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Chapter 1. General introduction 

1.1. Important environmental science properties 

Earth science generally considers that the Earth consists of four spheres: the lithosphere, 

the hydrosphere, the atmosphere, and the biosphere, corresponding to rocks (including soil), 

water (including ice), air and life. Environmental science is close to earth science that seems 

to be a central of the relations to numerous branches of science such as biology, chemistry, 

physics, etc. The natural environment encompasses all living and non-living things occurring 

naturally on Earth with the interactions of all living species [1]. For example, physical, 

chemical and biological changes proceed ceaselessly in soil and water. These changes make 

the existence of life in soil. Plants and animals of the field cannot live without the changes.  

Soil or sediments can be regards as the mixtures of inorganic minerals, organic materials 

and biochemicals. Minerals consist of clays (montmorillonite, kaolinite, illite,…) and non-

clays (quartz and carbonate) [2]. Organic materials include plant and animal detritus and 

bacteria [3]. Also, both inorganic and organic contaminants are in water and soil. In order to 

evaluate the quality of soil and water environment, analytical science becomes necessarily. 

Inorganic contaminants in soils and sediments including metal cations and anions can be 

simultaneously determined by inductively couple plasma mass spectrometry (ICP-MS) [4] 

and ion chromatography (IC) [5], respectively. However, organic pollutants are very 

complicated because of a great number of organic compounds can exist in soils and 

sediments with complex interactions. It should be noted that all substances become the 

hazardous pollutants if they can cause a potential hazard to human health or the environment 

when improperly treated, stored, transported, or disposed of, or otherwise managed. 

Furthermore, the quantity of a contaminant in a given medium and the existing state affect the 

environmental impact. It is therefore important to consider what drives a contaminant from 

one medium to another and the manner and extent that a contaminant related to the different 

media or phases within a local environmental system. Contaminant adsorption by natural 

organic substance or solid surface can be treated in some detail to elucidate the relevant 

physicochemical parameters. Another feature is that the structure of organic compounds on 

the surface can be estimated on the basis of surface modification and adsorption properties. In 

this thesis, we focus on some kinds of organic ions, surfactants, polymers and dyes, to 
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emphasize their adsorption characteristics that can guide us toward a sufficiently accurate 

understanding of the activity and fate of contaminants in the environment.  

1.2. Surfactants 

Surfactant is one of the most versatile products used for detergents, chemical industry, 

pharmaceuticals, drilling muds, flotation agents and so on. A surfactant, known as surface 

active agent, is a substance that has property of adsorbing onto surfaces or interfaces to a 

marked degree and reduces the interfacial free energies of those surfaces or interfaces. The 

interfacial free energy is the minimum amount of work required to create that interface [6]. 

The most important point on the groups of surfactants is that surfactants are amphiphilic 

molecules consisting of a hydrophobic part such as a hydrocarbon (the tail) and a hydrophilic 

part (the head) [7]. Therefore, a surfactant molecule contains both a water insoluble 

component and a water soluble component. Depending on the nature of hydrophilic groups, 

surfactants are normally classified to 4 groups: nonionic, anionic, cationic, and zwitterionic 

surfactants (Figure 1.1). The differences in the hydrophobic groups are usually less 

pronounced than those in the hydrophilic groups. Surfactants are classified by different 

structures such as: straight chain or branched chain with long alkyl groups, long chain with 

alkylbenzene residues, alkylnaphtalene residues, high molecular weight propylene oxide 

polymers, etc [6]. In this study, an anionic surfactant with linear long chain hydrocarbon is 

considered.  

Surfactants are effective chemicals that are used to perform a particular function in some 

process. For instance, surfactants are widely used chemicals for cleaning because surfactants 

in aqueous solution can lead to the solubilization of substances that would not dissolve in an 

aqueous solution [7]. Furthermore, in the bulk aqueous phase, surfactants form aggregates, 

such as micelles, where the hydrophobic tails form the core of the aggregate and the 

hydrophilic heads are in contact with the surrounding liquid. The concentration of surfactant 

at which micelles begin to form is called critical micelle concentration (CMC). The CMC is a 

function of the structure of the surfactant, temperature of the surfactant solution, the 

concentration of added electrolyte and the concentration of solubilizates and other 

amphiphilies [8]. The CMC seems to be very important factor to study interfacial properties 

of surfactant.  

A fundamental property of surfactants is their tendency to adsorb at interface in an oriental 

fashion [6]. Adsorption of surfactants at the liquid-solid interface plays an important role in 
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many technological, environmental and industrial applications [9]. For the understanding of 

adsorption, adsorption isotherms have been the most important pieces of the experimental 

information. Thus, many experimental studies have been focused on the adsorption isotherms 

of surfactant at solid-aqueous interfaces [9-15]. Recently, the removal of organic 

contaminants by adsorption from aqueous solutions using ionic surfactant modified solid 

surface to enhance the removal efficiency has attracted intense studies [16-26]. However, 

adsorption behavior of surfactant molecules at such an interface is complex due to the 

presence of different micelles [10]. These micelles are called hemimicelles [27-31] (head 

groups of surfactant molecules toward solid surface) and admicelles [32-34] (a local bilayer 

structure with head groups of surfactant toward solution). The information about the adsorbed 

layer of surfactants on solid surfaces is unclear when the surface charge of an adsorbent is 

regulated upon surfactant adsorption. In order to evaluate adsorption mechanisms of 

surfactant, theory and model are needed. Nevertheless, simple models of adsorption of 

surfactant with the effect of charge adjustment have not been fully developed. The 

improvement in modeling is important when the model is applied for other complex systems 

and the understanding of adsorption under natural conditions is considered.  

 

 

Fig. 1.1. Schematic representation of four groups of surfactant. Surfactant molecules 

consist of hydrophilic head and hydrophobic tail parts. 

1.3. Polyelectrolytes 

Polymers are very long molecules with a repetitive structure. The polymer chains may 

consist of identical units called monomers or segments. Polymers are broadly characterized 
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by their ionic nature: cationic, anionic and non-ionic [35]. Polyelectrolytes are polymers in 

which the monomers carry an electrical charge in solution. Strong and weak polyelectrolytes 

can be distinguished due to the dissociation of chargeable groups on the segments with the 

pH of solution [36]. While charges of strong polyelectrolytes are independent on pH, those of 

weak polyelectrolytes are highly dependent on pH.   

The main applications of organic polyelectrolyes in portable water production are 

coagulation and flocculation, and in the dewatering of treatment plant sludges [35].  In the 

principle of physical chemistry, there are three mechanism of flocculation of particles by 

polyelectrolytes: polymer bridging, depletion flocculation and charge neutralization 

(including electrostatic patch effect) [35, 37]. Except for depletion flocculation, other 

mechanisms are dependent on adsorption of polymers on particle surfaces so that adsorption 

of polyelectrolyte is important to evaluate flocculation behavior of particles. Adsorption of 

polymers from solution takes place when the adsorption energy is high enough to compensate 

for the loss of entropy [38]. At very low concentration, polymer can be adsorbed on the 

surface of particles with a flat conformation (Fig. 1.2a). In a realistic situation, many chains 

of polymer adsorb and compete for the available surface sites. The adsorbed layer thickness 

increases as loops and tails develop (Fig. 1.2b) [36]. A train is a sequence of polymer 

segments in contact with surface while a loop is a part of chain which toward solution but 

ends on both sides in a train. A tail is non-adsorbed, dangling end of the chain.  

 

 
 

Fig. 1.2. The conformation of adsorbed polymer on the surface. Adsorbed layer of 

polymer at a low surface coverage (a) and at high coverage (b). 

 

In the adsorption of polyelectrolytes, charge effect is very important but it is rather 

complex. The adsorption system is more complicated when the solid surface also contains 

electrical charge. Driving force for the adsorption of strong polyelectrolyte on oppositely 

charged surface can only be electrostatic or a combination of electrostatic and non-

electrostatic contributions [36, 39]. When a non-electrostatic interaction is induced, a slight 
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overcompensation of surface charge is found. Polyelectrolyte chains adopt a flat 

conformation due to the repulsion between the chains in the low concentration of salt 

solution. Due to specific adsorption characterization of polyelectrolyte on the solid surface, 

numerous polymers were used to modify solid particles to enhance removal efficiency of 

organic contaminants [40-42]. In almost cases of adsorption of polyelectrolytes for removal 

of pollutants in aqueous solutions, charge effects have to be considered. Furthermore, the 

charge regulation of mineral surface upon adsorption of strong polyelectrolyte was obtained 

theoretically and experimentally [43]. The self consistent field (SCF) calculation showed the 

large effect of pH and the small effect of the salt concentration to the adsorbed amount while 

the proton co-adsorption was dependent on both pH and salt concentration. Nevertheless, the 

measured adsorption isotherms of polyanion on positively charged mineral surface did not 

show a high affinity character as expected from theoretical calculations because of fast 

flocculation and non-equilibrium polymer conformation [43, 44]. It is therefore preferable to 

make an equilibrium study of polyelectrolyte adsorption using absorbents which are free 

flocculation such as large particles. 

1.4. Organic dyes 

Dyes are a class of pollutants and can be identified by human eye [45]. Many industries 

such as textile, paint, cosmetic, paper and plastic use dyes to color their products and also 

substantial volume of water. As the results, they generate a large amount of colored 

wastewater that influence to the quality of water by the color [46]. A number of dyes are 

toxic and serious hazardous to human body and living organisms. Synthetic dyes exhibit 

considerable structure diversity and are classified in several ways [45, 47]. They can be 

classified on the basis of their solubility: soluble dyes including acid, mordant, metal 

complex, direct, basic and reactive dyes; and insoluble dyes which include azoic, sulfur, vat 

and disperse dyes. In addition, both a major azo linkage and anthraquinone unit also 

characterize dyes chemically. It should be noted that organic azo dyes are one of the most 

widely used and account for 65 -70 % of total dyes produced [45]. In this thesis, a soluble azo 

dye with sulfonic groups will be investigated. 

A wide range of methods have been developed for the removal of organic dyes from 

waters and wastewaters in order to decrease their impact on the environment [45, 47] such as 

adsorption [48-51], photocatalytic degradation [52-54], electrochemical oxidation [55, 56], 

coagulation flocculation [57], biological process [58], etc. Among them, adsorption becomes 
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one of the most common technology that can be applicable for developing countries by using 

low-cost or natural adsorbents [45, 46, 59]. Recently, many studies focused on the removal of 

organic dyes by adsorption from aqueous solutions using solid surface modified with ionic 

surfactant or polyelectrolyte [16-19, 21-26, 35, 52, 60-62]. So far, ionic surfactants [16, 20, 

23] and polyelectrolyte [40-42] were used to modify large particles to enhance the removal 

efficiency of ionic dyes. Higher performance for the removal organic dyes was obtained 

when ionic surfactants are combined with polyelectrolytes [61, 63, 64]. Another feature is 

that using large particles is not only limited in laboratorial investigations but also applicable 

in the chemical engineering process by packed bed adsorbents in columns. However, the 

mechanisms of dye adsorption on surfactant and polyelectrolyte modified solid surfaces are 

still inadequate. It is necessary to make a comparative adsorption studies between 

polyelectrolyte, ionic surfactant, or ionic dyes with the similar charge (same cationic or same 

anionic) on large beads with oppositely charged solid surfaces.     

1.5. Metal (hydr)oxides 

Metal (hydr)oxides and/or mineral (hydr)oxides are one of major inorganic components of 

soils. Furthermore, metal (hydr)oxides are also used as the important absorbents in a wide 

range of applications. The interfacial properties of metal (hydr)oxides are important to study 

adsorption of solutes and colloids in soil and water environments. While a lot of studies 

carried out adsorption and transport using large particles such as silica sand with negative 

charge), not so many studies have been conducted on porous material with positive charge. 

Therefore, this thesis interests the interfacial properties of alumina and the adsorption 

characteristics of some organic anions onto alumina (normally positive charge at lower 

neutral pH). 

Hydroxides and oxides of aluminum are often found in soil system with different amount 

as independent particles or as mixture with other minerals [65]. Many interests to interfacial 

characterizations of aluminum hydroxides have been improving the understanding of these 

properties of aluminum oxides. The crystal structure of aluminum hydroxide was analyzed by 

applying the Pauling rules [66]. The trivalent Al3+ ions distribute their charge over six 

surrounding oxygen ions of the octahedron to form hexa-coordination with oxygens [67]. The 

aluminum ion attributes haft a unit charge to the surface oxygen groups per Al-O bond. As 

the surface oxygens are formed singly or doubly to Al3+ ions, the surface groups are two 

types of AlOH1/2- and Al2OH0, respectively. The charge of AlOH1/2- group can become 
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reserved by the adsorption of a proton. The proton affinities of various types of groups are 

different. The adsorption of proton can also be influenced by adsorbed organic ions. When 

proton co-adsorption upon the adsorption of organic ions is significant, surface charge of 

aluminum (hydr)oxides is dependent on both of the adsorption of proton and organic ions. 

Conversely, if proton co-adsorption is negligible, charging property of aluminum 

(hydr)oxides will only be affected by the adsorption of organic ions.  

1.6. Modeling the adsorption of organic ions 

Modeling the adsorption of organic ions onto (hydr)oxide surfaces is a major challenge.  

At the (hydr)oxide solid-solution interface, some types of surface groups can exist and each 

reacting group follows its own affinity constant (K) for proton. A general MUltiSIte 

Complexation (MUSIC) model, which was presented by Hiemstra et al. [68, 69] was 

successfully applied to several (hydr)oxides to predict proton affinity constants. The 

protonation of reactive oxygen is strongly dependent on pH and ionic strength. The pH at 

which the net charge of surface equals zero in the absence of chemically bond ions other 

than H�and OH�, is called the point of zero charge (PZC). At pH below or above the PZC, 

the surface sites become positively or negatively charged due to the reaction with either H�or 

OH�, respectively [70]. 

In the calculation of particle charge, electrostatic theory is often applied to the adsorbing 

protons and other ions. Ions form complexes at the (hydr)oxides surface so that repulsive or 

attractive force by electrostatic field need to be taken into account [67]. The Charge 

Distribution (CD) has been developed to improve the MUSIC model. The CD-MUSIC model 

is based on the 1-pK approach in which the only one protonation of different oxygen surface 

groups is described by single reaction. The CD-MUSIC model was successfully tested for 

many ions binding to different mineral surfaces in aqueous environment. However, the CD-

MUSIC cannot be applied for some kinds of organic ions (such as surfactants or 

polyelectrolytes) systems where the interactions between organic ions and (hydr)oxides 

surface probably induce the surface charge regulation.  

In the cases of regulating charge surface, the self-consistent field lattice (SCFA) theory 

was used to describe adsorption behaviors of polymer [71, 72] and surfactant [7, 73]. The 

theory was extended by taking account of electrostatic interactions and association structures 

of some organic ions [7, 74]. For surfactant adsorption, the SCFA theory describes well the 

adsorption amount, effects of charged surface, chain length and branching [7]. The SCFA 
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theory indicates that the two-step adsorption and four-region isotherm models coexist and are 

valid under different conditions depending on the charging properties of solid surface [75]. 

While two-step adsorption model [10, 76] suggests the hemimicelles on a linear – linear scale 

plot, the four-region isotherm is indicative for the case of both hemimicelles and admicelles 

(as mentioned in section 1.2) on a log – log scale. The extended SCFA model also predicts 

successfully at a quantitative level the surface charge density in the presence of 

polyelectrolyte and the charge overcompensation upon polyelectrolyte adsorption [77]. 

However, the adsorption amounts of polyelectrolyte on metal oxides are poorly described 

when compared with experimental results [43, 77]. The SCFA model is rather complicated 

because this model requires so many choices of parameters. It is practically preferable to 

choose a simple model that can be applicable for different adsorption situations.  

Two-step adsorption model was firstly presented by Zhu et al. [76, 78] by assuming that 

the adsorption on solid-liquid interface occurs in two steps. This simple model was originally 

described for the adsorption of surfactant with hemimicelle formation. On the basis of two-

step model, a general adsorption isotherm was derived. This equation was also applied to 

various types of surfactant adsorption isotherms for numerous systems. In addition, works of 

Koopal and co-workers [79, 80] indicated that, at low salt concentration, almost every 

adsorbing surfactant molecule adsorbs a proton. It suggests that the uptake of proton due to 

surfactant adsorption is probably described by two step model if this model is successful in 

predicting the surfactant adsorption. Recently, adsorption isotherms of some kinds of 

polymers on ZrO2 nanoparticle [81] and onto cotton fiber [82] were fitted and interpreted by 

the general equation. The multilayer model which was introduced by Brunauer-Emmett-

Teller (BET) was used to describe adsorption isotherms of some ionic dyes [83-86]. 

However, the complex multilayer adsorption of ionic dyes fitted by the general equation has 

not been reported. In this thesis, two-step model will be examined for describing the 

adsorption isotherms of some organic anions including surfactant, polyelectrolyte, dye and 

predict proton co-adsorption.  

1.7. Objectives and outline of this thesis 

The treatment of wastewater containing organic pollutants is of a great importance in 

environmental remediation. Adsorption is one of the most popular methods for removing 

organic wastes such as dyes in aqueous solutions is widely seen in many developing 

countries. The modified adsorbent surface by surfactant and/or polyelectrolyte can enhance 
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the removal efficiency. The understanding of adsorption characteristics of organic ions onto 

large particles is a challenging problem in the relation to issues mentioned above sections. 

While the uptake of organic contaminants on natural porous media with negatively charged 

surface such as silica sand has attracted numerous researches, not so many studies have been 

conducted on positively charged large beads. In order to better understand the adsorption in 

natural environmental porous media, the investigation and comparison should be carried out 

on both negatively and positively charged large particles. Therefore, we will focus on the 

large alumina beads with positively charged surface in all topics in this thesis. The objectives 

of this thesis are to investigate the adsorption of anionic surfactant, sodium dodecyl sulfate 

(SDS), anionic azo dye, new coccine (NC), and polyanion, polystyrene sulfonate (PSS), onto 

large α-Al2O3 beads as functions of pH and NaCl concentration after characterizing the 

interfacial properties of these beads. The two-step model is performed to describe the 

adsorption of these organic anions onto positively charge surface of α-Al2O3 beads. The 

interfacial properties and surface modifications of α-Al2O3 beads before and after adsorption 

are also studied. The structures of adsorbed SDS, NC and PSS onto α-Al2O3 are discussed on 

the basis of surface charge effect, surface modification and adsorption isotherms.   

This thesis consists of the four research topics that will be introduced from the chapter 2 to 

chapter 5. 

Chapter 2 is devoted to the interfacial characterization of Al2O3 materials by streaming 

potential and chromatographic methods. The large particles are difficult to be characterized 

with standard methods but streaming potential and chromatography are applicable for the 

interface of Al2O3 beads in our research. Streaming potential will be used to monitor the zeta 

potential at several pH values to discuss electrokinetic property and to identify isoelectric 

point (IEP) of α-Al2O3 materials. The surface charge density of α-Al2O3 materials is 

evaluated by chromatographic method from measuring pH breakthrough curves. It will be 

shown that the combination of streaming potential and chromatography compared with the 1-

pK model are promising to obtain the electrokinetic potential and surface charge density of 

large bead particles. 

In chapter 3 the adsorption of SDS onto Al2O3 beads with variably charged surface will be 

investigated. The adsorption isotherms of SDS by batch experiments at different pH and NaCl 

concentrations are discussed by two-step and four-region models. Proton uptake upon 

surfactant adsorption will also be fitted by two-step model. At different salt concentrations, the 

structure of adsorbed layer based on hemimicelle and admicelle concepts are proposed.  
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Chapter 4 deals with the comparison of SDS to NC in adsorption. For this purpose, 

streaming potential will be used again to evaluate the effect of SDS and NC at the plateau 

adsorption on surface charge of α-Al2O3. The surface modifications of α-Al2O3 after adsorption 

of SDS and NC are confirmed by Fourier transform infrared attenuated total reflection 

spectroscopy (FTIR-ATR). Two-step adsorption model is applied to predict NC isotherms. The 

influence of salt induced charge effect in SDS and NC systems are shown for the comparison of 

their adsorption behaviors. The structure of adsorbed NC and SDS will be discussed based on 

adsorption isotherms with surface charge effect and surface modifications.  

In chapter 5 we study the adsorption of strong polyelectrolyte, PSS with different molecular 

weights onto α-Al2O3 beads and effect of added SDS on the isotherms. The pH independent 

nature of PSS is also confirmed by ultraviolet spectrophotometry. From low to high molecular 

weights, the adsorption isotherms show the typical high affinity and can be represented well by 

two-step model. Proton co-adsorption upon the adsorption of PSS of different molecular weight 

is also investigated. The salt effect to isotherms will be shown to demonstrate the influence of 

electrostatic, and non-electrostatic interactions. The prevention of SDS uptake onto α-Al2O3 

beads to the adsorption of PSS is evaluated with pre-adsorbed SDS. The structure of adsorbed 

PSS of different molecular weight at low and high salt concentrations will be proposed.  

Lastly, in chapter 6 the obtained results from chapter 2 to chapter 5 are summarized and the 

perspectives for further studies will be proposed.   
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Chapter 2. Interfacial characterization of α-alumina with small 

surface area by streaming potential and chromatography 

2.1. Introduction 

An understanding interfacial proprieties of various oxides is of great importance to study 

adsorption and transport of solutes and colloids in soil and water environments [1]. Alumina 

has been widely investigated in industrial chemistry and environmental applications. 

Aluminum oxides exist in many different forms, namely α, β, ϒ, η, θ, κ and χ phases [2]. The 

most thermodynamically stable form is α-Al2O3 [3, 4]. So far, a lot of experiments on the 

electric surface charge of alumina materials have been reported [2, 5]. However, little studies 

have been conducted simultaneously on both electrokinetic potential and charge density of α-

Al2O3 [5]. It can be realized by the combination of streaming potential with chromatographic 

method [6, 7]. Both methods are applicable for the interface with low specific surface area. 

