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Abstract

This paper studies the impact of rising income inequality on a rent distribution of rental

housings. The model is based on the assignment market model with a nite number of

households and apartments. We show that when household income inequality increases,

then (i) a rent rises at every apartment, (ii) rise at apartments of higher quality but declines

at lower quality or (iii) decline at every apartment. These cases are characterized by the

location of the specic household who divides households into income-increased/declined

groups. This characterization implies (i) is a special case. Numerical examples conrm

our results. We also discuss equitability of competitive allocations in our market model.

1 Introduction

We present the impact of an increase in household income inequality on apartment rents. The

market model we adopt is the rental housing market model by Kaneko, Ito and Osawa (2006).

The model by Kaneko et al. is an application of the assignment market without the

assumption of quasi-linear utility functions. In the model, the market participants are divided

into households and landlords. Each household demands at most one apartment unit and

each landlord provides some apartment units. The apartments as indivisible commodities

are classied into nite categories 1, ..., T based on their qualities. The goods other than

apartments are aggregated and consumed as composite good (money). Household utility

function is assumed to be homogeneous, and allows income e ect on housing qualities.

It is known that this model guarantees the existence of a competitive equilibrium (Kaneko,

1982; Kaneko and Yamamoto, 1986). In particular, under our assumptions on the utility

functions, a household with a higher income rents an apartment of a better category than a

household with lower income at any equilibrium (Proposition 2.1). We can then represents the

maximum competitive rent vector by a solution of a certain system of equations. This system
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of equations and its solution are called the rent equation and the di erential rent vector. In

our analysis, we directly consider a di erential rent vector rather than the competitive rent

vector.

Here, we briey introduce our comparative statics result. The e ect of an increase in

income inequality is divided by three cases: (i) rise in rent at every category, (ii) decline at

every category or (iii) rise at higher categories and decline at lower categories. Cases (i) and

(ii) are counterintuitive because rising income inequality seems to cause decline in rents at

worse apartments and rise in rents at better apartments. Indeed, we show that (i) is said to

be an extreme case, while (ii) [and also (iii)] may possible. Three cases (i)-(iii) are associated

with the location of household who divides the households into the income-increased group

and the decreased group.

Here, we introduce related literatures. Kaneko et al. (2006) studied e ects of changes in

incomes of boundary households on a competitive rent vector. The boundary household is

dened for each category of apartments, and play a crucial role in the model. The authors

showed that when the boundary income di erence is larger (smaller) for a better category of

apartments, the rent di erence forms convex (concave) shape.

Ito (2007) presented the e ects of rise in only the boundary household income of category

k on competitive rents, under a more restricted assumption on a utility function. The author

showed that rents are unchanged at k + 1, ..., T , increase at 1, ..., k and a rent di erence of

each category 1, ..., k 2 is smaller for a better category of apartments.

Määttänen and Terviö (2014) studied the e ect of rising income inequality on house prices

in the one-sided assignment model. One-sided means that the agents are potentially seller

and buyer. The authors assume a continuum of agents and housing types (thus, an analytical

method is calculus), and the homogeneity and normality on the utility functions. The authors

presented a similar result to our main result with the exclusion of the case (i). Braid (1981)

also studied the e ects of parameter changes on rent distributions under the two-sided version

of Määttänen and Terviö�’s framework.

This paper is organized as follows. Section 2 formulates our rental housing market model

and gives our denition of competitive equilibrium. Next we introduce the rent equation

and di erential rent vector. Section 3 examines the impact of rising income inequality on a

rent distribution. Numerical examples conrm our theorems. Section 4 studies equitability

property of competitive allocations in our model. Section 5 presents our conclusions and some

remarks.

2 The market model

The rental housing market model (Kaneko et al., 2006) is denoted by (M,N), where the

symbol M = {1, . . . ,m} denotes the set of households, and N = {1, . . . , T} denotes the set of
landlords. The objects of trade are apartments (indivisible) and money (perfectly divisible).
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The apartments are classied into nite T number of categories by their housing attributes

(e.g., a housing size and a commuting time). Each landlord k N supplies units of apartments

of the k-th category (thus k is the only landlord providing the k-th apartments).1

Each household i M initially has an income Ii > 0 but no dwelling. He wants to live in

some apartment by paying rent from his income. Without loss of generality, we can assume

that the households are ordered in their incomes as I1 I2 · · · Im. The consumption

set is written by X := {e0, e1, . . . , eT} ×R+, where ek is the T -dimensional unit vector with
k-th component is 1 (e0 = 0), and R+ is the set of nonnegative real numbers. A consumption
bundle (ek, c) X with k 6= 0 means that household i rents one apartment unit of category k
and enjoys the consumption c = Ii pk paying rent pk of category k. For k = 0, no apartment

is consumed. An initial endowment of i M is given as (e0, Ii) with Ii > 0. Each household

has an identical utility function u : X R satisfying the following assumption:

Assumption A. For each x {e0, e1, . . . , eT}, u(x, c) is a continuous and strictly monotone
function of c, and u(e0, Ii) > u(ek, 0) for all k = 1, ..., T.

