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Abstract 

The newt is a vertebrate endowed with an outstanding ability, even in adult stage, to 

regenerate a missing neural retina (NR) in the eye from the retinal pigment epithelium (RPE) 

cells. In this animal, upon a retinal injury RPE cells initially lose their epithelial structure and 

re-enter the cell-cycle. During this process, it has been inferred that RPE cells are 

reprogrammed into multipotent cells which eventually regenerate a new NR and renew the 

RPE itself. However the nature of this RPE-derived cell remains unclear because it preserves 

some molecules indicating original characteristics (e.g., melanin pigments and a visual cycle 

protein RPE65). Here, to address what cell state the adult newt RPE cells are reprogrammed 

into for retinal regeneration, first we identified Small eye Pax6 of this animal, which can be a 

marker of the cells that have a potency to generate both NR and RPE (e.g., retinal 

stem/progenitor cells and immature/uncommitted RPE cells), and examined its expression 

patterns in RPE-derived cells by immunohistochemistry. As a result, we found that RPE cells 

which just re-entered the cell-cycle do not exhibit Pax6-immunoreactivity which was 

obviously detected in both the optic vesicle/cup of embryos and the ciliary marginal zone 

(CMZ) of larval/adult eyes. Pax6-immunoreactivity appeared in a small number of RPE-

derived cells just before those are sorted out into two rudiment layers (pro-NR and pro-RPE), 

and finally localized along the pro-NR layer. Next we investigated expression of other stem-

cell markers in addition to Pax6 in RPE-derived cells by single-cell quantitative PCR 

(qPCR). We found that the RPE-derived cells before cell division, which still have a cell 

polarity and express RPE65, newly express pluripotency factors (c-Myc, Klf4 and Sox2; but 

not Oct4) and a Microphthalmia factor Mitf as well as Pax6, all of which are suggested to be 

expressed in early optic vesicles.  
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To confirm this result, we carried out immunohistochemistry against Sox2. However 

interestingly, Sox2-immunoreactivity, which became restricted in pro-NR region of the optic 

vesicle as its protrusion proceeds, appeared in RPE-derived cells in a similar manner to that 

of Pax6-immunoreactivity. Taken together, these results lead us to an implication that the 

adult newt RPE cells are reprogrammed into multipotent cells similar to those of the early 

optic vesicle while preserving certain original characteristics - in other words, the adult newt 

RPE cells dedifferentiate in nature - , and then those multipotent cells are specified into two 

cell populations from which the pro-NR and pro-RPE layers are formed with a correct 

polarity. Moreover, our findings give an insight into a close similarity of RPE-derived 

multipotent cells in the adult newt with those implicated in retinal disorders such as 

proliferative vitreoretinopathy (PVR) in humans, inspiring biomedical approaches to induce 

retinal self-regeneration through a treatment of the RPE-mediated retinal disorders. 
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Abbreviation 
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CMZ: Cilliary Marginal Zone  

CNS: Central Nervous System 
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Chapter I: General Introduction 

1.1 Regeneration 

According to a terse dictionary definition from Stedman’s Medical Dictionary, regeneration 

is the “reproduction or reconstitution of a lost or injured part” or “a form of asexual 

reproduction.” In general, the restoration of lost organ or body parts to the original previous 

functional state is known as regeneration (Carlson BM, 2007). Regeneration is one of the 

most fascinating phenomena as well as the oldest field in biology having a profound 

historical background longer than genetics and embryology (Okada TS, 1996). However it is 

also one of the most complex arenas of biological research. In ancient Greek mythology, the 

god Prometheus stole fire from Mount Olympus for the human species he created. As eternal 

punishment, Zeus, the supreme god had him chained to a rock where an eagle would peck out 

his liver during the day, only to have it regenerate each night. The regenerating ability made 

Prometheus alive.  

In the 20th century, researchers have discovered in their experiments that the liver actually 

does have the prodigious regenerative capacity described in the legend of Prometheus of the 

Greek mythology (Hoehme S et al., 2010; Michalopoulos GK, 2007). Virtually all species 

from protozoa to humans possess the regeneration capacity but their degree of regenerative 

ability varies greatly. Planarian, starfish and some worms can regenerate most of their body, 

whereas many other species are able to regenerate only parts of specific tissues. The 

regeneration ability depend on body size in nature; i.e. the bigger the body size, the lower the 

regeneration ability; conversely the smaller the body size the higher the regeneration ability.  

In recent years, there has been considerable interest in building missing or damaged tissues 

and organs in humans through the application of bioengineering principles or through the use 

of stem cell technology pave the way of regenerative medicine (Stocum DL, 2006; Carlson 

http://www.ncbi.nlm.nih.gov/pubmed?term=%2522Hoehme%2520S%2522%255BAuthor%255D
http://www.ncbi.nlm.nih.gov/pubmed?term=%2522Michalopoulos%2520GK%2522%255BAuthor%255D
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BM, 2007). Therefore combinatorial effort and knowledge of basic science researchers and 

medical doctors nowadays make us to be optimistic to make the miraculous concept of 

regeneration into reality by developing therapies to restore lost, damaged, or aging cells and 

tissues in the human body. 

1.2 Newt as a model animal for regeneration study 

To understand the cellular mechanism and molecular network of regeneration, it is very 

important to select some model animals those possess this capacity. Urodeles are assumed to 

possess something special for that they can back into developmental pathways if necessary in 

any stage of their life (Richardson MK and Chuong CM, 2009). Newt, an urodele amphibian, 

which has a tremendous ability to regenerate a wide range of body parts: limbs (Yokoyama 

H, 2008) lower jaw (Kurosaka H et al., 2008), portions of the heart (Singh BN et al., 2010, 

Brockes JP and Kumar A, 2002), ocular tissues including retina (Mitsuda S et al., 2005; 

Mizuno N et al., 1999) tail and central nervous system tissues, including spinal cord 

(Margotta V et al., 2002) and even part of the brain (Okamoto M et al., 2007, Berg DA et al., 

2010). That is why newt is known as the champion in the racing track of regeneration. Unlike 

other regeneration competent animal like chick, fish and frogs, newt has an obvious 

advantage to study regeneration as they keep this ability even in adult stage. Additionally 

newt’s retinal neuronal cells and RPE cells are comparatively larger in size which provides us 

with additional benefit to observe their cellular morphological change during regeneration. 

Nonetheless the increasing information on newt transcriptome has revealed that adult newt is 

closely comparable with other higher vertebrate and mammal, which is the greatest interest to 

regenerative medicine (Mihaylova Y and Aboobaker AA, 2013). Moreover they are a good 

model organism as female can retain live sperm in her cloacafor up to five months, allowing 

her to be inseminated on suitable time and place. Later they have fertilisation induced 

through hormonal stimulation. Another advantage of this species is their slow development, 

http://en.wikipedia.org/wiki/Cloaca
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so all the key stages of ontogenesis can be observed, from the oocyteto swimming tailbud 

embryos or larvae. Recently it has been possible to control their metamorphosis in the 

laboratory which can be an obvious means to study their regeneration in a control 

environment (Chiba C et al., 2012). Those advantages let them to be studied as a laboratory 

animal and for genetic manipulation experiment in the recent days (Casco-Robles MM et al., 

2011). 

1.3 Why Retina? 

Although newt is capable of regenerating most of their body parts, my interest is on the 

newt’s retinal regeneration. Retina is a part of central nervous system, being indispensable of 

seeing processes for its unique function. Most of the adult vertebrate including human are not 

able to regenerate their retina after getting any injury or cell damage, however some lower 

vertebrate like teleost fish (Sherpa T et al., 2008; Mensinger AF & Powers MK, 1999), birds 

and urodele amphibian (Hitchcock P et al., 2004) can regenerate their retina. The cells 

sources are varied for regenerating retina depending on both the species and the 

developmental stages (Del-Rio Tsonis K and Tsonis PA, 2003; Haynes T and Del Rio-Tsonis 

K 2004; Fischer AJ & Bongini R, 2010). Briefly, retinal repair/regeneration depends on three 

distinct cell sources; the first one being the RPE cells, the second one neural precursor in the 

cilliary marginal zone (CMZ) and the last one Müller cells. In this study, I have focused on 

the retinal regeneration through RPE transdifferentiation.  

To understand retinal regeneration it is essential to know the retinal development (Figure 1) 

and its cellular organization. The retina is highly structured tissue, which is located in the 

inner most layer of the eye and like other regions of the vertebrate CNS (brain and spinal 

cord) derived from the neural tube. In early embryogenesis, the retina originates from 

neuroectodermal evagination of the diencephalons, called the optic vesicle. Subsequent 

http://en.wikipedia.org/wiki/Ontogenesis
http://en.wikipedia.org/wiki/Oocyte
http://www.ncbi.nlm.nih.gov/pubmed?term=Chiba%2520C%255BAuthor%255D&cauthor=true&cauthor_uid=22559962
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invagination processes of the surface ectoderm causes lens induction and resulting in the 

formation of the optic cup, which initially consist of the two cellular layers. The outer layer 

remains a single layer of cells that accumulate melanin and form RPE, and the inner layer of 

the optic cup becomes a multilayered neural retinal tissue (Fuhrmann S, 2010; Jean D, Ewan 

K, Gruss P, 1998; Kwan KM, 2012). In all vertebrates, the neural retina contains at least five 

types of retinal neurons (photo receptor cells, horizontal cells, bipolar cells, amacrine cells 

and ganglion cells) and one type of glia (Müller cells). The cell bodies of photoreceptor 

reside in the outer nuclear layer (ONL) and their axons in the outer plexiform layer (OPL). 

Photoreceptors have two segment- the inner segment and outer segment, the later one 

extended into the microvilli of the RPE. The inner nuclear layer (INL) contains the nuclei of 

bipolar cells, the horizontal cells, the Müller cells and the majority of amacrine cells. Vertical 

communication between the bipolar cells and the ganglion cells takes place in the next layer, 

the inner plexiform layer (IPL). The ganglion cell layer (GCL) contains the cell bodies of 

ganglion cells as well as displaced amacrine cells. The dentdrites of the ganglion cells 

connects to the IPL where as their axons extends into the opposite direction to form nerve 

fiber that eventually make the optic nerve (Dowling JE, 1987; Masland RH, 2012). The 

neural retina receives, integrates and transmits visual information to the brain through the 

optic nerve. In newt, after surgical removal of retina, it regenerates the entire retina from a 

single monolayer of RPE cells. Our lab has developed an efficient tracking system for newt’s 

RPE cells by RPE65 protein which is a marker of mature RPE cells. As retina composed of 

different kinds of neurons and during regeneration all neurons are derived from a single 

source, i.e. the RPE; it is obviously matter of interest to study how a complete tissue is 

formed from RPE cells (Figure 2). 
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1.4 Retinal Pigment Epithelium (RPE) 

RPE and retina is derived from the same origin.  During development, the distal part of the 

optic vesicle becomes prospective RPE (pro-RPE) while the proximal part becomes neural 

retina (pro-NR). When the surface ectoderm evginates optic vesicle gets optic cup structure 

forming two layer pro-NR i.e inner layer and pro-RPE i.e. outer layer (Figure 1). The optic 

vesicle stage cells are bipotential in nature, i.e. the pro-RPE cells are competent to form retina 

(Araki M, Okada TS, 1977; Horsford DJ et al., 2005; Westenskow PD, 2010) conversely the 

pro-NR cells are competent to develop into the RPE (Coulombre JL and Coulombre AJ, 

1965; Stroeva OG, Mitashov VI, 1983). Depending on the intrinsic and extrinsic factor RPE 

cells are specified and differentiated into mature state. RPE is a single layer of cuboidal-

columnar cells between the retina and the choroid in the posterior portion of the eye and 

extends over the ciliary body and the posterior iris. Functionally, this layer is related to both 

the choroid and the retina. It resembles a simple cuboidal epithelium of the choroid but it has 

no free surface under the retina, instead attached to Bruch’s membrane of the choroid tissue. 

Bruch’s membrane is formed by a network of collagen and elastic fibers sandwiched between 

the basement membranes of the choriocapillaris and the retinal pigment epithelium (Skeie 

JM, 2010; Zayas-Santiago A et al., 2011). The apical surface of these cells have microvilli 

and cylindrical cytoplasmic sheaths that enclose the ends of the retinal photoreceptors to 

nourish the outer portions of the rods and cones and phagocytose pieces of their outer 

segments which are continuously shed off  (Figure 3). 

The Bruch’s membrane and well developed tight junctions between RPE cells provide a 

blood-retinal barrier that prevents materials from passing into or out the retina unless actively 

transported. The pigmented RPE cells along with choroid pigment, adsorbs scattering light. 

There is no firm attachment between the RPE and the underlying photoreceptor layer, so the 

retina can detach following head trauma, causing slow death in photoreceptors unless 

http://www.ncbi.nlm.nih.gov/pubmed?term=Horsford%2520DJ%255BAuthor%255D&cauthor=true&cauthor_uid=15576400
http://www.ncbi.nlm.nih.gov/pubmed/?term=Westenskow%2520PD%255Bauth%255D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Zayas-Santiago%2520A%255Bauth%255D
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surgically reattached. Retina remains closely apposed to and functionally dependent upon the 

RPE throughout life. Besides these RPE cells are also involved in the recycling of visual 

cycle intermediates (Young RW, 1976; Zinn KM and Marmor MF 1979). Thus RPE always 

plays role as an indispensable partner of neural retina and is an inevitable part of the 

visionary system. 

1.5 Retinal regeneration in newt 

Newts can regenerate their entire retina through transdifferentiation of the retinal pigment 

epithelium (RPE) cells after the neural retina is completely removed by surgical means even 

though in the adult stage (Chiba C et al., 2006; Del Rio-Tsonis KD and Tsonis PA, 2003; 

Grigoryan EN, 2001; Hitchcock P et al., 2004; Mitashov VI, 1996 Raymond PA, and 

Hitchcock PF, 2000; Reh TA, and Fischer AJ, 2001; Tsonis PA and Del-Rio Tsonis K, 2004). 

Upon retinectomy, RPE cells are detached from each other as well as from the basement 

membrane (Bruch’s membrane), while re-entering the cell-cycle, forming cell aggregates 

[Stage E-1: this event occurs typically between day-5 and day-10 post-operation (po); almost 

all of the RPE-derived cells at this stage have entered the S-phase of the cell-cycle, but do not 

proceed into the M-phase; notably  after retinectomy the volume of the vitreous cavity 

decreases and Bruch’s membrane, which lies along the RPE, becomes folded, because blood 

vessels in the choroid dilate, allowing more blood to flow in as an inflammatory-like 

response]. The RPE-derived cells generate two rudimentary layers (pro-NR and pro-RPE) for 

prospective NR and RPE [Stage E-2: day-14 po; both cell-layers at this stage have partially 

lost melanin pigments; cell division becomes obvious from this stage; note that the volume of 

the vitreous cavity and the shape of Bruch’s membrane almost recover between Stage E-1 

and E-2]. Cells in the pro-RPE layer exit the cell-cycle and re-initiate pigmentation, while 

those in the pro-NR layer continue proliferation [Stage E-3; day-19 po; immunoreactivity 

(IR) to RPE65 (a marker for terminally differentiated RPE cells) in both layers drops sharply 
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from this stage]. Thereafter, the RPE layer becomes matured (from about day-28 po, RPE65-

IRre-appears and microvilli start to extend), while a new NR is formed (neuronal cell 

differentiation and network construction have almost been completed between day-45 and 

day-65 po). Retinal regeneration in adult newt has been diagramaticaly shown in Figure 2 

(modified from Chiba C et al., 2006). 