Similar to the amphoteric metal oxides, the surface hydroxyl groups of alumina react with 

acid and base at low and high pH to form positive and negative charge, respectively. The 

charging behavior of alumina surface depends on protonation and hydroxylation of aluminum 

hydroxyl surface. The properties of alumina surface therefore strongly depend on pH. There is 

a pH known as the point zero charge (PZC) of alumina where surface sites are neutral (Al-

OH) and the net charge on the surface is zero [8]. Because of a formation layer of immobile 

ions and water molecules on the surface of alumina, it is not straight forward to directly 

determine the surface potential of alumina particles. Instead, a closely related potential known 

as the ζ potential is obtained from electrokinetic phenomena. The value of pH where the ζ 

potential is zero is denoted as isoelectric point (IEP) [8, 9]. There are some experimental 

methods to determine the PZC/IEP of alumina materials, which are described using the 

following abbreviations: 1. Potentiometric titration with different electrolyte concentrations is 

employed to obtain surface charge and to identify common intersection point (CIP). 2. The ζ 

potential is determined by electrophoretic mobility or electroosmosis method or 

electroacoustic measurements [5, 10-15]. Among them, streaming potential measurement has 

become, the most commonly used tool for determining the ζ potential of macroscopic solid 

surfaces of various alumina shapes [8, 16-18]. Streaming potential is induced when an 

electrolyte solution moves tangentially by a hydrodynamic pressure gradient to the charged 

surface. The difference of streaming potential Ustr [19, 20] can be measured between two 
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electrodes located upstream and downstream in the liquid flowing through the packed bed of 

alumina particles or narrow gap between alumina surface, connected via a high input 

impedance voltmeter. In this case, streaming potential is the slope of the straight line [16, 18, 

21] given by Ustr= f(ΔP).  

Streaming potential does not directly provide charge density of materials. Furthermore, 

charging behavior of alumina surface charge is complicated, the surface net charge is not only 

influenced by pH of solution but also dependent on structure, ion binding and hydrogen 

bonding [13, 22, 23]. The charged condition can be acquired when the oxide has been 

equilibrated with electrolyte solution at a certain value of pH by acid–base titration. While the 

potentiometric acid-base titration is most often used method, unfortunately the interpretation 

of experimental data had been extended beyond the limitation of this method, for example, the 

effect of impurity or dissolution of solid phase [24]. In case the sorbent has a low surface area 

with insufficient number of sites for the measurement of charge density, the acid-base titration 

is not applicable. In this case, Burgisser et al. was successful by using chromatographic 

method to evaluate charge density of materials quite easily for silica sand and goethite-coated 

sand with low surface area 0.08 m2/g and 0.25 m2/g [6], respectively. The nonlinear 

chromatography also appears to be well adapted to obtain the number of proton exchange 

sites for TiO2 grains with specific surface area 7.80 m2/g [7]. Furthermore, the modeling of the 

primary charging behavior of materials may indicate the extensive data sets of materials about 

the potentials, sites density, capacitance or the effect of dissolution in surface charge 

determination. As for describing charging behavior on the surface of alumina, the 1-pK model 

can provide a sufficiently accurate description of the titration behavior of the interface [25]. A 

1-pK adsorption model with a Stern electrostatic double layer is used to describe proton 

adsorption. The 1-pK Stern model could predict the surface charge well [26], except for very 

high concentration electrolyte or the case of the dissolution of material. 

Due to specific surface charging, the adsorption of surfactant on alumina has attracted 

intense studies [10, 22, 27-32]. The adsorption of anionic surfactant has modified the surface 

of alumina so that the zeta potential and charge density of alumina materials can be changed. 

In addition, there are two kinds of sphere complex interactions including outer and inner links 

such as sodium dodecyl sulfate (SDS) and sodium dodecyl phosphate (SDP) [22]. Thus, SDS 

can be easily removed with various number of washing (desorption) steps. The effect of SDS 

on the surface of alumina material needs to be compared in the absence of SDS and with the 

treatment of SDS adsorption followed by desorption steps. Also, it is practically interesting to 

find out how to recover the interfacial properties of α-Al2O3 after surfactant treatment. 
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The aim of study in this chapter is to investigate interfacial properties of α-Al2O3 with low 

surface area modified with NaOH, thermal treatment at 550 0C and adsorption by anionic 

surfactant SDS. We used streaming potential and chromatographic method to compare zeta 

potentials and charge density of α-Al2O3 treated by different methods. The combination of 

chromatography and the 1-pK Stern model was used to evaluate surface charge density and 

the influence of dissolution of α-Al2O3 in the absence of SDS on α-Al2O3. The effect of SDS 

after adsorption followed by washing and the recovery of α-Al2O3 after cleaning by NaOH 

followed by reheating was evaluated by streaming potential and chromatographic charge 

density. 

2.2. Experimental 

2.2.1. Materials 

High purity (99.5 %), alpha alumina beads with an average diameter of 300 ± 12 μm and a 

density of 3.82 g/cm3 were purchased from Hiraceramics, Japan and were used in the present 

study. X-ray diffraction (XRD) was collected on a Bruker D8 Advance X-ray diffractometer, 

operated at 40 kV and 40 mA, with Cu-target tube and a graphite monochromator.  Intensity 

for the diffraction peaks was recorded in the 20- 70 0 (2θ) range with a step size of 0.03 0. The 

analyses confirmed that the alumina beads contain mainly α-phase (Fig. 2.1). The specific 

surface area was determined by BET method using a surface area analyzer (Micromeritics, 

Gemini VII 2390) and found to be 0.0041 ± 0.0016 m2/g. The specific surface area is 

comparable to that by geometric consideration. 

Sodium dodecyl sulfate, SDS (with purity higher than 95 %) from Wako Pure Chemical 

Industries was used. The critical micelle concentration (CMC) of this surfactant in water at 22 

0C was experimentally determined to be 6 mM. Ionic strength and pH were adjusted by the 

addition of NaCl (Wako Pure Chemical Industries), HCl and NaOH (volumetric analysis 

grade, Wako Pure Chemical Industries). Other chemicals were obtained from Wako Pure 

Chemical Industries. Ultra pure water, produced from Elix Advantage 5 (Millipore) with 

electric conductivity around 0.6 µS/cm was used in preparing solutions and in all 

measurements.  
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Fig. 2.1. XRD diagram of α-Al2O3 material 

2.2.2. Modification of α-Al2O3 materials 

The alpha alumina was modified by several procedures before measurements. 

The original α-Al2O3 (M0) is the material without any treatment.  

M0 was washed many times with 0.1 M NaOH before rinsing by ultra pure water to reach 

neutral pH. After that, sample was dried at 110 0C and cooled in a desiccator at room 

temperature to obtain M1 material. M1 was reactivated by thermal treatment at 550 0C for 2 

hours to form M2 material. 

M2 was used to carry out batch SDS adsorption as follows: 

A solution of 50 mL SDS 2×10-3 M was mixed thoroughly with 50 g α-Al2O3 in 0.001 M 

NaCl at pH 5.0 with a shaker for 24 hours. After the equilibration, the solution was estimated 

by potentiometric measurement using a surfactant ionic selective electrode. As a sequel, α-

Al2O3 materials were washed with pure water numerous of times until the conductivity of 

solution became lower than 1.0 μS/cm. The material was dried at 110 0C and cooled in a 

desiccator at room temperature to form M3. 

M3 was treated with 1.0 M NaOH (around 8 times), then washed by pure water to neutral 

pH, dried at 110 0C and preheated at 550 0C for 2 hours then cooled down to room 

temperature in a desiccator, thus M4 was obtained. 
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2.2.3. Streaming potential measurements 

The theory behind streaming potential and zeta potential calculation is described in the 

literature [19, 33]. Briefly, the ζ potential is related to the slope in the streaming potential 

versus pressure line using Helmholtz – Smoluchowski’s equation (HS) [19]:  

� =
����

��
×

���

���
 (2.1) 

where � is the zeta potential (mV), ����  the difference of potential (mV), �� the pressure 

difference (mbar), � the viscosity of the solution (mPa.s), �� the conductivity of the solution 

(mS/cm), � the relative dielectric constant of the liquid and �� is the electric permittivity of 

vacuum (8.854×10-12 F/m). 

A Zeta CAD (CAD Instrument, France) was used in this study. The measurement was 

taken in two flow directions to remove the effect of any asymmetrical potential. In this 

instrument, the liquid is forced through the capillary using the nitrogen gas pressure. The 

measurement was made over the sequence of increasing pressure in order to determine the 

slope of ����  against ��. A pair of Ag/AgCl electrodes at two both sides of the cell is linked 

to a numeric multimeter to measure the electrical potential difference (����) along the column. 

The ���� was measured alternatively in the two flow directions for continuously increasing 

pressure values (from 0 to 500mbar). The streaming potential was determined from the slope 

of the plot ����versus ��. This equipment also measures the temperature, the conductivity of 

solution (�� ), displays the solution viscosity (� ), the dielectric constant (� ), and finally 

calculates the � potential by Eq. (2.1).  

In all measurements with Zeta CAD, we used a glass column of 50 mm length and 15 mm 

internal diameter. Amount of 10.0 g α-Al2O3 was dry packed in the column. Experiments were 

carried out at 22 0C ±  2 0C and different pressure gradients with flow in the two directions. 

Firstly, the experiment for equilibrium sample was conducted by manual mode with constant 

pressure starting from pressure 2. In this step air bubbles were removed completely by flushing 

the cell dead space to waste at the rear of the instrument. The values of streaming potential 

became stable as time proceeded. Then, the streaming potential of samples was measured by 

applying automatic mode with starting pressure 2 and step pressure 5. At least 480 experimental 

points (����vs ��) were collected for each run. The correlation coefficient of all linear curves 

are higher than 0.98. 
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2.2.4. Chromatographic charge density method 

The α-Al2O3 materials in pure water were packed into the glass chromatography columns 

(Omnifit) of 1 cm internal diameter and 10-25 cm in lengths. The feeding solutions were 

pumped using peristaltic pumps (Eyela) at flow rates between 1.0 and 5.0 mL/min with an 

injector (for pulse tracer experiments) and two way valve (for step experiments). For tracer 

experiments the outflow of the columns was monitored by an UV-vis spectrophotometer (UV-

1650PC, Shimadzu) and 1cm flow through cell using kinetic mode. The pH was measured by 

pH electrode (Mettler Toledo Ingold) combining flow cell (U402-611-DPA-P-S7/40) and 

connected with a pH meter (Metrohm 781 pH/Ion meter). To calibrate electrode, three 

standard buffer solutions of pH 4.00, 7.00, and 9.00 (Metrohm) were used at the same flow 

rates. The slope of all linear curves has been within 95 % to 105 % of theoretical one. 

Some parameters of columns such as travel velocity v, dispersion coefficient D, Peclet 

number Pe, kinetic porosity θ and the mass of sorbent per unit pore volume ρ were 

determined by means of pulse experiments with conservative tracers. The column was 

preequilibrated with 0.01 M NaCl. Solutions of 0.001 M NaNO3 were injected with amount of 

50–200 µL and measured by kinetic mode at wavelength 220 nm. The determination of 

columns properties has been performed according to the papers [6, 34]. Because of fast 

protonation reaction, high travel velocities between v = 5.0×10-4 and v = 25.0×10-4 m/s 

(corresponding to flow rates of 1.0 to 5.0 mL/min) were used. The columns were carefully 

packed to achieve the Peclet numbers as high as possible. We have observed that the Peclet 

numbers increase with increasing the column length and Pe > 500 when the length of column 

is higher than 15 cm. The kinematic porosity of θ = 0.42 ± 0.02 which leads to ρ of 5265 ± 

180 g/L, is obtained from the column experiments. By measuring density of the alumina 

material and the mass of the alumina in the known volume of the column, the porosity is 

obtained 0.41 ± 0.01 that is in good agreement with the above value. The dispersivities were 

independent on flow velocity and in the range of D/v = 0.30 ± 0.05 mm.  

 

2.2.5. Potentiometric measurements 

Potentiometry was conducted using a Metrohm 781 pH/Ion meter, Switzerland. The pH of 

NaCl solutions which were used in measuring streaming potential, adsorption isotherm and 

determination of the concentration of proton in solutions were measured by a glass electrode 

(Type 6.0258.010, Metrohm). Electrode was previously calibrated with three standard buffers 
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(Metrohm). The equilibrium concentration of SDS in solution was measured with a surfactant 

ionic selective electrode (Type 6.0507.120, Metrohm) that is sensitive to ionic surfactants [35, 

36]. The electrode potential (E in mV) was measured relative to an Ag/AgCl reference 

electrode (Type 6.0726.100, Metrohm) equipped with a ceramic plug. The SDS concentration 

in the samples can be determined from the linear range of the calibration curve, presenting E 

as the function of the logarithm of SDS concentration [37]. To make standard calibration 

curve, a series of SDS solutions with the concentrations from 10-6 mol/L to 10-3 mol/L were 

prepared at pH 5.0 in 0.1 M acetate buffer. Potentiometric analysis was conducted with above 

surfactant electrode and reference electrode. The relationship between the potential and 

log[SDS] should yield a straight line with a correlation coefficient of at least 0.998.   

All the measurements were carried out at room temperature, controlled by air conditioner at 

220C ±  20C. 

2.3. Theory and modeling  

2.3.1. Nonlinear chromatography 

The calculation of charge density by the present method is briefly summarized below. 

Details were described in the literatures [6, 34, 38-40]. 

The concentration c(x,t) of a chemical sorbate at a column depth x and time t follows the 

one dimensional convection – dispersion equation 

��

��
+ �

��

��
= �

���

���
 –  �

��

��
 (2.2) 

Here q the amount of the sorbed chemical per unit mass. For a nonsorbing chemical called 

conservative tracer (q = 0), Eq. (2.2) can be used to calculate some parameters of column by a 

pulse injection of the tracer. The response has a normal distribution shape with the average 

time t0 = L/v (L length of column) and a standard deviation σ. The latter quantity can be 

related to the column Peclet number Pe = Lv/D by σ2 t0
2⁄ = 2 Pe⁄ . 

For an adsorbed species in the simplest case of a linear adsorption isotherm q = KD.c with 

KD is the partition coefficient, the breakthrough curve has the same shape in the case of tracer 

but is delayed in the time by the retention factor R = 1+ � KD. Breakthrough fronts may 

contain diffuse and sharp parts according to the Golden rule [40].  

When dispersion effect is negligible (D = 0), the diffuse front is used to calculate 

adsorption isotherm from Eq (2.2). The concentration c is related to a velocity by 
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The relationship between the concentration and retention time t(c) is easily measured at the 

column outlet and indicates the derivative of adsorption isotherm 

�(�)

��
 =  1 + �

��

��
 (2.4) 

The experimentally recorded retention time t(c) can be integrated to obtain the adsorption 

isotherm 

�(�)  =  �(��) +
1

�
� �

�(��)

��
− 1� ���(2.5)

�

��

 

The overall retention factor R, which represents the area of normalized breakthrough curve, 

depends on the input concentration c and equal for the sharp part and the diffuse front 

� =  1 + �
�(�) − �(��)

� − ��
=

1

� − ��

�
�(��)

��
���(2.6)

�

��

 

When column Peclet number is high (typically Pe > 500), the effect of dispersion on the 

diffuse part of breakthrough curve is negligible [6, 34]. 

In the case of proton adsorption isotherm, the development of charge densities with pH can 

be viewed as acidity adsorption isotherm. With the amphoteric material, the acidity adsorption 

usually has sigmoidal shape. Thus, it is impossible to calculate the entire adsorption isotherm 

from single chromatographic experiment. In order to obtain both branches of the adsorption 

isotherm, it is required to perform two independent experiments to the point of inflection [6]. 

Because the charge density curves can be transformed from proton adsorption isotherm, the 

inflection point can be chosen at pH near 7.0 where c = 0 [6] or at pH value of PZC where q(C0) 

= 0 and c0 = 0 [7]. The acidity (at 250C) is deduced from pH measurements by the equation 

� =  [��] − [���] =  10��� −
10���

10���
 (2.7) 

The charge density σ can be calculated from adsorption acidity 

� =  
��

�
 (2.8) 

Here A is the specific surface area of material per unit mass and F is the Faraday constant 

(F = 96490 C/mol).  

Breakthrough step experiments have to be performed between solutions of different pH. 

The columns must be preequilibrated with an unbuffered electrolyte solution, then fed with a 

solution of pH 7.0. To obtain two branches of acidity adsorption isotherms, two experiments 
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can be preequilibrated with a high pH and a low pH respectively and flushed with the same 

electrolyte of pH near 7.0. Experiments are carried out by recording pH of column effluent as 

the function of time. Using Eq. (2.5), we can obtain two acidity adsorption isotherm curves. 

As a sequel, by using Eqs. (2.7) and (2.8) the acidity isotherms can be transformed into the 

charge density curves.  

The constant q(C0) in Eq. (2.5) was obtained by an independent experiment in which 

column was therefore initially preequilibrated with high pH then flushed with a solution with 

pH of PZC/IEP. The PZC/IEP of materials can be determined by streaming potential 

measurement [33]. The retention of this breakthrough gives directly the value of q(C0).  

2.3.2. Surface charge from 1-pK Stern model 

The classical 1-pK Stern model is used to evaluate surface charge density and compare 

experimental data with chromatographic charge density. 

This model is based on a single protonation of AlOH surface group [26, 41] 

  AlOH2
1 2+⁄

⇌ AlOH1 2-⁄ + H+ (2.9) 

The amphoteric behavior of alumina is described by two surface species AlOH2
1 2+⁄

 and 

AlOH1 2-⁄
, and only one pK value. The equilibrium constant is given by 

K =
�AlOH1 2-⁄ � aH+exp(-eβψ0)  

�AlOH2
1 2+⁄

�
 (2.10) 

where aH+is activity of proton in mol/L (pH=-log10 aH+), ψ0 the surface potential, e the 

elementary charge and 1 β=kBT⁄  is the thermal energy, kB is Boltzmann’s constant. We take 

into account ion pair formation of surface groups of alumina with electrolyte ions [41]. The 

ion pair formation reactions of alumina in NaCl background electrolyte are defined as 

  AlOH1 2-⁄ . Na+  ⇌ AlOH1 2-⁄  + Na+(2.11) 

 AlOH2
1 2+⁄

. Cl�   ⇌ AlOH2
1 2+⁄

 + Cl� (2.12) 

Kc= 
�AlOH1 2-⁄ � aNa+exp�-eβψ

d
�

�AlOH1 2-⁄ . Na+�
 (2.13) 

Ka= 
�AlOH2

1 2+⁄
� aCl�exp�+eβψ

d
�

�AlOH2
1 2+⁄

.Cl��
 (2.14) 

Here Kc and Ka are the ion pair formation constants of cation and anion, ψ
d
 is the potential 

at the onset plane of the diffuse layer. The activity coefficients were calculated using the 
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extended Davies equation. The surface charge density (σ0) in the plane where the protons 

adsorb and the charge density in Stern plane (σs) are 

σ0=
eNA

2
��AlOH2

1 2+⁄ �+�AlOH2
1 2+⁄

.Cl-�-�AlOH1 2-⁄ �-�AlOH1 2-⁄
. Na+��  (2.15) 

σs= eNA ��AlOH1 2-⁄
. Na+�-�AlOH2

1 2+⁄
.Cl-��  (2.16) 

where NA  is Avogadro’s number. The charge density in the diffuse layer (σd) is given by 

the charge neutrality condition 

σd= -(σ0+σs) (2.17) 

According to the surface complexation model, the total surface concentration (��) of active 

surface sites density in the interfacial layer is 

Γ�= �AlOH2
1 2+⁄ �+�AlOH2

1 2+⁄
.Cl-�+�AlOH1 2-⁄ �+�AlOH1 2-⁄

. Na+� (2.18) 

The Gouy – Chapman equation shows the relationship between the charge density of the 

diffuse layer and the potential at the onset of diffuse layer 

σd= -�8εε0NAI/β sinh�eβψ
d

2⁄ � (2.19) 

For the Stern plane a linear relationship is assumed 

σ0= Cs�ψ
0
-ψ

d
� (2.20) 

where Cs is the Stern capacitance. Eqs. (2.9) to (2.20) is a set of 9 relations containing 9 

variables that can be solved numerically. 

2.4. Results and discussion 

2.4.1. Streaming potential of α-Al2O3 materials 

The zeta potential was calculated from measured streaming potential with Eq. (2.1). In 

Figs. 2.2 and 2.3, the ζ potential of α-Al2O3 is demonstrated as a function of pH because the 

surface net charge and the surface potential change depending on the protonation degree of 

functional group [18] with the underlying ionic framework [42].  

Figure 2.3 indicates the influence of pH on the ζ potential of alpha alumina materials M0, 

M1 and M2 in background 0.01M NaCl. M1 leads to the increase of its IEP from 5.3 to 6.7. 

Although the absolute value of ζ potential at high and low pH tends to increase, the effect of 

heat treatment at 550 0C after the NaOH treatment (M2) on IEP is not significant. It reveals that 

thermal treatment only activated the surface behavior of alpha alumina. The organic 

contaminants which are negatively charged, contained in the original material are presumably 
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considered to be removed by 0.1 M NaOH washing. The present IEP of α-Al2O3 with M2 

treatment is about 2.0 units lower than the reported values [2, 8, 43]. Das et al. [44-46] 

published some papers reporting the same value of IEP of our material. They explained that the 

reason of low IEP of alumina is because of lesser number of surface hydroxyl groups bound to 

the aluminum atoms. In these cases, alumina materials have a low pKa [8, 11] that is equal IEP. 

Contescu et al. [11, 47] have shown that there are some types of different aluminum hydroxyl 

sites in which aluminum can exist in octahedral site or tetrahedral site, thus net charge of 

alumina surface is different. In addition, the proton of the surface hydroxyl group is not bound 

strongly to the oxygen. Thus, the proton may be easily removed in lower pH range due to the 

weak electronegativity force of the surface hydroxyl group. 

Electrokinetic data with M2-treated alumina shows that lowering concentration of NaCl 

background electrolyte increases magnitude the ζ potential. Although the ionic strength also 

influences the ζ potential of α-aluminum oxide, the IEP change is insignificant. Nevertheless, 

SDS adsorption on α-Al2O3 followed by desorption by washing probably caused the effect on 

zeta potential from pH 5.5 to pH 9.0. Thus, the ζ potential increases dramatically in this pH 

range (Fig. 2.4). Interestingly, the adsorption of an anionic surfactant SDS on a positively 

charged α-Al2O3 surface after desorption can induce the increase in zeta potential of the alumina 

material. It indicates that with the presence of SDS in electrolyte background, the proton may be 

strongly bound to surface site of α-alumina after washing many times or the adsorption of 

proton upon surfactant adsorption. To confirm this, the influence of proton binding to surface 

behavior of α-Al2O3 treated with SDS (M3) and without SDS (M2) will be evaluated by 

chromatographic charge density method. 

Another outstanding feature is that the ζ potential of M4 treated α-Al2O3 is similar to M2 

(Fig. 2.4). The charging behavior of α-Al2O3 can be recovered by treatment with 1.0 M NaOH 

and then heating at ignition temperature 550 0C for 2 hours. Because the ζ potential of α-Al2O3 

treated by M3 is more positive than M2, it is necessary to use strong base with high 

concentration such as 1.0 M NaOH to restore interfacial property of α-alumina and activate the 

surface behavior by heat treatment at 550 0C for 2 hours. The charge density of α-Al2O3 treated 

by M2 and M4 will also be compared by chromatographic method. 
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Fig. 2.2. Streaming potential (Ustr) vs applied pressure difference (ΔP) of M2 treated alpha 

alumina at pH 6(a) and pH 8(b) in 0.001 M NaCl. 
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Fig. 2.3. Influence of pH on ζ potential α-Al2O3 in 0.01 M NaCl. 