The identical utility function implies that a housing market (M,N) represents a mono-

centric city, and every households commute to the same business district. In Assumption

A, continuity and monotonicity on money are standards; the latter inequality means the

indispensability of money. We also assume the following: B-D on u(·, ·).

Assumption B. If u(xi, c) = u(x0i, c
0), and c < c0, then u(xi, c + ) > u(x0i, c

0 + ) for any

> 0.

Assumption C. If u(xi, c) > u(x0i, c
0), then u(xi, c) = u(x0i, c

0 + ) for some > 0.

Assumption D. u(e1, 0) > u(e2, 0) > · · · > u(eT , 0).

Assumption B is the normality assumption on the quality of apartments in the following

sense. In B, the k-th apartment has a better quality than k0, since living in k with smaller

consumption c is indi erent to living in k0 with larger c0. When an income is increased by

the same magnitude > 0, the household strictly demands better apartment. The normality

implies that even if we assume the identical utility function, households having di erent

incomes demand di erent qualities of apartments. Assumption C means that housing quality

of an apartment is substitutable for money. Assumption D means that the apartment qualities

are strictly ordered by the numerical order.2

We next dene the seller side. Each landlord k N = {1, ..., T} provides apartments of
k-th category. The landlord has a cost function Ck(yk) : Z+ R+, where Z+ is the set of
nonnegative integers. For each yk Z+, Ck(yk) represents the cost (in terms of money) of

1The original model of Kaneko et al (2006) assume that |N | T and there are more than one seller
providing apartments of type k (= 1, ..., T ). As far as competitive equilibrium is concerned, we can assume
without of generality that only one seller provides apartments of type k(= 1, ..., T ) (thus the set N becomes
N = {1, ..., T}). See Section 5 of Sai (2014).

2Assumption D together with Assumptions A, B and C imply that u(e1, c) > u(e2, c) > · · · > u(eT , c) for
all c R+.
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supplying yk units of apartments of k-th category. In this study, we employ the following

simple form of Ck(·).

Assumption E. For each k N, Ck(yk) is expressed as

Ck(yk) =

(
akyk if yk wk,

�“large�” if yk wk + 1,

In Assumption E, the constant ak > 0 is the marginal cost of providing additional unit.

The �“large�” is a su ciently large number. The remaining constant wk is the number of all

apartment units owned by landlord k. This cost function means that landlord k supplies units

up to wk with the constant marginal cost ak, while he never supplies more than wk units since

the cost to build a new one is very large relative to the market.3.

We dene a competitive equilibrium in (M,N). Let p RT+ be the price vector, x

{e0, e1, . . . , eT}m be the demand vector and y ZT+ be the supply vector. A triple (p, x, y) is
a competitive equilibrium i

(UM): for all i M, (i) Ii pxi 0, where pxi =
PT
k=1 pkxik;

(ii) u(xi, Ii pxi) u(x0i, Ii px0i) for all x
0
i {e0, e1, . . . , eT} with Ii pxi 0.

(PM): for all k N, pkyk Ck(yk) pky
0
k Ck(y

0
k) for all y

0
k Z+.

(BDS):
P
i M xi =

PT
k=1 yke

k.

There exists a competitive equilibrium (p, x, y) in (M,N) (Kaneko and Yamamoto, 1986),

the maximum and minimum competitive rent vectors (Kaneko et al., 2006; Sai, 2015).4,5 In our

analysis, we focus on the maximum competitive rent vector. This rent vector is calculated

by the solution of a certain system of equations called the rent equation.6 The following

proposition is necessary to dene the rent equation.

Proposition 2.1 (Kaneko et al., 2006). Let (p, x, y) be a competitive equilibrium. Then,
(1) If k < k0 and xi = ek

0
for some i, then pk > pk0 .

(2) If xi = ek, xj = ek
0
and Ii > Ij for some i, j, then k k0.

This states that in any competitive equilibrium, (1) the price of a better apartment is

higher than a worse one, and (2) a household with a higher income rents a better apartment.

Note that Proposition 2.1.(1) does not exclude the case of yk = 0. The following assumption

eliminates such a case.