1.6 Retinal regeneration in other animal model 

Retinal regeneration ability after injury is limited among the organisms. Other than urodeles 

amphibian, fish and bird have been reported to be able to regenerate retina (Del-Rio Tsonis K 

and Tsonis PA, 2003). However the cell sources and degree of regeneration ability varies 

among animal species and their ages. Müller glia cells of adult fish harbor retinal stem cell 

properties that after injury can proliferate and differentiate to generate almost all retinal 

neuron after injury (Lenkowski JR, Raymond PA, 2013; Goldman D, 2014). Adult mammal 

(mouse and rat) have come into focus for their retinal regeneration capacity too although in a 

limited range. The source of regenerating neuron of mammals are Müller glia as well that can 

regenerate a limited number of retinal neuron (amacrine cell) after retinal injury however it 

needs to be supplemented with extrinsic factor (Ooto S et al., 2004; Karla MO, 2008). In frog 

system (Xenopus Laevis and Rana Catesbieanna tadpole) RPE mediated retinal regeneration 

has been well documented where retina is removed leaving retinal vascular membrane 

(RVM). RPE cells located on the back of the eye dissociate and migrate to the RVM. These 

migrated RPE cells then proliferate and differentiate to the neural retina while remaining RPE 

on the back of the eye differentiate to repair the RPE layer (Chiba C, 2014; Lee DC, 2013;  

Reh TA, Nagy T, 1987). Another candidate source for retinal regeneration in adult amphibian 

and fish are cells that reside in cilliary marzinal zone (CMZ). CMZ contains some progenitor 

as well as retinal stem cell other than neuron that can be differentiated into retinal neuron 

even in the adult age.  Those CMZ cells also can take part in the retinal regeneration after 

http://www.ncbi.nlm.nih.gov/pubmed?term=Lenkowski%2520JR%255BAuthor%255D&cauthor=true&cauthor_uid=24412518
http://www.ncbi.nlm.nih.gov/pubmed?term=Raymond%2520PA%255BAuthor%255D&cauthor=true&cauthor_uid=24412518
http://www.nature.com/nrn/journal/v15/n7/full/nrn3723.html#auth-1
http://www.ncbi.nlm.nih.gov/pubmed?term=Lee%2520DC%255BAuthor%255D&cauthor=true&cauthor_uid=23425694
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injury (Locker M 2009; Miyake A and Araki M 2014). Embryonic chick is another widely 

and systematically studied animal model for RPE mediated retinal regeneration. Retinal 

regeneration in embryonic chick is restricted at optic cup or embryonic eye stage when RPE 

is immature. After retinal removal in the embryonic chick, RPE cells transdifferentiate to 

retinal neuronal cells.  RPE cells dedifferentiate and lose their pigment. These cells 

proliferate to make neuroepithelium which later differentiate to all neuronal cells consisting 

different layer of the retina. However, the polarity is reverse of the newly formed retina, that 

is,  ganglion cells which is normally placed closest to the lens is in opposite direction (back to 

the eye or far away from the lens) in regenerated retina. Second thing is that the 

transdifferentiated RPE cells cannot replenish the RPE layer itself although they successfully 

generate a new retina (Coulombre JL and Coulombre AJ, 1965; Luz-Madrigal A, 2014). 

Moreover RPE transdifferentiation and retinal regeneration can be induced and manipulated 

by administering FGF1 and FGF2 (Park CM and Hollenberg MJ, 1989; Park CM and 

Hollenberg MJ, 1991). Thus the retinal regeneration in embryonic chick is incomplete and 

nonfunctional although it is RPE mediated. On the other hand, after retinectomy in newt, 

RPE cells lose their epithelial characteristics and undergo a numbers of anonymous genetic 

and molecular remodeling following dedifferentiation into retinal progenitor cells as well as 

redifferentiating to new RPE cells (Sakami S et al., 2005; Chiba C et al., 2006; Chiba C and 

Mitashov VI 2007). Thus the regeneration here is a complete and fully functional process in 

newt model. Nevertheless, in case of chick models they are only capable of regenerating 

retina from RPE in embryonic stage instead of adult stage. On the contrary newt retinal 

regeneration takes place from mature RPE in the adult stage. That is why newt promises an 

incomparable platform as a model animal to understand cellular and molecular mechanism of 

retinal regeneration in adult vertebrate including mammals and the RPE mediated retinopathy 
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in human like proliferative vitreoretinopathy and retinoblastoma, (Chiba C 2014; Sadaka A 

and  Giuliari GP 2012). 

1.7 Previous studies 

It is obvious that retinal regeneration in newt is a fascinating study of modern experimental 

biology however a little progresses have been done to understand such an interesting 

phenomena in nature. Based on the accumulated evidences and surrounding repots Dr. Chiba 

Chikafumi and Dr. Victor Ivanovich Mitashov proposed a hypothetical pathway for newt 

retinal regeneration (Chiba C, 2007). In that hypothesis (Figure 4), it was proposed that RPE 

cells after 10 days (stage E1) of retinectomy (surgical removal of retina) repress their marker 

gene RPE65 and concurrently reprogram to acquire retinal stem cell properties by expressing 

new regulatory genes Pax6 and Msi-1(Chiba C et al., 2006; Kaneko J, and Chiba C, 2009) at 

the same time preserving original characteristics like RPE65 protein expression and 

pigmentation (arrow 1 in Fig 3). Then cells proliferate towards the formation of retinal 

progenitor cells (arrow 2 in Fig 3) and renew the RPE layer (arrow 3 in Fig 3) by 14 days of 

retinectomy (stage E2). After 14 days retinal progenitor cells express Pax6, Msi-1 and 

Chx10-1 while still keeping a minute RPE65 protein and pigment granules. When the retinal 

progenitor cells become 1-2 cells thick (stage E3), they express Notch-1 by 19 days po (arrow 

4 in Fig 3). The E3 stage’s cells hardly contain pigment granules but still have RPE65 

protein. At stage I-1, when the regenerating retina reaches 3-4 cells thickness, all cells lose 

RPE65 protein (arrow 5 in Fig 3). Thereafter retinal cell differentiation and synapse 

formation follows to complete regenerating retina (arrow 6 in Fig 3).   Based on the proposed 

hypothesis by Chiba C and Mitashov VI 2007; a question raised if RPE derived cells after 10 

days po really acquire a multipotent state that can differentiate into neural retina and RPE 

itself. First, in this hypothesis they have addressed the 10 days po RPE-derived cells as stem 

like cells supported by Msi-1 expression data which was up regulated in 10 days po RPE-

http://www.ncbi.nlm.nih.gov/pubmed/?term=Sadaka%2520A%255Bauth%255D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Giuliari%2520GP%255Bauth%255D
http://www.ncbi.nlm.nih.gov/pubmed?term=%2522Kaneko%2520J%2522%255BAuthor%255D
http://www.ncbi.nlm.nih.gov/pubmed?term=%2522Chiba%2520C%2522%255BAuthor%255D
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derived cells while down regulated in the pro-RPE and continue up regulated expression in 

pro-NR, however Msi-1 is was expressed in the intact RPE cells as well. Second, the Pax6 

expression in 10 days RPE-derived cells was taken by PCR data where cDNA was prepared 

from the RPE-choroid tissue. Although Msi-1 and Pax6 is the marker of retinal 

stem/progenitor cells, it is necessitated to examine the multipotency nature of the RPE-

derived cells in detail in the cellular level. This is because Msi-1 is expressed in the intact 

RPE cells and the Pax6 data was obtained from the cDNA derived from RPE-choroid tissue 

that is not from the RPE-derived cells solely. 

1.8 Purpose of the study 

To address the question whether RPE-derived cells after 10 days po acquire multipotent state 

that resemble to the cells (like early optic vesicle state cells during eye morphogenesis) which 

give rise to both neural retina and RPE cells, I decided to work on some molecules that are 

widely accepted as retinal stem/progenitor marker in the field of retina/lens regeneration as 

well as eye development. In this case Pax6 is the prime candidate because Pax6 is known to 

express in the cells that differentiate into both retinal neuron and RPE (Collinson JM 2000; 

Canto-Soler MV, Ruben A 2006; Xu S et al., 2007). Moreover Pax6 is known as a master 

control gene for RPE transdifferentiation for retinal regeneration in the classical embryonic 

chick model (Azuma N et al., 2005). Additionally I have made an effort to screen out other 

candidate molecules and their expression in RPE derived cells. Multipotency factors like 

Nanog, Oct4, Sox2, Klf4, c-Myc and other relevant genes that might be involved in the early 

process of retinal regeneration were searched from our newt de novo assembly transcriptome 

database (IMORI, http://antler.is.utsunomiya-u.ac.jp/imori/). Therefore in this study I have 

categorized my study in the following manner- 

1. To identify the Pax6 in newt 

http://ukpmc.ac.uk/search/?page=1&query=AUTH:%2522Xu+S%2522+SORT_DATE:y
http://antler.is.utsunomiya-u.ac.jp/imori/
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2. To screen good antibody for newt Pax6 

3. To evaluate expression pattern of Pax6 in newt developing eye 

4. To identify Pax6 expression in RPE derived cells and in regenerating retina 

5. To evaluate relation between Pax6 expression and Cell-cycle entry in RPE derived 

cells. 

6. To search and identify expression of other multipotency factors and relevant factors 

associated with the early process of retinal regeneration in adult newt in RPE derived 

cells.  

7. To define what cell state does acquire the RPE-derived cells after 10 days.  
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Chapter II: Identification of Pax6 in newt 

2.1 Introduction 

Pax6 is a developmental gene found in all vertebrates and invertebrate which is a DNA 

binding transcription factor. In the early development, Pax6 plays very important role in eye 

morphogenesis in every seeing animal (Gehring WJ, 1996; Gehrin WJ, Ikeo K, 1999;  

Ashery-Padan  R, Gruss P, 2001; Gehring WJ, 2002; Nilsson DE, 2004). Generally, Pax6 

exists in multiple isoforms in different animals each having regulatory effect on different 

kind of genes in different condition (Carriere C et al., 1995; Jaworski C, et al 1997; Pinson J, 

2006; Bandah D et al., 2007). Thus Pax6 function is context dependent. Pax6 has two DNA 

binding domain known as paired domain and homeo domain (Walther C and Gruss P, 1991). 

The isoforms which contain both paired and homeo domains are known as canonical 

isoforms. On the other hand there might be some paired less Pax6 isoforms (containing no 

paired domain but homeo domain only) are known as noncanonical isoforms (Lakowski J, et 

al, 2007).   Newt has four canonical Pax6 isoforms namely LL, LS, SL and SS. Although 

Pax6 mRNA sequences have been reported, their functional validation is yet to be examined 

in this animal, i.e. whether Pax6 function is conserved in newt as well (Mizuno M et al., 

1997). That is why it is necessary to observe Pax6 function in this animal. Currently gene 

knock down through shRNA means is a popular tool in modern biotechnology. Here in this 

study I applied shRNA-transgenic method for knocking down Pax6 gene in newt to see how 

this affects eye development in this animal. I also screened good antibody for newt that can 

efficiently indentify canonical Pax6. Canonical Pax6 is believed to be an essential 

transcription factor for the bipotential cells of optic vesicle that generate neural retinal 

progenitor cells as well as RPE progenitor cells during development (Lakowski J et al., 

2007).   

http://www.sciencedirect.com/science/article/pii/S095506740000274X
http://www.sciencedirect.com/science/article/pii/S095506740000274X
http://www.sciencedirect.com/science/article/pii/S095506740000274X
http://www.iovs.org/search?author1=Dikla+Bandah&sortspec=date&submit=Submit
http://www.ncbi.nlm.nih.gov/pubmed?term=%2522Lakowski%2520J%2522%255BAuthor%255D
http://www.ncbi.nlm.nih.gov/pubmed?term=%2522Lakowski%2520J%2522%255BAuthor%255D
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2.2 Methodology   

2.2.1 Western blotting 

Conventional immunoblot analysis were performed with the following antibodies; the 

primary antibody: rabbit anti-Pax6, dilution (1:500; PRB-278P, Convance, Richmond, CA); 

rabbit anti-Pax6, dilution (1:500; PA-801, Affinity Bioreagents); chicken anti-Pax6, dilution 

(1:1500, Operon Biotechnologies, K.K.); mouse monoclonal anti-Pax6, dilution (1:250; AD-

2.38, sc-32766, Santa Cruz Biotechnology); and the secondary antibodies: biotinylated anti-

rabbit goat IgG, dilution(1:500; Vector); biotinylated anti-chicken goat IgG (1;500; Vector) 

and biotinylated anti-mouse goat IgG (1:500; Vector) 

Protein isolation 

Five newts were anesthetized with FA-100 (4-Allyl-methoxyphenol, Tanabe, Osaka, japan) 

for two hours then they beheaded and their head was rinsed in 70% ethanol. The eye balls 

were enucleated and collected into PBS×1 (ice cold). Then the anterior half of the eye was 

cut out and the posterior half (eye-cup) was placed on the nitro cellulose filter membrane 

(0.42 µm pore size, Millipore). Ten retinas were collected from eye-cups into eppendorf tube 

(1.5 mL) containing PBS×1 (ice cold). Then PBS×1 was removed as much as possible from 

eppendorf tube and lysis buffer (ice cold) [25 mM Tris, 150 mM NaCl, 1 mM EDTA · 2 Na, 

1% Igepal CA-630, 1% proteinase inhibitor cocktail (P-8340, Sigma), 1% Sodium 

deoxycholate, 0.1% SDS, pH 7.5] was added 7µL per retina. The retina tissues were frozen 

with liquid nitrogen then sonicated for five minutes with sonicator (Iuchi, Vs-70U) filled with 

ice cold water. After sonication sample were spinning down. This freezing, sonication and 

spinning down process were done two times then finally centrifuged at 12000 rpm at 4° C for 

10 minutes. Supernatants were collected into different tube (1.5 mL) and equal volume of 2× 

sample buffer [100 mM Tris-HCl (pH 6.8), 4% SDS, 20% Glycerol, 0.01% (w/v) 
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Bromophenol blue (Wako, Japan), 10% β- Mercaptoetanol (Sigma)] was added and mixed 

quickly. The samples were boiled in hot water for 5 minutes then allowed to be cool and was 

stored at -20° C for western blot analysis. Similar technique was applied for protein 

extraction from larvae. Additional care was taken during protein collection because a foamy 

layer was formed on the top after centrifugation. So protein was collected from the middle 

where a clear solution was found. 