 

 

 

 

Fig. 2.4. The ζ potential of α-Al2O3 materials in 0.001 M NaCl. 
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2.4.2. Surface charge density from chromatographic method and 1pK-Stern 

model 

2.4.2.1. Surface charge density of M2 treated alpha alumina in the absence of SDS 

Firstly, two breakthrough experiments were done with M2 treated α-Al2O3 from pH 9.41 to 

pH 6.70 in 0.01 M NaCl electrolyte and from pH 9.38 to pH 6.70 and in NaCl 0.001M to 

determine the additive constant q(C0)  in Eq. (2.5). The q(C0) are 5.31×10-12 and 1.00×10-12 

mol/g with electrolyte background 0.01 and 0.001 M NaCl, respectively. These values seem 

too small to contribute to adsorption acidity. However, the experiments are performed to pH 

around 7.0, different from pH of PZC, it is necessary to determine q(C0) by an independent 

experiment. In order to obtain two branches of the acidity adsorption isotherm below and 

above pH 7.0, two experiments were carried out in both electrolyte concentrations. 

Figures 2.5a and 2.5b show the experiments performed in 0.001 M NaCl. The experiments 

have been conducted from pH 9.95 to pH 7.22 (Fig. 2.5a) and from pH 3.87 to pH 7.22 (Fig 

2.5b). Two breakthrough curves start with diffuse parts and end with sharp parts. While the 

column breakthrough in Fig. 2.5a suggests a sorbate obeying a concave isotherm, the 

breakthrough curve in Fig. 2.5b is indicative for the case of convex isotherm. The 

experimental data points of the diffuse fronts were used for the calculation with Eq. (2.5) to 

obtain the adsorption isotherms. The combination of two branches of the acidity isotherms 

formed a sigmoidal isotherm. The charge density was calculated from the acidity adsorption 

isotherms by Eq. (2.8). The lower branch of data points of charging curve (open triangle 

points in Fig. 2.7a) could directly be calculated from the acidity adsorption isotherms from pH 

9.95 to pH 7.22. The charging curve was shifted to the value -0.102 C/m2 at pH 9.95. 

Nevertheless, the other branch from pH 3.87 to pH 7.22 was again calculated by integration of 

the diffuse front and shown the upper branch of charging curve (open triangles in Fig. 2.7a). 

For experimental reasons it is difficult to evaluate the acidity isotherm at pH value near 7.0. 

Despite two experiments of both branches were flushed with the same electrolyte solutions 

near pH 7.0, usually the actual pH values of this solution were different at the upper branch. 

After recalculation, the charging curve was shifted to the charge density of 0.097 C/m2 at pH 

3.87. Several experiments were performed in the pH regions of 10.00 to 6.45 and 3.80 to 6.45, 

and the resulting charge density were within ± 15 % relative error. 

The similar procedure was applied to the experiments in 0.01 M NaCl. The first 

experiment was carried out from pH 9.42 to pH 7.24 (Fig. 2.6a). From the overall retention, 
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one calculates a charge density of 0.066 ± 0.005 C/m2 between these two pH values. By using 

Eq. (2.5) to calculate the diffuse front and transform to charge density by Eq. (2.8), the lower 

branch of data points of charging curve (filled circles in Fig. 7b) was shifted to the value of -

0.064 C/m2 at pH 9.42. Fig. 2.6b shows the breakthrough curve which was done from pH 4.75 

to pH 7.24. A charge density of 0.032 ± 0.004 C/m2 was calculated from the retention of the 

diffuse fronts, which corresponds to the charge density at pH 4.75 after recalculation. It is 

shown as the upper branch of filled circles of charging curve in Fig. 2.7b. 

The surface charge density was shown as the function of pH in the background electrolyte 

0.001M NaCl (Fig. 2.7a) and 0.01M NaCl (Fig. 2.7b). In both cases of different ionic strength, 

the solid lines are results of calculations based on the 1-pK Stern model with parameters from 

literature [48] with total site density Γ� = 1.2sites/nm2, a Stern layer capacitance Cs = 1.4F/m2, 

pair formation constants logKa = logKc = 0.2. In the 1-pK Stern model used in the present 

study, the proton dissociation constant is equal to the point of zero charge, pHPZC = pK= -

logK. The IEP coincides with the PZC when there is no specific adsorption [49]. Thus, we 

assume that pK ≈IEP = 6.7. The data points are calculated from chromatographic charge 

density method. By performing some experiments in the different pH ranges, a good 

agreement between the data obtained from the column breakthrough curves and the 1-pK 

Stern model was obtained. Only at very high and very low pH, the predictions of model for 

the surface charge deteriorate probably because of the effect of dissolution. The dissolution 

reactions can be represented as follows [50]: 

Al2O3+2H3O++4H+  ⇌  2Al3++ 5H2O (2.21) 

Al2O3+2OH-  ⇌  2AlO2
- + H2O (2.22) 

In Fig. 2.7, the filled circles show the surface charge calculated from column breakthrough 

experiments performed in the pH range without dissolution, whereas the open triangles show 

the experiments affected by dissolution at high and low pH. It can be seen that the dissolution 

of aluminum oxide becomes significant below pH 4.7 and above pH 9.4 as demonstrated from 

the difference between model calculations and experimental data. The absolute of calculated 

values from 1-pK Stern model are smaller than the measured ones from chromatographic 

charge density method because of the presence of Al3+ and AlO2
-
 at very low and very high 

pH, respectively. These findings are close to the results from the previously published paper 

[50] in which dissolution studies were carried out by agitating the α-alumina suspension for a 

desired pH in the range 3.0–11.0. In the paper [50], the dissolved concentration of aluminum 
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species in 0.001 M KNO3 was determined using inductively couple plasma optical emission 

spectroscopy ICP-OES, and it was evident that the dissolution of alumina is greater at highly 

acidic and alkaline pH values while in the pH range 5.0–9.0 there is not much dissolution. In 

the case of γ-Al2O3, direct determination of aluminum in solution 0.1 M NaNO3 in batch 

dissolution measurements (ICP-OES) and a dissolution rate model in continuous titration 

experiments indicated that there is a large effect of dissolution on surface charge 

determination for pH > 10.0 and pH < 4.5 [51]. With �-Al2O3, the assumption of alumina 

dissolution below pH~5.0 and above pH~9.5 seemed to be evident where the measured total 

aluminum concentration by means of ICP method is different with FITEQL calculation [24]. 

The conclusion of this short review about the dissolution of alumina is that the 1-pK Stern 

model combined with chromatographic charge density method can predict pH regions of 

dissolution effect of alumina materials. 
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Fig. 2.5. Breakthrough curve through a column packed with α-Al2O3 (M2) in 0.001 M 

NaCl from pH 9.95 to pH 7.22 (a) and from pH 3.87 to pH 7.22 (b). 

 

 

 

 

  

Fig. 2.6. Breakthrough curve through a column packed with α-Al2O3 (M2) in 0.01 M NaCl 

from pH 9.42 to pH 7.24 (a) and from pH 4.75 to pH 7.24 (b). 
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Fig. 2.7. Surface charge α-Al2O3 (M2) as the function of pH in 0.001 M (a) and 0.01 M 

NaCl (b): The solid lines are the results of 1-pK Stern model with 1.2 sites/nm2, a Stern layer 

capacitance Cs = 1.4 F/m2, pair formation constants logKa = logKc = 0.2 and pK = 6.7, while 

data points are calculated from chromatographic charge density experiments. 
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2.4.2.2. Surface charge density of M3 treated alpha alumina affected by SDS 

Chromatographic method was used to evaluate the surface charge density of α-Al2O3 

prepared by M3 treatment using SDS and compared with material M2 in the absence of SDS. 

In order to compare surface charge density of M3 treated alumina with M2 treated one, 

several column experiments were performed in 0.01M NaCl background electrolyte at the 

same pH of the input solutions in which the dissolution of alumina was negligible. We used 

the same parameters of M2 treated alumina including q(C0)= 5.31×10-12 mol/g and PZC = 6.7 

to calculate surface charge density of M3 treated one in 0.01 M NaCl. The results of surface 

charge of alumina treated by M2 and M3 are compared in Fig. 2.8. As can be seen, the 

difference between the upper branches of two curves was not significant while the lower 

branches had small difference. The lower branch of charging curve of M3 treated by SDS 

appeared the inflection point at pH ~ 8.3 that should be close to the point of zero charge of 

M3. In this case, SDS adsorbed at the surface of alumina seems to be completely ineffective 

after washing. And there is no specific adsorption, the IEP and the PZC are the same [49]. 

Thus, the data of surface charge density of M3 material was again calculated with its 

parameters q(C0)= 1.67 × 10-11 mol/g (this value was determined by an independent 

breakthrough curve experiment: not shown here) and PZC = 8.3 and revealed in Fig. 2.9. A 

small range for the charging curve of M2 but the large one of M3 cannot be evaluated. The 

PZC = 6.7 for M2 is near pH 7.0 where c = 0 while PZC of M3 equal 8.3 that is 1.6 pH unit 

higher. As the result, the upper branch of charging curve of M2 can be evaluated near pH 6.5 

while another of M3 can only be obtained near pH 5.9. The results of M3 are similar to the 

case of the surface charge density of goethite-coated sand in which the lower branch obtained 

from pH 9.61 to pH 7.5 (PZC goethite-coated sand around 7.5) and the upper branch 

evaluated from pH 3.62 to pH 5.8 [6]. Because the nonlinear chromatographic method is not 

so well adapted to obtain charge density data just around pHPZC value, the charging curve of 

TiO2 grains (PZC around 4.5) using 0.1 M NaCl as background electrolyte can only be 

evaluated below pH 4.5 and above pH 8.5 [7]. Nevertheless, surface charge of M3 is much 

higher than that of M2 from pH 5.5 to pH 5.9 and the negative charge is less than that of M2 

over pH 8.3 where the proton consumed in the presence of SDS is greater than in the absence 

of SDS. Above pH 5.5, there was a large difference between proton consumption in the 

absence of and treatment with SDS, indicating that there was more proton binding with the 

addition of anionic surfactant SDS in washing process. These findings are in good agreement 

with the results of streaming potential measurements for M3 (see section 2.4.1).   
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Fig. 2.8. Surface charge of M2 (circles) and M3 (squares) are calculated using the same 

parameters of q(C0)= 5.31×10-12  mol/g and PZC = 6.7. 

 

 

 

 

Fig. 2.9. Comparison of the surface charge of M2 (circles) and M3 (squares). The results 

of M2 are calculated with the parameters q(C0) = 5.31×10-12  mol/g and PZC = 6.7 while the 

results of M3 are calculated with q(C0) = 1.67×10-11 mol/g and PZC = 8.3. 
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2.4.2.3. Surface charge density of M4 treated alpha alumina  

Chromatography was also used to compare surface charge density of M4 treated α-Al2O3 

with SDS desorption followed by recovering procedure and M2 in the absence of SDS.  

Several column pH breakthrough experiments were performed in 0.001 M NaCl with the 

same electrolyte solutions. In Fig. 2.10, the surface charge of α-Al2O3 treated by M2 and M4 

are calculated using the same parameters of q(C0) = 1.00×10-12 mol/g and PZC = 6.7. 

Although the charge density of M2 and M4 has the minor difference above pH 8.10 and 

below pH 5.50, the difference of charging curves is not significant. And there is not a strong 

inflection point in the lower branch of charging curve of M4. Thus, the PZC of α-Al2O3 with 

M4 treatment should be around 6.7. The charging behavior of α-Al2O3 can be restored by 1.0 

M NaOH cleaning and reheating at high temperature 550 0C.  

The amount of SDS adsorbed on α-Al2O3 was not too high in the present study. However, 

this concentration is higher than hemimicelle concentration in which the adsorption increases 

dramatically [52]. Although the used concentration of SDS is limited (2×10-3 M), it is enough 

to modify alumina surface. SDS was plausibly desorbed by washing many times with pure 

water because of weak outer sphere complex [22]. Work of Koopal and co-workers on rutile 

has revealed that the proton is adsorbed due to surfactant adsorption and surfactant ions 

screen the surface charge [53, 54]. In our study the increase of surface charge in SDS 

adsorption at pH 5.0 and 2×10-3 M SDS in 0.001 M NaCl is not significant when the 

difference of pH of solution before and after SDS adsorption is quite small. Also, in the 

present study, only initial pH of solutions is controlled. For the SDS adsorption on α-Al2O3, 

pH is not adjusted. In addition, we observed that SDS was almost completely removed within 

four rising cycles (data not shown). During desorption step, proton adsorption on α-Al2O3 

increases significantly and it induces the difference of zeta potential and surface charge. As 

the results, the increase of zeta potential and surface charge of M3 is higher than M2 above 

pH 5.5. We used NaOH with different concentrations from 0.1 M to 1.2 M combining with 

heat treatment at 550 0C to examine the recovery of surface property of α-Al2O3 after SDS 

desorption. The zeta potential and surface charge of α-Al2O3 were restored by NaOH at 

concentration higher than 1.0 M [55]. Thus, interfacial properties of α-Al2O3 after SDS 

adsorption followed by desorption can be recovered by 1.0 M NaOH washing and heating at 

high temperature 550 0C. 
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Fig. 2.10. Comparison of surface charge of M2 (circles) and M4 (triangles). The results of 

M2 and M4 are calculated using the same parameters of q(C0) = 1.00×10-12 mol/g and PZC = 6.7. 
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2.4.3. Comparison of zeta potential with diffuse layer potential 

Streaming potential is useful method to characterize electrokinetic property of materials 

with large diameter such as alpha alumina beads in this paper. The IEP of materials 

determined by streaming potential is necessary for the calculation of surface charge density 

from chromatographic method. The combination of chromatographic method and 1-pK Stern 

model can evaluate the pH region where the dissolution of α-Al2O3 is significant. In addition, 

1-pK Stern model can calculate the diffuse layer potential ψ
d

 that is related to the zeta 

potential from streaming potential measurements. Let us discuss these comparisons in more 

detail.  

The experimental values of zeta potential or electrophoretic mobility (EPM) of various 

colloidal particles reasonably agree with theoretical ones by using surface or diffuse layer 

potential calculated from surface charge density or 1-pK model. In the case of positively 

charged amidine latex [56], Borkovec et al. have shown that the mobility is in good agreement 

with standard electrokinetic model, that includes double layer relaxation and the Poisson – 

Boltzmann model, by introducing the distance to the slipping plane from the surface xs. 

Similar results are obtained for the case of polystyrene sulfate latex spheres with negative 

charge in the presence of divalent ions [57]. The standard electrokinetic model was also used 

to evaluate the EPM of the silica particles [58, 59], where the ψ
d
 was calculated using the 1-

pK basic Stern model with the same parameters describing surface charge density. The 

calculated EPM of silica from the model agree well with experimental EPM when assuming 

that the distances of slipping plane xs from the surface are 0.25 nm and 0.5 nm for different 

colloidal silica particles. The sub-nanometer order of xs is reasonable because it is comparable 

to the size of hydrated ion. In all cases, it is possible to use the same parameters for 1-pK 

model to predict both surface charge density and zeta potential from ψ
d
. With hematite 

particles, Schudel et al. [60] indicated that 1-pK Stern model with the same parameters could 

describe surface charge density and the zeta potential at the plane of origin of diffuse layer 

potential (xs = 0). 

In this study, however, there was a large difference between the ψ
d
 obtained from 1-pK 

Stern model and the ζ potential from streaming potential measurements when the same 

parameters found from surface charge density were used. Thus, we tried to get the good fit 

between measured zeta potential and calculated zeta potential by tuning xs. As the results, we 

need to assume the very large xs and the dependence of xs on ionic strength. The best fit of 
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the ζ potential from ψ
d
 is obtained when the values of xs are 3 nm and 7 nm for electrolyte 

concentrations of 0.01 M and 0.001 M, respectively (Fig. 2.11). Although these values are 

very close to the plane shear of aluminum oxide at different NaCl concentration [61], they 

seem to be much larger than above ones (about 12 times higher) and unrealistic as the 

thickness of immobile fluid layer adjacent to the surface. The reason is probably because of 

shortcoming of electrokinetic theory for packed bed of large beads. In order to obtain good 

predictions of diffuse layer potential by 1-pK Stern model comparable to the zeta potential 

from streaming potential, we have to use very different parameters from the surface charge fit. 

These results are similar to the case for the description of surface adsorption behavior of γ-

Al2O3 nanofiltration membrane using 1-pK basic Stern model [26]. They may be induced by 

the lack of knowledge about the physical and chemical properties in site binding or complex 

structures of alumina materials. 

 

 

 

Fig. 2.11. Comparison of zeta potential with diffuse layer potential. The points represent 

experimental data of ζ potential while solid lines correspond to calculated curves of diffuse 

layer potential ψ
d
 with the slipping plane 3 nm and 7 nm for electrolyte concentrations of 0.01 

M and 0.001 M, respectively. 
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2.5. Conclusions 
 

The interfacial properties of α-Al2O3 materials with low surface area were studied by 

streaming potential and chromatographic charge density, combined with 1-pK Stern model. It 

has been demonstrated experimentally that the zeta potential of α-Al2O3 materials are the 

function of pH and the IEP increase in the order M0 < M1 ~ M2 ~ M4 < M3. The 

chromatography which was performed in 0.001 M and 0.01 M NaCl background electrolytes, 

provided the surface charge density of M2. Chromatographic method and 1-pK Stern model 

were applied successfully to evaluate surface charging behavior and the dissolution effect. 

The influence of dissolution on surface charge of α-Al2O3 seemed to be significant above pH 

9.4 and bellow pH 4.7. The SDS adsorption followed by desorption by washing increased the 

proton consumption on α-Al2O3 surface as found from both of zeta potential data and surface 

charge density of alumina in the absence and treatment by SDS. The recovery of interfacial 

property of α-Al2O3 indicates that we can utilize the above mentioned preparation procedure 

washing with NaOH and heat treatment at 550 0C of porous media when using α-Al2O3 beads 

as a reference material. 
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Chapter 3. Adsorption of anionic surfactant sodium dodecyl 

sulfate onto alpha alumina with small surface area 

3.1. Introduction 

Adsorption of surfactant from aqueous solution on solid surface has been a topic of a lot of 

research. While many scientific papers reported on the adsorption of surfactant onto colloidal 

particles, not so many studies have been conducted on surfactant adsorption onto large metal 

oxide beads [1-7]. It is preferable to study an analysis using relatively large beads that can be 

directly used to analysis of transport phenomena of colloids [8]. Many surfactants are charged 

and the charge on the solid–liquid interface plays an important role in surfactant adsorption on 

metal oxide. The charging behavior influences the shape of the adsorption isotherm and the 

way of organization of adsorbed surfactant molecules [9]. There are several proposed concepts 

for the structure of adsorbed layer. Among them, the concepts of hemimicelle and admicelle 

are often discussed. The concept of hemimicelle was firstly proposed by Gaudin and 

Fuerstenau [10]. Then, the group of Fuerstenau used the hemimicelle concept to investigate 

adsorption of ionic surfactants on the charged surface [11-14]. In the hemimicelle, the 

surfactants are oriented with their charged head groups toward the solid surface while the 

hydrophobic hydrocarbon chains protrude into aqueous phase [15, 16]. Subsequently, Harwell 

et al. [17] proposed a local bilayer of surfactant, admicelles, were assumed to be the only 

surfactant aggregates formed at the solid–liquid interface and their isotherm may not allow for 

the possibility of hemimicelle formation [18, 19]. 

While two-step adsorption model [1, 20] suggests the hemimicelles on a linear–linear scale 

plot, the four-region isotherm is indicative for the case of both hemimicelles and admicelles on 

a log–log scale [1, 7, 18, 21, 22]. According to two-step model, the adsorption of the surfactant 

shows a two-step characteristic. In the first step, individual surfactant monomers adsorb on the 

solid surface at low concentrations: That is no aggregates form. In the second step, the 

adsorption increases dramatically due to the formation of hemimicelles (Fig. 3.1a). On the basis 

of two-step adsorption model, a general adsorption isotherm equation can be derived. This 

equation has been successfully applied to various types of surfactant adsorption isotherms for 

numerous systems [20, 23]. The equations of hemimicelle concentration (HMC) can also be 

derived in the cases of S-shape and Langmuir-S (LS)-type isotherms.  
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When the adsorption isotherms are plotted on a log–log scale, four regions can be found [1, 

21, 24, 25]. Region I adsorption occurs at low equilibrium surfactant concentrations and low 

levels of adsorption. Region I is similar to the first step of two-step adsorption model. Region II 

can be recognized indicated by an increase of the slope of the adsorption isotherm with 

increasing equilibrium surfactant concentration. The concentration at which the first change of 

slope occurs is HMC. However, the slope of region II sometimes decreases when surfactants 

adsorb onto the porous materials with small specific surface area [26-28]. In these cases, the 

HMC cannot occur on the I/II transition. In the hemimicelle, the surfactants are oriented with 

their charged head groups toward the solid surface while the hydrophobic hydrocarbon chains 

protrude into aqueous phase [15, 16]. In the region III, the slope of the isotherm is reduced 

because of the electrostatic repulsion between oncoming ions and the similarly charged solid 

[25]. In region IV, the adsorption can be completed while the surfactant concentration in 

solution reaches to critical micelle concentration (CMC) (Fig. 3.1b). The region where the 

adsorption amount remains nearly constant is called the plateau adsorption region [18, 24]. 

However, the shapes of four regions in some cases are different depending on the sorbent types 

[27, 28], the ionic surfactant types or effect of ionic strength [1, 3, 6]. 

Many studies have focused on surfactant adsorbed layer on solid by fluorescence, Raman, 

and electrospin resonance (ESR) [7, 29-31]. Nevertheless, information about hemimicelle and 

admicelle of the adsorbed layer of ionic surfactants on metal oxide is still inadequate. Koopal 

and coworkers [3, 32-35] used the modern self-consistent field lattice theory (SCFA theory) for 

surfactant adsorption and association to study surface charge effects, structure of the adsorbed 

layer, and the influence of ionic surfactant chain length. Results obtained with the SCFA theory 

show the shape of surfactant adsorption isotherms to be complex and different for constant 

charge and constant potential (variable charge) surfaces [32-34]. Accordingly, SCFA theory 

indicates that the two-step adsorption and four-region isotherm models coexist and are valid 

under different conditions depending on the charging properties of solid surface [21]. The 

adsorption behavior of anionic and cationic surfactants on oppositely charged rutile (TiO2) 

consisted of four regions [35]. The adsorption of anionic surfactant on the positively charged 

TiO2 at different pH values suggests the forming of hemimicelles [32, 36]. For silica, the 

adsorption of cationic surfactant corresponds with two steps and four regions, but the shape of 

isotherms at high salt concentration differs from that at low salt concentrations [3, 37]. 