Assumption F. Let (p, x, y) be a competitive equilibrium. Then there exists some category
f such that yk > 0 for k = 1, ..., f and yk = 0 for k = f + 1, ..., T .

3 In this sense, our approach is short-run analysis.
4A vector p RT+ is a competitive price vector i (p, x, y) is a competitive equilibrium, and p is the maximum

(minimum) competitive price vector i p p0 (p p0) for any competitive price vector p0.
5 Indeed, these existence theorems are guaranteed only under Assumptions A and E.
6 Instead of the maximum one, we may focus on the minimum competitive rent vector. It follows from Sai

(2014) and/or Sai (2015) that the di erence between pmax and pmin is rather small when a market is thick with
landlords and/or households.
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We call this f the marginal category. By Proposition 2.1.(1) and Assumption F, we have

p1 > p2 > · · · > pf .
Recall that the households 1, ...,m are ordered by their incomes as I1 I2 · · · Im.

We dene the household with the lowest income in each active category. Let (p, x, y) be a

maximum competitive equilibrium. For each category k f , we dene the household G(k)

with the lowest income in the k-th category as:

G(k) :=
kP
t=1
yt.

For each k, we call G(k) the boundary household of the k-th category.

The rent equation (Kaneko et al., 2006) is dened as the system of equations with un-

knowns r1, ..., rf :

u(ef 1, IG(f 1) rf 1) = u(e
f , IG(f 1) rf ),

u(ef 2, IG(f 2) rf 2) = u(e
f 1, IG(f 2) rf 1),

...

u(e1, IG(1) r1) = u(e
2, IG(1) r2).

(3.1)

Note that the rent equation (3.1) has f unknowns, while which is constituted by f 1

equations. Eq. (3.1) states that a household G(k) is indi erent between renting the k + 1-

th apartment at rent rk+1 and renting the k-th category at rk. In Eq. (3.1), if the rent

of marginal category rf is given, the rst equation of Eqs. (3.1) determines rf 1. In the

same manner, the remaining rents rf 2, ..., r1 are recursively determined. We call a solution

(r1, ..., rf ) of Eq. (3.1) a di erential rent vector. Under our assumptions, if rf is given with

u(e1, 0) < u(ef , IG(f 1) rf ), then a di erential rent vector is uniquely determined and

satises r1 > · · · > rf 1 > rf .

We conclude this section by noting the relation between a di erential rent vector and a

competitive rent vector. Let p = (p1, ..., pT ) be the maximum competitive rent vector and

(r1, ..., rf ) is a di erential rent vector given by rf pf . Then, it holds that rk pk for all

k = 1, ..., f (Theorem 3.1 by Sai, 2015). In particular, if rf = pf and some condition holds,

then rk = pk for all k = 1, ..., f .7 Hereafter, we use a di erential rent vector for a comparative

statics.
7They are two conditions by Kaneko et al. (2006), Theorem 2.6: (1) IG(k) = IG(k)+1 for each k = 1, ..., f 1;

(2) pk < Ck (yk + 1) Ck (yk) for each k = 1, ..., f 1.
Under our assumption E on the cost function, the condition (2) holds because the cost of additional unit

from wk, Ck (wk + 1) =�“large�”. Even when neither conditions hold, a di erential rent vector can be an
approximation of the maximum competitive rent vector. See Sai (2015), Section 3.1.
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3 The Impact of an increase in Income Inequalities on Com-
petitive Rents

3.1 Comparative statics

In this section, we study the relation between household income distribution and competitive

equilibria. The main purpose is to explain how rising income inequality a ects a competitive

rent distribution. Recall that the households M are ordered by their income levels as I1
· · · Im. Here, we consider a new market where only the household incomes change. Precisely,

{I1, · · · , Im} changes to {bI1, · · · , bIm}, but the remaining parameters, the setsM,N , utility and
cost functions u(·, ·), ck(·), the marginal category f and the marginal rent rf are unchanged.8

By assumption E, the supply amount of each category 1, ..., f is also unchanged in the market.

Therefore, the boundary household G(k) =
Pk
t=1wt (k = 1, ..., f) remains the same. We

consider the following condition on the household incomes.

Condition InE (Increase in Income Inequality). There exists a household i M\{m} such
that Ii < bIi for i {1, · · · , i } and Ii > bIi for i {i + 1, · · · ,m}, and

P
i M(Ii

bIi) = 0.

This condition states that in the new market, an income increases at upper households

than i + 1 and declines at lower households than i , preserving the gross income.