Blotting 

Proteins were separated on a 10% gradient gel (Ready Gel J and Mini-Protean, Bio-Rad) by 

SDS-PAGE and transferred to a PVDF membrane (Immun-Blot PVDF membrane for protein 

blotting, Bio-Rad) using Bio-Rad mini trans-blot cell (153BR25841). The blots were rinsed 

in TBST [100 mM Tris-HCl (pH 7.4), 150 mM NaCl, 0.05% Tween 20] for 10 minutes and 

incubated in a blocking solution (2% Normal goat serum and 2% skim milk in TBST) 

containing Avidin D (1:50; Avidin/Biotin Blocking kit, Vector) for 1 hour. After rinse with 

TBST, the membrane was incubated with primary antibody, diluted in blocking solution 

containing Biotin (1:50; Avidin/Biotin Blocking kit, Vector) overnight at 4° C. The 

membrane was washed three times (15 minutes each) in TBST and incubated with the 

secondary antibody diluted in blocking solution for 90 minutes at room temperature. After 

incubation the membranes were washed again three times (15 minutes each time with TBST 

and then incubated with a mixture of Avidin/Biotin complex solution (Vectastain ABC Elite 

kit, Vector) for 30 minutes and reaction was visualized by DAB substrate kit (Vector). The 

negative control data was obtained by omitting the primary antibody (only blocking solution 

and Avidin D, 1:50). 
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2.2.2 Immunohistochemistry (IHC)  

Normal eyeballs were enucleated from cold shocked newts and fixed in Zamboni’s fixative 

solution for 5 hours at 4°C. The eyeballs were then washed at 15 minutes (twice), 30 minutes 

once, 1 hour and 2 hours interval once each time with the ice chilled PBS×1. After washing, 

eyeballs were immersed in 30% sucrose (Wako, Japan) in cold PBS×1 solution and kept in 

the refrigerator at 4°C for overnight. In the following day, the eyeballs were submerged in 

OCT (Sakura tissuetek, USA, Inc.) solution and made frozen inside the coldtom (Sakura, 

CM-41) at -35°C, and then frozen eyeballs were stored at -80°C for cryosection. The 

cryosection was made transversely at about 20 µm thickness. In case of embryos/larvae of 

different developmental stages, the fixation time was applied for 8 hours in Zamboni’s 

solution and special care was taken to prevent any damage during washing and freezing the 

sample. In this study developmental stages of newts were determined according to Okada YK 

and Ichikawa  M, 1947.   

 Conventional immunoperoxidase labeling was performed with the following antibodies. For 

the primary antibody: mouse monoclonal anti-Pax6, (1:100; AD-2.38, Santacruz biotech); 

Cy-3 conjugated anti-GFAP (1:2000, C9205, Sigma; Susaki K and Chiba C, 2007); mouse 

monoclonal anti-RPE65 (1:500; MAB5428, Millipore, Darmstadt, Germany).  

For the secondary antibody: biotinylated anti-mouse goat IgG (1:500; Vector), 

tetramethylrhodamine-conjugated anti-mouse goat IgG (1:200; T2762; Life Technologies, 

MD 20850, USA). DAPI was used for cell nuclear staining (1:50,000; D1306; Life 

Technology). For double staining with RPE65 and DAPI: section was first stained with 

RPE65 antibody then counter stained with DAPI. 
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Peroxidase staining 

Sections were rinsed in PBS×1, 0.5% Triton X-100 (Wako, Japan) in PBS, and PBS for 15 

minutes each then incubated with 3.3% H2O2 in methanol for 10 minutes followed by a  

washing for 5 and 10 minutes with PBS×1 and incubated for 2 hours in a blocking solution 

(3% normal goat serum and in 0.3% Triton X-100 diluted in PBS) containing Avidin D (1:50; 

Avidin /Biotin Blocking Kit, Vector) at RT. The samples were washed for 5 and 15 minutes 

respectively with PBS×1 then incubated with primary antibody diluted in blocking solution 

containing biotin (1:50; Avidin/Biotin Blocking Kit, Vector) for ~15 hours (over night) at 

4°C. For negative control, the sample was incubated with blocking solution only with biotin 

(1:50; Avidin/Biotin Blocking Kit, Vector), i.e. no primary antibody. The following day, 

samples were washed thoroughly in PBS×1, 0.5% Triton X-100 (Wako, Japan) in PBS×1, 

and PBS×1 for 15 minutes each then incubated in secondary antibody diluted with blocking 

solution for 4 hours at RT. After a complete wash (in PBS×1, 0.5% Triton X-100 (Wako, 

Japan) in PBS×1, and PBS×1 for 15 minutes each then incubated), the samples were 

incubated in a mixture of Avidin- Biotin complex (Vectastain ABC Elite Kit, Vector) for 90 

minutes. The ABC (2% each in PBS×1) complex solution was prepared 30 minutes before 

use. The sections were washed with PBS×1 for 15 minutes (3 times) and the reaction was 

visualized with DAB substrate Kit (Vector). The DAB solution was prepared in MilliQ water 

(200 µL MilliQ water, 4 µL Buffer, 8 µL DAB stock solution, 4 µL H2O2). Sections were 

then washed thoroughly [in PBS, 0.5% Triton X-100 (Wako, Japan) in PBS, and PBS for 15 

minutes each then incubated] and fixed in 4% PFA in PBS×1 for 15 minutes at RT. This step 

was performed for depigmentation of RPE cells layer. Rinse in PBS for 5 and 10 minutes 

respectively and incubated with 15% H2O2 /1.5% Sodium Azide (Wako, Japan) in PBS×1 for 

4 hours at RT. At last samples were washed with D.W. for 15 minutes twice and mount on 

the slide glass with 90% glycerol in PBS×1 solution.   
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2.2.3 Preparation of Pax6 shRNA-transgenic construct 

Based on the mRNA sequence of Pax6 (DDBJ/GenBank Accession#: D88741) reported by 

Mizuno, M et al., 1997, I designed two shRNA in the region as every isoform of Pax6 can be 

knockdown (Figure 5).For negative control, I designed another shRNA from newt β-

crystalline promoter (DDBJ/GenBank Accession#: AB113881).  

The following three primers containing two restriction site-MunI (aattg) and HpaI (gtt) were 

dissolved in TE buffer to make a concentration as 250 pMol/µL.  

Pax6-shRNA 1 (Forward): 

attgAACATGCAGAACAGTCATAGCGGgaagcttgCCGCTATGACTGTTCTGCATGTTttttt

gtt 

Pax6-shRNA 1 (Reverse): 

aacaaaaaAACATGCAGAACAGTCATAGCGGcaagcttcCCGCTATGACTGTTCTGCATGT

Tc 

Pax6-shRNA 2 (Forward): 

aattgAACAGTCATAGCGGAGTCAACCAgaagcttgTGGTTGACTCCGCTATGACTGTTttt

ttgtt  

Pax6-shRNA 2 (Reverse):  

aacaaaaaAACAGTCATAGCGGAGTCAACCAcaagcttcTGGTTGACTCCGCTATGACTGT

Tc 

Pax6-shRNA negative control (Forward): 

attgAACGACGCCTGTCAGGAACTTCTAgaagcttgTAGAAGTTCCTGACAGGCGTCGTT

Ttttttgtt  
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Pax6-shRNA negative control (Reverse): 

aacaaaaaAAACGACGCCTGTCAGGAACTTCTAcaagcttcTAGAAGTTCCTGACAGGCGT

CGTTc 

For each set of shRNA 40 µL of forward and reverse primers were mixed and incubated for 5 

minutes at 70°C. Then 20 µL annealing buffer (pre-heated at 70°C for 5 minutes) was added 

to the oligo mixture to make the volume 100 µL in a PCR tube and incubated for 5 minutes at 

70°C followed by 1 hour incubation at room temperature resulted 100 µM of adapter 

molecule ( about 1 µg/ µL). The resulting adaptors were ligated using the ligation kit (Nippon 

Gene) into the pACGGs-mCherry-pA (Clontech EGFP-N1 vector modified version and a 

kind gift from Dr. Elly Tanaka, Molecular Cell Biology and Genetics, Max Planc Institute, 

Leipzig, Germany) cassette between MunI and HpaI restriction site (Figure 6). For ligation 

reaction, 2 µL MilliQ water, 0.5 µL vector DNA (1 µg/ µL) which was cut open with MunI 

and HpaI and 2 µL insert DNA (adaptor) and 5 µL ligation solution (2X) were mixed and 

incubated for 5 minute at 16 °C. After ligation, these three constructs were transformed into 

the JM109 cells (Takara) and cultured with standard technique. The pCAGGs-mCherry-

shRNA-pA plasmid was purified using maxi kits (Qiagen, Valencia, CA), recovered in 

nuclease free water and stored at -80°C. 

2.2.4 Collection and preparation of fertilized newt eggs for microinjection 

The female newts were injected with 50 µL Human Chorionic Gonadotropin (HCG; 

equivalent to 30 U) into the intra peritoneal space every other day. HCG helps to mature the 

egg. After three consecutive injections, newts start to lay the fertilized egg (Casco-Robles 

MM et al., 2010). Plastic sheets were put on the water into the newt tank as an imitation of 

plant leaves where they usually laid eggs. In the early morning of the following day eggs 

(stick on the plastic sheets because of jelly) were collected in a plastic box containing ice-
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cold water (low temperature slows down egg differentiation). The jellied eggs were carefully 

isolated from the plastic sheets and kept them into a plastic cup containing cold 0.5X MHS 

placed into the ice. 

After isolation, eggs were sterilized by washing with 70% ethanol followed by washing with 

0.5X MHS three to five times. 0.5X MHS was exchanged with the dejelly solution [2% (w/v) 

thioglycolate in 0.5×MHS (MHS stock solution was prepared with70 g per liter NaCl, 1 g per 

liter KCl, 2 g per liter CaCl2 and 4 g per liter MgCl2·6H2O. It was stored at room 

temperature (22–24 °C) and used within 6 months] to remove the jelly capsule on egg. Eggs 

were transferred with sterile wide-bore pipette immediately after dejelling into the fresh 0.5X 

MHS to a separate plastic cup. To remove the jelly debris from the eggs it was carefully 

washed with 0.5X MHS several times. The one cell stage eggs with no damage were then 

placed into the well of Terasaki plate (one egg per well) filled with the microinjection  

medium. After transferring eggs into terasaki  plate, it can be stored at 4°C for 1-2 hour/s.  

Micro injection solution was prepared as follows: I-SceI buffer (10X) 1 µL, Phenol red 

(0.1%) 1 µL, I-SceI plasmid (1 µg/µL) 2 µL, I-SceI (5 U/ µL) 1 µL and  Milli Q water 5 µL 

to make the total volume 10 µL.    Then the solution was incubated at 37°C for 40 minutes for 

the activation of I-SceI  meganuclease enzyme (Table 1).  

During the incubation of microinjection solution, injection needle was prepared as described  

(Casco-Robles MM et al., 2010). One drop of microinjection solution was placed on the 

parafilm sheet and sucked 2 µL solution into the injection needle through its tip. Terasaki 

plate filled with eggs was placed under stereomicroscope and 4 nL solution was injected per 

egg. After injection eggs were kept at 14°C. 
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2.2.5 Rearing transgenic embryo and larvae 

After two days of injection, eggs were carefully transferred from terasaki plate to agarose 

coated petridish containing 0.5X MHS that had been sterilized using syringe filter (0.2 µm 

pore size). Embryos were kept at 14°C until they reached at stage 35. The rearing solution 

was exchanged every other day. mCherry fluorescence was generally first observed in 

blastula stage and become stronger in neurola stage. During rearing, eggs with no expression 

or some damages, dying eggs were discarded. At stage 22 (tell-bud), the rearing solution was 

changed to 0.1X MHS from 0.5X MHS. Solution was exchanged every other day and 

embryos were regularly checked if there was dying or abnormal one. In case of dying or 

abnormalities, embryo was immediately removed from the dish and changed the solution to 

avoid microbial growth. When embryos grew to stage 35, they were transferred to a multi-

well plate (one embryo per well) and reared them at room temperature. 

2.3 Results  

2.3.1 Detection of Pax6 isoforms by immunoblot  

Pax6 protein bands were detected from newt’s retinal proteins sample by immunoblot. So far 

four canonical isoforms of Pax6 were reported in embryonic newt retina (Mizuno M et al., 

1997) and those were LL, SL, LS and SS (Figure 7).  The epitop of rabbit anti-Pax6 (PRB) 

are present on the c-terminal region of LL and SL isoforms.  This antibody bound two 

canonical Pax6 isoforms (M.W. 49 kD and 47 kD) namely LL and SL. Moreover some low 

molecular weight protein bands were also detected (Figure 8). 

LS/SS, chicken anti-Pax6 (Operon Biotechnologies, K.K.), also a C-terminal binding 

antibody, whose epitope is on the C-terminal region of LS and SS isoforms of newts Pax6. 

LS/SS antibody detected another two canonical isoforms of Pax6 (M.W.~50 kD and 45 kD) 
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namely LS and SS in newt’s normal retina. Interestingly, LS/SS also bound some low 

molecular weight proteins bands (Figure 8). Recently many researchers have reported paired-

less/short fragment of Pax6 in different animal model,  however with ambiguous function 

(Ninkovic J et al., 2010; Kim J and Lauderdale JD 2008; Kim J and Lauderdale JD 2006; 

Short S and Holland LZ 2008;  Bandah D et al., 2007). Another C-terminal binding antibody, 

PA1, whose epitope also iss on the C-terminal region but close to the homeodomain (Figure 

7). Theoretically, this antibody was expected to bind all four newts Pax6 canonical isoforms, 

however it could bind only LS and LL isoforms (Figure 8). On the other hand AD2.38, a 

mouse monoclonal anti-Pax6 (Santa Cruz Biotech) antibody, whose epitope is on the N-

terminal region i.e. in paired box containing region (Figure 7). It bound at least three 

canonical isoforms LL, SL, SS of newt’s Pax6 protein extracted from normal retina (Figure 

8). The most important feature of this antibody is that, it did not bind any low molecular 

weight Pax6 related protein/pairedless/noncanonical Pax6. The results were compared with 

negative control data (Figure 8, control). 

2.3.2 Pax6 immunolocalization in newt normal retina with AD 2.38 by IHC 

Mouse monoclonal anti-Pax6 Ab. (AD2.38, Santa Cruz Biotechnology) was successfully able 

to localize Pax6 expressing cells in newt retina of the normal eye-ball section. Most cells in 

the GCL were stained. However the staining pattern of all the cells was not similar. Almost 

all the amacrine cells, some horizontal cells were   found to be stained in the INL (Figure 9).  

The staining intensity of horizontal cells was weaker than that of other cells. To be surprised, 

it reacts with the Müller glial cell body which in zebrafish plays a crucial role in injury 

induced retinal regeneration (Thummel R et al., 2008). All the observations were compared 

with the control data (Figure 9, C). Besides this, the retinal progenitor/stem cells that reside 

in CMZ also positively stained for Pax6 however intensity is higher in progenitor cells than 

that of the stem cells. 

http://www.ncbi.nlm.nih.gov/pubmed?term=%2522Kim%2520J%2522%255BAuthor%255D
http://www.ncbi.nlm.nih.gov/pubmed?term=%2522Lauderdale%2520JD%2522%255BAuthor%255D
http://www.iovs.org/search?author1=Dikla+Bandah&sortspec=date&submit=Submit
http://www.ncbi.nlm.nih.gov/pubmed?term=Thummel%2520R%255BAuthor%255D&cauthor=true&cauthor_uid=18718467
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2.3.3 shRNA-transgene construct knockdowns Pax6  

As Pax6 is a developmental regulatory gene, the knockdown effect is vivid in newt as has 

been observed in other animals (Hill RE et al., 1991; Grindley JC, 1995). I found mainly 

three phenotypes of that small eye in general, and in most severe cases eyeless and head less 

(Figure 10). I also observed that shRNA-2 is more effective than shRNA-1. The eggs that 

were injected with shRNA-2 resulted into all three phenotypes where as those injected with 

shRNA-1 resulted into only small eye phenotype. Moreover Pax6 knockdown affects the 

normal developmental process of newt in terms of their abnormal body formation that 

includes bending body, small size, atypical tail etc.   