Although SCFA theory was used to describe the effects of charged surface, chain length, and 

branching well, it could not confirm the local aggregates. Fortunately, by measuring total 

adsorbed amount at plateau of isotherm and the amount of surfactant with head group toward 
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the surface that is equal to a surface charge adjustment upon surfactant adsorption, one can 

estimate the amount of surfactant with head groups toward solution  [32, 37]. It indicates that 

charge regulation induced by surfactant adsorption is of great importance to study adsorption of 

ionic surfactant [9] and predict the structure of adsorbed layer on the surface of sorbent. 

Alumina is often used as a substrate for adsorption of anionic surfactants [2, 15, 16, 18, 19, 

22, 25, 38-40]. The change in pH upon adsorption of surfactant on alumina has been reported 

[18, 41], indicating a change in surface charge. Nevertheless, the interplay between the pristine 

surface charge of alumina due to proton adsorption and the adsorption of anionic surfactant 

sodium dodecyl sulfate (SDS) is too complex to be explained within a simple model [42]. The 

adsorption of SDS onto alumina is more difficult when this sorbent has large diameter with low 

surface area. In a previous work, we showed that the interfacial properties of alpha alumina 

with small surface area in the absence and the presence of SDS can be evaluated by using 

streaming potential and chromatographic methods [43]. 

The purpose of this chapter is to analyze adsorption isotherm of SDS onto large beads of 

α-Al2O3 with variably charged surfaces. The SDS adsorption and surface charge isotherms at 

various NaCl concentrations and pH values have been experimentally studied to clarify the 

applicability of both the two-step and four-region models. To our best knowledge, we 

succeeded for the first time in SDS/alumina system to relate proton adsorption upon 

surfactant uptake with two-step model. With this approach, charge effects and the presence of 

hemimicelle and admicelle are discussed in depth. 
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Fig. 3.1. Schematic representation of ionic surfactant adsorption isotherm on hydrophilic 

surface from aqueous solution. 
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3.2. Experimental 

3.2.1. Materials 

High-purity (99.5 %), alpha alumina beads with an average diameter of 300 ± 12 μm and a 

density of 3.82 g/cm3 were purchased from Hiraceramics, Japan, and were used in the present 

study. X-ray diffraction (XRD) was collected on a Bruker D8 Advance X-ray diffractometer. 

The analyses confirmed that the alumina beads contain mainly α-phase (detail shown in 

chapter 2). The specific surface area was determined by Brunauer-Emmett-Teller (BET) 

method using a surface area analyzer (Micromeritics, Gemini 2390) and found to be 0.0041 ± 

0.0016 m2/g. The alpha alumina was treated before measurements. The original α-Al2O3 was 

washed many times with 0.1 M NaOH before rinsing by ultrapure water to reach neutral pH. 

After that, α-Al2O3 was dried at 110 0C and was reactivated by thermal treatment at 550 0C 

for 2 h. Finally, the treated material was cooled in a desiccator at room temperature and 

stored in polyethylene container. The treated α-Al2O3 has a point of zero charge (PZC) of 

about 6.7 [43]. 

Sodium dodecyl sulfate (SDS, with purity higher than 95 %) from Wako Pure Chemical 

Industries was used. The structure of SDS is shown in Fig. 3.2. The critical micelle 

concentration (CMC) of SDS at 22 0C was experimentally determined by conductometric and 

potentiometric measurements and shown in Table 3.1. Cationic dye, methylene blue (with 

purity higher 98.5 %) and organic solvent chloroform (CHCl3, GC grade, purity higher 99 %) 

from Wako Pure Chemical Industries were used to determine concentration of SDS by 

colorimetric method. Ionic strength and pH were adjusted by the addition of NaCl (Wako 

Pure Chemical Industries), HCl, and NaOH (volumetric analysis grade, Wako Pure Chemical 

Industries). Other chemicals were obtained from Wako. Ultrapure water, produced from Elix 

Advantage 5 (Millipore) with electric conductivity around 0.6 µS/cm, was used in preparing 

solutions and in all measurements.  

 
Fig. 3.2. The structure of anionic surfactant, sodium dodecyl sulfate (SDS). 

 



Chapter 3. Adsorption of anionic surfactant sodium dodecyl sulfate 
 

53 
 

3.2.2. Adsorption isotherms 

Adsorption isotherms were obtained in 100-mL Erlenmeyer flask at room temperature, 

controlled by air conditioner (22 ± 2 0C), using a depletion method. For SDS adsorption 

studies, 0.5 g of treated α-Al2O3 was mixed with 25 mL of NaCl aqueous solutions at 

different concentrations by a shaker for 1 h. Then, SDS with concentrations from 10-5 M to 

10-2 M was prepared and pH was adjusted to original value. After mixing alumina and SDS 

and shaking for 3 h, the pH was measured again and if necessary, readjusted by 0.01 M HCl 

or 0.1 M HCl and 0.1 M NaOH using a Socorex Acura 825 micro pipette with minimum 

volume of 1 ��. More than 12 h later, the samples were equilibrated by vigorous shaking. 

Then, the pH was checked and, if necessary, readjusted again. This procedure was repeated 

until no further changes in pH were attained. When equilibrium process was achieved, the α-

Al2O3 was separated from the solutions. The adsorption density of SDS onto α-Al2O3 was 

determined by the difference in the concentration of SDS solutions before and after 

adsorption by colorimetric method using the following equation: 

���� =  
(�� − ��)�

��
 (3.1) 

where ���� is the SDS adsorption density (mmol/m2), Ci is the initial SDS concentration 

(mmol/L), Ce is the equilibrium SDS concentration (mmol/L), V is the volume of sample (L), 

m the mass of α-Al2O3 (g), and A is the specific surface area of α-Al2O3 (m
2/g). 

By recording the added amount of HCl or NaOH to keep the pH constant after SDS 

addition, the surface charge adjustment of alpha alumina has been obtained. The surface 

charge adjustment was combined with initial surface charge of alpha alumina by 

chromatographic method [43] to calculate the equilibrium surface charge expressed as 

�� = �(0) �⁄  with F is the Faraday constant. For example, at 0.01M NaCl and pH 5, the 

initial surface charge of α-Al2O3 is 0.01×10-4 mmol/g. Total added volume of 0.01M HCl to 

keep constant pH after SDS addition is 0.025 mL. Thus, the adjusted one is 5×10-4 mmol/g (for 

0.5 g α-Al2O3 at the plateau adsorption of SDS). Therefore, equilibrium adsorption density of 

proton is 5.01×10-4 mmol/g that is equal 0.122 mmol/m2. 

3.2.3. Colorimetric method 

The concentration of anionic surfactant SDS was determined by colorimetric method using 

chloroform as the organic solvent and methylene blue as cationic dye. Measurements of 

samples and standard solutions or blanks were carried out simultaneously according to the 
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papers [44, 45]. To make a standard calibration curve for each NaCl concentration, a series of 

SDS solutions with the concentrations from 5×10-7 to 1.5×10-5 mol/L was prepared in glass 

tubes in different electrolyte concentrations. Methylene blue stock solution (10-2 M) was 

diluted 100 times with 10 mM acetate buffer, pH 5.5, and then 1 mL of the diluted solution 

was added to each tube. A 2 mL of CHCl3 was added per tube and mixed by hand. Then, the 

same volume of CHCl3 was added to each tube (two or three times), followed by vigorous 

mixing. The aqueous and chloroform phases were separated by a centrifuge (H-103N, 

Kokusan) at 2000 rpm for 10 min at room temperature. The absorbance of chloroform phase 

was measured at wavelength 655 nm by an UV-vis spectrophotometer (UV-1650PC, 

Shimadzu) with closed quartz cuvette with 1-cm optical path length. The relationship 

between the absorbance and concentrations of SDS of standard calibration curves in different 

electrolyte concentrations and pH should yield a straight line with a correlation coefficient of 

at least 0.999. In every experiment done with different salt concentrations, samples and 

blanks were appropriately diluted with the same dilution factors before measuring the 

absorbance to quantify SDS concentrations by different standard calibration curves. In this 

way, by always keeping the same amounts of salt in each sample as in blanks and standard 

samples, the concentration of SDS could be accurately determined. 

 

3.2.4. Potentiometric method 

Potentiometry was conducted using a Metrohm 781 pH/Ion meter, Switzerland. The pH of 

NaCl solutions used in adsorption isotherm and determination of the concentration of proton 

in solutions was measured by a glass combination electrode (Type 6.0258.010 Metrohm). 

The electrode was previously calibrated with three standard buffers (Metrohm). The CMC of 

SDS in different electrolyte concentrations was determined with a surfactant ion selective 

electrode (Type 6.0507.120 Metrohm) that is sensitive to ionic surfactants [46, 47]. The 

electrode potential (E in mV) was measured relative to an Ag/AgCl reference electrode (Type 

6.0726.100 Metrohm) equipped with a ceramic plug. The CMC of SDS in pure water and 

NaCl background solutions can be obtained from the inflection point after the linear range of 

the curve, presenting E as the function of the logarithm of SDS concentration [48]. The CMC 

of SDS was compared with that by conductometric method by an electrical conductivity 

meter (EC Meter Toa CM-30G). All measurements were carried out at 22 ±  2 0C. The 
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difference in the CMC of SDS determined via the conductometric and potentiometric 

methods did not exceed 10 %. The values of CMC are listed in Table 3.1. 

 

 

Table 3.1 Critical micelle concentration (CMC) of SDS at 22 0C 

 

NaCl (M) CMC (mM) 

0 6.0 

0.001 5.5 

0.01 5.0 

0.05 2.5 

0.1 2.0 

0.2 1.0 

 

3.3. Two-step adsorption model 

3.3.1. Theory and modeling  

Two-step adsorption model assumes that the adsorption of surfactants on solid-liquid 

interface occurs in two steps [20]. In the first step, surfactant monomers adsorb on the solid 

surface through electrostatic attraction (in case of ionic surfactants) at low concentration 

below critical aggregation concentration (CAC) or hemimicelle concentration (HMC); thus, 

no aggregates form [7]:  

Site + Monomer ⇄ Adsorbed Monomer (3.2) 

The equilibrium constant is given by 

�� =
��

���
 (3.3) 

Here a is the activity of surfactant monomers in solutions, and a1 and as are the activities 

of adsorbed monomers and surface sites, respectively.  

In the second step, the adsorption increases significantly because of the presence of 

hemimicelle: 

(n – 1) Monomers + Adsorbed Monomers ⇄ Hemimicelle (3.4) 

The equilibrium constant is 

�� =
���

������
 (3.5) 
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where ahm is the activity of hemimicelle and n is the aggregation number of hemimicelle.  

As an approximation for dilute solutions, one can use a = C (C is surfactant monomer 

concentration), the amount of adsorbed monomer ��, the amount of hemimicelle ��� , and the 

number of sites �� instead of a1, ahm and as, respectively. Thus, Eqs. (3.3) and (3.5) become  

�� =
��

���
 (3.6) 

and  

�� =
���

������
 (3.7) 

The amount of surfactant adsorbed � and the maximum adsorption �∞ are  

� = �� + ���� (3.8) 

and 

�∞ = �(�� + �� + ��� ) (3.9) 

The general expression for the two-step model can be derived by the combination of Eqs. 

(3.6), (3.7), (3.8), and (3.9). The general isotherm equation is 

� =
�∞��� �

1
� + ������� 

1 + ���(1 + ������)
 (3.10) 

If k2 → 0 and n → 1, Eq. (3.10) reduces to Langmuir equation:  

� =
�∞��� 

1 + ���
 (3.11) 

If n > 1, there are two limiting cases. When ������ ≫ 1 �⁄ , Eq. (3.10) again becomes a 

Langmuir – type equation: 

� =
(�∞ �⁄ )��� 

1 + ���
 (3.12) 

 

 except the monolayer adsorption �∞ �⁄ . If ������ ≫ 1 or ��� ≪ 1 and ��� ≪ ���� , the 

adsorption isotherm would have S-type shape and Eq. (3.10) could be reduced to 

� =
�∞������ 

1 + ������
=

�∞��� 

1 + ���
 (3.13) 

When the value of k1 is high enough, the two-plateau isotherm (LS-type) can be obtained. 

The hemimicelle concentration (HMC) in the two-step model, is concentration where the 

straight line with the maximum �� ��⁄  on the adsorption isotherm intersects the line of �= 0 

or � − (�∞ �⁄ ) = 0 [20]. Thus, HMC can be determined by equations as follows: 
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��� = �
� − 1

� + 1
�

���
�

�
��
�  (3.14) 

and  

��� = �
� − 2

�
�

�
���

�
��

��� (3.15) 

for S-type and LS-type isotherms, respectively.  

 

3.3.2. Fitting procedure 

The selected fitting parameters are described in the following in the following: (a) �∞ can 

be obtained from adsorption data at high concentrations. (b) The values of k1 can be predicted 

from the adsorption data at low concentrations by a limiting Langmuir equation. (c) By using 

reasonable guesses for k1 in step (b) and k2 (with fixed one value of n), the calculation of the 

adsorption density  ����  for SDS or proton by Eq. (3.10) was calculated from experimental 

data points. (d) Procedure was repeated with 0.1 step change. (e) We use trial and error to 

find the minimum sum of square of residuals for every isotherm,  SS��������� = ∑����� −

����)
�, where ����  is the experimental adsorption density of SDS or proton. (f) The minimum 

 SS��������� was chosen to find the appropriate values for parameters k1, k2 and n. 

3.4. Results and discussion  

3.4.1. Surface charge and surfactant isotherms by two-step adsorption model 

The effect of pH and ionic strength on SDS adsorption to the alumina surface is well 

known and demonstrated in the isotherms. In the linear–linear plot, the presented isotherms 

show two steps (Fig. 3.3) at different pH and ionic strength. The calculated curves by two-

step adsorption model shown as the solid lines in Fig. 3.3 can reasonably represent 

experimental data by using the fit parameters in Table 3.2. This model assumes that all 

adsorbed surfactant molecules exist as the form of monomers or hemimicelles. From the 

fitting procedure, the values of n are chosen about 10 (Table 3.2). Although the values of n 

obtained from this model are much smaller than measured aggregation number using 

spectroscopic methods [7, 40], the two-step model is useful to evaluate the influence of pH 

and ionic strength. As can be seen from Fig. 3.3, the adsorption density is strongly dependent 

on pH in different electrolyte concentrations. Because the CMC is independent of pH [25] 

and our CMC is close to the result from Thongngam et al. [49], the association between SDS 
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molecules and protons can be neglected. Figure 3.3 demonstrates that the adsorption density 

of SDS on alumina reaches constant around the CMC in different pH, except for high ionic 

strength. In 0.1 M NaCl, the adsorption plateau is not observed near the CMC. These trends 

are in good agreement with previously published papers [2, 18, 40]. The increase of adsorbed 

amount with surfactant concentration after the CMC can be explained by a dramatic decrease 

of CMC in high ionic strength [32] (see Table 3.1) and the adsorption characteristics of 

surfactant onto porous materials [27, 28]. 

 

 

Table 3.2 The fit parameters for SDS adsorption, which are maximum adsorbed amount 

�∞ , the equilibrium constants k1, k2 for first step and second step, respectively, n the 

aggregation number of hemimicelle and HMC the hemimicelle concentration 

 

C salt 
(M NaCl) 

pH 
 

�∞ 
(mmol/m2) 

k1 

 (m
2/mmol) 

k2 

 (m
2/mmol)n-1 

n 
HMC (mM) 
(Eq. (3.14)) 

HMC (mM) 
(Eq. (3.15)) 

 

0.001 4 1.20 6×103 1×1024 9.8 1.17 1.45 

0.001 5 0.95 6×103 6×1023 9.8 1.23 1.54 
0.001 6 0.52 6 ×103 5×1023 9.8 1.25 1.57 

0.01 4 1.55 4×103 8×1023 9.8 1.25 1.49 
0.01 5 1.10 4×103 7×1023 9.8 1.26 1.51 

0.01 6 0.65 4×103 6×1023 9.9 1.37 2.66 
0.1 4 1.67 1×103 6×1022 10.1 2.25 2.46 

0.1 5 1.40 1×103 5×1022 10.1 2.29 2.51 
0.1 6 0.77 1×103 4×1022 10.1 2.35 2.57 
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Fig. 3.3. Adsorption isotherms of SDS onto α-Al2O3 in 0.001 M NaCl (a), 0.01 M NaCl 

(b), and 0.1 M NaCl (c) as a function of pH. CSDS is the equilibrium SDS concentration. 

While the points are experimental data, the solid lines are the results of two-step adsorption 

model. The arrows show the CMC value. 
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At different salt concentrations, the maximum adsorption density increases with 

decreasing pH due to the difference in equilibrium surface charge isotherms. As shown in 

Fig. 3.3 and Table 3.2, for the higher k2, the second step on the isotherm is steeper [20, 50] 

and the lower HMC is obtained. The values of k1 can be used to evaluate the effect of salt 

concentrations. The values of k1 are 6×103, 4×103 and 103 for 0.001, 0.01 and 0.1 M NaCl, 

respectively. The higher k1 values are observed for the lower salt concentration in which the 

higher adsorption density in the first step is obtained. Adsorption density at low SDS 

concentration decreases with increasing salt concentration because the electrostatic attraction 

between the negatively charged SDS head groups and positively charged surface sites is 

screened by increasing salt concentrations. However, at high surfactant concentration, 

adsorption density increases with increasing the salt concentration by screening of repulsive 

force between negatively charged DS- ions. The groups of Bohmer [32] and Goloub [37] 

indicated that the surfactant ions effectively screen the surface charge of metal oxides so that 

the charge can change upon surfactant adsorption. While Bohmer et al. [32] has revealed that 

in the plateau of the surfactant adsorption, surface charge does not depend on the salt 

concentration, Goloub et al. [37] has shown that the maximum change in surface charge 

occurs at low surfactant and low salt concentrations. In our case, the surface charge changes 

more significantly in low salt concentrations (0.001 and 0.01 M NaCl) and at pH 4 and pH 5. 

The change in surface charge increases dramatically in the region ranging from HMC to 

CMC. The charge adjusting at pH 4 and pH 5 shown in Figs. 3.4 and 3.5 demonstrates that 

the proton adsorption upon SDS adsorption increases with increasing the concentration of 

SDS. The maximum adsorption density of proton is observed at the plateau of SDS 

adsorption.  

At pH 6, it is too difficult to evaluate the change in surface charge (data not shown) due to 

very low concentration of proton in solutions. Also, at high salt concentration (0.1 M NaCl), 

this change is not significant. It should be noted that the relative error between experimental 

points and predicted curves by two-step model without charge adjustment is smaller than that 

for significant change in surface charge. This result implies that the fitting parameters depend 

on the degree of charge adjustment. Table 3.2 and Fig. 3.3 indicate that when the change of 

surface charge is significant, the HMC is much lower (higher k2) because charge adjustment 

enhances the formation of hemimicelles or vice versa.  

It is interesting to note that the change in surface charge of α-Al2O3 induced by SDS 

adsorption can also be represented by two-step model. To study the surface charge effects in 

more detail, the experiments were carried out at pH 4 and pH 5 in 0.001 and 0.01 M NaCl. In 
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Figs. 3.4 and 3.5, the points are experimental data and the solid lines are the results of two-step 

adsorption model for adsorption isotherms of SDS and equilibrium surface charge. Here the 

equilibrium surface charge, �� and the adsorption density of SDS, ����  are both expressed in 

mmol/m2. The expressed unit of the adsorbed amount of surfactant is large compared with 

surfactant adsorption [1, 6, 7] and proton adsorption upon adsorbing surfactant [32, 37]. 

However, the plateau adsorption density in our research is rather similar to the published 

papers [28, 51]. The maximum adsorption density of SDS onto neutral alumina (mean 

particle size 130 μm) in 0.043 M NaCl at pH 4.4 is about 4.3 mmol/m2 [51]. When anionic 

surfactants adsorb onto poly-dimethyldiallyammonium chloride (PDMAC) treated cellulosic 

fibers at pH 6.5 – 7, the highest adsorption density is around 0.4 mmol/m2 [28]. These values 

are due to highly porous material and/or low surface area. 

Another outstanding feature is that we are able to use almost the same fitting parameters (k1 

and k2) from two-step model for SDS adsorption on α-Al2O3 to describe adsorption of proton 

upon surfactant adsorption. Figures 3.4 and 3.5 show that two-step adsorption model represents 

proton adsorption as well as SDS adsorption isotherms. The values of aggregation number for 

proton adsorption (n = 10. 6 for pH 4 and n = 10.8 for pH 5) are slightly higher than those of 

the hemimicelle of SDS (n ≈ 10). The amount of the proton adsorption due to adsorbing SDS 

molecules is much smaller below the HMC than above the HMC (Figs. 3.4 and 3.5). In 0.001 

M NaCl, the maximum values of ���� are equal to 1.20, 0.95, and 0.52 mmol/m2 for pH 4, pH 

5 and pH 6, respectively. On one hand, in 0.01 M NaCl, these values are 1.55, 1.10, and 0.65 

mmol/m2. The maximum adsorption density of both SDS and proton has been reached around 

the CMC, except for the case of high ionic strength (0.1 M NaCl).  

At low salt concentrations, the adsorption amount of SDS is larger than that of proton, but 

the proton adsorption or the change in surface charge is significant. The screening by SDS 

molecules is of great importance to induce the proton adsorption. The influence of pH in 

proton adsorption is significant when surfactant molecules adsorb with head groups screening 

the surface. On the other hand, if their head groups are toward solution, the effect on the 

change of surface charge is small. In addition, the net charge at the surface site of the bilayer is 

very low and the screening of any remaining net charge in hydrophobic core is limited [32]. 

These findings reveal that the adsorption isotherms of SDS onto α-Al2O3 at low ionic strength 

are in accordance with the hemimicelle concept. For high ionic strength, although the 

adsorption isotherms of SDS onto α-Al2O3 at different pH were fitted well by two-step model, 
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the adsorption of proton was not significant so that only the hemimicelles could not be 

supportable.  

 

 
 

Fig. 3.4. Adsorption isotherms of SDS (Γ���) and proton (Γ�) onto α-Al2O3 as a function of 

the equilibrium SDS concentration at pH 4 (a) and pH 5 (b) in 0.001 M NaCl. The points are 

experimental data while the solid lines are the results of two-step adsorption model. The above 

arrows indicate the CMC. 

