 -12.761 -4.056 -531.887

31 33 64 -550.127 0.216 33.9 -54.066 -43.881 -11.150 -4.644 -542.101

31 34 65 -561.293 0.214 50.6 -53.791 -44.202 -11.808 -5.252 -553.245

31 35 66 -571.190 0.191 36.7 -53.820 -44.676 -10.457 -5.784 -562.854

31 36 67 -581.453 0.180 31.3 -53.652 -45.026 -10.562 -6.372 -573.226

31 37 68 -590.442 0.150 37.5 -53.565 -45.463 -9.428 -6.808 -582.027

31 38 69 -599.752 0.130 46.4 -53.363 -45.799 -9.678 -7.239 -591.637

31 39 70 -608.275 0.157 53.5 -53.265 -46.076 -8.804 -8.088 -601.201

31 40 71 -617.204 0.006 － -53.306 -46.674 -10.130 -8.362 -607.267

31 41 72 -624.629 0.074 22.8 -53.133 -46.885 -8.055 -8.658 -616.145

31 42 73 -633.386 0.237 22.1 -53.181 -46.972 -8.684 -9.912 -627.227

31 43 74 -640.893 0.246 21.7 -53.205 -47.313 -7.732 -10.602 -635.018

31 44 75 -649.061 0.175 0.4 -52.956 -47.727 -8.711 -10.297 -642.318

31 45 76 -656.492 0.181 1.9 -53.008 -48.075 -7.641 -10.947 -650.027

31 46 77 -663.870 0.188 2.0 -53.059 -48.414 -7.595 -11.586 -657.599
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Appendix E Ground State Properties Calculated with the Skyrme SLy5 Parameter Set

Table E.17: Same as Tables E.1-E.16 but for germanium isotopes.

32Ge

Z N A Eg.s. β γ (deg) εn(1) εp(1) εn(N) εp(Z) Eg.s.(SLyIII.0.8)

32 30 62 -516.300 0.216 22.3 -54.972 -42.310 -15.102 -1.941 -507.713

32 31 63 -529.653 0.230 25.1 -54.608 -42.542 -13.667 -2.911 -521.689

32 32 64 -543.071 0.240 27.7 -54.299 -42.805 -13.709 -3.865 -535.527

32 33 65 -554.420 0.230 36.0 -54.135 -43.190 -11.782 -4.451 -546.535

32 34 66 -566.157 0.229 46.1 -53.876 -43.513 -12.228 -4.998 -558.270

32 35 67 -576.622 0.208 38.9 -53.864 -43.969 -10.942 -5.565 -568.573

32 36 68 -587.438 0.194 33.1 -53.761 -44.362 -11.181 -6.116 -579.387

32 37 69 -597.177 0.222 33.4 -53.658 -44.620 -10.016 -6.928 -589.949

32 38 70 -606.973 0.248 32.9 -53.572 -44.885 -10.076 -7.647 -600.407

32 39 71 -616.011 0.222 35.8 -53.477 -45.301 -9.510 -8.157 -609.564

32 40 72 -625.469 0.199 40.6 -53.332 -45.670 -9.874 -8.638 -619.223

32 41 73 -634.130 0.216 33.3 -53.350 -46.011 -8.957 -9.229 -628.136

32 42 74 -642.926 0.238 26.3 -53.376 -46.365 -9.123 -9.680 -637.011

32 43 75 -651.117 0.248 25.2 -53.401 -46.710 -8.412 -10.343 -645.452

32 44 76 -659.285 0.260 24.2 -53.424 -47.051 -8.404 -10.996 -653.753

32 45 77 -667.021 0.184 8.5 -53.271 -47.519 -8.297 -10.641 -660.518

32 46 78 -675.060 0.192 8.9 -53.311 -47.851 -8.258 -11.298 -668.810

Table E.18: Same as Tables E.1-E.17 but for arsenic isotopes.

33As

Z N A Eg.s. β γ (deg) εn(1) εp(1) εn(N) εp(Z) Eg.s.(SLyIII.0.8)