Let (r1, · · · , rf 1, rf ) and (br1, · · · , brf 1, rf ) be di erential rent vectors in the original and

new markets determined by rf with u(e1, 0) < u(ef , bIG(f 1) rf ). In the next theorem, we

examine how the new rent vector (br1, · · · , brf 1) changes under Condition InE (the proof will

be given in Section 3.2).

Theorem 3.1 (The Possible Cases of Rent Change). Under Condition InE, either (1), (2)
or (3) holds:

(1) rk < brk for k = 1, ..., f 1.

(2) There exist a category k ( f 2) such that

rk < brk for k = 1, ..., k 1,

rk brk ,
rk > brk for k = k + 1, ..., f 1.

(3) rk > brk for k = 1, ..., f 1.

This theorem shows three possibilities of rent change when income inequality increases.

Theorems 3.1.(1) and (3) are straightforward: (1) [(3), respectively] states that a rent rises

(declines) at every category 1, ..., f 1 in the new market. Thus, an average rent rises (falls).

The remaining (2) states that a rent increases at upper categories 1, ..., k , declines at lower

categories k + 1, ..., f 1. The illustration of (2) is depicted in Fig. 1.

One may think Theorem 3.1.(1) and (3) are counterintuitive: it is natural that rising in-

come inequality causes decline in rents at lower categories and rise in rents at upper categories

[case (2)]. Indeed, in the next theorem we show (1) is an extreme case; on the other hand, we

8We assume {I1, · · · , Im} also satises I1 · · · Im

6



Figure 1: An illustration of Theorem 3.1.(2).

also show (3) is a common case.

Theorem 3.2 (Location of Household i and Rent Change). Under Condition InE, the fol-

lowing holds:

(1) G(f 1) i implies Theorem 3.1.(1).

(2) G(1) i < G(f 1) implies Theorem 3.1.(2) or (3).

(3) i < G(1) implies Theorem 3.1.(3).

This theorem characterizes three cases of Theorem 3.1 by the location of household i of

Condition InE. In Theorem 3.2.(1), the inequality G(f 1) i implies that a boundary

income of every category rises, i.e., IG(k) < bIG(k) for every k = 1, ..., f 1. In this case, a

di erential rent brk rises for every k = f 1, ..., 1. (3) is also understood in a similar manner.

The remaining (2) is the case that household i is located below G(1) and above G(f 1). In

this case, there are two possibilities: (i) decline in rents at every category or (ii) rise in rents

above some category k and decline below k .

The condition G(f 1) i of Theorem 3.2.(1) is an extreme case in that every income

declined household is assigned to the marginal category f and the income declined segment

{bIl+1, ..., bIm} is irrelevant to the determination of rents br1, ..., brf 1. The condition i < G(1) of

Theorem 3.2.(3) is another extreme case in that every income increased household is assigned

to the rst category 1. Theorem 3.2 states that even if we eliminate the case i < G(1),

Theorem 3.1.(2) still possible.

Now, we compare our results and other related studies. Kaneko et al. (2006) studied e ects

of changes in boundary incomes on a di erential rent vector. In particular, they considered

the case: bIG(f 1) IG(f 1)
bIG(f 2) IG(f 2) · · · bIG(1) IG(1), i.e., the boundary income

increment is larger for a better category of apartments.9 We can apply their condition to our

9They also considered the opposite case: IG(f 1) IG(f 1) IG(f 2) IG(f 2) · · · IG(1) IG(1).
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Condition InE as follows:

bIG(f 1) IG(f 1) · · · bIG(k) IG(k) < 0 <
bIG(k 1) IG(k 1) · · · bIG(1) IG(1)

for some k {2, ..., f 1}.

This could be understood as the income inequality signicantly increases. Then, by Theorem

5.2.(1) and Corollary 6.2.(1) (Kaneko et al., p.160 and p.162), the rent di erences form convex

shape

0 < brf 1 rf 1 < · · · < brk1 rk1 = · · · = brk2 rk2 < · · · < br1 r1,

where k k2 k1 f 1,

that is, the decrement of brk to rk gradually gets large from category f 1 to k1 (and takes

maximal from k1 to k2, and gradually decrease as

Määttänen and Terviö (2014) also studied the e ect of rising income inequality on house

prices by using the one-sided assignment model. Their model assume a continuum of agents

and housing types, and the homogeneity and normality on the utility functions. Their main

result (Proposition 4, p.391) is essentially the same as our Theorem 3.1 with the exclusion of

the case (1).10 Nevertheless, their analytical method is di erent from ours in that they uses

a calculus for analyses, while our model is based on niteness.

3.2 Proofs of Theorem 3.1 and Theorem 3.2

It su ces to prove Theorem 3.2.