 

 

 

 

Fig. 3.5. Adsorption isotherms of SDS (Γ���) and proton (Γ�) onto α-Al2O3 as a function of 

the equilibrium SDS concentration at pH 4 (a) and pH 5 (b) in 0.01 M NaCl. The points are 

experimental data while the solid lines are the results of two-step adsorption model. The above 

arrows indicate the CMC. 
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3.4.2. Surfactant adsorption isotherm using four-region model 

The adsorption isotherms of SDS onto α-Al2O3 measured at different pH and three salt 

concentrations in log–log plots are shown in Fig. 3.6. Generally, four regions can be clearly 

distinguished in the isotherm [1, 3, 6, 7, 32, 33, 35, 37, 39] as mentioned in the “Introduction” 

section. In this work, the shapes of isotherms are close to those in reported paper [28] in which 

the adsorption of ionic surfactants onto porous cellulosic fibers reveals different shapes in four 

regions.  As shown in Fig. 3.6, the first region appears in the equilibrium SDS concentration 

ranging from 10-5 to 10-4 mol/L. The slope of the plot in region I is approximately close to 

unity, corresponding a constant affinity [3].  

The region II which appears in the SDS concentration from 10-4 to 10-3 mol/L corresponds 

to the growth of aggregates (hemimicelles) already formed [28]. The slope in this region is 

less than unity because of the electrostatic repulsion between the charged SDS head groups 

and interaction of hydrophobic cores. Otherwise, the decrease in the slope of region II can be 

realized by the structure of porous metal oxides. The adsorption of SDS molecules into 

porous sites seems more difficult than adsorption on the surface sites. SDS molecules can 

adsorb onto α-Al2O3 with the head groups toward the surface and porous sites. However, the 

surfactant molecules are not enough to influence the surface charge of α-Al2O3. In regions I 

and II from pH 4 to pH 6, the higher salt concentration is, the lower adsorption density of 

SDS is. This is due to the screening of attractive electrostatic force at low surfactant 

concentration.     

With increasing the concentration of SDS, the amounts of adsorption increase significantly 

in region III [3, 28]. It can be explained by the presence of hemimicelle with head groups 

toward surface at low salt concentration or the appearance of admicelle with the head groups 

pointing toward solution at high salt concentration. The groups of Harwell [18, 19, 22] 

showed that the presence of admicelle in region III reduced the slope of adsorption isotherm 

because of a change in the sign of surface charge or from the distribution of patch adsorption 

energies. Nevertheless, the generation of local bilayer structure probably reduces contact area 

between hydrophobic tail and the surrounding water molecules in the present research [28]. 

As can be seen in Fig. 3.6, the increase of slopes of adsorption isotherm in region III is 

significant for 0.1 M NaCl, but it is not so clear for 0.001 M NaCl. The differences of these 

slopes suggest that only hemimicelles for low salt concentration and both hemimicelle and 

admicelles for 0.1 M NaCl are formed.  
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At different pH, the isotherms show a common intersection point (CIP) in which the 

electrostatic contribution to the free energy of adsorption vanishes and the salt effect 

disappears. For SDS, the adsorption decreases with increasing electrolyte concentration below 

CIP because of screening of attractive force and competition between electrolyte counter-ions 

(anions) and surfactant monomers. Above the CIP, the salt effect is reversed so that adsorption 

density at high salt concentration is enhanced due to reduced electrostatics repulsions between 

the SDS head groups [1, 3, 32]. In our experiments, the locations of CIP are in region III and 

higher than CMC of SDS in 0.1 M NaCl. It seems to be different with previous studies [3, 18, 

32, 35] in which the CIP is lower than CMC. The occurrence of CIP at high amount of SDS 

adsorption can be explained by two reasons. First, SDS was adsorbed on both surface sites 

and into the porous structures of α-Al2O3. The adsorption occurs onto the surface before the 

porous sites at very low surfactant concentration, but it can take place simultaneously onto both 

surface and porous sites at high surfactant concentration. Second, the specific property of 

dodecyl sulfate surfactant which has a small head group area (about 25 Å�) [21] could promote 

adsorption into porous sites.   

Further increase in SDS concentration leads to region IV; a maximum adsorption is 

observed (Fig. 3.6). In 0.001 and 0.01 M NaCl, the adsorption amount starts to saturate at 

solution concentrations near the CMC as seen in Ref. [52]. In 0.1 M NaCl, the maximum 

adsorption is reached at a concentration higher than the CMC. The value of CMC is decreased 

dramatically in high ionic strength, but the proton adsorption due to SDS adsorption is not 

significant. Because the proton adsorption is negligible, there is no competitive adsorption onto 

α-Al2O3 between SDS molecule and hydroxide (proton). The adsorption of SDS is not 

completed at the CMC at high ionic strength, and the adsorption density of SDS still increases 

after passing the CMC. The maximum adsorption is only obtained after passing the CIP that is 

followed by the CMC. As shown in Fig. 3.6, at high salt concentration, the plateau adsorption is 

located at high adsorption density where SDS equilibrium concentration is about 5.0×10-3 

mol/L. It is also indicated that admicelles appear on the surface of α-Al2O3 beads when SDS 

concentration in bulk solutions reaches over the CMC. 
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Fig. 3.6. Adsorption isotherm of SDS onto α-Al2O3 on log–log scales at three pH and three 

salt concentrations. CSDS is the equilibrium SDS concentration. 
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3.4.3. Structure of adsorbed layer 

When the adsorption isotherms of both SDS and proton only occur on the surface of α-

Al2O3, the structure of adsorbed layer can be examined by adsorbed amount of surfactant in the 

plateau region (�∞) and the amount of adsorbed surfactant with the head groups toward the 

surface �� that is equal to the equilibrium surface charge �� [32]. As a consequence, the amount 

of surfactant adsorbed with the head groups toward the solution �� can also be determined [37]. 

The values of calculated amounts of head groups toward the surface and toward the solution 

over CMC are presented in Table 3.3. It can be observed that �� decreases with an increase of 

pH. This amount seems too small to contribute to total adsorbed amount at pH 6 (�� < 0.01 

mmol/m2). In 0.1 M NaCl, the head-on to the surface is not significant compared with head-out 

to solution. When salt concentration increases, SDS head groups toward the α-Al2O3 surface 

decreases, but SDS head groups toward solution increases. Therefore, the values which are 

given in Table 3 can support for both admicelle and hemimicelle concepts. 

 

Table 3.3 Adsorbed amount of surfactant with head groups toward the surface (Γ1) and 

toward solution (Γ2) at the plateau adsorbed amount (Γ∞) 

C salt 
(M NaCl) 

pH 
�� 

(mmol/m2) 
 

�� 
(mmol/m2) 

 

�� 
(mmol/m2) 

0.001 4 1.20 0.70 0.50 

0.001 5 0.95 0.14 0.81 
0.001 6 0.52 < 0.01 > 0.51 

0.01 4 1.55 0.57 0.98 
0.01 5 1.10 0.13 0.97 

0.01 6 0.65 < 0.01 > 0.64 
0.1 4 1.67 0.03 1.64 

0.1 5 1.40 0.03 1.37 
0.1 6 0.77 < 0.01 > 0.76 

 

 

As mentioned in sections above, the adsorption isotherms of SDS and proton occurred onto 

both surface and porous sites of α-Al2O3. Basically, it is extremely difficult to form 

macropores in pure α-Al2O3. Nevertheless, Ayeme et al. [53] reported a several pure α-Al2O3 

crystal particles with macropores of 0.1–3.8 �m in diameter that is in good agreement with α-

Al2O3 material in our study. The average pore width of our α-Al2O3 which was determined by 

using the Barrett–Joyner–Halenda (BJH) model [54] to the N2 desorption branch of isotherm 

was about 0.11 �m. Although the pores in α-Al2O3 are difficult to be detected by N2–BET 
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(BJH) method, this result can support one explanation for adsorption behavior of SDS and 

proton into pores of α-Al2O3.  

In Fig. 3.7, the adsorption of proton expressed by �� is plotted as a function of the adsorbed 

amount of surfactant ����  at different pH and salt concentrations. In 0.001 and 0.01 M NaCl, 

the slopes of all isotherm curves still increase after passing the CIP, which are located at SDS 

adsorption density around 0.8 and 1.1 mmol/m2 for pH 5 and pH 4, respectively. It suggests 

that beyond the CIP the surfactant molecules keep their head groups toward the surface of α-

Al2O3. The change in proton adsorption still occurs beyond the CIP, demonstrating that the 

head-on is not completed at the CIP. In addition, the adsorption of SDS and proton could be 

described well by the two-step model with almost same fit parameters (only small difference in 

aggregation number), indicating that adsorbing SDS molecules adsorbed protons. In other 

words, all SDS molecules have their head groups close to the surface than to the solution. 

Figure 3.8a shows a cartoon representation for SDS adsorption onto α-Al2O3 [55] at low salt 

concentrations. We support for the hemimicelle concept than admicelle concept at low salt 

concentration. These finding are in good agreement with the published paper [32] in which the 

adsorption of anionic surfactant SNBS on variable charge surface of TiO2 is presented by the 

hemimicelle concept. The presence of admicelles in these cases only appears after the CMC.  

At high salt concentration (0.1 M NaCl), SDS adsorption isotherms onto α-Al2O3 are 

predicted well by two-step adsorption model. The proton adsorption is too small to apply this 

model with the same fit parameters. The proton adsorption can be emphasized by the 

relationship between adsorption density of proton and SDS onto α-Al2O3. Nevertheless, in this 

case, the slopes of the curves are much less than unity and decrease after the CIP (not shown in 

detail).  From the results of two-step model (Table 3.2), the HMC at high ionic strength is 

higher than that at low ionic strength but surfactant molecules can form hemimicelles before 

the CIP (Fig. 3.7). The plateau adsorption is not observed near the CMC because CMC 

decreases dramatically in 0.1M NaCl. Above the CMC, admicelles can appear in region III 

when the surface charge is neutralized by adsorbed surfactant ions and micelles appear in 

solutions. The value of CMC is also smaller than the CIP. Therefore, it suggests that the CIP 

reveals the formation of local bilayer. After the CIP, the electrostatic attraction between 

charged surface and SDS head groups is negligible and only lateral hydrophobic attraction and 

the repulsions of head groups remain [37]. In Fig. 3.8b, a cartoon of the adsorbed admicelles 

of SDS onto α-Al2O3 is represented. The surfactant molecules absorbed onto both porous sites 

and surface where SDS molecules are oriented with head groups toward solution and the SDS 
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bilayer [56] on the surface of α-Al2O3 is formed. Thus, at high ionic strength, it could argue 

that admicelles are supported than hemimicelles.  

 

 

 

 

 

Fig. 3.7. Proton adsorption (Γ�) as a function of the adsorbed amount of SDS (Γ���) onto 

α-Al2O3 at pH 4 and pH 5 in 0.001 M NaCl (a) and 0.01 M NaCl (b). The arrows indicate the 

CIP. The lines are guides to the eye. 
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Fig. 3.8. Cartoon showing the adsorbed hemimicelles of SDS (a) and admicelles of SDS (b) 

onto α-Al2O3. Blue spheres represent oxygen atoms, red spheres represent aluminum atoms, 

and grey spheres represent proton. 
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3.5. Conclusions 

We have studied adsorption of SDS onto large α-Al2O3 beads with low specific surface 

area as functions of pH and NaCl concentration. The adsorption isotherms are in accordance 

with two-step and four-region models. Four regions of isotherms can be more clearly 

distinguished for 0.1 M NaCl than that at low salt concentrations due to the presence of 

admicelles at high salt concentration. With varying pH and salt concentrations, two-step 

model can reasonably represent adsorption isotherms of SDS onto α-Al2O3. At low salt 

concentrations, the proton adsorption upon SDS adsorption can be fitted by two-step model 

with almost the same parameters of surfactant adsorption. The proton adsorption amount as a 

function of SDS adsorption shows that hemimicelle concept is plausible for the case of low 

ionic strength. At high ionic strength, the increase in the proton adsorption is not significant, 

indicating that admicelles are presented rather than hemimicelles. 
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Chapter 4. Adsorption characteristics of anionic surfactant and 

anionic dye onto large α-alumina beads 

4.1. Introduction 

The treatment of wastewater is of great importance in environmental remediation. Organic 

dyes are one of the major constituents of wastewater produced from many industries related to 

textile, paint, pulp and paper, cosmetic, etc [1]. Many dye wastes are colored and extremely 

toxic [1, 2]. Various treatment techniques have been reported on the removal of dyes from 

aquatic environment [3, 4] like adsorption [5-8], photocatalytic degradation [9-11], 

electrochemical oxidation [12, 13], coagulation/ flocculation [14], biological process [15]. 

Recently, removal of ionic dyes by adsorption from aqueous solutions using surfactant 

modified solid surface has attracted intense studies [1, 4, 16-19]. The large bead particles are 

applicable to remove dyes after surface modification with surfactant adsorption [1, 20, 21]. 

Another feature is that large beads can be directly used to analyze fixed bed column for the 

study on transport phenomena [16, 18, 19, 22].   

Interfacial properties of large beads are changed after adsorption of ionic surfactant in 

aqueous solution to enhance the removal efficiency of oppositely charged dyes. Surfactant 

adsorption on the surface of solid beads can be induced by both electrostatic and hydrophobic 

interactions [23]. Nevertheless, in order to modify the surface of adsorbents for the efficient 

removal of ionic dyes, it should be assumed that ionic surfactants and ionic dyes are mainly 

adsorbed on the charged solid surface by electrostatic force [24]. Surfactants modify solid 

surface with the formation of micelles-like structure and improve the ability of 

adsorption/adsolubilization. These micelles-like structures are called hemimicelles [25-29] 

(head groups of surfactant molecules toward solid surface) and admicelles [30-32] (a local 

bilayer structure with head groups of outer surfactant toward solution). As a consequence, 

oppositely charged dyes can be efficiently sorbed at the solid-liquid interface and removed 

from aqueous solutions. Ozcan et al. [21, 33] indicated that surface of bentonite was changed 

with cationic surfactant to remove anionic dyes by the ion-exchange mechanism. Anjali Pal 

and co-workers [1, 16, 34] used anionic surfactant sodium dodecyl sulfate (SDS), to modify 

surface of alumina and chitosan hydrogel beads which can bear negatively charged surface to 

enhance adsorption of cationic dye, crystal violet, by batch and column studies.  
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Systematic investigations on the adsorption of both ionic dyes and surfactants on metal 

oxide beads become more important because of practical utility. However, adsorption 

characteristics of ionic surfactants are complex when the surface charge of solid adsorbents 

such as metal oxides is regulated upon surfactant uptake [35-38]. Also, the adsorption 

properties of ionic dyes are rather complicated due to the complex structures of adsorbed 

layers when dye molecules have a number of charged groups [2]. Thus, adsorption isotherms 

of individual ionic dyes and ionic surfactants with variably charged solid surfaces are still 

inadequate. It is preferable to study a comparative adsorption between ionic surfactants and 

ionic dyes with the similar charge (anionic or cationic) on oppositely charged surface of solid 

beads.     

Many studies focused on the individual adsorption properties of ionic surfactants and ionic 

dyes on metal oxides by combining electrokinetic and spectroscopic measurements with 

modeling [35, 39-44]. While electrokinetic measurements can provide the information about 

charging behavior of metal oxides in the absence and presence of ionic surfactants or ionic 

dyes, spectroscopic methods can show the active groups on the surface of adsorbent after 

adsorption and evaluate the adsorption capacity of surfactants or dyes. The Fourier transform 

infrared attenuated total reflection (FTIR-ATR) has been successfully used for in situ 

adsorption studies of surfactant at the solid-solution interface [43], but it is difficult to apply 

for adsorption on large beads.  

The isotherms fitted by theoretical models are useful to better understand the adsorption 

mechanism and to explain the interaction on the surface of metal oxides between ionic 

surfactants and ionic dyes. As for describing adsorption characteristics, Langmuir and 

Freundlich isotherm models are often discussed. Nevertheless, Langmuir and Freundlich 

models cannot be applied for S-shape or Langmuir-S (LS)-shape adsorption isotherms. 

Fortunately, a two-step adsorption model presented by Zhu et al. [45] could describe these 

curves. On the basis of the two-step model, a general adsorption isotherm equation can be 

derived. This equation was successfully applied to various types of surfactant adsorption 

isotherms for numerous systems [45, 46]. The general isotherm equation is not only limited to 

surfactant adsorption but also applicable for proton uptake upon surfactant adsorption [38]. 

Recently, adsorption isotherms of some kinds of polymers on ZrO2 nanoparticle [47] and onto 

cotton fiber [48] were fitted and interpreted by the general equation. The multilayer model 

which was introduced by the Brunauer-Emmett-Teller (BET), was used to describe adsorption 

isotherms of some ionic dyes [49-52]. However, the complex multilayer adsorption of ionic 

dyes fitted by the general equation has not been reported.  
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Alumina is often used as a substrate for adsorption of anionic surfactants [23, 30, 32, 53-

55] and anionic dyes [56-58]. The surface charge adjustment of alumina upon anionic 

surfactant adsorption has been recognized [30, 38], while a change in pH of aqueous solutions 

due to adsorption of anionic dyes on alumina has never been reported. The interplay between 

the pristine surface charge of alumina due to proton adsorption and the adsorption of anionic 

surfactant sodium dodecyl sulfate (SDS) is too complex to be explained within a simple 

model [42]. The adsorption of azo sulfonate dyes on alumina is controlled by bridged 

bidentate complex [39] while adsorption of cationic dye on alumina and SDS modified 

alumina is mainly promoted by electrostatic interaction, and probably by hydrophobic 

interaction [1]. The adsorption properties of SDS and azo dye onto alumina are more 

complicated when sorbents are large beads with low surface area.  

In the current study, we investigated the adsorption characteristics of anionic surfactant, 

SDS, and anionic dye, new coccine (NC), onto large α-Al2O3 beads with variably charged 

surfaces. The effect of SDS and NC adsorption on the surface charge of α-Al2O3 is 

determined by streaming potential. The adsorption mechanisms with adsorbed structures of 

SDS and NC molecules onto α-Al2O3 are proposed on the basis of adsorption isotherms 

analyzed, with the two-step adsorption model, the evaluated surface charge effect, and the 

analysis by FTIR-ATR spectra. 

4.2. Experimental 

4.2.1. Materials 

Alpha alumina beads were used as adsorbents. The specific properties and initial treated 

procedure for adsorption studies were described in chapters 3. 

Anionic surfactant sodium dodecyl sulfate (SDS, with purity higher than 95 %), and 

anionic dye new coccine (NC, with purity higher than 85%), from Wako Pure Chemical 

Industries were used as adsorbates in surfactant adsorption and dye adsorption, respectively. 

The chemical structures of SDS is shown in Fig 3.2 (in chapter 3) while NC is indicated in 

Fig. 4.1. Cationic dye methylene blue (with purity higher 98.5 %), and organic solvent 

chloroform CHCl3 (GC grade, purity higher 99 %), from Wako Pure Chemical Industries 

were used to determine concentration of SDS by colorimetric method. Ionic strength and pH 

were adjusted by the addition of NaCl (Wako Pure Chemical Industries), HCl, and NaOH 

(volumetric analysis grade, Wako Pure Chemical Industries). Other chemicals were obtained 
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from Wako. Ultra pure water, produced from Elix Advantage 5 (Millipore) with electric 

conductivity around 0.6 µS/cm, was used in preparing solutions and in all measurements.  

 

 

 

Fig. 4.1. The structure of anionic dye new coccine (NC). 

 

4.2.2. Adsorption isotherms 

The batch experiments were carried out in 100-mL Erlenmeyer flask at room temperature, 

controlled by air conditioner (22 ± 2 0C), using a depletion method. To carry out adsorption 

experiments, 0.5 g of treated α-Al2O3 was mixed with 25 mL of NaCl aqueous solutions at 

different concentrations by a shaker for 1 h.  

For NC adsorption studies, the concentration from 10-6 M to 10-3 M was desired and pH 

was adjusted to original value. The equilibrium time in dye adsorption was achieved after 3 h 

while the change in pH of all solutions during adsorption was not significant. The adsorption 

density of NC (Γ��) onto α-Al2O3 was obtained by the difference in the concentration of NC 

solutions before and after adsorption by colorimetric method. 

To study surfactant adsorption, SDS with concentrations from 10-5 M to 10-2 M was 

prepared and pH was also adjusted to original value. The adsorption density of SDS (Γ���) 

and proton adsorption (Γ�) upon surfactant adsorption onto α-Al2O3 was determined according 

to previous chapter [38]. 
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4.2.3. Colorimetric method 

The concentration of anionic dye NC was analyzed by colorimetric method at wavelength 

505 nm using an UV-vis spectrophotometer (UV-1650PC, Shimadzu) with a quartz cuvette 

with a 1-cm optical path length. The relationship between the absorbance and concentrations 

of NC by standard calibration curves in different electrolyte concentrations and pH should 

yield a straight line with a correlation coefficient of at least 0.999. Samples were diluted 

appropriately before measuring the absorbance to quantify NC concentrations by standard 

calibration curves.  

The concentration of anionic surfactant SDS was also determined by colorimetric method 

using chloroform as the organic solvent and methylene blue as cationic dye. The detail of this 

procedure was described in elsewhere [38, 59]. 

4.2.4. Potentiometric method 

Potentiometry was conducted using a Metrohm 781 pH/Ion meter, Switzerland. The pH of 

NaCl solutions used in measuring streaming potential, adsorption isotherm, and determination 

of the concentration of proton in solutions was measured by a glass combination electrode 

(Type 6.0258.010 Metrohm). Detail of this method was described in chapter 3 (section 3.2.4). 

All measurements were carried out at 22 ±  2 0C. The difference in the CMC of SDS 

determined via the conductometric and potentiometric methods did not exceed 10 % (section 

3.1 in chapter 3). The values of CMC are again listed in Table 4.1. 

 

Table 4.1 Critical micelle concentration (CMC) of SDS at 220C 

 

NaCl (M) CMC (mM) 

0 6.0 

0.001 5.5 

0.01 5.0 

0.05 2.5 

0.1 2.0 

0.2 1.0 
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4.2.5. Streaming potential measurements 

A streaming potential technique was again applied to evaluate the change in surface charge 

by charactering zeta potential of α-Al2O3 before and after adsorption of SDS and NC. The 

theory behind streaming potential and zeta potential calculation is described in the literature 

[60, 61]. Briefly, the ζ potential is related to the slope in the streaming potential versus 

pressure line using Helmholtz – Smoluchowski’s equation (HS) [60]:  

ζ =
U���

ΔP
×

ηK�

εε�
 (4.1) 

where ζ is the zeta potential (mV), U��� the difference of potential (mV), ΔP the pressure 

difference (mbar), η the viscosity of the solution (mPa.s), K� the conductivity of the solution 

(mS/cm), ε the relative dielectric constant of the liquid and ε� is the electric permittivity of 

vacuum (8.854×10-12 F/m). 