In the section of head of those three phenotypes I observed small eye with tiny lens and retina 

in small eye phenotype where as I could not find any eye field in the eye less phenotype 

comparing with the control group where I observed normal eye development as like as 

normal embryo (Fig 11). For this observation I set a parameter that is m-Cherry fluorescence 

expression intensity. I divided all the injected embryo into three groups based on the intensity 

of fluorescence: strong (Fluorescence>60); moderate (Fluorescence>40<60); and week 

(Fluorescence<40) Table 2.  

To determine what extent shRNA was able to knockdown Pax6 protein expression in newt, I 

carried out western blot analysis for Pax6 protein extracted from eyeless and headless animal 

and compared with animal treated with control shRNA. I observed no protein band in eyeless 

and headless animal where as I detected two protein bands in control group i.e. SL, SS (Fig 

12). 

 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=Hill%2520RE%255BAuthor%255D&cauthor=true&cauthor_uid=1684639
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2.3.4 Pax6 expression in developing retina and RPE cells 

During development, like other vertebrate newt also follows a similar cascade of events for 

eye morphogenesis. Neural ectoderm which is the primary cell source of both neural retina 

and retinal pigment epithelial (RPE) cells. All most all cells of early optic vesicle (Stage-23) 

expressed Pax6 evenly. In late optic vesicle (Stage-24) where proximal and distal regions are 

known as pro-neural retina and pro-RPE expressed Pax6 as an equivalent manner. Pax6 

expression was also observed both in pro-neural and pro-RPE in eye cup (Stage-29) and in 

lens epithelium. This expression become prominent in the proliferating neural progenitor, 

differentiated ganglion cells, iris pigment epithelium cells compared to other retinal neuronal 

cells and expression obviously started to decrease in the RPE cells in embryonic eye (Stage-

32). In late embryonic eye (Stage-37), Pax6 expression, for the first time disappear 

completely from the RPE layer while keeping expression in differentiated ganglion cells, 

amacrine cells, horizontall cells, Müller glia, lens epithelium, cornea as well as in ciliary 

marginal zone in embryonic eye i.e. Stage- 43 (Figure 13 and 14). In situ hybridization with 

newt eye tissue also has been reported to express Pax6 in neural retina, lens, cornea 

epithelium as well as in developing human eye (Rio-Tsonis KD, 1995).  RPE65, a marker 

protein for mature RPE cells was first immunolocalized in early embryonic eye (Satge-35) in 

the centre region and was localized along the RPE line at stage- 43 (Figure 14).  

2.4 Discussions 

2.4.1 AD2.38 (Mouse monoclonal anti-Pax6 Ab.) is compatible for newt Pax6 

Four canonical Pax6 isoforms, namely LL, LS, SL and SS, have been reported in the 

embryonic newt eye by Mizuno M et al., (1997). In the present study, I used a chicken 

polyclonal anti-Pax6 antibody to newts LS/SS isoforms as well as I bought two commercially 

available antibodies PRB and PA1 as part of searching good probe. Then I checked their 
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compatibility to newts Pax6 by immunoblot analysis. Newts Pax6 was detected successfully 

by two Abs., PRB and LS/SS however, PA1 was found less compatible for newts Pax6 in 

immunoblot analysis. PRB bound two canonical isoforms, LL and SL of molecular weight 49 

kD and 47 kD respectively. On the other hand LS/SS was able to bind also two another 

canonical isoforms, LS and SS of molecular weight ~50kD and 45kD respectively. Moreover, 

both of these two C-terminal binding antibodies (PRB and LS/SS) also bound some low 

molecular weight protein. On the other hand in immunoblot analysis, AD2.38 efficiently 

bound at least three newts canonical Pax6 isoforms. In addition, AD2.38 did not react with 

any low molecular weight proteins which revealed its high specificity for canonical Pax6 

isoforms only. 

Consequently, I used AD2.38 for the detection of Pax6 expression pattern focusing on the 

RPE, cilliary marginal zone (CMZ) and normal retina with IHC. This N-terminal binding 

antibody looked very efficient to localize Pax6 in the CMZ cells and retinal neural cells 

(ganglion cells, amacrine cells, bipolar cells and some horizontal cells also). Conversely, RPE 

cells were not detected as Pax6 positive.  

Retinal stem/progenitor cells that reside in the CMZ of some adult vertebrates (Tropepe V et 

al., 2000; Kubo F et al., 2003; Moshiri A et al., 2005) showed canonical Pax6 expression 

(Figure 9). So far, AD2.38 was found as more reliable tool for the detection of canonical 

pax6 in the regenerating retina, especially for RPE-derived stem-like cells. Taken together all 

the observations, I was encouraged to use AD2.38 as a marker antibody for the identification 

of Pax6 in the developing eye as well as early to regenerating retina by IHC. 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=%2522Kubo%2520F%2522%255BAuthor%255D
http://www.ncbi.nlm.nih.gov/pubmed?term=%2522Moshiri%2520A%2522%255BAuthor%255D
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2.4.2 shRNA-transgenic method is an effective means for knocking down Pax6 gene 

functions 

Pax6 shRNA which I designed based on the mRNA sequence reported by Mizuno M et al., 

1997 showed effectively knockdown Pax6 in newt. That is why I observed small eye newt 

and in severe case eye less and abnormal-head animal. This result reveals shRNA-transgenic 

means can be a useful technique to manipulate genes functions as like Pax6 in this animal 

model as mammal (Peng S et al., 2006). I also observed abnormal development in the anterior 

posterior axis in animal as reported in other animal model (Li Y et al., 2000). I performed 

western blott analysis with the protein of control shRNA injected animal and shRNA-2  

injected animal (eyeless and head less). Western blot data also suggest that eye formation as 

well as brain and normal development is sharply affected by the degree of Pax6 knockdown 

with the shRNA. In this study I found that shRNA-2 is more effective than shRNA-1. In case 

of Pax6 shRNA-1, 33.3% and 75% animal having small eye showed moderate and strong 

fluorescence respectively. On the other hand shRNA-2 showed more severe effect: 33% and 

50% having strong fluorescence were headless and eyeless respectively (Table 2). The 

eye/head section revealed that Pax6 knockdown directly affect eye morphogenesis in this 

animal as well as brain development (Fig 11) which suggest that the reported Pax6 mRNA 

sequence (Mizuno, M. et al, 1997) is evolved from the same locus and it is functionally 

conserved in newt like other vertebrate including mammals (Matsuo T et al., 1993).  

2.4.3 Pax6 expression is conserved in newt 

During early vertebrate development, cells of the ectoderm invaginate to give rise to the 

neural tube. The cells of the neural ectoderm (the cells that surround the neural tube) then 

grow outward on either side, producing the optic vesicles (Figure 1). Contact and molecular 

signaling between the optic vesicle and the surface ectoderm induces the formation of the 
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lens from the surface ectoderm (Figure 1).  In addition, signals from the surface ectoderm 

including fibroblast growth factor 2 (FGF2) induce the inner layer of the optic cup to become 

neural retina (Pittack C et al., 1997) and several transcription factors including Pax6 and 

Chx10 are essential for neural specification (Belecky-Adams T et al., 1997). On the other 

hand, the outer layer of the optic cup is under the influence of factors from the underlying 

mesenchyme such as activin which in turn could activate transcription factors like 

Microphthalmia factor (Mitf) that are able to specify the RPE fate (Fuhrmann S et al., 2000).  

I examined the the expression pattern and regulatory role of developmentally important 

transcription factor Pax6 in the processes of retina and RPE formation and their maturation. 

Linage tracing experiment in Xenpus laevis has been reported that retina, RPE and lens arise 

as a consequence of cell-autonomous function of Pax6 (Chow RL et al., 1999).In newt 

embryonic/larval development, expression patterns of Pax6 were highly conserved, as 

anticipated. Pax6-immunoreaction (Pax6-IR) was observed in (i) the neuroepithelial cells of 

the early optic vesicle (St. 23), (ii) the pro-NR region in the optic vesicle (late stage; St. 

24)/cup (St. 27), (iii) retinal progenitor cells in immature retinas (St. 30); (vi) the CMZ, (v) 

the pro-RPE region in the optic vesicle (late stage; St. 24)/cup (St. 27), (vi) immature RPE 

cells which had melanin pigments but not RPE65-imminoreactivity (St. 30), as well as (vii) 

some types of NR cells (ganglion, amacrine, horizontal and Müller glia cells). A similar 

expression pattern was observed in other vertebrate also (Hitchcock PF et al., 1996).  From 

this observation it is obvious that a relation between RPE maturation and Pax6 expressison 

was conserved in newt as was reported in other vertebrate that Pax6 together with Mitf is 

essentially required to activate the downstream genes for melanogenesis in RPE (Bäumer N 

et al., 2003; Raviv S et al., 2014). Therefore Pax6 is required for the lineage specification 

until immature RPE but disappear in mature one or Pax6 down regulation occurs in RPE cells 

http://www.ncbi.nlm.nih.gov/pubmed?term=Hitchcock%2520PF%255BAuthor%255D&cauthor=true&cauthor_uid=8907167
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for their maturation but continuous expression is necessary for the retinal neuronal cells 

differentiation and specification.  

2.5 Data analysis 

 In the transgenic analysis, bright-light and fluorescence images of embryos/larvae were 

acquired using a digital camera (C-5060; Olympus, Japan) attached onto a fluorescence 

stereomicroscope  (Leica M165 FC) with a filter set for mCherry (Exciter: XF1044, 

575DF25; Emitter: XF3402, 645OM75; Opto Science, Japan). Embryos/larvae with visible 

red fluorescence throughout the body were selected, and then subdivided into ‘weak’, 

‘moderate’ and ‘strong’ on the basis of their fluorescence intensity; fluorescence intensity 

was estimated as the average luminance by analyzing the fluorescence images of 

embryos/larvae which were acquired with a 40x objective lens, using a function of Photoshop 

Extended CS5 graphics software (Adobe); embryos/larvae with an average luminance value 

of 40-60 were categorized as ‘moderate’, and those with higher and lower values were 

categorized as ‘strong’ and ‘weak’ respectively. For the immunohistochemical analysis, 

bright light and fluorescence images of tissue sections were acquired using a CCD camera 

system (DP73; cellSens Standard 1.6; Olympus) attached to a fluorescence microscope 

(BX50; Olympus). 
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Chapter III: Pax6 expression in RPE-derived cells and in regenerating 

newt retina  

3.1 Introduction 

It is believed that the adult newt RPE cells dedifferentiate by losing their original 

characteristics as iris pigment epithelium (IPE) cells do. During lens regeneration, IPE cells 

dedifferentiate by losing their original pigment epithelial characteristics. They lose 

pigmentation, re-enter the cell cycle, proliferate to regenerate the new lens. The 

dedifferentiated proliferating IPE derived cells express Pax6 (Del-Rio Tsonis K and Tsonis 

PA, 2003). On the other hand, RPE-derived cells preserve pigmentation and RPE65 protein 

expression until Stage E-3 (Chiba C et al., 2006). Nonetheless, I have assumed that adult 

newt RPE cells are reprogrammed into multipotent cells which give rise to both a new NR 

and RPE (Chiba C & Mitashov VI, 2007). In fact, almost all of the RPE-derived cells at Stage 

E-1, which seem homogeneous with regards to their pigmentation and RPE65-

immunoreactivity (RPE65-IR), uniformly express a neural stem-cell marker Musashi-1 in 

their cytoplasm (Kaneko J & Chiba C, 2009). Therefore, these RPE-derived cells were called 

‘stem-like cells’ (Chiba C & Mitashov VI, 2007). However, it remains elusive what state the 

stem-like cells are in. In this study, I address the nature of adult newt RPE-derived stem-like 

cells by means of immunohistochemistry for the identification Pax6 because Pax6 is widely 

accepted as retina/RPE stem cells marker in wide range of animals, thus obtaining valuable 

insight into similarities and differences between retinal disorders and regeneration. 
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3.2 Methodology 

Surgical operations  

Sexually mature adult C. pyrrhogaster newts (total body length: male, ~9 cm; female, 11-12 

cm) were originally caught from a restricted area (~25 km in diameter) of Kamogawa city 

(Chiba prefecture, Japan) and were reared in the laboratory (Casco-Robles MM et al; 2011). 

Surgical removal of the NR (retinectomy) was performed as described previously (Chiba C et 

al., 2006). In brief, after the adult newts were anesthetized in 0.1% FA100 (4-allyl-2-

methoxyphenol; DS Pharma Animal Health, Osaka, Japan) solution in the dark at room 

temperature (RT, ~22°C) for 2 h, the dorsal half of the left eye was cut open along the 

position slightly below the boundary between the cornea and sclera, and the NR was carefully 

removed together with the lens. At this time, the retinal margin containing the ora serrata 

(the tissue harboring the retinal stem/progenitor cells) was also removed. After operation, the 

eye flap consisting of the iris and cornea was carefully placed back in its original position. 

The operated animals were allowed to recover in a moist container [<5 newts/container (19 

cm x 14 cm x 4 cm)], and then reared in an incubator (~22°C; 12 h : 12 h day : night cycle) 

until use. The stage of retinal regeneration and corresponding day po were determined 

according to previous criteria (Chiba C et al., 2006). 

Collection of eyeballs and preparation of tissue samples 

Newts were sacrificed under anesthesia to minimize suffering. To collect eyeballs, the 

animals were decapitated, then placed under a binocular and the eyeballs were carefully 

enucleated with fine scissors and forceps (Susaki  K & Chiba C,  2007). 
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Immunohistochemistry 

Immunolabelling of tissue sections was performed as described previously in chapter II, 

with some modifications. For retinectomized eyeball sections, an antigen retrieval step was 

added before the process of immunolabelling: after the slits were made along the inside 

margin of the cornea and sclera to separate the iris and retinal tissues from those connective 

tissues by manipulating a blade under a dissecting microscope, eyeball sections were rinsed 

in PBS for 15 min, incubated in a sodium citrate buffer (10 mM sodium citrate, 0.05% Tween 

20, pH 6.0) at 90°C for 10 min, and then rinsed in PBS twice for 5 min each time. During 

incubation in the sodium citrate buffer, the corneal and scleral tissues became coiled and 

dissolved into the buffer solution. This treatment obviously decreased the background 

staining of tissues (possibly due to some blood-related content in the choroid), while 

sustaining  immunoreactivity,  raising  the signal to noise ratio. 

Pax6 was localized with a previously developed immunoperoxidase labeling procedure 

(Chapter II) with the ABC/DAB (Vectastain ABC Elite kit, DAB substrate kit, Vector 

Laboratories) system and RPE65 (mouse monoclonal anti-RPE65 antibody ; 1:500; 

MAB5428; Millipore)  and PCNA (Human autoantibody to PCNA 1:500; gift from Dr. T. 