Proof of Theorem 3.2.(1). Suppose G(f 1) i , i.e., IG(k) < bIG(k) for every k = 1, ..., f
1. We prove this by mathematical induction over f 1, ..., 1. Let = bIG(f 1) IG(f 1) > 0.

the rent equation (3.1) and the normality assumption (Assumption B) imply

u(ef 1, IG(f 1) rf 1 + ) > u(ef , IG(f 1) rf + ),

that is,

u(ef 1, bIG(f 1) rf 1) > u(ef , bIG(f 1) rf )

= u(ef 1, bIG(f 1) brf 1) by Eqs. (3.1).

This inequality and the monotonicity (Assumption A) imply bIG(f 1) rf 1 > bIG(f 1) brf 1,

that is, rf 1 < brf 1.

Suppose rk < brk for k with 1 < k f 1. Then we show this relation also holds for k 1.

Let = bIG(k 1) brk (IG(k 1) rk) and suppose > 0. Then, Eqs. (3.1) and Assumption

10Their condition on the income distribution excludes the occurrence of antecedents of Theorem 3.2.(1) and
(3).
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B imply

u(ek 1, IG(k 1) rk 1 + ) > u(ek, IG(k 1) rk + ),

that is,

u(ek 1, bIG(k 1) rk 1 brk + rk) > u(ek, bIG(k 1) brk)

= u(ek 1, bIG(k 1) brk 1) by Eqs. (3.1).

This inequality and Assumption A imply bIG(k 1) rk 1 brk + rk > bIG(k 1) brk 1, that is,

brk 1 rk 1 > brk rk > 0.

Suppose the other case 0. Then, Assumption A imply u(ek, IG(k 1) rk) u(ek, bIG(k 1)

brk). Since the left hand side equals u(ek 1, IG(k 1) rk 1) and the right hand side equals

u(ek 1, bIG(k 1) brk 1) by Eqs. (3.1), we have u(ek 1, IG(k 1) rk 1) u(ek 1, bIG(k 1) brk 1).

Again, by Assumption A, we have IG(k 1) rk 1
bIG(k 1) brk 1, that is, brk 1 rk 1

bIG(k 1) IG(k 1) > 0. Hence we obtain rk 1 < brk 1.

Proof of (2). Suppose G(1) i < G(f 1) and let k = min[k : i < G(k)]. We rst

prove the inequality rk > brk holds for k = k , ..., f 1 by mathematical induction. Let

= IG(f 1)
bIG(f 1) > 0. The rent equation (3.1) and Assumption B imply

u(ef 1, bIG(f 1) brf 1 + ) > u(ef , bIG(f 1) rf + ),

that is,

u(ef 1, IG(f 1) brf 1) > u(ef , IG(f 1) rf )

= u(ef 1, IG(f 1) rf 1) by Eqs. (3.1).

This inequality and Assumption A imply IG(f 1) brf 1 > IG(f 1) rf 1, that is, rf 1 > brf 1.

Suppose the inequality rk > brk holds for k with k < k f 1. We show this also holds

for k 1. Let = IG(k 1) rk (bIG(k 1) brk) and suppose > 0. Eqs. (3.1) and Assumption

B imply

u(ek 1, bIG(k 1) brk 1 + ) > u(ek, bIG(k 1) brk + ),

that is,

u(ek 1, IG(k 1) brk 1 rk + brk) > u(ek, IG(k 1) rk)

= u(ek 1, IG(k 1) rk 1) by Eqs. (3.1).

This inequality and Assumption A imply IG(k 1) brk 1 rk + brk > IG(k 1) rk 1, that is,

rk 1 brk 1 > rk brk > 0. Hence we obtain rk 1 > brk 1.

Suppose the other case 0. Then, Assumption A imply u(ek, bIG(k 1) brk) u(ek, IG(k 1)

rk). Since the left hand side equals u(ek 1, bIG(k 1) brk 1) and the right hand side equals

9



u(ek 1, IG(k 1) rk 1) by Eqs. (3.1), we have u(ek 1, bIG(k 1) brk 1) u(ek 1, IG(k 1) rk 1).

Again, by Assumption A, we have bIG(k 1) brk 1 IG(k 1) rk 1, that is, rk 1 brk 1

IG(k 1)
bIG(k 1) > 0. Hence we obtain rk 1 > brk 1.

From the above discussion, we have rk > brk holds for k = k , ..., f 1. We next show

either rk > brk or rk brk holds for k = 1, ..., k 1. Furthermore, we show that once rk brk
appears for some k k 1, then it holds that rk < brk for k = 1, ..., k 1.