A Zeta CAD (CAD Instrument, France) was used in this study. The detail of experimental 

procedure of streaming potential with Zeta CAD was indicated in section 2.2.3 (chapter 2). 

Adsorption of SDS and NC onto α-Al2O3 was conducted with a solid-to-solution ratio of 200 

g/L in 0.01 M NaCl at pH 4.0. The adsorption isotherms were carried out at the concentration 

of 8×10-3 and 10-3 M for SDS and NC, respectively. The α-Al2O3 beads after adsorption with 

SDS or NC were separated without washing and dried in air, and then stored in dark container 

until the measurement of streaming potential. 

4.2.6. FTIR-ATR spectroscopy  

To confirm surface modification of α-Al2O3 and to examine the structures of adsorbed SDS 

and NC, Fourier transform infrared spectroscopy was taken. The infrared spectra were recorded 

on a Perkin Elmer GX FT-IR spectrometer equipped with a deuterated glycine sulphate 

(DTGS) detector. An attenuated total reflection (ATR) attachment with a micro germanium 

(Ge) crystal was used. The samples used to investigate the effect of SDS and NC adsorption 

were prepared as follows: The α-Al2O3 material (10.0 g) was equilibrated with the 

concentration of 8×10-3 M of SDS or the concentration of 10-3 M of NC in 50mL solution of 

0.01M NaCl at pH 4 according to adsorption procedure in section 4.2.2. The α-Al2O3 samples 

after adsorption with SDS or NC were separated without rising and dried in air at 70 0C, and 

then stored in dark container. The spectrum of SDS and NC powders were obtained without 

any pretreatment. All samples spectra recorded obtained at room temperature and atmospheric 

pressure at a resolution of 4 cm-1. 
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4.3. General isotherm equation 

4.3.1. Theory and modeling  

The general isotherm equation was derived by assuming that adsorption on solid-liquid 

interface occurs in two steps [45, 62]. It was originally derived to describe the adsorption of 

surfactant with hemimicelle formation. 

The general isotherm equation is  

Γ =
Γ�k�C �

1
n + k�C���� 

1 + k�C(1 + k�C���)
 (4.2) 

where Γ is amount of surfactant or dye adsorbed, Γ� is the maximum adsorption, k� and k� 

are equilibrium constants for the adsorption of monomers or first layer adsorption, and for 

clusters of n molecules (aggregation number of hemimicelle), or multilayer adsorption, 

respectively.  C denotes the concentration of free adsorbates in the bulk solution. 

For surfactant adsorption, the hemimicelle concentration (HMC) is rewritten as 

HMC = �
n − 1

n + 1
�

���
�

K
��
�  (4.3) 

and  

HMC = �
n − 2

n
�

�
���

K
��

��� (4.4) 

for S-type, and LS-type isotherms, respectively.  

In the case of new coccine adsorption, no micelle formation is expected because of its 

structure [52], but this dye might adsorb in a cooperative fashion; the cooperative structure 

can be expressed by the parameter n.  

4.3.2. Fitting procedure 

The fitting procedures were described chapter 3 (Section 3.3.2). 
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4.4. Results and discussion  

4.4.1. Streaming potential measurements 

Streaming potential was used to monitor the zeta potential at several pH values to identify 

isoelectric point (IEP) of α-Al2O3 before and after adsorption of SDS and NC. The zeta 

potential was calculated from measured streaming potential with Eq. (4.1). Figure 4.2 

indicates the ζ potential of treated α-Al2O3 as a function of pH in 0.01 M NaCl. The present 

IEP of α-Al2O3 without SDS and NC (open triangles in Fig. 4.2) which is around 6.7 [63]. 

Open square points in Fig. 4.2 show that the ζ potential of α-Al2O3 increases dramatically 

in the pH range of 4 – 9 after SDS adsorption. The residual of SDS concentration was above 

CMC and the maximum adsorption could be reached. Interestingly, the adsorption of an 

anionic surfactant SDS on a positively charged α-Al2O3 surface can induce the increase in 

zeta potential of the alumina material. The IEP of α-Al2O3 after SDS adsorption shifts to 8.7, 

indicating that after SDS adsorption, the surface charge of α-Al2O3 increases by proton 

adsorption on surface site of α-alumina. Proton binding to α-Al2O3 surface after SDS 

adsorption without washing increased the surface charge upon SDS adsorption on α-Al2O3 

[38]. In Fig. 4.3a, the schematic representation shows the change in surface charge of α-Al2O3 

before SDS adsorption, after SDS adsorption and during streaming potential measurement. 

Surfactant adsorption at low salt concentration with the head group toward the surface induces 

an increase of surface charge although admicelles can be formed after the CMC. The 

desorption of SDS molecules is possible in equilibrium step due to a outer-sphere complex 

between a sulfate group and the Al2O3 surface [64]. On one hand, proton adsorption upon SDS 

adsorption on the Al2O3 surface is remaining. As the results, the highly positively charged α-

Al2O3 surface seems to remain during the measurement of measuring streaming potential. 

On the contrary, the zeta potential of α-Al2O3 after NC adsorption (open circles in Fig. 4.2) 

decreases in the range from pH 4 to pH 9, comparing with the treated α-Al2O3. The values of 

ζ potential of α-Al2O3 decrease due to the presence of sulfonic groups of azo dye. This trend 

of ζ potential is close to literatures [24, 40, 65]. Ramesh Kumar and Teli [24] indicated that in 

the presence of anionic azo dye, CI Direct Yellow 28, the streaming potential of cotton fibers 

has become more negative than that of raw one. Bourikas et al. [40] has revealed that the 

magnitude of ζ potential of TiO2 from pH 2 to pH 8 in 0.01 M NaNO3 reduced significantly in 

the presence of anionic dye, Acid Orange 7 (AO7) in solutions. The shift of IEP of AO7/TiO2 

suspensions was over 2 pH units. In the present study, the adsorption of dye induces a small 
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shift of IEP (about 1 pH unit).  This precludes a very strong interaction of NC with the surface 

of α-Al2O3. In other word, the inner-sphere complex between sulfonic groups and α-Al2O3 

surface is not formed. Figure 4.3b shows the illustration of α-Al2O3 before and after NC 

adsorption, at equilibrium and during streaming potential measurement. It shows that the α-

Al2O3 becomes less positively charged surface after NC adsorption although NC can be partly 

desorbed in the equilibrium process of streaming potential measurements. Therefore, the 

adsorption of NC still makes the decrease in surface charge of α-Al2O3. 

 

 

 

 

 

Fig. 4.2. The ζ potential of α-Al2O3 without adsorption (open triangles) and after SDS 

adsorption (open squares) and after NC adsorption (open circles) as the function of pH in 0.01 M 

NaCl. 
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Fig. 4.3. Schematic representations show the change in surface charge of α-Al2O3 with the 

different effect of SDS (a) and NC (b) before adsorption, after adsorption and during 

streaming potential measurements. 
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4.4.2. Ex situ FTIR-ATR spectra  

The Fourier transform infrared (FTIR) is often used to characterize active groups in the 

adsorption. FTIR combined with attenuated total reflection for in situ of surface has become 

one of the powerful tool to explore the solid-liquid interface [66]. The in situ FTIR-ATR was 

used to investigate the surface excess and molecular orientation of SDS adsorbed at Al2O3/ 

water interface [43]. Nevertheless, in situ technique is not applicable for large particles with 

small surface area such as α-Al2O3 beads in our experiments. Thus, the ex situ FTIR-ATR 

spectra of α-Al2O3 beads without adsorption and after adsorption of SDS (Al2O3-SDS ), and 

NC (Al2O3-NC) have been assigned in the wavenumber range of 1000 – 2200 cm-1 are shown 

in Fig. 4.4. The FTIR-ATR spectra of SDS and NC powders which have been recorded from 

400 cm-1 to 4000 cm-1 are given in Fig. 4.5.    

In Fig. 4.4, the spectra of Al2O3-SDS presents a large band near 1618 cm-1 that 

corresponds to the bending vibrations of adsorbed water molecular [67]. This band is much 

stronger than that of Al2O3, indicating that the existence of larger amount of adsorbed water 

upon SDS adsorption. A weak peak of Al2O3-SDS at 1470 cm-1 is assigned to the alkyl 

bending modes of SDS molecules [68]. The asymmetrical deformation vibration of CH3 at 

1468 cm-1 can be seen in the FTIR spectra of SDS powder (Fig. 4.5) that is very close to the 

peak of 1470 cm-1 found in spectra of pristine SDS [67]. From the curve of Al2O3-SDS 

compared with the curve of SDS in the wavenumber range of 400 – 4000 cm-1, the relative 

intensity of asymmetrical and symmetrical stretching of –CH2– are represented at about 2919 

and 2850 cm-1 decreases dramatically (not shown in detail). These results suggest that the 

hydrophobic interaction between hydrocarbon chains can work on the surface of α-Al2O3. The 

adsorption of SDS onto α-Al2O3 was conducted at higher concentration than CMC so that 

admicelle (local bilayer formation) could be formed after the formation of hemimicelle. The 

characteristic peak of SO4
2-

 at about 1219 cm-1 [43, 67, 68] of Al2O3-SDS is similar to this 

peak of Al2O3 (Fig. 4.4) while this peak of SDS powder appears strongly in Fig. 4.5. In 

addition, Del Nero et al. [69] indicated that  the band appeared at around 1216 cm-1 due to the 

FTIR-ATR spectra of pure α-Al2O3 coating deposited on Ge crystal in 0.01 M NaCl at pH 3.3. 

It is demonstrated that SDS with the sulfate head groups contact to the surface of α-Al2O3 via 

the electrostatic attraction. The results of FTIR-ATR spectra of α-Al2O3 after SDS adsorption 

compared with others of SDS powder and α-Al2O3 beads suggest that SDS molecules mainly 

adsorb on the surface of α-Al2O3 by electrostatic attraction as well as probably by 

hydrophobic interaction.  
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In Fig. 4.4, the large band at around 1612 cm-1 appeared in the spectra of Al2O3-NC. But 

the magnitude of this band is similar to another one of Al2O3 beads, demonstrating that 

increased amount of adsorbed water upon NC adsorption is not significant. The spectra of NC 

powder in Fig. 4.5 indicated that the bands at 1423, 1491, 1570 and 1632 cm-1 were assigned 

to C = C of naphthalene rings or phenyl ring vibration with stretching of the C = N group that 

corresponded to active groups of azo dye. These bands are in good agreement with the spectra 

of NC [70]. The appearance and the shifts of the bands were also seen in Fig. 4.4 with 

wavenumber of 1407, 1514, 1550 cm-1 appeared in the spectra of Al2O3-NC. Thus, the 

hydrophobic groups cannot contact the hydrophilic surface of alumina. It should be noted that 

the strong bands at 1193 and 1047 cm-1 corresponded to the vibrations of the O – S – (O2) 

group [39, 40] of NC molecules (Fig. 4.5) disappeared in the spectra of Al2O3-NC (Fig. 4.4). 

This result suggests the adsorption of NC molecules on the alumina surface via two oxygen 

atoms of sulfonic group of the azo dye [39, 40]. The FTIR-ATR spectra of α-Al2O3 after 

adsorption of NC imply that the surface of α-Al2O3 is modified by adsorbed NC molecules via 

sulfonic groups. Therefore, we support that NC molecules mainly adsorb on the surface of α-

Al2O3 by electrostatic attraction.   
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Fig. 4.4. Ex situ FTIR-ATR spectra for α-Al2O3 without adsorption and after SDS 

adsorption and after NC adsorption.  
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Fig. 4.5. FTIR-ATR spectra of SDS and NC powders in the wavenumber range of 400 – 

4000 cm-1 
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4.4.3. Adsorption isotherms discussed by two-step model 

4.4.3.1. Surface charge and surfactant isotherms  

The effect of pH and ionic strength on SDS adsorption to α-Al2O3 surface is well known 

and demonstrated in the isotherms. As shown in Fig. 4.6, the calculated curves by two-step 

adsorption model at different pH and ionic strength (solid lines) can reasonably represent 

experimental data by using the parameters in Table 4.2. From the fitting procedure (see 

section 3.3.2), the values of nSDS are chosen about 10. As shown in Fig. 4.6, the adsorption 

density of SDS onto α-Al2O3 reaches constant around the CMC in different pH, except for 

high ionic strength. In 0.1 M NaCl, the plateau adsorption is not observed near the CMC. 

These trends are in good agreement with previously published papers [30, 53, 71]. The 

increase of adsorbed amount with surfactant concentration after the CMC in 0.1 M NaCl can 

be explained by the dramatic decrease of CMC in high ionic strength [35] (see CMC of SDS 

in Table 4.1). The micellization takes place in bulk solution at low surfactant concentration in 

high ionic strength because of the decrease in the thickness of ionic surrounding surfactant 

head groups [23]. As the result, an increase in concentration of surfactant probably promote 

the adsorption due to the presence of hemicelles or/ and admicelles [72] on the surface of α-

Al2O3 . 

 

 

 

 

Table 4.2. The fit parameters for SDS adsorption, which are maximum adsorbed amount 

Γ�,��� , the equilibrium constants k1,SDS and k2,SDS for first step and second step, respectively, 

nSDS the aggregation number of hemimicelle and HMC the hemimicelle concentration. 

 

C salt 
(M NaCl) 

pH 
 

�∞,��� 
(mmol/m2) 

k1,SDS 

 (m
2/mmol) 

k2,SDS 

 (m
2/mmol)n-1 

nSDS 
HMC (mM) 
(Eq. (4.3)) 

HMC (mM) 
(Eq. (4.4)) 

 

0.001 4 1.20 6×103 1×1024 9.8 1.17 1.45 
0.001 5 0.95 6×103 6×1023 9.8 1.23 1.54 
0.001 6 0.52 6 ×103 5×1023 9.8 1.25 1.57 
0.01 4 1.55 4×103 8×1023 9.8 1.25 1.49 

0.01 5 1.10 4×103 7×1023 9.8 1.26 1.51 
0.01 6 0.65 4×103 6×1023 9.9 1.37 2.66 

0.1 4 1.67 1×103 6×1022 10.1 2.25 2.46 
0.1 5 1.40 1×103 5×1022 10.1 2.29 2.51 

0.1 6 0.77 1×103 4×1022 10.1 2.35 2.57 
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Fig. 4.6. Adsorption isotherms of SDS onto α-Al2O3 at pH 4 (a), pH 5 (b), pH 6 (c), and 

three salt concentrations as a function of the equilibrium SDS concentration. While the points 

are experimental data, the solid lines are the results of two-step adsorption model. 
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Figure 4.6 and Table 4.2 show the salt effect and its relation to two steps of isotherms. The 

values of k1,SDS can be kept as constant and equal to 6×103, 4×103 and 103 for 0.001 M, 0.01 

M and 0.1 M NaCl, respectively. Higher k1,SDS values are observed for the lower electrolyte 

concentration in which the higher adsorption density in the first step is obtained. Adsorption 

density at low SDS concentration decreases with increasing salt concentration because the 

electrostatic attraction between the negatively charged SDS head groups and positively 

charged surface sites is screened by increasing salt concentrations. Nevertheless, an increase 

of SDS concentration in solutions induces the reversed effect of salt so that the adsorption 

decreases with increasing electrolyte concentration due to screening of repulsive force between 

negatively charged DS- ions. The isotherms show a common intersection point (CIP) at which 

the electrostatic contribution to the free energy of adsorption vanishes and the salt effect 

disappears. The CIP is obtained more clearly in the isotherms at log – log scale than linear – 

linear scale [35, 37, 41]. According to the results of previous work [38], we show here the 

positions of CIP in the linear – linear scale to demonstrate the different effect of ionic strength 

in surfactant adsorption compared with the adsorption of anionic azo dye shown in the next 

section. Above the CIP, adsorption density at high salt concentration is enhanced due to the 

reduced electrostatic repulsion between the SDS head groups. The isotherms show the CIP 

which is probably due to the surface charge adjustment upon surfactant adsorption and the 

effect of hydrophobic interaction between chains in surfactant adsorption above the HMC.  

Figure 4.6 shows that the adsorption density is highly affected by pH of solutions at the 

same salt concentration. The maximum adsorption density decreases with increasing pH due 

to the difference in equilibrium surface charge isotherms. The surface charge changes more 

significantly in low salt concentrations and low pH values. The charge adjustment at pH 4 and 

pH 5 shown in Figs. 4.7 and 4.8 demonstrates that the proton adsorption (��) upon SDS 

uptake (���� ) increases with increasing the concentration of SDS. The change in surface 

charge increases significantly in the region ranging from HMC to CMC. The plateau 

adsorption density of proton is observed at the maximum of SDS adsorption. At pH 6, it is 

extremely difficult to evaluate the change in surface charge (data not shown) because of very 

low proton concentration in solutions. Also, at high salt concentration (0.1 M NaCl), this 

change is negligible. As can be seen in Table 4.2 and Fig. 4.6, when the change of surface 

charge is significant, the HMC is much lower (higher k2,SDS) because charge adjustment 

probably enhances the formation of hemimicelles. 
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In order to study the surface charge effect in more detail, the experiments were conducted at 

pH 4 and pH 5 in 0.001 and 0.01 M NaCl. In Figs. 4.7 and 4.8, the points are experimental data 

while the solid lines are the results of two-step adsorption model for adsorption isotherms both 

of SDS and proton. From Figs. 4.7 and 4.8, the two-step adsorption model can represent proton 

adsorption as well as SDS adsorption. Another outstanding feature is that we are able to use 

almost the same fitting parameters (k1,SDS and k2,SDS) of two-step model for SDS adsorption onto 

α-Al2O3 to describe adsorption of proton upon surfactant uptake. The values of aggregation 

number for proton adsorption (n = 10. 6 for pH 4, and n = 10.8 for pH 5) are slightly higher than 

those of the hemimicelle (nSDS ≈ 10). The adsorption amount of proton due to adsorbing SDS 

molecules is much smaller below the HMC than above the HMC. Also, the maximum 

adsorption density of both SDS and proton has been reached around the CMC. 

At low salt concentrations, the amount of proton adsorption is smaller than that for surfactant 

but the proton uptake or the change in surface charge seems to be significant. The charge 

adjustment is in good agreement with the results of streaming potential of α-Al2O3 after SDS 

adsorption (section 4.4.1). The screening by SDS molecules is important to induce the proton 

adsorption. The effect of initial pH in proton adsorption is only significant when surfactant 

molecules adsorb with head groups toward the surface. Conversely, if their head groups of 

surfactants are toward solution, the influence on the change of surface charge is negligible. In 

addition, the net charge at the surface site of the bilayer is very low and the screening of any 

remaining net charge in hydrophobic core is not significant [35]. These findings indicate that 

the adsorption isotherms of SDS onto α-Al2O3 at low ionic strength are in accordance with the 

hemimicelle concept. At high salt concentration, the adsorption isotherms of SDS onto α-Al2O3 

at different pH were fitted well by two-step model but the adsorption of proton was very small 

so that only the hemimicelles could not be supportable.  
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Fig. 4.7. Adsorption isotherms of SDS (Γ���) and proton (Γ�) onto α-Al2O3 as a function of 

the equilibrium SDS concentration at pH 4 (a) and pH 5 (b) in 0.001 M NaCl. The points are 

experimental data while the solid lines are the results of two-step adsorption model. The 

above arrows indicate the CMC. 

 

 

 

 

 

Fig. 4.8. Adsorption isotherms of SDS (Γ���) and proton (Γ�) onto α-Al2O3 as a function of 

the equilibrium SDS concentration at pH 4 (a) and pH 5 (b) in 0.01 M NaCl. The points are 

experimental data while the solid lines are the results of two-step adsorption model. The 

above arrows indicate the CMC. 
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Adsorption isotherms of NC onto large α-Al2O3 beads with positively charged surface 

carried out at several pH values and three salt concentrations are shown in Fig. 4.9. The 

influence of ionic strength is clearly observed at a given pH value. The NC adsorption density 

decreases with increasing ionic strength that is close to the result of NC adsorption onto 

positively charged sludge particulates at pH < 3 [52]. The increase in salt concentration 

increases the number of anions (counter ions) on the positively charged surface of α-Al2O3 

beads, reducing the electrostatics effect of α-Al2O3 surface to dye molecules. In other words, 

the electrostatic attraction between the negative charge of sulfonic groups of NC dye and 

positively charged surface is screened by increasing salt concentrations. These trends are 

similar to the adsorption of SDS below the CIP. However, for dye adsorption, this effect of 

salt remains from low to high equilibrium concentration of dye so that the CIP is not observed 

at different pH values. As seen from the isotherms in Fig. 4.9, at different pH and ionic 

strength, the experimental results were fitted well by general isotherm equation Eq. (4.2) with 

the fit parameters in Table 4.3.  

 Tables 4.2 and 4.3 show that the maximum adsorption density of NC (�∞,��) is much 

lower than one of SDS (�∞,���) at the same conditions although molecular weight of NC is 

about 2 times higher than molecular weight of SDS. For SDS adsorption, the micelles are 

formed with aggregation numbers of hemimicelle (nSDS≈ 10) that are about 5 times higher 

than nNC (nNC ≈ 2) for NC adsorption. It can also be observed that the values of k1,NC and 

k1,SDS are not very different while the values of k2,SDS are greatly higher than k2,NC (1019 to 1020 

times). These results reveal that micellization of NC cannot occur on the surface of α-Al2O3 as 

well as on sludge particulates [52]. As shown in Table 4.3, increasing ionic strength induces a 

decrease in k1,NC except for 0.1M NaCl while a change in k2,NC is not significant (k2,NC ≈ 

8.0×103 m2/mmol). The monolayer adsorption in the case of NC adsorption is influenced by 

ionic strength but the multilayer adsorption is not affected by ionic strength. Wang et al. [52] 

indicated that adsorption of NC onto sludge particulates at different pH and ionic strength 

probably followed multilayer isotherm. In the paper [52], although the values of k1,NC and 

k2,NC are different from our results (k1,NC is higher than k2,NC), the influence of ionic strength 

on isotherms seems to be similar to ours. Adsorption of NC onto sludge particles with high 

surface area reaches equilibrium very fast (about 30 minutes). On the other hand, NC 

adsorption onto large α-Al2O3 beads with small surface area takes long equilibrium time (after 

4.4.3.2. Dye adsorption isotherms 
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180 minutes: not shown in detail). It implies that the specific surface area could promote 

equilibrium process of NC adsorption onto solid surface.  

Figure 4.9 and Table 4.3 also show that dye adsorption density is strongly dependent on pH 

and the equilibrium concentration of dye in solutions at a given ionic strength. Adsorption 

amount of NC onto α-Al2O3 beads increases with decreasing pH. The PZC of α-Al2O3 is about 

6.7 and the decrease of pH induces an increase in the positive charge on surface of α-Al2O3. 