33 32 65 -544.505 0.232 36.5 -54.573 -42.276 -14.300 -1.757 -536.073

33 33 66 -557.223 0.229 45.5 -54.329 -42.593 -13.141 -3.092 -548.783

33 34 67 -570.291 0.231 55.7 -54.042 -42.890 -13.562 -4.357 -562.101

33 35 68 -580.943 0.210 49.3 -54.040 -43.360 -11.117 -4.571 -572.484

33 36 69 -591.977 0.191 43.2 -54.001 -43.806 -11.489 -4.785 -583.341

33 37 70 -602.275 0.216 43.7 -53.880 -44.039 -10.547 -5.391 -594.606

33 38 71 -612.791 0.153 59.4 -53.658 -44.518 -10.918 -6.373 -604.928

33 39 72 -622.852 0.176 59.9 -53.599 -44.785 -10.296 -7.015 -615.748

33 40 73 -632.892 0.196 59.7 -53.549 -45.055 -10.283 -7.652 -626.462

33 41 74 -641.882 0.206 50.7 -53.557 -45.370 -9.198 -8.080 -635.806

33 42 75 -650.787 0.218 44.5 -53.561 -45.688 -9.152 -8.390 -645.032

33 43 76 -659.214 0.233 36.4 -53.626 -46.079 -8.702 -8.452 -653.458

33 44 77 -668.066 0.173 0.3 -53.506 -46.646 -9.615 -9.183 -661.255

33 45 78 -676.768 0.181 1.4 -53.532 -46.976 -8.901 -9.805 -670.401

33 46 79 -685.408 0.188 1.5 -53.567 -47.304 -8.844 -10.429 -679.362
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Table E.19: Same as Tables E.1-E.18 but for selenium isotopes.

34Se

Z N A Eg.s. β γ (deg) εn(1) εp(1) εn(N) εp(Z) Eg.s.(SLyIII.0.8)

34 32 66 -546.057 0.230 46.1 -54.785 -41.685 -14.829 -1.925 -537.074

34 33 67 -560.101 0.232 56.9 -54.500 -41.959 -14.448 -3.345 -551.420

34 34 68 -574.273 0.236 60.0 -54.263 -42.302 -14.641 -4.370 -565.412

34 35 69 -585.444 0.246 59.8 -54.216 -42.635 -11.359 -4.678 -577.219

34 36 70 -596.526 0.193 53.5 -54.242 -43.254 -11.698 -4.785 -587.253

34 37 71 -607.578 0.173 58.6 -54.142 -43.648 -11.355 -5.596 -598.309

34 38 72 -618.732 0.161 60.0 -53.945 -43.947 -11.415 -6.032 -609.986

34 39 73 -629.432 0.181 60.0 -53.887 -44.218 -10.924 -6.657 -621.431

34 40 74 -640.108 0.201 60.0 -53.826 -44.477 -10.892 -7.255 -632.942

34 41 75 -647.714 0.083 59.8 -53.876 -45.238 -10.005 -7.368 -638.673

34 42 76 -659.115 0.216 60.0 -53.799 -45.082 -9.616 -8.395 -652.981

34 43 77 -667.777 0.221 60.0 -53.831 -45.431 -8.831 -8.937 -661.919

34 44 78 -676.835 0.171 0.0 -53.735 -46.097 -10.278 -8.814 -670.300

34 45 79 -686.164 0.179 0.0 -53.747 -46.416 -9.523 -9.441 -680.159

34 46 80 -695.430 0.186 0.0 -53.768 -46.734 -9.462 -10.057 -689.831

Table E.20: Same as Tables E.1-E.19 but for bromine isotopes.

35Br

Z N A Eg.s. β γ (deg) εn(1) εp(1) εn(N) εp(Z) Eg.s.(SLyIII.0.8)

35 32 67 -546.177 0.211 39.1 -55.150 -41.306 -15.412 -0.454 -536.459

35 33 68 -560.418 0.211 49.2 -54.891 -41.602 -14.623 -0.637 -550.825

35 34 69 -574.942 0.219 59.9 -54.654 -41.940 -14.912 -0.848 -565.407

35 35 70 -587.123 0.196 52.2 -54.570 -42.333 -12.647 -2.172 -577.691

35 36 71 -599.657 0.180 46.4 -54.481 -42.742 -12.940 -3.395 -590.338

35 37 72 -611.283 0.162 50.7 -54.379 -43.124 -11.981 -3.953 -602.069

35 38 73 -623.155 0.146 59.3 -54.255 -43.477 -12.230 -4.546 -614.107

35 39 74 -634.094 0.166 55.5 -54.189 -43.745 -11.188 -4.829 -625.832

35 40 75 -645.028 0.186 55.3 -54.124 -44.009 -11.156 -5.107 -637.646

35 41 76 -655.064 0.194 53.9 -54.108 -44.314 -10.205 -5.597 -648.280

35 42 77 -664.975 0.206 54.3 -54.077 -44.627 -10.120 -6.022 -658.785

35 43 78 -674.507 0.238 59.5 -54.023 -45.052 -9.547 -6.729 -668.795

35 44 79 -684.308 0.151 0.1 -54.095 -45.640 -10.403 -7.553 -677.244

35 45 80 -694.021 0.158 0.1 -54.125 -45.967 -9.894 -7.936 -687.454

35 46 81 -703.653 0.165 0.0 -54.159 -46.292 -9.819 -8.300 -697.475
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[51] S. Szilner, C. A. Ur, L. Corradi, N. Mărginean, G. Pollarolo, A. M. Stefanini, S. Beghini,

B. R. Behera, E. Fioretto, A. Gadea, B. Guiot, A. Latina, P. Mason, G. Montagnoli, F. Scar-

lassara, M. Trotta, G. de Angelis, F. Della Vedova, E. Farnea, F. Haas, S. Lenzi, S. Lunardi,
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A388, 334 (1982).
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