Let = bIG(k 1) brk (IG(k 1) rk ). By condition InE, we have

bIG(k 1) brk (IG(k 1) rk ) > 0. (3.2)

Eqs. (3.1) and Assumption B imply

u(ek 1, IG(k 1) rk 1 + ) > u(ek , IG(k 1) rk + ),

that is,

u(ek 1, bIG(k 1) rk 1 brk + rk ) > u(ek , bIG(k 1) brk )

= u(ek 1, bIG(k 1) brk 1) by Eqs. (3.1).

This inequality and Assumption A imply bIG(k 1) rk 1 brk + rk > bIG(k 1) brk 1, that

is,

rk brk > rk 1 brk 1. (3.3)

On the other hand, Eq. (3.2) and Assumption A imply u(ek , bIG(k 1) brk ) > u(ek ,

IG(k 1) rk ). Since the left hand side equals u(ek 1, bIG(k 1) brk 1) and the right hand

side equals u(ek 1, IG(k 1) rk 1) by Eqs. (3.1), we have u(ek 1, bIG(k 1) brk 1) >

u(ek 1, IG(k 1) rk 1). Again, by assumption A, we have bIG(k 1) brk 1 > IG(k 1)

rk 1, that is, rk 1 brk 1 > IG(k 1)
bIG(k 1). By this and Eq. (3.3), we have

rk brk > rk 1 brk 1 > IG(k 1)
bIG(k 1).

Since rk > brk and IG(k 1) < bIG(k 1), there are two cases: rk 1 > brk 1 or rk 1 brk 1.

If the latter case, the category k of Theorem 3.1.(2) is k = k 1.

Let k with 1 < k k 1.

(Case rk > brk): By Condition InE, bIG(k 1) > IG(k 1). Thus, we have bIG(k 1) brk (IG(k 1)

rk) > 0. In the same manner with the above discussion, we have

rk brk > rk 1 brk 1 > IG(k 1)
bIG(k 1),

and there may be two cases rk 1 > brk 1 or rk 1 brk 1. If the latter case, the category k of

Theorem 3.1.(2) is k = k 1.

(Case rk brk): Suppose that = bIG(k 1) brk (IG(k 1) rk) > 0. Eqs. (3.1) and Assumption

10



B imply

u(ek 1, IG(k 1) rk 1 + ) > u(ek, IG(k 1) rk + ),

that is,

u(ek 1, bIG(k 1) rk 1 brk + rk) > u(ek, bIG(k 1) brk)

= u(ek 1, bIG(k 1) brk 1) by Eqs. (3.1).

This inequality and Assumption A imply bIG(k 1) rk 1 brk + rk > bIG(k 1) brk 1, that is,

rk 1 < brk 1.

Suppose the other case bIG(k 1) brk (IG(k 1) rk) 0. This inequality and Assumption A

imply u(ek, bIG(k 1) brk) u(ek, IG(k 1) rk). Since the left hand side equals u(ek 1, bIG(k 1)

brk 1) and the right hand side equals u(ek 1, IG(k 1) rk 1) we have u(ek 1, bIG(k 1) brk 1)

u(ek 1, IG(k 1) rk 1). Again, by Assumption A, bIG(k 1) brk 1 IG(k 1) rk 1. Since
bIG(k 1) > IG(k 1), we obtain rk 1 < brk 1.

Proof of (3). The proof is the same as the early part of the proof of (2).

3.3 Numerical Examples

In this section, we conrm our comparative statics results by numerical examples. In examples,

we nd that rising income inequality possibly causes (i) decline in rents at every category or

(ii) rise in rents above some category k and decline below k [the statement of Theorem

3.2.(2)].

Suppose that there are 6 categories of apartments (T = 6) and T = f . For each category

k = 1, ..., 6, wk amount of apartments are already built and owned by landlord k for sale.

Here, suppose that w1 = w2 = 200, w3 = w4 = 300 and w5 = w6 = 500. We assume the

same number of households are coming to the market to seek the dwelling, and that all the

apartment units are traded in the end. Therefore, m =
Pk
t=1wt and G(k) =

Pk
t=1wt for

k = 1, ..., 6.

Each household has the following utility function:

u(ek, c) = hk + c (k = 0, ..., 6),

where h1 = 5.1, h2 = 4.4, h3 = 3.7, h4 = 3, h5 = 2, h6 = 1 and h0 = 0. We assume that

a household (monthly) income is lognormally distributed.11 In this example, we adopt the

11We say that a (positive) random variable X is lognormally distributed with parameters and 2 i
Y = lnX is normally distributed with mean and variance 2. The lognormal distribution is denoted by
( , 2). The probability density function of X ( , 2) is given by

f(x) =
1

2 x
exp

(lnx )2

2 2
(x > 0).