Since the NC dye is negatively charged, the attractive force between anionic dye and positively 

charged surface α-Al2O3 will be enhanced with a decrease in pH. These trends are similar to 

adsorption of anionic dyes on positively charged metal oxides surface. Adsorption density of 

azo dyes with sulfonic group on metal oxide surfaces is reported [39, 40] in which adsorption 

density decreases with increasing solution pH and become negligible for pH values higher than 

PZC. Furthermore, the change of pH upon NC adsorption is negligible or proton adsorption is 

not significant, meaning that the surface charge of α-Al2O3 is only affected by adsorbed 

amount of NC. Thus, the IEP of α-Al2O3 shifts to the lower pH after NC adsorption (see section 

4.4.1).  

The results of adsorption isotherms of anionic azo dye onto α-Al2O3 indicated above are in 

good agreement with our electrokinetic and spectroscopic data as well as the results of previous 

researches [39, 40]. Nevertheless, the influence of ionic strength to adsorption of azo dyes on 

the metal oxides by experiment and modeling was not shown in published papers [39, 40]. On 

one hand, the effects of pH and ionic strength to the adsorption of trivalent sulfonic dye, NC 

onto  α-Al2O3 in our study are close to the results of Wang et al.[52] who studied adsorption of 

NC onto sludge particulates. However, in the paper [52], the electrokinetic and spectroscopic 

data and structure of adsorbed NC have not reported. In current study, we succeeded to relate 

the electrokinetic and spectroscopic information with adsorption isotherms by two-step model 

to propose the structure of adsorbed NC onto α-Al2O3.  
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Table 4.3. The fit parameters for NC adsorption, which are maximum adsorbed amount 

Γ∞,�� , the equilibrium constants k1,NC and k2,NC for first layer adsorption and multilayer 

adsorption, respectively, nNC the aggregation number of NC molecules 

 

C salt 
(M NaCl) 

pH 
 

�∞,�� 
(mmol/m2) 

k1,NC 

 (m
2/mmol) 

k2,NC 

 (m
2/mmol)n-1 

nNC 

0.001 4 0.42 2.0×103 8.0×103 2 
0.001 5 0.35 1.9×103 8.0×103 2 
0.001 6 0.30 1.6×103 8.0×103 2 
0.01 4 0.35 1.2×103 1.0×104 2 
0.01 5 0.27 1.0×103 8.0×103 2 
0.01 6 0.20 0.6×103 8.0×103 1.9 
0.1 4 0.27 1.2×103 8.0×103 2 
0.1 5 0.16 1.0 ×103 8.0×103 2 
0.1 6 0.13 0.6×103 8.0×103 1.9 
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Fig. 4.9. Adsorption isotherms of NC onto α-Al2O3 at pH 4 (a), pH 5 (b), pH 6 (c), and 

three salt concentrations. The points are experimental data while the solid lines are the results 

of two-step adsorption model. 
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4.4.4. Structures of adsorbed SDS and NC onto α-Al2O3 

Anionic surfactant, SDS and anionic dye, NC after adsorption caused the opposite effect in 

surface charge of α-Al2O3 beads that was demonstrated by streaming potential. FTIR-ATR 

indicated the presence and absence of different functional groups on the surface of α-Al2O3 

after adsorption of SDS and NC. The streaming potential and FTIR-ATR combined with 

adsorption isotherms can provide the information about structures of adsorbed surfactant and 

dye onto α-Al2O3. Let us discuss the structures of adsorbed SDS and NC on the surface sites of 

α-Al2O3 beads in more detail.    

The structure of adsorbed layer of ionic surfactant onto metal oxides could be dependent on 

ionic strength. Therefore, it was emphasized by evaluating the change in surface charge upon 

surfactant adsorption [35, 36, 38]. Surface charge adjustment is one important factor 

contributing the presence of common intersection point (CIP). Adsorption of anionic 

surfactant SDS induces an increase in the surface charge of α-Al2O3 because at low salt 

concentration the presence of hemimicelle with head groups toward surface can screen surface 

charge. This change in surface charge, which was evaluated by streaming potential (section 

4.4.1), agreed well with the result of proton uptake upon surfactant adsorption by depletion 

method. It suggests that beyond the CIP the surfactant molecules keep their head groups 

toward the surface of α-Al2O3 at low salt concentration. The change in proton adsorption still 

occurs beyond the CIP, demonstrating the head-on is not completed at the CIP. In addition, the 

adsorption of SDS and proton could be described well by the two-step model with almost the 

same fit parameters (only small difference in aggregation number), indicating that adsorbing 

SDS molecules adsorbed protons. In other words, all SDS molecules have their head groups 

close to the surface than to the solution at low salt concentrations. Figure 4.10a shows a cartoon 

representation for SDS adsorption onto α-Al2O3 [73] in the presence of hemimicelles at low 

salt concentrations. Although the FTIR-ATR spectra of α-Al2O3 after SDS adsorption at 0.01M 

NaCl (pH 4) indicated that the alkyl bending groups probably appeared, admicelles could only 

occur after CMC. We support for the hemimicelle concept than admicelle concept at low salt 

concentrations below CMC.   

At high salt concentration (0.1 M NaCl), proton adsorption is too small to be recognized. 

From the results of the two-step model (Table 4.2), the HMC at high ionic strength is higher 

than that at low ionic strength but surfactant molecules can form hemimicelles before CIP. The 

plateau adsorption is not observed near the CMC because the CMC decreases dramatically in 

0.1 M NaCl. Above the CMC, admicelles probably appear on the surface when the surface 
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charge is neutralized by adsorbed surfactant ions and micelles appear in solutions. The value 

of CMC is also smaller than CIP. Therefore, it suggests that the CIP reveals the formation of 

local bilayer. After CIP, the electrostatic attraction between charged surface and SDS head 

groups is negligible and only lateral hydrophobic attraction and the repulsions between head 

groups remain [36]. In Fig. 4.10b, a cartoon of the adsorbed admicelles of SDS onto α-Al2O3 is 

represented. The surfactant molecules absorbed onto α-Al2O3 where SDS molecules are 

oriented with head groups toward solution and the SDS bilayer [74] on the surface of α-Al2O3 is 

formed. Thus, at high ionic strength, it could argue that admicelles are supported than 

hemimicelles.       

The two-step model was established to describe the NC adsorption onto α-Al2O3, suggesting 

that dye adsorption could occur with cooperative manner. Adsorption of NC decreases with 

increasing pH due to a decrease of positive surface charge. The change in pH during NC 

adsorption was not observed so that the net charge of α-Al2O3 is strongly dependent on the 

amount of NC adsorption. A small decrease of surface charge or small reduction of zeta 

potential was obtained by streaming potential, in accordant with low adsorption amount of NC, 

compared with SDS adsorption. We confirmed that adsorption of NC onto α-Al2O3 surface 

occurs via only one sulfonic group of azo dye. It was supported by the results of ex situ FTIR-

ATR spectra as well as the adsorption isotherms. These results suggest that the adsorption of 

NC onto α-Al2O3 is mainly controlled by the electrostatic attraction between positively charged 

surface α-Al2O3 and negatively charged sulfonic group. In this case, the formation of a bridged 

bidentate complex can be formed [39] irrespective of salt concentrations. However, the 

formation of a bidentate inner sphere surface complex is not supported as the cases of 

adsorption of anionic dye Acid Orange 7 on the TiO2 [40] or adsorption of azo dye Orange G on 

α-Fe2O3 [39] because NC is easily desorbed in equilibrium and measuring processes of 

streaming potential (section 4.4.1). In streaming potential measurement, the desorption of NC 

can be recognized from color change of α-Al2O3 beads packed in a glass column. Also, the NC 

desorption took place quickly at high salt concentration and high pH by batch experiment (not 

shown in detail).  

The adsorption of NC was probably influenced by the positions of sulfonic group. In this 

research, we suggest that only one sulfonic group on the naphthalene ring without hydroxyl 

group favors the dye adsorption of NC while two sulfonic groups on another naphthalene ring 

do not contribute for adsorption. Figure 4.11 shows a cartoon representation of the adsorbed 

structure of NC onto α-Al2O3. In Fig. 4.11, a NC molecule adsorbed onto α-Al2O3 via the 

sulfonic group of the dye, forming a bridge bidentate complex between two aluminum ions 
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and the surface oxygens. It is close to the results of Bourikas et al. [40], who proposed the 

similar structure of the adsorbed AO7. The lower adsorption amount of NC onto α-Al2O3 can 

also be explained by a crystalline face and a metal – metal distance rather than specific 

surface area although the surface area seems to be an important factor to control adsorption. 

In the paper [39], the same reason was found to demonstrate a higher adsorption of anionic 

azo dye Orange II on α-Fe2O3 than TiO2 and Al2O3 oxides. 

 

 

 

 

 

 

 
 

 
 
 
 
 

 

 

 

Fig. 4.10. Cartoon showing the adsorbed hemimicelles of SDS (a) and admicelles of SDS (b) 

onto α-Al2O3. Blue spheres represent oxygen atoms, red spheres represent aluminum atoms 

and grey spheres represent proton. 

 

 

 

 

SDS  

Low salt concentration 

(a) 

Proton 

α-Al2O3 

(b) 

High salt concentration 



Chapter 4. Adsorption characteristics of anionic surfactant and anionic dye 

 

101 
 

 

 

 

 

 

 

 
 
 

 

 

Fig. 4.11. Cartoon representation of structure of the adsorbed NC onto α-Al2O3. Two 

oxygen atoms of the sulfonic group on naphthalene ring favor the adsorption of NC dye by 

the bridged bidentate complex. 
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4.5. Conclusions 

We have analyzed adsorption properties of anionic surfactant, SDS and anionic dye, NC 

onto α-alumina with large size in this chapter. Streaming potential indicated that the IEP of α-

Al2O3 increases after SDS adsorption due to additional proton adsorption while the IEP shifts 

to the lower pH after adsorption of NC because of the adsorption of negatively charged 

sulfonic group of the dye. FTIR-ATR confirmed the presence and absence of different active 

groups of SDS and NC on the surface of α-Al2O3. The two-step adsorption model was 

successfully applied to represent the experimental results of both SDS and NC adsorption 

isotherms onto α-Al2O3. The calculated curves from two-step model for proton adsorption 

isotherms at low salt concentrations upon surfactant adsorption can also be fitted well, while a 

change in pH of solutions upon NC adsorption is not observed. Adsorption density of SDS 

and NC increases with decreasing pH due to an increase in initial positive surface charge of α-

Al2O3. At a given pH value, the adsorption of SDS below the CIP and NC adsorption decrease 

with an increase of salt concentration. The salt effect is reversed above the CIP for surfactant 

adsorption. That is, the adsorption isotherms of SDS and NC are different. Adsorption of SDS 

is induced by the presence of hemimicelles and admicelles at the α-Al2O3/ water interface. 

Adsorption of NC is affected by the formation of a bridged bidentate complex between two 

oxygen ions of only one sulfonic group on the naphthalene ring and the surface of α-Al2O3, 

resulting in that adsorption density of surfactant is much higher than that of dye. 
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Chapter 5. Adsorption characteristics of poly(styrenesulfonate) 

onto large α-alumina beads 

5.1. Introduction 

Removal organic pollutant is important for water treatment in environmental engineering. 

Among numerous treatment techniques for organic pollutants from water, adsorption is one of 

the most commonly used technology that can be applicable for developing countries by using 

cheap adsorbents [1-3]. Recently, the removal of organic contaminants by adsorption from 

aqueous solutions using solid surface modified with ionic surfactant or polymers 

(polyelectrolyte) has attracted intense studies [4-18]. So far, ionic surfactants [4, 14, 19] and 

polyelectrolyte [20-22] are used to modify large beads or combined clay particles with silica 

sand to enhance the removal efficiency of organic contaminants. The higher performance for 

removal organic substances is obtained when ionic surfactants are used combined with 

polyelectrolyte [11, 23, 24]. In these systems, the binding of micelle and charged surface via 

polyelectrolyte is achieved in order to get immobilized surfactant with the goal of removing 

organic pollutants from an aqueous phase [8, 11, 23].    

The modifications process of solid surface of adsorbents with ionic surfactant and 

polyelectrolyte are complicated especially when the adsorption of adsorbates also changes the 

interfacial properties. Polyelectrolyte is mainly adsorbed on the solid surface by electrostatic 

attraction between highly charged of polyelectrolyte and oppositely charged solid surface or 

probably by non-electrostatic interaction [10]. Polyelectrolyte was used as potential sacrificial 

agents because of their tendency to irreversibly adsorb onto charged metal oxide due to large 

number of adsorption site on each polymer molecule [25]. For ionic surfactant, solid surface 

can be changed by not only electrostatic attraction between the oppositely charged 

hydrophilic components but also hydrophobic interaction between the tails of surfactant 

molecules. As the results of surfactant adsorption, hemimicelles [26-32] (head groups of 

surfactants molecules toward solid surface) or admicelles [33-35] (a local bilayer structure 

with head groups of surfactant toward solution) can be formed at solid-liquid interface while 

an increase of concentration of surfactant to the critical micelle concentration (CMC) in the 

bulk solution gives rise to the micellization of surfactants. The existence of different kinds of 

micelles with large aggregation number of ionic surfactant molecules can modify solid 

surface and thus improve the removal performance of ionic contaminants. 
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Many studies focused on adsorption of both surfactants and polyelectrolyte on metal 

oxides [36-39]. The adsorption of surfactants and polymers were carried out individually or as 

mixtures (simultaneous or sequential adsorptions). In general, adsorption of surfactants and 

polymers in aqueous media can be additive, cooperative or competitive [40]. Esumi et al. [41] 

reported the adsorption of poly(styrenesulfonate) (PSS) with anionic surfactant sodium 

dodecyl sulfate (SDS) and cationic surfactant hexadecyltrimethylammonium chloride 

(HTCA) from their binary mixture on positively charged surface of α-Al2O3. As the results, 

adsorbed amounts of PSS decreased with increasing SDS concentration due to stronger 

adsorption of SDS while in the PSS-HTAC system adsorption of PSS was enhanced due to 

the formation of a complex of PSS-HTAC. The effect of order of addition of ionic surfactants 

was intensely studied by this work. In addition, the adsorption of PSS of different molecular 

weights on α-Al2O3 was studied by Blokhus and Djurhuus [42]. The adsorption of PSS was 

found to increase with increasing ionic strength and the adsorption density of PSS was higher 

for higher molecular weight than for the lower ones. Blokhus and Djurhuus [42] also 

investigated the effect of added SDS and found that SDS preferentially adsorbed from both 

simultaneous and sequential adsorptions so that in all case SDS displaced pre-adsorbed PSS 

from the solid surface. Very recent study [43] demonstrated that the presence of PSS and 

PDADMAC (polydiallyldimethylammonium chloride) effectively prevented different 

surfactants adsorption on alumina and silica with large surface area by blocking charged 

adsorption sites. Only PSS appears to irreversibly adsorb onto metal oxides surface because of 

multisite adsorption and kinetic limitations while the adsorption of surfactant is almost 

completely prevented at the concentration higher than CMC. 

As mentioned above, polyanion PSS was chosen in various studies for co-adsorption with 

surfactant because it has a high charge density statistically distributed along the backbone of 

polymer and the benzenesulfonate groups that are strong ultraviolet (UV) chromophores [44]. 

The individual adsorption of PSS and surfactants or mixture adsorption on metal oxide have 

been addressed through different measurements of adsorption density, zeta potential, 

fluorescence spectrophotometry, electro spin resonance (ESR) and attenuated total reflection 

techniques with ultraviolet or infrared spectroscopy [41-44]. Furthermore, Wolterink at el. 

[45] indicated that the charge regulation of metal oxide upon adsorption of strong electrolyte 

was obtained theoretically and experimentally. The self consistent field (SCF) calculation 

showed the large effect of pH and the small effect of the salt concentration on the adsorbed 

amount while the proton co-adsorption was dependent on both pH and salt concentration. 

However, the measured adsorption isotherms of PSS on hematite did not show a high affinity 
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character as inferred by theoretical calculations because of fast flocculation and non-

equilibrium polymer conformation. The effect of salt concentrations and the influence of 

added ionic surfactant have not been investigated experimentally in the paper [45]. It is 

preferable to make a study using relatively large metal oxide beads which are free from 

flocculation and can be directly used to analysis of transport phenomena of polymer, 

surfactant and pollutant. 

In this chapter, the results of adsorption isotherms of PSS onto large α-Al2O3 beads with 

variably charged surfaces are reported. The adsorption isotherms of PSS with different 

molecular weight onto α-Al2O3 as functions of pH and salt concentration are fitted by general 

isotherm equation [46] which was introduced in chapters 3 and 4.  The effect in the presence 

of SDS to the adsorption of PSS will also be investigated. The structures of adsorbed PSS of 

different molecular weights at low and high salt concentrations onto α-Al2O3 are proposed 

based on the adsorption isotherms and the effect of charge regulation. 

5.2. Experimental 

5.2.1. Materials 

Alpha alumina beads were used as sorbents. The specific properties and initial treated 

procedure for adsorption studies were described in chapters 3 and 4. 

Sodium poly(styrene sulfonate), PSS with a molecular weight (Mw) of 70 and 1000 

kg/mol was delivered from Aldrich Chemical Co, Inc, with a degree of polymerization of 340 

and 4850, respectively. The structure of PSS is given in Fig. 5.1. Other chemicals used in this 

study were obtained from Wako Pure Chemical Industries. Ultra pure water, produced from 

Elix Advantage 5 (Millipore) with electric conductivity around 0.6 µS/cm, was used in 

preparing solutions and in all measurements.  
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Fig. 5.1. The schematic representation of structure of poly(styrene sulfonate), PSS. 

 

5.2.2. Adsorption isotherms 

Adsorption isotherms of PSS onto α-Al2O3 were carried out using a depletion method in 

100 mL Erlenmeyer flask at room temperature, controlled by air conditioner (22 ± 2 0C). For 

each adsorption experiment, 0.5 g of treated α-Al2O3 was mixed with 25 mL of NaCl aqueous 

solutions at different concentrations by a shaker for 1 h. Then, PSS with concentrations from 

0.05 to 0.6 mg/mL was prepared and pH was adjusted to original value. After mixing alumina 

and PSS and shaking for 3 h, the pH was measured again and if necessary, readjusted by 0.01 

or 0.1 M HCl, and 0.1 M NaOH using a Socorex Acura 825 micro pipette with minimum 

volume of 1 ��. The samples were equilibrated for more than 12 h with vigorous shaking. 

Then, the pH was checked and, if necessary, readjusted again. This procedure was repeated 

until no further changes in pH were attained. When equilibrium process was achieved, the α-

Al2O3 was separated from the solutions. The adsorption density of PSS (����) onto α-Al2O3 

was obtained by the difference in the concentration of PSS solutions before and after 

adsorption by spectrometric method. By recording the added amount of HCl or NaOH to keep 

the pH constant after PSS addition, the surface charge adjustment of alpha alumina has been 

obtained. The surface charge adjustment was combined with initial surface charge of alpha 

alumina by chromatographic method [47] to calculate the equilibrium surface charge 

expressed as ��,��� = ��,��� �⁄  with F the Faraday constant. 
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In order to evaluate the effect of pre-adsorbed SDS on PSS adsorption, SDS was firstly 

equilibrated with α-Al2O3 at the concentration of 1 mM and 8mM of SDS in 0.01M NaCl (pH 

4.0) following the SDS adsorption onto α-Al2O3 in chapter 4. Thereafter PSS was added in the 

concentration range 0.05 – 0.6 mg/mL at pH 4. Samples were taken for analysis PSS by 

spectrometry after shaking solutions for 24 h.  

5.2.3. Spectrophotometric method 

The concentration of anionic polymer, PSS was measured by spectrophotometry at 

wavelength 261 nm or 224 nm (according to the results in section 5.4.1) using an UV-vis 

spectrophotometer (UV-1650PC, Shimadzu) with quartz cuvettes with 1 cm optical path 

length. All standard calibration curves of PSS in different electrolyte concentrations and pH 

have a correlation coefficient of at least 0.999. Samples were directly measured or 

appropriately diluted before measuring the absorbance to quantify PSS concentrations by 

standard calibration curves.  

5.2.4. Potentiometric method 

Potentiometry was conducted using a Metrohm 781 pH/Ion meter, Switzerland to 

determine pH of all solutions and to evaluate CMC of SDS. The detail was presented in 

previous chapters. 

5.3. General isotherm equation  

The obtained isotherms were also fitted by general isotherm equation which was firstly 

derived by assuming that adsorption on solid-liquid interface occurs in two steps [46, 48]. It 

was originally derived to describe the adsorption of hemimicelle-forming surfactant. The 

general isotherm equation is 

� =
����� �

1
� + ������� 

1 + ���(1 + ������)
 (5.1) 

where �  is amount of PSS adsorbed, Γ�  is the maximum adsorption, ��  and ��  are 

equilibrium constants for the adsorption of monomers or first layer adsorption and clusters of 

n molecules.  � is the equilibrium PSS concentration in the bulk solution. 
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 Although the formation of micelle-like structure is unexpected in the case of 

polyelectrolyte adsorption, polymers can absorb in a cooperative manner to form cluster. The 

effect of such structure  can be described by the parameter n [49]. 

The fitting procedures were described in chapter 3. 

5.4. Results and discussion  

5.4.1. Spectra of PSS in the absence and presence of SDS 

A typical ultra violet (UV) absorbance spectrum of individual PSS with the concentrations 

ranged from 0.005 to 0.05 mg/mL is shown in Fig. 5.2. At different pH values, the spectra of 

PSS in the wavelength region 200 – 300 nm have the same shapes with the main absorbance 

peaks at the wavelength of 224 nm and the secondary peak at 261 nm. The intensity of a 

maxima at 224 nm is greater than that at 261 nm (about 18 times). These peaks are specific 

wavelengths for benzene sulfonate group. They are in good agreement with the values of 

maximum absorbance in published papers [42, 44]. Figure 5.2 also shows that the magnitude 

of all UV spectra of PSS does not change significantly with pH at a given concentration of 

PSS. It demonstrates that the dissociation of monomers and structure of PSS are independent 

of pH [50]. In other word, PSS can be confirmed as strong polyelectrolyte by UV 

spectroscopic method.  