Saito; Chiba et al., 2006) were localized with an immunofluorescence procedure(Chiba C et 

al., 2006). In the case of double labeling with Pax6 (monoclonal anti-Pax6 antibody ; 

AD2.38, sc-32766; Santa Cruz Biotechnology)  and RPE65 antibodies (both are mouse 

monoclonal antibodies), immunoperoxidase labeling of Pax6 without the DAB reaction was 

followed by immunefluorescence labeling of RPE65, and finally Pax6-immunoreactivity was 

visualized with DAB (substrate kit, Vector Laboratories). The secondary antibody used in 

this experiments: biotinylated goat anti-mouse IgG antibody for Pax6 (1:500; Vector 

Laboratories), tetramethylrhodamine-conjugated goat anti-mouse IgG antibody for RPE65 

(1:200; T2762; Life Technologies), Alexa Fluor 488-conjugated goat anti-human IgG for 
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PCNA (1:1000; A-11013; Life Technologies). After labeling, cell nuclei were counterstained 

with DAPI (1:50,000 in PBS×1; D1306; Life Technologies) for one hour in room 

temperature. 

Western blot 

Conventional western blot was performed as was done in Chapter II. Protein was extracted 

from RPE-choroid tissues from 20 regenerating eyes and 20 normal eyes.    

3.3 Results 

In adult retinal regeneration, if RPE-derived stem-like cells are comparable to cells in the 

optic vesicles/cups or to immature RPE cells, cells of the CMZ (retinal stem/progenitor cells 

harbor) should express Pax6. The expression was not observed at all in day-0 and day-5 po 

RPE-derived cells. However, dedifferentiation process was started after 5 days po. I observed 

depigmentation, cell dissociation i.e disruption of epithelia (Figure 15). Unexpectedly, Pax6-

IR was first detected only in a small population of RPE-derived cells at Stage E-1 (day-10 

po). At 10 days after retinectomy, the dissociated RPE cells aggregated and among them 

some cells expressed Pax6 (Figure 16). This became obvious in the few ensuing days in 

which the RPE-derived cells were segregated into two rudimentary layers (pro-NR and pro-

RPE). At Stage E-2 (day-14 po), Pax6-immunoreactivity was observed along the pro-NR 

layer almost uniformly but very sparsely in cells located along the pro-RPE. Pax6-

immunoreactivity in the pro-RPE layer became undetectable by Stage E-3 (day-19 po) 

(Figure 17). On the other hand, thickness of the Pax6-immunoreactive (Pax6-IR+) pro-NR 

layer or regenerating NR increased. As cell differentiation proceeded, the number of Pax6-

IR+ retinal progenitor cells decreased while Pax6-IR+ NR cells appeared in the following 

order: ganglion cells (St. I-1) → amacrine cells (St. I-2) → horizontal cells (St. I-3) → Müller 

glia cells (St. I-3 to L-1) (Figure 18). Although Pax6 was not detected in all the RPE-derived 
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cells at 10 days po, western blot detected a thin, weak but distinguished protein band 

corresponding to newt LL Pax6 isoform in protein extracted from 10 days po RPE-choroid 

tissues (Figure 19). Moreover, I observed only about 12% RPE-derived cells expressed Pax6 

while almost all (about 98%) the RPE-derived cells at 10 days po expressed PCNA indicated 

re-enter the cell cycle (Figure 20). 

3.4 Discussion 

The RPE-derived cells at Stage E-1 most likely were not comparable to the cells that I had 

predicted based on the Pax6 expression pattern. In the IHC experiment for Pax6 expression, I 

observed a small population of the RPE-derived cells in the aggregate positively stained but 

the signal was so faint that I decided to reconfirm the presence of Pax6 protein in RPE-

derived cells applying western blot technique. From this observation it is obvious that Pax6 is 

just started to express in the RPE derived cells. Moreover, all the RPE derived cells (~98%) 

express PCNA (proliferative cell nuclear antigen), which is an established marker for cell 

cycle entry in newt (Chiba C et al., 2006). PCNA may persist into the proliferating cells as 

well. On the other hand only about 12% of the RPE derived cells showed Pax6-IR +. As 

speculated from this observation RPE-derived cells enter the cell-cycle independently where 

there is no relation between cell-cycle entry and Pax6 expression in these cells.  

 In addition, it appeared as if two cell populations appeared abruptly in the RPE-derived cells 

between Stages E-1 and E-2, forming the pro-NR layer (Pax6-IR+) and the pro-RPE layer 

(Pax6-IR-) by Stage E-2. The Pax6 expression pattern that I observed in the developing retina 

in Chapter II was similar to that in the regenerating retina. However in case of development, 

the RPE cells also exhibit Pax6 expression until they reach to maturation. On the contrary in 

case of regeneration, once the RPE derived cells get partitioned as pro-RPE and pro-NR, 

Pax6-IR was observed only in the pro-NR but not in the pro-RPE. This indicates RPE derived 
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cells in pro-RPE do not necessarily return to a stage like immature RPE of development.  

Thus, together with the previous findings (Chiba C et al., 2006, Chiba C & Mitashov VI, 

2007) and from this study as I observed that after Stage E-3, the process of retinal 

regeneration seemed like a recapitulation of embryonic retinal development.   
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Chapter IV: Expression of marker genes involved in the early phase of 

retinal regeneration 

4.1 Introduction 

To facilitate the study of retinal regeneration in newt, one considerable obstacle still remains: 

limited information of genes. Recently, our laboratory has provided a de novo assembly 

transcriptome and inferred proteome of the Japanese fire bellied newt (Cynops pyrrhogaster), 

which was obtained from eyeball samples of day 0-14 after surgical removal of the lens and 

neural retina. This transcriptome (237,120 in silico transcripts) contains most information of 

cDNAs/ESTs which has been reported in newts (C. pyrrhogaster, Pleurodeles waltl and 

Notophthalmus viridescence) so far (Abdullayeva I et al., 2013; Looso M et al., 2013). On the 

other hand, de novo assembly transcriptomes reported lately for N. viridescence only covered 

16-31% of this transcriptome, suggesting that most constituents of this transcriptome are 

specific to the regenerating eye tissues of C. pyrrhogaster. A total of 87,102 in silico 

transcripts of this transcriptome were functionally annotated. Coding sequence prediction in 

combination with functional annotation revealed that 76,968 in silico transcripts encode 

proteins/peptides recorded in public databases so far, whereas 17,316 might be unique. In this 

study, I attempted to search the presence and expression level of genes that are regulated in 

association with cell reprogramming, cell-cycle re-entry/proliferation, and tissue patterning in 

an early phase of retinal regeneration through qPCR analysis. 

4.2 Methodology 

Retinectomized (left eye) animals were decapitated under anesthesia at day-10 and day-14 

po, then eyeballs were collected into RNase-free PBS. Left eyes were used for day-10 and -

14 samples, and right eyes were treated as day-0. Eyeballs were cut open, the anterior part 

containing the iris and the ciliary marginal zone was removed carefully, and RPE cells (day-
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0) or RPE-derived cells (day-10 and -14) were collected together with the choroid tissues 

(blood cells in the choroid were removed as much as possible by gently pippeting up and 

down them in RNase-free PBS). Each day samples were immediately used to purify total 

RNA (5 samples/tube; NucleoSpin® RNA kit; Macherey-Nagel GmbH & Co. KG, Düren, 

Germany). First strand cDNAs were synthesized (SuperScript
TM

 II Reverse Transcriptase; 

Life Technologies, Carlsbad, CA) with 30 ng of total RNA. The resulted cDNA was  diluted 

100x, and then used as a template for qPCR (Figure 21). qPCR was performed by a 

LightCycler® Nano system (Roche Applied Science, Penzberg, Germany) according to the 

manufacturer’s instructions of Fast Start Essential DNA Green Master (Roche) or Fast Start 

Essential DNA Probes Master (Roche), with 45 cycles. Target IS-transcripts genes: Ef1α, 

RPE65, CRALBP/RLBP1, ZO1, Otx2, Musashi1a/c, Cyclin D1, CDK4, Histone H3, c-Myc, 

Klf4, Sox2, N-Cadherin, α-SMA, Vimentin, Pax6, Chx10/Vsx2, FGFR1, FGFR3, Mitf, Wnt2b, 

and their PCR primers and probes [selected from the Roche Universal Probe Library 

(https://www.roche-applied-science.com)] are listed in Table 3. The DDBJ/GenBank 

accession number of the cDNA corresponding to each IS-transcript is also mentioned in 

Table 3.  

For each gene, qPCR, which was always run simultaneously with day-0, -10 and -14 samples, 

was repeated using more than three sets of independently collected samples. The relative 

expression level of each transcript was calculated as follows: the amount of transcript was 

first compensated for Ef1α (the mean from several rounds of qPCR) in the same sample, and 

then normalized against that of the day at which the average value from all samples was 

highest. Data was presented as a bar graph showing the mean ± SEM. Statistical differences 

were evaluated by Mann-Whitney’s U test or Sheffe’s test following the Friedman test. 
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4.3 Result 

The current transcriptomes contained much information of genes which have not been 

identified in C. pyrrhogaster but whose transcription has been hypothesized to be regulated in 

early processes of retinal regeneration. Here, for qPCR, I selected 20 genes (Table 3): for 

unidentified genes CRALBP/RLBP1, ZO1, Cyclin D1, CDK4, Histone H3, c-Myc, Klf4, N-

Cadherin, α-SMA, Vimentin, Chx10/Vsx2, Mitf, FGFR1, FGFR3. qPCR results (Figure 22) 

revealed that the expression levels of many genes characterizing RPE cells (RPE65, 

CRALBP/RLBP1, ZO1, Otx2, Musashi1a/c) gradually decreased upon retinectomy, while the 

expression of genes for the cell-cycle (Cyclin D1, CDK4, Histone H3) and growth signaling 

(FGFR1, FGFR3) was up-regulated to reach a maximum level by day-10 po when almost all 

RPE cells had entered the cell cycle (Stage E1; Figure 20). Intriguingly, pluripotency factors 

except for Oct4 (i.e., c-Myc, Klf4, Sox2) were expressed between day-0 and day-10 po; Oct4 

was not found in the current transcriptomes. Up-regulation of these three factors and lack of 

Oct4 expression were also reported in early lens and limb regeneration of N. viridescence 

(Maki N et al., 2009). Mitf, a marker gene for immature or uncommitted RPE cells (Bharti K 

et al., 2012), was also expressed by day-10 po but then its expression level decreased. These 

expression patterns of genes might reflect the reprogramming of RPE cells into a multipotent 

cell state. On the other hand, marker genes for retinal stem/progenitor cells (Pax6, 

Chx10/Vsx2) were expressed, later than Mitf, at day-14 po when two progenitor layers for the 

prospective neural retina and RPE just appear (Stage-E2; see Figure 17). Interestingly, the 

expression of Wnt2b was coincidental. Wnt/β-catenin signaling has been suggested to 

promote differentiation of the RPE while protecting cell-fate switching of the uncommitted 

RPE into the neural retina in embryonic eye development (Yoshikawa T et al., 2012; Bharti 

K et al., 2012). 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=Maki%2520N%255BAuthor%255D&cauthor=true&cauthor_uid=19384853
http://www.ncbi.nlm.nih.gov/pubmed?term=Bharti%2520K%255BAuthor%255D&cauthor=true&cauthor_uid=22792072
http://www.ncbi.nlm.nih.gov/pubmed?term=Yoshikawa%2520T%255BAuthor%255D&cauthor=true&cauthor_uid=22026648
http://www.ncbi.nlm.nih.gov/pubmed?term=Bharti%2520K%255BAuthor%255D&cauthor=true&cauthor_uid=22792072
http://www.ncbi.nlm.nih.gov/pubmed?term=Bharti%2520K%255BAuthor%255D&cauthor=true&cauthor_uid=22792072


 

40 

4.4 Discussion 

It is obvious that, the provided in silico transcriptomes covering information of genes which 

are expressed in eyeballs containing Stage E-0 to E-2 regenerating retinas will certainly 

facilitate the investigations of adult newt retinal regeneration study. Gene expression patterns 

revealed by qPCR demonstrate the usefulness of the transcriptomes for the study of early 

processes of retinal regeneration. This resource can be applied to the next comprehensive 

gene screening steps to uncover essential mechanisms underlying reprogramming, cell-cycle 

re-entry/proliferation, and patterning of the RPE derived cells in adult newt retinal 

regeneration. Thus by a comparative study on the genes expression profile between newt RPE 

derived cells and human iPS cells derived RPE cells might provide us with some useful 

information toward the recovery of RPE mediated retinopathy. For example in PVR 

(proliferative vitreoretinopathy), after retinal injury RPE cells migrate to the site of injury and 

form an epiretinal membrane leading to the loss of vision in humans. In this case, RPE cells 

transform into mesenchymal cells such as myofibroblasts, probably by passing through a 

stem-cell state (Chiba C, 2014). In the newt, expression of mesenchymal markers (N-

Cadherin, Vimentin) seemed to be up-regulated by day-10 po and then decreased while the 

relative expression level of a marker of myofibroblasts, α-SMA (smooth muscle actin), 

obviously decreased (Figure 22). Taken together the qPCR results and Pax6-IR data, in 

contrast to humans, in the newt RPE-derived cells (possibly in a stem-cell state) properly and 

evidently generate retinal stem/progenitor cells. Moreover, the newt transcriptomes could be 

a good tool to identify or screen candidate genes involved in early processes of retinal 

regeneration. 
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Chapter V: Identification of multipotency factors in RPE-derived cells 

5.1 Introduction 

In in silico transcriptome data base I found some marker genes that have role in the early 

process of retinal regeneration and observed expression changes during E0 to E2 stages. Then 

I decided to carry out qPCR experiment again for isolated RPE (intact) and RPE-derived cells 

(Satge E1, 10 days po) because in the previous chapter (Chapter IV) I performed qPCR 

based on the in silico transcript sequences with the cDNA made from RPE-choroid tissues 

which might contain other cells (Chiba C et al., 2006) especially blood cells (Figure 23). 

Isolated cells qPCR is a more reliable tool for accurate determination of genes expression 

study. That is why for better resolution of gene expression result in the RPE-derived cells I 

attempted to pick up the solitary isolated RPE/RPE-derived cells to make cDNA for authentic 

target gene expression profile in them. Nowadays single cell qPCR is even more powerful 

technique for particular gene expression assay in a given time or condition (Ståhlberg A and 

Bengtsson M, 2010; Sanchez-Freire V et al 2012).  In this chapter I have focused on the 

genes c-Myc, Klf4 and Sox2 (pluripotent genes) as well as Mitf and Pax6 in the isolated and 

single cell level expression. In addition I have performed IHC (for Sox2) for protein level 

expression in the developmental, adult normal and regenerating tissues. 