The mean E, variance V , median M and mode D of ( , 2) are given by E = exp( + 1
2

2), V =

11



Figure 2: Probability density distributions of lognormal distributions.

Changes in IG(k) Di erences in IG(k)

k G(k) IG(k) bIG(k)
bbIG(k) bIG(k) IG(k)

bbIG(k) bIG(k)
1 200 371.6 514.7 660.5 143.1 145.8
2 400 356.7 433.8 470.1 77.1 36.3
3 700 341.8 356.1 346.0 14.3 10.1
4 1000 329.3 305.2 264.3 24.1 40.9
5 1500 310.1 231.4 167.5 78.6 63.9

Gini 0.05 0.22 0.36

Table 1: Boundary incomes in the example

following three lognormal distributions: the mean of lognormal distribution is xed as E =

330, and variances are V1 = 1000, V2 = 20000 and V3 = 80000. Fig. 2 depicts probability

density distributions.

In Fig. 2, the most highest graph corresponds to the mean E = 330 and the variance

V1 = 1000, the second highest one corresponds to E = 330 and V2 = 20000, and the remaining

one is E = 330 and V2 = 80000. We generate three sets of 2000 random numbers following

each distribution. We suppose the initial income distribution is V1 = 1000, and it changes into

V1 = 20000 (denote the new incomes by hats); and it also changes into V1 = 80000 (by double

hats). Table 1 gives boundary incomes and Gini coe cients of each generated incomes.

Table 1 shows that income inequality increases as the variance increases. The table also

shows the magnitude of income di erence is monotonically increasing. Locations of household

i of Condition InE is as follows: (i) G(3) bi < G(4) and (ii) G(2) bbi < G(3). Both satisfy
Condition of Theorem 3.2.(2).

Let the marginal rent r6 = 50. We then calculates di erential rent vectors (r1, ..., r6),

exp(2 + 2) exp( 2) 1 , M = exp( ) and D = exp( 2). By them, we have D < M < E, and thus,
( , 2) has a long-tail form. These dinitions and properties are due to Crow and Shimizu (1988). The
lognormal distribution is aften used as an approximation of an income distribution.
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Changes in rk Di erences in rk
k rk brk bbrk brk rk bbrk brk
1 173.2 177.2 176.1 4.0 1.0
2 153.0 150.9 114.8 2.0 6.1
3 132.5 126.9 119.1 5.6 7.8
4 111.8 105.2 97.5 6.5 7.7
5 81.3 75.9 70.7 5.3 5.3
6 50 50 50 0 0

Table 2: Di erential rents in the example

173.2 
153.0 

132.5 

111.8 

81.3 

50.0 

177.2 

150.9 

126.9 

105.2 

75.9 

50.0 

176.1 

144.8 

119.1 

97.5 

70.7 

50.0 

1 2 3 4 5 6
Category

V=1000

V=20000

V=80000

Rent

kr̂̂

kr̂
kr

Figure 3: Rent changes in the example.

(br1, ..., br5, r6) and (bbr1, ...,bbr5, r6) by Eq. (3.1). The calculation result and its illustration are
given in Table 2 and Fig. 3.

As seen from Table 2, the rst income change causes decline in rents except the rst

category and rise in rent at the rst category, that is, Theorem 3.1.(2). On the other hand,

the second change causes decline in rents at every category [Theorem 3.1.(3)]. These results

are consistent with Theorem 3.2. In sum, it can be said that increase of an income inequality

often lowers a rent at every category (as well as average rent).

4 Income inequality and equitability of competitive alloca-
tions

Here, we briey mention the equitability property of competitive allocations in our market

model. Foley (1967) and Varian (1974) developed the theory of equitability (or fairness) in

markets with perfectly divisible goods. Svensson (1983), Alkan, Demange and Gale (1991)

and Sakai (2007) also studied equitability/fairness in the indivisibility framework. However,

their models are di erent to ours in that their models consist of (i) only buyers (ii) the

13



same number of buyers and indivisible units (iii) no initial endowments and (iiii) without

homogeneous preference assumption. Here, we focus on competitive equilibria, and consider

equitability of competitive allocations in our model.

We rst give some notations (denitions are due to Foley, 1967). Recall that the con-

sumption set of households are given by X = {e0, e1, . . . , eT} × R+. Let an m-tuple a =
(a1, ..., am) Xm be a consumption allocation. We say that i envies j at a Xm i

u(aj) > u(ai). We say that a Xm is the equitable (envy-free) allocation i u(ai) u(aj) for

every i, j M . Note that in our framework, this condition can be translated by u(ai) = u(aj)

for every i, j M .