It should be noted that SDS does not absorb ultraviolet light in the region studied. The UV 

spectra of PSS in the presence of SDS are similar to others in the absence of SDS (not shown 

in detail). Thus, SDS does not contribute the two peaks mentioned above. Adsorption of PSS 

in the absence and the presence of SDS can be quantified by measuring absorbance at 224 nm 

and 261 nm with the standard calibration curves (see Experimental section 5.2.2). Figure 5.3 

indicates the standard calibration curves of PSS 1000 in the absence and the presence of SDS 

(1 mM and 8 mM) at pH 4 and 0.01 M NaCl. The standard calibration curves of PSS 1000 

from 0.05 to 0.5 mg/mL with and without SDS have a similar slope with a correlation 

coefficient of at least 0.999. Again, these curves demonstrate that the effect of SDS to UV 

method in determining PSS is negligible. These are also helpful to examine the effect of SDS 

on the processes of adsorption and desorption because the concentration of PSS can be 

directly determined without any separation.  
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Fig. 5.2. UV spectra of PSS 1000 with different concentrations at pH 4 (a) and pH 5 (b) as 

a function of wavelength in 0.01M NaCl. 
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Fig. 5.3. The standard calibration curves of PSS 1000 at pH 4 and at a wavelength of 261 

nm in 0.01 M NaCl. The insets show the calibration curves of PSS in the presence of 1 mM 

SDS (circles) and 8 mM SDS (triangles). 
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5.4.2. Adsorption isotherms of PSS  

The adsorption isotherms of PSS of different molecular weight onto large α-Al2O3 beads at 

two salt concentrations are shown in Fig. 5.4. As can be seen, the adsorption of PSS appears to 

have the typical high affinity or high adsorption amount that is close to literature data on 

adsorption of polyanion PSS on positively charged surface α-Al2O3 [42] or hematite [51]. 

Adsorption amounts of PSS of different molecular weights on hematite seem to be remaining 

from low to high concentrations of polymer [51] while maximum adsorption mounts of PSS 

onto α-Al2O3 appear from 0.025 and 0.1 mg/ml for high and low molecular weights, 

respectively [42]. Although different molecular weights show the difference in isotherms, the 

calculated curves fitted by Eq. (5.1) with the fit parameters shown in Table 1 can represent 

experimental data well. The plateau adsorption increases with increasing the molecular weight 

of PSS from 70 to 1000 kg/mol at different salt concentrations (�� of PSS 1000 > �� of PSS 

70). At high salt concentration (0.1 M NaCl), the isotherm of PSS 1000 always appears above 

that of PSS 70. These results are close to the results of published paper [42] in which absorbed 

amount for higher molecular weight grows up from 70 to 500 kg/mol. However, an increase of 

molecular weight from 500 to 1000kg/mol does not change the adsorption amounts of PSS on 

α-Al2O3. Due to the different structure of adsorbed layers, the conformation for low molecular 

weight is more flat than that of high molecular weight. The effect of molecular weight can be 

evaluated from the difference in the fitting parameters and the isotherms shown in Table 1 and 

Fig. 5.4, which indicate that the influence of molecular weight is significant at high salt (Fig 

5.4b) rather than at low salt (Fig 5.4a). The higher molecular weight is, the higher the value of n 

is at both two salt concentrations, suggesting that a more flat conformation for adsorbed PSS 70 

than that of PSS 1000.  

 

Table 1. The fit parameters for the adsorption of PSS1000 and PSS70 at pH 4, the 

maximum adsorbed amount Γ∞,���, the equilibrium constants k1,PSS and k2,PSS for first layer 

and multilayer, respectively, n is the number of polymer in clusters of polyelectrolyte 

molecules. 

 

C salt 
(M NaCl) 

Mw 
(kg/mol)

 

��,��� 
(mg/m2) 

k1,PSS 

 (m
2/mg) 

k2,PSS 

 (m
2/mg)n-1 

nPSS 

0.01 1000 52 1.1 450 4.5 
0.01 70 41 1.0 410 4.2 
0.1 1000 60 15 500 4.9 
0.1 70 44 10 400 4.6 
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Fig. 5.4. Adsorption isotherms of PSS onto α-Al2O3 of different molecular weight at pH 4 in 

0.01 M NaCl (a) and 0.1 M NaCl (b) as a function of the equilibrium PSS concentration. While 

the points are experimental data, the solid lines are the results of 2-step model. 
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  At different salt concentration, the change of pH can be obtained as a function of 

equilibrium concentration of PSS. The proton adsorption isotherms upon PSS uptake shown in 

Fig. 5.5 seem to continue even when the equilibrium concentration of PSS is above 0.10 

mg/mL. Polyelectrolyte with different molecular weights caused the differences in charge 

adjustment especially at low salt concentration (Fig. 5.5a) while the change in surface charge is 

not significant at high salt concentration (Fig. 5.5b). It may be indicated that the charge 

adjustment could be one factor to evaluate the flat conformation based on molecular weight as 

mentioned above. However, the adsorption amounts of proton are too small compared with 

adsorption amounts of PSS (lower than 100 to 200 times). Therefore, it is difficult to explain 

this effect. Thus, we can suggest that although the proton adsorption isotherms upon PSS 

adsorption has to be considered, the initial surface charge of α-Al2O3 probably seems to be more 

important for contribution to adsorption. 

As mentioned in chapter 2 [47], the surface charge of α-Al2O3 is strongly dependent on both 

pH and ionic strength. Thus, it is necessary to emphasize the effect of electrostatics interaction 

at different pH and salt concentrations.  Figure 5.6 shows the results from the adsorption of PSS 

1000 onto α-Al2O3 at pH 4 and pH 5 and at two salt concentrations. As can be seen in Fig. 5.6, 

the adsorption amounts of PSS increase with increasing salt concentration at both pH 4 and pH 

5, demonstrating that not only electrostatic attraction but also non-electrostatic interactions 

induce PSS adsorption. These results agree well with experimental data in published paper [42], 

where only plateau adsorption of PSS at fixed pH 6 as a function of NaCl concentration is 

reported. However, in this work, we successfully described salt effect of the experimental 

adsorption isotherms at different pH and by modeling with general isotherm Eq. (5.1). Table 2 

and Fig. 5.6 show that 10 times increase in salt concentrations induces about 13 times in the 

values of k1,PSS (with both pH 4 and pH 5), while the values of k2,PSS grow up not significantly. 

It implies that the monolayer adsorption isotherm of PSS expressed by k1,PSS by can be used to 

evaluate the electrostatic and non-electrostatic interactions. Electrostatic forces and the salt 

concentration are screened at high salt concentration. If the adsorption is promoted by only 

attractive electrostatic force, the first layer adsorption or the value of k1 will decrease with 

increasing salt concentration. On the contrary, when non-electrostatic interaction occurs, the 

adsorption of highly charged polyelectrolytes is enhanced by addition of salt [52] that is close to 

our results. Non-electrostatic interaction can take place due to the presence of the lateral 

interaction between PSS molecules [45]. The lateral interaction can induce more loops and tails 

in the structure of adsorbed PSS on α-Al2O3 so that adsorption amounts increase with increasing 

salt concentration.   
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Table 2. The fit parameters for the adsorption of PSS 1000 at pH 4 and pH 5 in 0.01 M NaCl 

and 0.1 M NaCl, the maximum adsorbed amount �∞,���, the equilibrium constants k1,PSS and  

k2,PSS for first layer and multilayer, respectively, n is the number of polymer in clusters of 

polyelectrolyte molecules. 

 

C salt 
(M NaCl) 

pH 
 

��,��� 
(mg/m2) 

k1,PSS 

 (m
2/mg) 

k2,PSS 

 (m
2/mg)n-1 

nPSS 

0.01 4 52 1.1 450 4.5 
0.1 4 60 15 500 4.9 

0.01 5 43 2 400 4.7 
0.1 5 49 25 350 4.9 

 

 

 

 

 
 

Fig. 5.5. Proton adsorption isotherms upon the adsorption of PSS onto α-Al2O3 of different 

molecular weight at pH 4 in 0.01 M NaCl (a) and 0.1 M NaCl (b) as a function of the 

equilibrium PSS concentration. 
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Fig. 5.6. Adsorption isotherms of PSS 1000 onto α-Al2O3 at pH 4 and pH 5 in 0.01 M NaCl 

and 0.1 M NaCl as a function of the equilibrium PSS concentration. While the points are 

experimental data, the solid lines are the results of 2-step model. 
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5.4.3. Effect of SDS on the adsorption of PSS 

The effect of SDS on the adsorption of PSS onto α-Al2O3 beads was studied by a sequential 

method (section 5.2.2). The adsorption isotherms of PSS in the absence and the presence of 

SDS are indicated in Figs. 5.7 and 5.8. We can see that the PSS adsorption amounts with pre-

adsorbed SDS at concentration of 1 and 8mM seem to be high affinity type due to high loading 

of polymer on α-Al2O3 when the equilibrium concentration of PSS is higher than 0.2 mg/mL. A 

similar trend was also observed for simultaneous adsorption of difference molecular weight of 

PSS on α-Al2O3 at low concentration of SDS [42]. At low concentration of SDS than 

hemimicelle concentration (Fig. 5.7), HMC (typically 1 – 2 mM), the adsorption of SDS is low 

(see results of chapter 3 in this thesis) so that surface sites for adsorption of PSS are available. 

The pre-adsorbed SDS was conducted with 1 mM that was near HMC can prevent adsorption of 

PSS. At high concentration of SDS above the CMC (Fig 5.8), the formation of admicelles also 

prevents adsorption of PSS significantly. However, the prevention in these cases seems to be 

strong for low concentration of PSS than for higher one. At low concentration of PSS, the 

adsorption of polyelectrolyte is not significant because the pre-adsorbed surfactant in the 

presence of hemimicelles or/and admicelles prevents the adsorption of polyelectrolyte. It can be 

suggested that the adsorption of SDS onto alumina is much stronger than that of PSS [41-43]. 
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Fig. 5.7. Adsorption isotherms of PSS70 onto α-Al2O3 at pH 4 and 0.01 M NaCl without 

pre-adsorbed SDS and with pre-adsorbed SDS (1 mM) as a function of the equilibrium PSS 

concentration. 

 

 

 
Fig. 5.8. Adsorption isotherms of PSS1000 onto α-Al2O3 at pH 4 and 0.01 M NaCl without 

pre-adsorbed SDS and with pre-adsorbed SDS (8 mM) as a function of the equilibrium PSS 

concentration. 
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5.4.4. Structures of adsorbed PSS onto α-Al2O3 

Polyanion poly(styrenesulfonate), PSS, with different molecular weight adsorbed onto α-

Al2O3 at different ionic strength induced the difference in the structures of adsorbed PSS. As 

mentioned in section 5.4.2, the adsorption amounts of PSS 70 are lower than that of PSS 1000 

because the conformation for PSS 70 is more flat than PSS 1000. It can be emphasized by the 

adsorption amount of proton upon the uptake of polyelectrolyte. The more flat conformation for 

PSS is, the more adsorbed proton is. Even though the adsorption amount of proton is much 

lower than that of PSS, it is probably useful to explain the structure of adsorbed PSS. In Fig 5.9, 

a schematic representation shows the different structure of adsorbed PSS 70 and PSS 1000 in 

the same high salt concentration. As can be seen, based on the less flat conformation, PSS 1000 

appears with more loops in adsorbed layer than PSS 70.    

An increase in salt concentration also affects the adsorbed structure. By increasing salinity 

of solution, the adsorption amounts of PSS onto α-Al2O3 increase due to both electrostatic and 

non-electrostatic interactions. The electrostatic repulsion among internal segmental decreased 

with increasing salt concentrations. Actually, the adsorption of PSS onto α-Al2O3 followed a 

multilayer manner as deduced from the fitting by two-step model. However, to describe the 

adsorbed structure of polyelectrolyte on the metal oxide surface, we only focused on the first 

layer adsorption. As the result from adsorption isotherms of both PSS and proton, it can be 

suggested that the more loops in the adsorbed layer can be formed. Figure 5.10 shows a 

cartoon of structure of adsorbed PSS 1000 at high and low salt concentration. It is seen that 

the adsorption of proton in the case of high salt with more loops seems to be smaller than that 

at low salt concentration. Also, the interaction between polyelectrolyte on the surface of α-

Al2O3 with polyelectrolyte in bulk solution can be enhanced due to an increase in salt 

concentration.  

 

 

 

 

 

 

 

 

 



Chapter 5. Adsorption characteristics of poly(styrenesulfonate) 

 

125 
 

 

 

 

 

Fig. 5.9. Cartoon representation of structure of the adsorbed PSS 70 and PSS 1000 onto 

α-Al2O3. The conformation for PSS 70 is more flat than PSS 1000. 

 

 

 

 

 

 

 

Fig. 5.10. Cartoon showing the structure of the adsorbed PSS 1000 onto α-Al2O3 at low 

and high salt concentrations. While the more proton is adsorbed at low salt, the more loop is 

obtained in the structure of PSS at high salt concentration. 
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5.5. Conclusions 

In this chapter, we investigated the adsorption of poly(styrene sulfonate), PSS, of different 

molecular weight onto large α-Al2O3 beads. The properties of PSS as a strong polyelectrolyte 

were confirmed by UV spectrophotometry. An increase in molecular weight of PSS from 70 

kg/mol to 1000 kg/mol increases the adsorption amount of PSS and decreases proton uptake 

on the surface of α-Al2O3. It suggested that less flat conformation on the adsorbed structure is 

expected for high molecular weight rather than lower one. The adsorption is found to increase 

with increasing salt concentrations, indicating that both electrostatic and non-electrostatic 

contributions are involved. Electrostatic attraction is screened at high salt concentration while 

non-electrostatic contribution can be induced by lateral interaction between PSS molecules.  

The SDS uptake onto α-Al2O3 in the presence of hemimicelles or/ and admicelles can prevent 

the adsorption of PSS at low concentration so that adsorption of PSS decreases with pre-

adsorbed SDS.  
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Chapter 6. Conclusions and perspectives 

6.1. Conclusions 

The treatment of wastewater by adsorption is widely used to remove organic pollutants 

from aqueous solutions. The understanding of adsorption properties of organic ions onto 

charged surface is very important in environmental science and technology. Adsorption of 

organic waste such as ionic dyes is effectively enhanced by surfactant and/or polyelectrolyte 

modified solid surface. However, the adsorption characteristics of ionic surfactant, ionic dye 

and polyelectrolyte on to solid surfaces are still inadequate when adsorbents have large size. 

Furthermore, so many scientific papers studied adsorption of various ions onto silica sand 

with negatively charged surface. Nevertheless, a few studies focused on adsorption using 

large beads with positive surface charge. Therefore, the purpose of this thesis is to extend 

knowledge of adsorption of organic anions onto large α-Al2O3 beads with positively charged 

surface. For this purpose adsorption of anionic surfactant, sodium dodecyl sulfate (SDS), 

anionic azo dye, new coccine (NC), and strong polyanion, polystyrene sulfonate (PSS), onto 

α-Al2O3 have been systematically studied and successfully analyzed with two-step adsorption 

model. Furthermore, the structures of adsorbed SDS, NC and PSS onto α-Al2O3 were also 

discussed on the basis of charge effect, surface modification and adsorption isotherms.  The 

results were described in chapter 2 to chapter 5. 

In chapter 2 the interfacial properties of α-Al2O3 beads with small surface area were 

investigated by streaming potential and chromatography. The zeta potential from streaming 

potential and the surface charge density of α-Al2O3 were obtained as a function of pH. 

Streaming potential was used to obtain the zeta potential at several pH values to evaluate 

electrokinetic property and to identify isoelectric point (IEP) of α-Al2O3 materials. The 

surface charge density of α-Al2O3 was evaluated by chromatographic method from measured 

pH breakthrough curves. A good agreement between the charge density obtained from 

column pH breakthrough curves and 1-pK Stern model was confirmed in the pH range 

without dissolution effect. Although streaming potential and chromatography are not new 

techniques, our results indicated that their combinations compared with 1-pK Stern model are 

convincing to characterize the electrokinetic potential and surface charge density of large 

beads. 
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Chapter 3 deals the measurement and analysis of adsorption of SDS onto large Al2O3 

beads with variably charged surface as functions of pH and NaCl concentration. The obtained 

comprehensive data clarified the applicability of two-step adsorption and four-region models 

to describe the adsorption isotherms of SDS onto Al2O3 beads. Proton adsorption upon 

surfactant uptake could be fitted by two-step adsorption model with almost the same 

parameters for surfactant adsorption for 0.001 and 0.01 M NaCl concentration, indicating that 

proton adsorption took place onto the adsorbed SDS. Adsorption isotherms of SDS at 

different salt concentrations had a common intersection point (CIP) corresponding to charge 

neutralization. After passing through CIP, proton adsorption onto α-Al2O3 increased at low 

ionic strength while the amount of proton adsorption did not change for 0.1 M NaCl. Proton 

adsorption amounts as a function of SDS adsorption suggested that only hemimicelles are 

plausible for case of low ionic strength. The increase in the proton adsorption was not 

significant at high ionic strength, suggesting the presence of admicelles on the surface of α-

Al2O3 beads.  

In chapter 4, a comparison of SDS with NC in terms of adsorption onto α-Al2O3 beads was 

intensively studied. Streaming potential demonstrated that the IEP of α-Al2O3 increases after 

SDS adsorption due to additional proton adsorption while the IEP shifts to the lower pH after 

adsorption of NC because of the adsorption of the negatively charged sulfonic group of NC. 

The surface modifications of α-Al2O3 after adsorption of SDS and NC were confirmed by 

Fourier transform infrared attenuated total reflection spectroscopy (FTIR-ATR). The 

calculated curves from two-step model can reasonably represent experimental results of both 

SDS and NC adsorption isotherms onto α-Al2O3. The proton adsorption isotherms at low salt 

concentrations upon surfactant adsorption were able to be described well by two-step model, 

while proton adsorption upon dye adsorption was negligible. The decrease of adsorption of 

SDS onto α-Al2O3 with increasing electrolyte concentration below CIP was similar to NC 

adsorption. Nevertheless, above CIP, the salt effect was reversed and the adsorption density 

of SDS reduces at lower ionic strength. This trend is different from dye adsorption. 

Adsorption of SDS is induced by the presence of hemimicelles and admicelles at the α-Al2O3/ 

water interface. Adsorption of NC was affected by formation of a bridged bidentate complex 

between only one sulfonic group on the naphthalene ring and surface of α-Al2O3, resulting in 

that adsorption density of surfactant was much higher than that of dye. 

Chapter 5 focused on the adsorption of strong polyelectrolyte PSS of different molecular 

weights onto α-Al2O3 beads. The ultraviolet (UV) absorption spectra of PSS at different pH and 

salt concentrations confirmed that PSS was independent of pH. With increasing in the 
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molecular weight from 70 to 1000 kg/mol, adsorption amount of PSS increased and proton 

co-adsorption on the surface of α-Al2O3 decreased at given pH and salt concentration. It 

suggested that higher molecular weight of PSS was less flat conformation than lower one. 

The adsorption density decreased with decreasing salt concentrations, indicating that both 

electrostatic and non-electrostatic interactions occurred. Electrostatic attraction was screened 

at high salt concentration while non-electrostatic contribution could be induced by lateral 

interaction between PSS molecules. The effects of molecular weight and salt concentration 

were explained by structure of adsorbed PSS onto α-Al2O3. The effect of added SDS on the 

isotherms was evaluated from sequential adsorption. The SDS uptake onto α-Al2O3 in the 

presence of hemimicelles or/and admicelles prevented the adsorption of PSS at low 

concentration so that adsorption of PSS decreased with pre-adsorbed SDS.  

6.2. Perspectives and further studies 

In this thesis, adsorption characteristics of strong anionic ions, anionic surfactant, anionic 

azo dye, and strong polyanion onto large α-Al2O3 beads with positively charged surface were 

experimentally investigated. The experimental data were compared with theoretical 

calculation by two-step adsorption model. The experimental data and calculation by modeling 

indicated that adsorption of these strong organic anions onto α-Al2O3 beads was similarly 

dependent on pH. The adsorption amounts increased with decreasing pH due to strong 

electrostatic attraction induced by highly positively charged surface of α-Al2O3 at lower pH. 

However, the adsorption of SDS onto α-Al2O3 was much stronger than that of PSS and NC 

due to the presence of hemimicelles and admicelles. The CIP appears only in the adsorption 

isotherms of SDS at different salt concentrations because of charge adjustment upon 

surfactant adsorption and the strong effect of hydrophobic interaction between chains. While 

the adsorption of NC was only controlled by electrostatic attraction, both electrostatic and 

non-electrostatic interactions induced PSS adsorption. Therefore, these differences in 

adsorption properties of surfactant, dye and polyelectrolyte can be a convincing argument to 

explain the enhancement of removal efficiency of dyes after modification of large beads by 

surfactants and/or polyelectrolytes. 

The general isotherm equation derived by the concept of two-step adsorption was 

successfully applied to various types of surfactant adsorption isotherms and used for some 

kinds of polymers. The adsorption of complex multilayer adsorption of ionic dyes fitted by 

the general equation has been reported in this thesis. In addition, an improvement of two-step 
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model to describe the proton/SDS adsorption inferences is important to understand the 

interaction of surfactant and proton with surface. Thus, two-step model may be applied to not 

only surfactant systems but also proton, complexes, polyelectrolytes, dyes, and so on.  

As mentioned in this thesis, the use of large size particles with positively charged surface 

such as our beads are useful to make an analysis of transport phenomena directly. It can be 

also compared with negatively charged sand to better understand the adsorption and the 

transport in natural porous materials. Furthermore, large particles are of great importance in 

the chemical engineering process and chemical industry as packed bed adsorbents in columns 

for wastewater treatment in environmental remediation. In its current studies, this thesis need 

to be further developed.  

For the application in analytical science, surfactant and/or polyelectrolyte can be used to 

enhance the separation efficiency of organic substances due to the presence of micelles or 

complexes in aqueous solutions. Thus, the high performance liquid chromatography with 

reserved phase and/or capillary electrophoresis chromatography are applicable. The used 

surfactant and/or polyelectrolyte for this purpose seem to be effective in bulk solutions 

because of the interactions of these with organic compounds. However, surfactant and/or 

polyelectrolyte modified stationary phase need to be considered.  

The α-Al2O3 beads used in this research has IEP around pH 7. We only investigated 

adsorption of organic anions onto α-Al2O3 with positively charged surface at pH < IEP. It can 

also be applicable to use this adsorbent at higher pH than IEP for absorbing organic cations. 

Another feature is that surfactants or/and polyelectrolytes can modify solid surface of large 

beads to enhance removal efficiency of dyes with opposite charge than the same one. The 

combination of surfactants and polyelectrolytes are also highly performed with opposite 

charge. This thesis has a need to be extended for further investigation on the complex systems 

with both organic cations and anions. Moreover, the removal efficiency of inorganic ions 

such as heavy metals which are not easily biodegradable can be improved by adsorption with 

surfactants or/and polyelectrolytes modified solid surface. Therefore, surfactants or/and 

polyelectrolytes modified alumina system will be subjected to more intense studies.  
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