5.2 Methodology 

Cell isolation and cDNA synthesis 

For single-cell qPCR, both the right (intact) and left (retinectomized) eyeballs of animals at 

day-10 po were used; that is, the right eyeballs were used for day-0 po sample containing 

intact RPE (stage E-0), and the left eyeballs were for day-10 po (stage E-1) sample. For one 

round of the experiment, three animals were sacrificed under anesthesia, and the right and left 
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eyeballs were collected in different plastic dishes (Falcon 35-3001; Becton Dickinson) filled 

with RNase-free PBS on ice. The right eyeball (day-0) was dissected into the eye-cup, the NR 

was removed, and then the RPE sheet together with the choroid tissues was isolated by 

separating these from the sclera using a fine pin and forceps (Susai K and Chiba C 2007); 

left-hand pathway in Figure 24. On the other hand, the left eyeball (day-10) was carefully 

opened from the wound at the time of retinectomy using a fine pin and scissors, the anterior 

part of the eyeball containing the iris and ciliary marginal zone was carefully removed, and 

then RPE-derived cells in the posterior eye were collected together with the choroid tissues as 

was done for the right eyeball; right-hand pathway in Figure 24. After blood cells in the 

choroid were removed as much as possible by shaking carefully and slowly them in the dish, 

three each-day samples were transferred into different 15-ml tubes containing 1 ml of elastase 

(1 mg/ml; Porcine pancreas; Ref:11027891001; Roche Diagnostics) in EDTA solution (in 

mM: 115 NaCl, 3.7 KCl, 10 EGTA, 18 D-glucose, 10 HEPES, 0.001% phenol red, pH 7.5 

adjusted with 0.3N NaOH) with a 3.5 ml transfer pipette (Sarsted, D-51588 Nümbrecht, 

Germany), and incubated for 90 min at 28°C. The tissue samples were rinsed with a chilled 

newt saline solution (in mM: NaCl, 115; KCl, 3.7; CaCl2, 3; MgCl2, 1; D-glucose, 18; 

HEPES, 5; pH 7.5 adjusted with 0.3N NaOH) several times, and then dissociated by gentle 

trituration with the transfer pipette. The cell suspension was transferred into a 1% agarose-

coated 35 mm plastic dish (Falcon 35-3001) placed on ice box. This trituration and cell 

collection steps were repeated 5-6 times. 

cDNA synthesis and pre-amplification were carried out, under conventional nuclease-free 

conditions, using TaKaRa CellAmp Whole Transcriptome Amplification Kits (Real Time) 

Ver.2 (code#: 3730; Takara, Japan) according to the manufacturer’s instructions. In brief, 

solitary RPE cells or RPE-derived cells, which were identified by their morphological 

characteristics (Figure 24 and 25), were picked up from the dish by a microtip (703Y, Ina 
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Optika, Japan) attached to a micropipette (set at 0.5 µl; Pipetman P20; Gilson) under a 

dissecting microscope. For 100-cell qPCR analysis, 100 cells were picked up and transferred 

into a PCR tube (No T-02F, Ina Optica) containing 50 µl RNase-free PBS, and settled on the 

bottom of the tube by centrifugation for 1 min at 3,000 ɡ. After centrifugation, PBS in the 

tube was discarded leaving behind ~0.5 µl, a 4.5 µl reaction mixture (containing cell lysis 

buffer, recombinant RNase inhibitor, RT dT primer 2, dNTP mixture, RNase free dH2O ) was 

added. For one-cell qPCR analysis, one cell (0.5 µl) was directly transferred into the tube 

containing the 4.5 µl reaction mixture. In both samples, cDNA synthesis was followed and 

then resulting cDNAs were amplified non-selectively by PCR (95°C, 1 min → 50°C, 1 min 

→72°C, 3 min: 1 cycle; 95°C, 30 sec → 67°C, 1 min → 72°C, 3 min: 20 cycles; 72°C, 1 

min). The amplified cDNA samples were stored at -20°C until use. 

Quantitative PCR (qPCR) 

The amplified cDNA samples were diluted 10x, and then used as a template for qPCR. qPCR 

was performed by a LightCycler® Nano system (Roche Applied Science, Penzberg, 

Germany) according to the manufacturer’s instructions of FastStart Essential DNA Green 

Master (Roche) or FastStart Essential DNA Probes Master (Roche), with 45 cycles. For each 

gene examined in this study, the DDBJ/GenBank accession number, primers, probes [selected 

from the Roche Universal Probe Library (https://www.roche-applied-science.com)] and 

expected size were given in Table 4 The specificity of PCR was confirmed by standard gel-

electrophoresis and DNA sequencing. 

Western blott 

Western blot was performed for the validation of Sox2 antibody as was described in chapter 

II.  
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Antibodies for primary antibody: rabbit anti-Sox2 antibody (1:660 for IHC and 1:1000 for 

western blot; ab97959; Abcam) and for secondary antibody: biotinylated goat anti-rabbit IgG 

antibody (1:500; Vector Laboratories); for negative control, mouse or rabbit antibodies (IgG) 

which have no specific reactivity to newt tissues (e.g. anti-dsRed antibody; 632543 or 

632496; Clontech, CA 94043, USA) were applied, instead of the primary antibody, at the 

same concentration of primary IgG. 

Immunohistochemistry 

Histochemistry was done as was described in chapter II (for normal eye section and larvae) 

and chapter III (for regenerating eye tissue). 

5.3 Results 

I investigated whether the RPE-derived cells express other stem-cell markers. To perform 

this, a single-cell qPCR technique was adopted, since in this animal the availability of 

antibodies is quite limited, and empirically in situ hybridization seems to have insufficient 

sensitivity (or signal to noise ratio) to detect low concentrations of mRNAs whose 

transcription just started. Candidate genes were identified using a newt de novo assembly 

transcriptome database (IMORI, http://antler.is.utsunomiya-u.ac.jp/imori/) Chapter IV.  

I first carried out qPCR analysis using 100 harvested cells (Figure 26). Pluripotency factors 

(c-Myc, Klf4 and Sox2), Mitf and Pax6 were always detected in day-10 samples but never in 

day-0 samples (n≥4), although RPE65 was detected in both day samples (n=4); the relative 

expression levels of RPE65 were not significantly different between samples. I next tried 

qPCR with one-cell samples (Figure 27 and Table 5). On day-0, as observed from 100-cell 

samples, none of the genes examined were detected but in a total of 17 cells, RPE65 was 

detected (RPE65+ cells). On the other hand, on day-10, from a total of 19 RPE65+ cells, 13 

http://antler.is.utsunomiya-u.ac.jp/imori/
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cells (68%) showed the expression of target genes (Figure 27), although the combination of 

genes detected varied individually (day-10 in Table 5). 

Such a fluctuation in the detection of each target gene in day-10 samples may be explained by 

the probability of occurrence of a reverse transcription (RT) reaction under a condition of low 

concentrations of mRNA (the substrate of the RT polymerase), which should be true for the 

current one-cell samples; that is, the detection rate should depend on the concentration of 

mRNA under this condition. Thus, all data was cumulated (n=19), revealing that the 

detection rates of target genes (Figure 27) showed a similar pattern to that (c-

Myc>Klf4>Sox2; Mitf>Pax6) of their relative expression levels obtained in 100-cell samples 

(Figure 26).These observations suggest that mRNAs of all target genes may be present in a 

single day-10 cell at different concentrations. It is noteworthy that one particular cell (d-10 

Single #18 in Table 5) that expressed all target genes. Taken together, these findings prove 

that RPE cells are reprogrammed into a unique multipotent state. 

To visualize the expression of these multipotency factors, immunohistochemistry was 

attempted once again. I searched for antibodies for c-Myc, Klf4, Sox2 and Mitf of this 

species, and finally found a good antibody for Sox2. Antibody was validated by western blot 

analysis and it could bind successfully a protein band around 37 KD corresponding to newt 

Sox2 (Figure 28). In addition both developing and adult eyes, the patterns of Sox2-IR were 

consistent with those reported in other vertebrates(Lin YP et al., 2009; Ma W et al., 2009; 

Matsushima D et al., 2011): Sox2-IR was observed in (i) the neuroepithelium cells of the 

early optic vesicle (St. 23), (ii) the pro-NR region in the optic vesicle (late stage; St. 24)/cup 

(St. 27), (iii) retinal progenitor cells in immature retina (St. 29, 30, 32) in Figure 29; (vi) the 

CMZ, as well as (v) some types of NR cells (amacrine and Müller glia cells) in Figure 30 

and in Table 6. 

http://www.ncbi.nlm.nih.gov/pubmed?term=Lin%2520YP%255BAuthor%255D&cauthor=true&cauthor_uid=18719084
http://www.ncbi.nlm.nih.gov/pubmed?term=Ma%2520W%255BAuthor%255D&cauthor=true&cauthor_uid=19489100
http://www.ncbi.nlm.nih.gov/pubmed?term=Matsushima%2520D%255BAuthor%255D&cauthor=true&cauthor_uid=21205789


 

46 

Unexpectedly, but interestingly, in the adult retinal regeneration, the patterns of Sox2-IR 

expression until Stage E-3 were almost the same as those for Pax6: Sox2-IR was not detected 

in day-0 (Stage E0) po tissue (Figure 31). Signal was detectable in a small number of RPE-

derived cells at day-10 po (Figure 32), and was obviously observed along the pro-NR layer at 

day-14 po (Figure 33). 

5.4 Discussion 

Here I examined three pluripotency factors c-Myc, Klf4 and Sox2 (Takahashi K et al., 2007), 

a Microphthalmia factor Mitf (Nguyen M & Arnheiter H, 2000) as well as Pax6. Recent in 

vitro studies in mammals have suggested that a set of pluripotency factors is able to induce 

cell-type switching of RPE cells into multipotent cells (Hu Q et al., 2010). However, I must 

note that the expression of Oct4 or Nanog, the pluripotency factors that generates iPS cells in 

mammals (Takahashi K et al., 2007; Hu Q et al., 2010), is not detected in early processes of 

retinal regeneration (Nakamura K et al., 2014). Mitf  is known, in other vertebrates, to be 

expressed in (i) the neuroepithelium cells of the early optic vesicle, (ii) cells of the pro-RPE 

region in the optic vesicle (late stage)/cup, or (iii) immature/uncommitted RPE cells in 

embryonic/larval eyes (Table 6). In those cells, it has been suggested that loss of function of 

this factor is enough to induce their fate-switching into the NR (Nguyen M & Arnheiter H, 

2000). I isolated RPE cells (day-0 sample) and RPE-derived cells (day-10 sample) from the 

intact and retinectomized eyeballs respectively, which were collected from animals at day-10 

po (Figure 24), and selected solitary cells manually under a dissecting microscope that 

served for cDNA synthesis followed by qPCR. For day-0 sample, RPE cells were identifiable 

by their characteristic morphology (there is a polarity with a pigmented apical part and a non-

pigmented basal part containing the nucleus). However, in the day-10 sample, visual cell 

identification was not easy because of the possible contamination of pigmented cells of 

different origins. Therefore, only those cells resembling the normal RPE cells were selected, 



 

47 

i.e., a fraction of the RPE-derived cells whose morphological change was slightly delayed 

(Figure 25). In this study it was evident that the RPE cells newly express c-Myc, Klf4, Sox2, 

Mitf and Pax6 while retaining the expression of RPE65, as observed by both mRNA and 

protein levels, being converted into a unique state of multipotent cells termed RPESCs 

(Figure 34). Pluripotency factors c-Myc, Klf4 and Sox2 might work to reprogram or 

initialize the RPE cells as demonstrated in in vitro studies in mammals (Hu Q et al., 2010), 

although in this system Oct4 or Nanog is unlikely to participate, as observed in chick RPE 

reprogramming into the NR (Luz-Madrigal A et al., 2014) as well as in other regeneration 

systems of body parts in adult newts (Maki N et al., 2009). As day 10 po RPE derived cells 

did not show Pax6-IR uniformly, I supposed Sox2-IR might be observed in all the RPE 

derived cells. However the result was similar to that of Pax6-IR. Some population of the RPE 

derived cells at day10 po showed Sox2-IR while other did not. Sox2-IR was found apparently 

in the pro-NR but not in the pro-RPE at day14 po. Thus together with the qPCR data and 

Sox2-IR data suggest that Sox2 increase in the pro-NR while decrease in the pro-RPE. 

5.5 Data analysis 

In single-cell qPCR analysis, 100-cell qPCR for each gene, which was always run 

simultaneously with day-0 and -10 po samples, was repeated using more than four sets of 

independently collected samples. The expression level of each gene (i.e., the amount of 

transcripts estimated from a Cq value) was compensated for Ef1α in the same sample. For 

one-cell qPCR, samples in which RPE65 was detected served for further analysis of gene 

expression. Data was presented as a bar graph showing the mean ± SEM (Figure 26 & 27). 

Statistical differences were evaluated by Mann-Whitney’s U test or Sheffe’s test following 

the Friedman test. 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=Hu%2520Q%255BAuthor%255D&cauthor=true&cauthor_uid=20882530
http://www.ncbi.nlm.nih.gov/pubmed?term=Maki%2520N%255BAuthor%255D&cauthor=true&cauthor_uid=19384853
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Chapter VI: General discussion 

Based on the accumulated data in this study, I illustrate a summary of the current results and 

a deduced scenario in Figure 34. In the adult newt, the RPE is a sole cell source for 

regeneration of missing NR in the posterior eye. The adult newt RPE is a highly specialized 

monolayer as in other vertebrates (Chiba C et al., 2006). I can exclude the possibility that the 

intact RPE contains ‘retinal stem/progenitor cells resembling RPE cells (or RPE65-IR+) 

which have been committed to regenerate the NR only, because the RPE is not filled up by 

other tissues than the RPE itself (Chiba C et al., 2006). Moreover, the current single-cell 

qPCR revealed that the intact RPE cells do not express retinal stem/progenitor markers. 

Upon retinectomy, RPE cells are detached from each other as well as from the basement 

membrane, losing their epithelial characteristics to become cell aggregates, while entering the 

S-phase of the cell-cycle. These RPE-derived cells are segregated into two rudimentary layers 

(the pro-NR and pro-RPE layers) with correct polarity, eventually regenerating a new NR 

while renewing the RPE itself. Previous study demonstrated that almost all of the RPE-

derived cells which entered the S-phase of the cell-cycle at day-10 po (Stage E-1) uniformly 

express a neural stem-cell marker Musashi-1 in their cytoplasm, and that the expression of 

Musashi-1 is sustained along the pro-NR layer at day-14 po (Stage E-2) but down-regulated 

along the pro-RPE layer (Kaneko J & Chiba C 2009). These observations led us to imply that 

the RPE cells are reprogrammed into multipotent cells by Stage E-1, and specified into two 

cell populations (Figure 35) possibly depending on their surrounding microenvironment (or 

niche) between Stage E-1 and E-2. 

In this study I revealed that the RPE cells newly express c-Myc, Klf4, Sox2, Mitf and Pax6 

while retaining the expression of RPE65, as observed by both mRNA and protein levels, 

being converted into a unique state of multipotent cells (termed RPESCs here for 



 

49 

convenience; in Figure 34). Pluripotency factors c-Myc, Klf4 and Sox2 may play some role 

to reprogram or initialize the RPE cells as demonstrated in in vitro studies in mammals (Hu Q 

et al., 2010), although in this system Oct4 or Nanog is unlikely to participate, as observed in 

chick RPE reprogramming into the NR (Luz-Madrigal A et al., 2014) as well as in other 

regeneration systems of body parts in adult newts (Maki N et al., 2009). My review of the 

gene expression patterns during eye morphogenesis (Table 6) suggests that the cells which 

express c-Myc, Klf4 and Sox2 as well as Pax6 and Mitf are only those of the early optic 

vesicle. Hence, it seems that the adult newt RPESCs correspond to the neuroepithelial cells of 

the early optic vesicle which generates both the NR and the RPE. In other words, the adult 

newt RPE cells seem to dedifferentiate in nature. Previous study suggests that the presence of 

RPE65 and melanin pigments in the RPE-derived cells for a long period (~20 days after 

retinectomy) may be due to their slow degradation or excretion (Chiba C et al., 2006). 