The following proposition holds in our market model.

Proposition 4.1. Let (p, x, y) be a competitive equilibrium and let i, j M. Then, Ii Ij if

and only if u(xi, Ii pxi) u(xj , Ij pxj) (note that is replaced by , >,<, or =).

Proof. (Only If ) By the antecedent Ii > Ij and utility maximization condition, we have

u(xi, Ii pxi) u(xj , Ii pxj) > u(xj , Ij pxj). (If ) Suppose, on the contrary, Ii Ij .

Then, we obtain the contradictory inequality by utility maximization condition: u(xj , Ij pxj)

u(xi, Ij pxi) u(xi, Ii pxi).

This proposition means that if there exist two households having di erent incomes, then

the lower-income household envies the higher-income household in any competitive allocations;

conversely, if some household envies the other in a competitive allocation, then the income of

the envied household is higher. Furthermore, if incomes of some two households are the same,

then their utility levels also the same in any competitive allocations; conversely, if utility levels

of some two households are the same in a competitive allocation, then their incomes also the

same.

The following corollary follows from the proposition.

Corollary 4.2. Let (p, x, y) be a competitive equilibrium. Then every household has the same
income if and only if an m-tuple ((x1, I1 px1), ..., (xm, Im pxm)) is an equitable allocation.

Thus, when the household income distribution has even a little inequality, any competitive

allocation does not satises equitability (conversely, if a competitive allocation does not satis-

es equitability, then the income distribution has an inequality). Theorems 3.1,2 and Corollary

4.2 imply that rising income inequality tends to cause both dampening the equitability on

household allocations and a decline in landlord revenues. Note that since any competitive

equilibrium is Pareto e cient in our market model, an equitable competitive allocation is

a fair allocation.12 Note also that the only-if part of the corollary holds without identical

utility function assumption, whereas the if part does not holds without this assumption. The

12Svensson (1983) and Sakai (2007) gave a result related to Corollary 4.2. According to them, a consumption
allocation ((x1, c1), ..., (xm, cm)) Xm is a Walrasian allocation from equal income i there exist p RT+ and
I R+ such that ci = I pxi for all i M and every household maximizes his utility, where I is the implicit
imcome. They showed that the set of equitable allocations coincides with the set of Walrasian allocations from
equal income.
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next example shows a case that income inequality exists but a competitive allocation satises

equitability.

Example 4.3 (Equitable competitive equilibrium with income inequality exists). Suppose that
there are two households 1 and 2 with incomes I1 = 150 and I2 = 100, two di erent apart-

ments 1 and 2 (with reservation prices 50 and 36). Suppose that their utility functions are

given as

u1(e
k, c) =

0 + c for k = 0,

4 + c for k = 1,

1 + c for k = 2,

u2(e
k, c) =

0 + c for k = 0,

1 + c for k = 1,

4 + c for k = 2.

This setting explains, for example, the following situation: the apartment 1 is a relatively

large one located in a suburban area and the apartment 2 is a small one located in a central

city. Household 1 with higher income prefers the apartment 1 to 2, while the household 2

prefers the apartment 2 to 1.

Let p = (p1, p2) = (50, 36). Then, u1(e1, I1 p1) = 14 > u1(e
0, I1) > u1(e

2, I1 p2) and

u2(e
2, I2 p2) = 12 > u2(e

0, I1) > u2(e
1, I1 p1). Hence, a triple (p, (e1, e2), (1, 1)) is a

competitive equilibrium. On the other hand, u1(e1, I1 p1) = 14 > u1(e
2, I2 p2) = 9 and

u2(e
2, I2 p2) = 12 > u2(e

1, I1 p1) = 11. Hence, this equilibrium satises equitability but

income inequality exists.

5 Conclusions

We have studied the comparative statics analysis based on the assignment market model. In

particular, we present how rising income inequality a ects a competitive rent distribution. The

key assumptions of the model are homogeneous and normality assumptions on the household

utility functions. A competitive rent vector can be then calculated by a system of equations.

Our main comparative statics result is Theorem 3.1, stating that an increase in income

inequality e ects three cases on the competitive rent vector: (i) rise at every category, (ii) rise

at higher categories and decline at lower categories or (iii) decline at every category. Another

Theorem 3.2 implies that (i) is a special case, while (iii) [as well as (ii)] is possible in a general

situation. Numerical examples facilitated our comparative statics results. We also mentioned

the equitability property of competitive allocations in our market model.
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