However, this is not so simple because both Pax6- and Sox2-antibodies, which clearly 

labelled the optic vesicle cells, did not label the RPESCs uniformly. In the tissue of Stage E-1 

(day-10 po), though single-cell qPCR detected Pax6 and Sox2 mRNAs even in RPE-derived 

cells which had not reached a standard progression in which cell shape resembles a normal 

RPE cell (Figure 24), the antibodies labelled only well advanced cells just forming the pro-

NR layer. A possible explanation is that either the amount of proteins in the RPESCs is very 

small or some kind of modification occurs on both proteins, preventing access of the 

antibodies to their epitopes. The latter explanation can be excluded because I detected Pax6 

protein in a western blot (Figure19). If the former explanation is true, at least with regards to 

Pax6 and Sox2, then adult newt RPESCs may not need the concentrations equivalent to those 

in optic vesicle cells to behave as multipotent cells. 

Establishing a primary pattern of tissue organization at an early stage of regeneration is 

essential for reconstruction of different tissue types with the correct polarity from a single cell 
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source. Pax6/Sox2-IR+ cells appeared in RPESCs from Stage E-1 to E-2, forming the pro-NR 

layer (Figure 34). On the other hand, the cells with no immunoreactivity formed the pro-RPE 

layer. Since mitotic figures became obvious in RPE-derived cells between Stages E-1 and E-

2, these cell populations seem to become sorted according to the correct polarity (inside: cells 

forming pro-NR; outside: cells forming pro-RPE) while their proliferation became activated 

during this period. 

However, this process did not seem to be perfect: a small number of Pax6/Sox2-IR+ cells 

were distributed irregularly in the pro-RPE layer (termed ‘displaced pro-NR cells’ here). 

Interestingly, since the displaced pro-NR cells (arrow head in Figure 17) participated in 

renewal of the RPE, it appears that the RPESCs directed towards the regeneration of the NR 

still had the potency to re-differentiate into the original cell type. Pax6/Sox2-IR in displaced 

pro-NR cells disappeared in between Stages E-2 and E-3, but along the pro-NR layer 

Pax6/Sox2-IR seemed to be sustained until Stage I-1 from which neuronal cell differentiation 

starts, suggesting that an opposite regulation of Pax6/Sox2 expression occurs on the renewing 

RPE and regenerating NR. 

Considering their following morphological and physiological changes (Chiba C et al., 2006; 

Chiba C and Mitashov VI, 2007), the pro-NR and pro-RPE layers seem like to be comparable 

to the pro-NR and pro-RPE regions in the optic vesicle (late stage)/cup. However, unlike the 

pro-RPE region (Pax6-IR+/Sox2-IR-) in the optic vesicle/cup, the pro-RPE layer (Sox2-IR-) 

was seldom labelled with Pax6-antibody (Figure 17). In retinal development, Pax6-IR 

seemed to be regulated in association with cell differentiation: as for the RPE, Pax6-IR 

observed in immature cells disappeared as they matured while expressing RPE65 (Figure 

13&14). In retinal regeneration, RPE65-IR reappeared along the renewing RPE between 

Stages I-3 and L-1 at day-28 po (Chiba C et al., 2006) . Thus, compared to the developmental 

process, disappearance of Pax6-IR in the renewing RPE seems to occur far earlier than 
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maturation of the RPE, implying different regulatory mechanisms for Pax6 between 

development and regeneration. As discussed for RPESCs, the process of RPE renewal might 

not require Pax6 at the concentrations equivalent to those for development of the RPE. 

Taken together, to our knowledge, this study provides the first set of evidence for the natural 

reprogramming of somatic cells for the regeneration of body parts in the newt at the single 

cell level. Furthermore, these results revealed that adult newt retinal regeneration contains 

many important issues that need further investigation, such as reprogramming, multipotency, 

cell specification, niche, tissue patterning, as well as EMT and proliferation. However, to 

apply this knowledge to medicine, the extent to which this system is unique to this animal 

must be evaluated. In humans, upon retinal injury, RPE cells lose their epithelial 

characteristics and acquire the ability to migrate and proliferate, transforming into 

mesenchymal cells such as myofibroblasts (Chiba C, 2014; Salero E et al., 2012). In PVR, the 

RPE-derived myofibroblasts are a major component of the epiretinal membrane which covers 

the wound of the NR but eventually contracts together with the NR, leading to the loss of 

vision. Thus, the initial response of human RPE cells to retinal injury resembles that of adult 

newt RPE cells. However, this phenomenon is categorized as EMT because the destination of 

RPE cells is mesenchymal cells but not the NR (Chiba C, 2014). Recent studies in stem-cell 

biology have implied that human RPE cells pass through a multipotent state during EMT. In 

vitro studies suggest that RPE-derived proliferative cells in humans are capable of expressing 

C-MYC and KLF4 as well as PAX6 and MITF (but not OCT4 or NANOG), and behave like 

stem cells termed as RPESCs (Salero E et al., 2012). Interestingly, in human RPESCs, SOX2 

expression seems to be negligible (Salero E et al., 2012), being different from adult newt 

RPESCs. Since Sox2 is considered to be a decisive factor of neural competence in the retina 

(Ma W et al., 2009; Matsushima D et al., 2011), this factor, and possibly its co-factors also, 

might be one of the keys to directing RPESCs toward retinal regeneration. This study 
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revealed that human and newt RPESCs have a close similarity in their intrinsic properties. In 

near future, comparative/integrated studies of these regeneration-competent and -incompetent 

models at the molecular level, for example by a comprehensive single-cell transcriptome 

analysis, would likely provide essential insight to induce retinal regeneration in human 

RPESCs as well as to understand the molecular mechanism of adult newt retinal regeneration. 
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Table 1: Micro injection solution for Pax6 knocking down  

 

 Reagents     Volume (µL) 

 I-SceI buffer (10X)     1 

 Phenol red (0.1%)     1 

 I-SceI plasmid (1 µg/µL)   2 

 I-SceI (5 U/ µL)    1 

 Milli Q water     5 

  Total volume                 10 µL 
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Table 2 Effects of shRNAs on eye morphogenesis in the newt  

Transgenesis was carried out and larvae showing mCherry fluorescence in the whole body 

were selected (see Methods). In the control shRNA, which was designed from the newt 

crystallin promoter (DDBJ/GenBank Accession #: AB113881), abnormalities were not 

recognized in larvae regardless of the fluorescence intensity of mCherry (an indicator for the 

relative expression level of shRNA), except for a curved tail fin, which was also observed in 

another control group with an empty construct. Therefore, the animals showing such an 

abnormality (numbers shown in the last row of each table) were omitted from data analysis. 

In Pax6 shRNA-1, a small eye phenotype was observed in 33.3% and 75% of animals which 

showed moderate and strong fluorescence, respectively. On the other hand, effects of Pax6 

shRNA-2 seemed to be much severe: 33% and 50% of animals showing strong fluorescence 

exhibited headless and eyeless phenotypes, respectively. An aspect that is correlated to the 

severity of the cranial part should be noted, namely that the total length along the body axis 

tended to decrease. Such abnormalities were consistent with those reported in other 

vertebrate. 
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Table 3: List of target genes, their accession number, qPCR primers, probe number and 

corresponding product size 

 

  Gene Name           Forward Primer                        Reverse Primer     Product Size  Roche UPL Probe Accession# 
 

Ef1α-1 cgtgacatgaggcagactgt Tagaggccttctgggctgat 100bp #25 AB00558 

RPE65 tgctgctggaaaggatttga Gctttctctgcatttctcttcac 95bp #48 AB095018 

CRALBP/RLBP1 agacagaggagtcccgtgag Acgggctcgaatgaacctaag 149bp   AB904159 

ZO1 accgaaagcagatgtcctacc Aagggactggtttaggctcg 143bp   AB904168 

Otx2 accaccaactgacaggagca Agactggaagcaccgtagcc 118bp   AB052937 

            

Musashi1a/c aggtaatggctcgtttcttgc Aaagttctgccattgaccctg 113bp   AB353845 

          AB353846 

Cyclin D1 ggtggaaccgctgaagaa Gccacgaacatgcaggtag 60bp   AB904160 

            

CDK4 ggaccagttgggcaagatt Gcataaaggcacatcgtggt 92bp #82 AB904157 

Histone H3.3 ggtgtcaagaagcctcacagata Ctccctcaccaagcgctgaa 120bp   
AB904163 

c-Myc ctcagaagaagaacaggatgacg Atccaggcttcctgccagtag 101bp   
AB904156 

Klf4 acgcacacaggagagaagc Ttccggtagtgacgggtaag 92bp #48 AB904164 

Sox2 acctgagggacatgatcagc Gtttatggaggagggcacgg 119bp   AB074258 

N-Cadherin type1 tggacgaaagaccaatccat Tgaagtccccaatatcaccag 81bp   AB897892 

 

α-SMA tcccccagaacgcaagta Gtagacagcgaagccaggat 60bp   AB904155 

Vimentin agctggagcagctgaagg Ttctcgttggtgagctggt 103bp   AB904167 

Pax6 tctgggcaggtattacgagac Cgatcttgctcaccacctc 95bp   D88741 

Chx10/Vsx2 gaggcgtcacagaaccatct Taatgcgcatcgttgaagg 72bp   AB904158 

            

FGFR1 ccccttgcagagacaggtaa Ccagcataacgccagagc 68bp #25 AB904161 

            

FGFR3 gactgcctgtgaagtggatg Tcgctttggtgagtgtagacc 64bp #110 AB904162 

            

Mitf cgtagcaagatccgtgatgtc Cagcagttcatccgagcat 78bp      #25 AB904165 

          AB904166 

Wnt2b ccgggcacttatgaacttgc Ttagcgagcaagatccgctg 107bp   AB205148 
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Table 4: Single cell qPCR primers and probes of target genes with their accession 

number 

 

 

 

 

 

 

 

 

 

 

 

 

Name of 

Genes 
Accession# Forward Primer Reverse Primer 

Product 

Size 
Probe# 

Ef1α AB00558 
cgtgacatgaggcagactgt 

 
tagaggccttctgggctgat 

 
100  

RPE65 AB095018 tgctgctggaaaggatttga 
gctttctctgcatttctcttcac 

 
95 48 

Mitf AB904165 cgtagcaagatccgtgatgtc cagcagttcatccgagcat 78 25 

Pax6 D88741 
tctgggcaggtattacgagac 

 

cgatcttgctcaccacctc 

 
95 58 

Sox2 AB074258 gtttatggaggagggcacgg acctgagggacatgatcagc 119  

c-Myc AB904156 ctcagaagaagaacaggatgacg atccaggcttcctgccagtag 101  

Klf4 AB904164 ggtcaagggctggttagtcc tgaggaggacacttgatggc 101  



 

72 

 

 

 

 

Table 5: Raw data tables mentioning Cq values for each gene of day-0 po and day-10 po 

single RPE cell.  

In both day-0 and day-10 single RPE cell, RPE65 was used as a marker for RPE and RPE-

derived cell as well as the efficiency determinant of cDNA synthesis and amplification by the 

pre-amplification step. Although day-0 RPE cell expressed RPE65, did not express other 

genes. On the other hand, RPE65 positive day-10 cell randomly express other genes but one 

cell expressed all the target genes in the same time (red box). Horizontal bars indicate no 

detect ion. 
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Table 6: Inferred expression patterns of Pax6, Mitf, c-Myc, Klf4, Sox2 and RPE65 

during retinal development. 

√： expression (determined in this study); ND: no detection (determined in this study); √： expression (inferred from other 

studies; #: reference are given at page 67); ND： no detection (inferred from other studies; #: reference are given at page 

67); NR: neural retina; RPE: retinal pigment epithelium; CMZ: ciliary marginal zone; G: ganglion cells; A: amacrine cells; 

H: horizontal cells; M: Müller glial cells  
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Figure 1: Retina and RPE development.  

Neural epithelium of neural tube gives rise to early optic vesicle which later differentiate into 

pro neural retina (pro-NR) and pro retinal pigment epithelium (pro-RPE). With the surface 

ectodermal envagination optic vesicle gets optic cup shape forming two distinct layer- outer 

layer (pro-NR) and inner layer (pro-RPE). Both RPE and retina maturation starts at the center 

however some progenitor cells still remain at the peripheral retina (CMZ). 
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Figure 2: Stage of retinal regeneration (modified from Chiba C et al 2006). 

Retinal regeneration process in newt is divided into three major stages. Early stage (E), 

intermediate stage (I) and later stage (L); these three stages are further subdivided as early 

stage-E0 (day0), E1 (day10), E2 (day14) and E3 (day19); intermediate stage- I1, I2 and I3 

(19 days to 23 days, these stages are defined based on thickness of retinal rudiment cell 

layer), later stage- L1 and L2 (45 days 65 days when regenerated retina is appeared 

completely).  
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Figure 3: Organization of Bruch’s membrane, RPE cells and photoreceptor cells 

The RPE cells have two poles, the basal pole and the apical pole. The basal pole of RPE cells 

are attached to the Bruch’s membrane and the apical pole containing microvilli are extended 

into the photoreceptor outer segment. Bruch’s membrane and the tight junction between RPE 

cells provide a blood-retinal barrier. 
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Figure 4: Working hypothesis modified from Chiba C and Mitashov VI, 2007. 

In this hypothesis, they proposed that RPE cells after retinectomy (surgical removal of retina) 

switch to stem like cells while they express retinal stem cell marker Pax6 and Mushashi-1 

decrease their marker RPE65 and proliferate. These stem like cells can derive both retinal 

progenitor and RPE itself. The retinal progenitor cells following expression of other neural 

retinal progenitor markers- Chox-10 and Notch-1 continuing proliferation toward the 

complete regenerated retina. Black and red color reflects pigment granule and RPE65 protein 

respectively. 

  

E0 E1 E3 I-1 E2 
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Figure 5: Target sites of shRNAs. 

5′ parts of cDNAs encoding isoforms (LL, LS, SL, SS) of Cynops pyrrhogaster Pax6 

(DDBJ/GenBank Accession #: D88741). Boxes show the sequences based on which the 

shRNA-1 and sRNA-2 were designed. 
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Figure 6:  shRNA transgene construct.  

shRNA-1 and shRNA-2 were made against Pax6 mRNA transcript as to knockdown all four 

canonical isoform. Control shRNA was designed against newt β-crystalline promoter. Every 

shRNA was then inserted into pACGGs-mCherry-pA (Clontech EGFP-N1 vector modified 

version and a kind gift from Dr. Elly Tanaka, Molecular Cell Biology and Genetics, Max 

Planc Institute, Leipzig, Germany) cassette between MunI and HpaI restriction site. 
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Figure 7: Epitope sites of antibodies on newt’s four canonical Pax6 isoforms.  

 LL, SL, LS and SS (Mizuno M et al, 1997) containing paired domain (Green box) and 

homeo domain (orange box), Blue, pink, red and green colored sequence indicating epitope 

region of AD2.38, PA1-801, Pax6 (LS/SS) and PRB-278P antibodies respectively. 
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Figure 8: Western blot of the protein extracted from normal neural retina for Pax6 

against PRB-278P, Pax6 (LS/SS), PA1-801 and AD2.38 anti Pax6 antibodies.  

PRB-278P could label LL and SL isoform however some low molecular weight protein band 

was also detected. Pax6 (LS/SS) which was designed to label LS and SS could efficiently 

detect these two isoforms but this one also bound with low molecular weight protein. PA1-

801 which should label all four isoforms theoretically but practically detect LS and LL 

isoform as well as some low molecular weight protein band. AD2.38 label successfully at 

least three canonical isoform- LL, SL and SS but it did not react with low molecular weight 

protein band. Results were compared with negative control where primary antibody was not 

used instead secondary antibody was used only.  
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Figure 9: Immunolocalization of Pax6 in central retina and CMZ. 

AD2.38 labelled almost all of the cell bodies (nuclei) of amacrine and ganglion cells, which 

are located in the inner one third of the inner nuclear layer (INL) and in the ganglion cell 

layer (GCL). Labelling intensity was not uniform. This antibody also labelled cell bodies 

(nuclei) of Müller glia cells (arrows) and horizontal cells (arrowheads) (b). a: before 

bleaching; band b’: after bleaching. b’: enlargement of the box in b2. Pax6-immunoreactivity  

e 
d 
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in Müller glia cells (green arrow) were confirmed by double labelling with a GFAP antibody 

(red) which visualizes the apical and basal processes of Müller glia cell (Susaki K and Chiba 

C, 2007) d.e, Immunohistochemistry of the peripheral retina (after bleaching). The ciliary 

marginal zone (CMZ), which is comprised of ora serrata (OS) and pars ciliaris retinae 

(PCR: the partially pigmented inner layer of the ciliary epithelium), containing the retinal 

stem/progenitor cells, was labelled with AD2.38. Arrows indicate nuclei of RPE cells with no 

labelling. ONL: outer nuclear layer; OPL: outer plexiform layer; IPL: inner plexiform layer. 

Scale bars: 100 μm for a, b and c; 40 μm for b’ and d. 
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Figure 10: Functional identification of Pax6 by shRNA-transgenesis morphologically.  

Knock-down of Pax6 was carried out with two Pax6 shRNAs which were designed to degrade 

all four transcript variants (LL, LS, SL, SS) of Pax6. Each was inserted into the pACGGs-

mCherry-pA (Clontech EGFP-N1 vector modified version and a kind gift from Dr. Elly 

Tanaka, Molecular Cell Biology and Genetics, Max Planc Institute, Leipzig, Germany) 

transgene construct which allows the expression of both a reporter mCherry and shRNA in the 

whole body of the animal. Control shRNA was designed from a region in the newt crystallin 

promoter. Pax6 shRNAs affected eye morphogenesis as well as body growth along the 

anterior-posterior axis 
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Figure 11: Tissue section showing Pax6 knockdown effect on eye morphogenesis 

Control shRNA virtually exerts no effect on eye development however shRNA-1 and shRNA-2 

both results small eye where eye field is very small with tiny lens. Moreover shRNA-2 

severely affects eye development resulting no eye at all (eyeless, arrow head). Scale bar: 

100µm 
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Figure 12:  shRNA knockdowns Pax6 protein 

 Western blot with protein extracted from larvae treated with control shRNA and shRNA-2 

(eyeless and headless animal) revealed that shRNA-2 were able to knock down Pax6 

efficiently because no Pax6 protein band was detected in eyeless and headless animal’s 

protein while two bands corresponding to newt SL, SS Pax6 were detected in protein of 

animal treated with control shRNA. 
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Figure 13: Pax6 expression pattern and its regulation during retina and RPE 

development.Pax6 expression was localized thoroughly in the cell’s nucleus of early optic 

vesicle (neural epithelium, St.23) which continues to the pro-RPE and pro-NR (St24 and 29). 

With the development of retina and RPE expression become stronger in the differentiated 

ganglion cells, proliferating retinal progenitor cells (marginal zone) and peripheral iris 

pigment cells than in the cells of central retina while Pax6 expression starts decreasing in the 

RPE cells specially in the central area (St.32) and completely disappears (St.37). OV: Optic 

Vesicle, L: Lens; Cells between double vertical bar are RPE and the region between a single 

vertical bar and double vertical bar is neural retina, OpS: Optic Stalk, Scale bar: 100 µm  
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Figure 14: Pax6 and RPE65 expression in the embryonic eye. 

On the NR side, Pax6 expression increased in certain types of cells as they differentiated in 

the following order: ganglion/amacrine cells (St. 30) → horizontal cells (St. 37) → Müller 

glia cells (St. 40). It should be noted that Müller glia cells in this animal expressed Pax6 even 

in the mature NR (indicated with the black arrow) as well as horizontal cells (indicated with 

the pink arrow head). RPE65, a maturation marker of RPE cells, initiated expression from the 

corresponding area at St. 32 (red) and extended along the RPE layer (St. 43). 
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Figure 15: Pax6 signal was not detected in day-0 and day-5 po RPE cells. 

Tissues were double stained with RPE65 antibody (red fluorescent) to specify RPE cells 

followed by nuclear stained with DAPI (blue fluorescent). However it is noteworthy that RPE 

cells started to lose epithelial (disrupt cell to cell adhesion) decreasing pigment granule in 

day-5 comparing with day-0 section. Scale bar: 40µm 
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Figure 16: Pax6 expression was first detected in some d-10 (E1 stage) RPE-derived cells. 

Tissues were bleached (pigment removal) following staining with RPE65 (red) and DAPI 

(blue) for a purpose of the clear visualization of Pax6 signal in the nucleus of RPE-derived 

cells. Positive signal was observed in the nucleus of some RPE-derived cells. RPE-derived 

cells form aggregate in this stage after completely losing epithelial character. Scale bar: 

40µm 
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Fig 17: Pax6 expression patter in 14 and 19 days po retinectomized eye. 

Stage E-2 to E-3, when the two rudimentary layers formed (St. E-2) at around day-14, Pax6-

IR became localized along the inner layer (pro-NR layer) almost uniformly, but only in a 

small number of nuclei (arrowheads) along the outer layer (pro-RPE layer). Pax6-IR in the 

pro-RPE layer became undetectable by day-19 when the constituent cells mostly exit the cell-

cycle (St. E-3). On the other hand, cells in the pro-NR layer (or the regenerating NR), which 

continue to proliferate (Chiba C et al., 2006), continued Pax6-IR. Scale bar: 40 µm 
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Figure 18: Pax6 expression pattern in the intermediate and later phase of regenerating 

retina. Expression was detected in all the proliferating cells while strong signal observed in 

some differentiating cell (arrow) however  there was no signal in the RPE (green double bar) 

layer (I-1, lower panel: after bleach). Photoreceptor cells (double pink bar) and ganglion cells 

appeared first (I-2) in regenerating retina, the first one did not express while the later one 

expressed as was observed in development.  As regeneration was advancing inner plexiform 

layer (IPL) appeared (green arrow) along with horizontal cells (arrow head) which were Pax6 

positive (I-3) there after Müller cells also Pax6 positive (black arrow) and outer plexiform 

layer (OPL) seemed like normal neural retina (L-1). C: negative control 
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Figure 19: Pax6 protein was detected by western blot in d-10 RPE-choroid tissues. 

Protein extracted from d-0 (E0 stage) and d-10 (E1 stage) RPE-choroid tissues to perform 

western blot for the identification of Pax6 presence. A weak and thin but distinguished band 

correspond to newt LL-Pax6 was detected in protein of d-10 (E1 stage) RPE-choroid tissues. 

β-Actin was used as internal control. 
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Figure 20:  RPE cells that enter the cell cycle and express Pax6 in day-10 po tissues. 

Tissues were double stained with RPE65 (red fluorescent) and PCNA (green 

fluorescent)/Pax6 (DAB) followed by counter staining  with DAPI (blue fluorescent) to 

visualize cell nucleus for counting the number of RPE cells enter into the cell cycle and 

express Pax6. For PCNA experiment 8 adjacent eye tissues section from 4 animals and for 

Pax6 experiment 9 adjacent eye tissues section from 4 animals were analyzed. The box and 

whisker plot shows about 98% RPE cells enter into the cell cycle while only about 12% RPE 

cells express Pax6. Data was presented as a box plot graph or as a bar graph showing the 

mean ± SEM. Statistical differences were evaluated by Mann-Whitney’s U test or Sheffe’s 

test following the Friedman test. 
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Figure 21: cDNA preparation from RPE-choroid tissues.  

Intact eye and retinectomized eye were enucleated  and anterior half was cut along with lens 

(intact eye) and iris pigment epithelium  out (neural retina was removed from intact eye) then 

RPE-choroid tissues were collected using a fine micro niddle for total RNA isolation 

followed by cDNA syntehis for qPCR analysis.  
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Figure 22: Identificataion genes predicted importantly involved in the early process of 

retinal regeneration by qPCR. 20 selected genes which have been suggested or inferred to 

be regulated in an early phase of retinal regeneration were found in in silico transcriptomes. 

Changes in their relative expression level until day-14 po were examined. Results represent 

means and SE. The number in parenthesis indicates the number of independent sample sets 

(see Methods) except for Pax6 and Chx10, whose expression was detected in 2 of 8 sample 

sets and 4 of 5 sample sets, respectively at day-14 p.o only. Statistical significance based on 

Sheffe’s test following the Friedman test (*: p< 0.05; **: p< 0.01), except for Pax6 and 

Chx10. 
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Figure 23: Aggregation of RPE-derived cells and their expression pattern of RPE65, 

PCNA, Musashi-1 (Kaneko J and Chiba C, 2009) and Pax6. 

After 10 days of retinectomy (Stage E1), some pigmented (darker than RPE-derived cells) 

cells are found in the cells aggregates (Chiba et al., 2006) looks like RPE-derived cells but 

actually they are blood cells (phagocytic cell). Immunohistochemical studies reveal their 

corresponding expression pattern for each antibody.  

 

 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=%2522Kaneko%2520J%2522%255BAuthor%255D
http://www.ncbi.nlm.nih.gov/pubmed?term=%2522Chiba%2520C%2522%255BAuthor%255D
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Figure 24: Single RPE cell isolation.  

Single RPE cell was isolated for the analysis of multipotency factor from both the d-0 and d-

10 eye. d-10 RPE cells having basal and apical pole and pigment almost closely like d-0 RPE 

was taken for the qPCR analysis because cells were sorted manually under microscope. That 

is why cell polarity and pigment were treated as marker for this manual cell sorting 

technique.  
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Figure 25: RPE-derived cells fractionation. 

RPE-derived cells after 10 days po (Stage E1) seemingly exist in different pace of 

morphological change and so far reprogramming. The cells that were closely resembled to the 

intact RPE were taken for qPCR analysis. 
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Figure 26: 100 isolated RPE-derived cells’ qPCRfor target genes. 

First, 100 cells at day-0 and day-10 were harvested into different tubes to prepare each-day 

cDNA sample, real time PCR was carried out using these samples for RPE65, c-Myc, Klf4, 

Sox2, Mitf, Pax6 as well as Ef1α. A comparison of the expression levels of genes that 

compensated for Ef1α is shown on the graph. Green and red column represent day-0 (E0) and 

day-10 (E1) RPE cell’s genes expression respectively.  
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Figure 27: One solitary RPE-derived cell qPCR for target genes. 

Numbers in parenthesis are the ratio of detection (dominator: sample number). The same 

experiments were performed with one-cell sample as were done for 100 RPE cells. 

Cumulative detection rates of genes-c-Myc, Klf4, Sox2, Mitf and Pax6 in RPE65+ cells are 

shown in 
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Figure 28:  Western blot of the protein extracted from embryos (St. 23 and St. 29) for 

Sox2. Sox2 antibody (ab97959, Abcam) labelled protein bands corresponding to the newt 

Sox2 (~34 kD) in both stages. In control experiment anti dsRed antibody (anti-dsRed 

antibody; 632543 or 632496; Clontech) was used instead of primary antibody and no band 

was detected corresponding to Sox2. 

 

  



 

103 

 

 

 

 

Figure 29:  Immunohistochemistry of developing retinas (after bleaching) for Sox2 

expression pattern. 

Sox2-immunoreactivity, which was observed uniformly in nuclei of the early optic vesicle, 

was restricted in the pro-NR regions in the late optic vesicle (St. 24) to the optic cup (St. 29). 

The immunoreactivity observed in the retinal stem/progenitor cells in the central retina (St. 

30) became restricted in the peripheral retina as neuronal differentiation started from the 

central retina while the retina grew in the periphery (St. 32). Inset panels labelled with ‘c’: 

negative control; DAPI: a nuclear marker; pink dotted lines: Sox2-immunoreactive area; 

short green lines: borders of NR and the RPE; OV: the optic vesicle; L: the lens; OpS: the 

optic stalk. 
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Figure 30:  Immunohistochemistry of adult normal retina (after bleaching) for Sox2 

expression pattern. 

ab97959 labelled a small number of cell bodies (nuclei), possibly those of amacrine cells, 

which line both the outer and inner margins of the inner plexiform layer (IPL), as well as cell 

bodies and basal processes of Müller glia cells. In the ciliary marginal zone (CMZ), ora 

serrata (OS) was also labelled, but in pars ciliaris retinae (PCR) immunoreactivity was not 

clear. ONL: outer nuclear layer; OPL: outer plexiform layer; IPN: inner nuclear layer; GCL: 

ganglion cell layer. Scale bars: 100 μm. 

 

  



 

105 

 

 

 

 

Figure 31: Sox2 immunoreactivity in d-0 po (E0 stage).  

IR was not detected in tissues but RPE65 signal (red fluorescence) was detected on the RPE 

cells along the RPE line. Tissues were bleached (depigmentated) and counter stained with 

DAPI to visualize the cell nucleus. Scale bar: 50µm. 
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Figure 32: Sox2 was first detected in 10 days po (E1 stage) in some RPE derived cells. 

Tissues were bleached and stained with RPE65 antibody for the identification of RPE cells 

followed by counter staining with DAPI for the visualization of cell’s nucleus (blue 

fluorescence). Negative control experiment was done using dsRed antibody instead of Sox2 

antibody. Scale bar: 50µm. 
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Figure 33: Sox2 expression pattern in 14 days po (E2 stage) tissues.  

Immunoreactivity was detected only in the outer layer i.e. in the neural retinal rudiment layer 

(pro-NR) but not in the inner layer (pro-RPE).Tissues were depigmented and RPE65 

immunolocalization was used to define RPE cells following nuclear staining with DAPI. 

Adjacent tissues were used for control experiment where dsRED antibody was used instead 

of Sox2 primary antibody. Scale bar: 50µm. 
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Figure 34: New scenario of retinal regeneration from RPE cells in adult newt. 

After surgical removal of neural retina RPE cells lose their epithelial character forming cells 

aggregate and enter into the cell cycle between d-5 to d-10 p.o. These RPE-derived cells 

following expression of multipotency factor- c-Myc, Klf4, Sox2 and retinal stem cell marker 

Pax6 reprogrammed into RPE stem cells (RPESCs) while keeping expression their marker 

RPE65 along with the microphtalmia factor Mitf which is a marker of immature RPE. Pax6 

and Sox2 immunolocalization was detected in some population of RPEsCs simultaneously 

sorted into layer i.e. pro-RPR and pro-NR. Pax6 and Sox2 expression decrease in the rpo-

RPE while increase in the pro-NR layer and cell proliferation continues in the pro-NR while 

pro-RPE layer exit the cell cycle. 
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Figure 35: RPE-derived cell fate decision. 

RPE-derived cells choose their fate into pro-RPE or pro-NR around stage E2. However it is 

still not clear that how this fate decision is made. 


