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Abstract 

Many clinical cases of acquired resistance to the BRAF inhibitor vemurafenib have 

recently been reported. One of the causes of this acquired resistance is the BRAF 

downstream kinase point mutation MEK1-C121S. This mutation confers resistance to 

not only vemurafenib, but also to the allosteric MEK inhibitor selumetinib (AZD6244). 

Here, we investigated the pharmacological activities and effectiveness of the novel 

MEK inhibitor E6201 against BRAF-V600E mutant melanoma harboring the 

MEK1-C121S mutation. A cell-free assay confirmed that E6201 is an ATP-competitive 

MEK inhibitor meaning it has a different binding mode with MEK compared with 

allosteric MEK inhibitors. E6201 is more effective against BRAF-V600E mutant 
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melanoma compared with BRAF wild-type melanoma based on MEK inhibition. We 

found that the acquired MEK1-C121S mutation in BRAF-V600E mutant melanoma 

conferred resistance to both vemurafenib and selumetinib but not E6201. The activity of 

E6201 in this preclinical study is a result of its binding with MEK1 far from the C121S 

point mutation so the mutation is unable to influence the MAPK pathway inhibitory 

activity. In conclusion, our preclinical data indicate that E6201 retains its full activity in 

MEK1-C121S mutated cells. 
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Introduction 

In certain types of cancer, the activation of kinases is known to have a role in 

oncogenicity (1). Therefore, kinase inhibitors are an attractive option for use as cancer 

chemotherapy (2). These drugs confer a survival benefit to cancer patients; however, a 

number of mechanisms of acquired resistance to kinase inhibitors have been reported (3, 

4). For example, gatekeeper mutations that confer resistance to kinase inhibitors 

frequently occur in EGFR (5, 6) and BCR-ABL (7). 

Metastatic melanoma patients have a very poor prognosis with a median survival time 

of only 6 to 10 months (8). The average annual melanoma rate among Caucasians is 

about 22 cases per 100,000 people. In comparison, African Americans have an 

incidence of one case per 100,000 people. Malignant melanoma is the ninth most 

common cancer in Europe, with more than 100,000 new cases diagnosed in 2012 (3% 

of the total) and is the 19th most common cancer worldwide, with around 232,000 new 

cases diagnosed in 2012 (2% of the total). Only Dacarbazine and interleukin-2 (IL-2) 

were approved as the drugs for metastatic melanoma. Their survival benefit was not 

substantial (9). Dacarbazine monotherapy produces an overall response rate of 15 to 

25%, with an average response time of 5-6 months and complete response rates of 5%. 

The overall response rate of IL-2 was 16%, including 17 complete responses (CR) (6%) 
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and 26 partial responses (PR) (10%) (10).  

 In melanoma, BRAF, PTEN, NRAS, c-kit and MEK mutation is frequently occurred 

(11). The BRAF-V600E mutation occurs in approximately 50% of melanomas, and this 

mutation is strongly associated with tumorigenicity (8, 12). The mutation is 

heterozygous or homozygous and its position is hotspot. The 94-kDa BRAF protein 

encoded by the gene on chromosome 7q34 functions as a serine/threonine kinase 

immediately downstream of RAS. BRAF mutations can activate the mitogen-activated 

protein kinase pathway, leading to uncontrolled proliferation and survival. 80% of all 

BRAF mutation is occuerRecently, a clinical trial showed that the BRAF inhibitor 

vemurafenib conferred significant survival benefit in patients with melanomas 

harboring BRAF-V600E, and vemurafenib has since been approved by both the United 

States Food and Drug Administration and the European Medicines Agency (13). 

However, most patients with melanomas harboring BRAF-V600E progress within 2 to 

18 months of the initial response to vemurafenib (14). Unlike with the other kinase 

inhibitors, no acquired BRAF gatekeeper mutation caused by vemurafenib treatment has 

been reported in a clinical case; however, there are reports of resistance to vemurafenib 

mediated through the reactivation of the mitogen-activated protein kinase (MAPK) 

signaling pathway and the activation of the AKT signaling pathway (15-25). 
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The MEK1-C121S mutation downstream of BRAF is an acquired mutation that has 

recently been found to confer resistance to vemurafenib (15). This mutation also confers 

resistance to the allosteric mitogen-activated protein kinase kinase (MEK) inhibitor 

selumetinib (AZD6244) (15). MEK1-C121S suppresses the MAPK pathway inhibitory 

activity of vemurafenib and selumetinib (15). Therefore, to improve the clinical 

outcome of BRAF-V600E melanomas harboring MEK1-C121S, drugs that further 

inhibit the MAPK pathway are required. 

E6201 is a novel MEK inhibitor that we developed (26), and a Phase I clinical trial of 

E6201 is ongoing in advanced solid tumors (Trial registration ID: NCT00794781). The 

chemical structure of E6201, a derivative of the natural product f152A1, is markedly 

different from the representative allosteric MEK inhibitors (Fig. 1). A docking 

simulation showed that f152A1 binds at the ATP binding site of MEK1 (27); therefore, 

E6201 is also likely to be an ATP-competitive MEK inhibitor with different 

pharmacological activities than those of allosteric MEK inhibitors. Furthermore, E6201 

merits further investigation for the treatment of BRAF-V600E melanomas harboring 

MEK1-C121S because of its different MEK binding mode compared with allosteric 

MEK inhibitors. 

Here, we investigated the use of E6201 as a MEK inhibitor against BRAF-V600E 
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melanoma harboring MEK1-C121S. We show that E6201 is an ATP-competitive MEK 

inhibitor that has potent growth inhibitory activity in BRAF-V600E melanoma 

compared with BRAF wild-type (WT) melanoma, although the compound inhibited the 

MAPK pathway both in BRAF-WT and BRAF-V600E melanoma. Furthermore, we 

demonstrate that E6201 is active in a preclinical model against BRAF-V600E 

melanoma harboring MEK1-C121S 
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Materials and Methods 

 

Compounds 

Selumetinib and vemurafenib were provided by Wuxi AppTec (Shanghai, China). 

Construction of pENTR_L1-MEK1-R5 ENTRY vector 

pF1KE0668, a plasmid harboring the coding regions of the full-length MEK1 gene, 

was purchased from Kazusa DNA Research Institute. The MEK1 coding region was 

amplified using the following primer set: attB1_MEK1-Fwd., 

5'-ggggacaagtttgtacaaaaaagcaggctgccaccatgcccaagaagaagccgacgcccatcc-3'; 

attB5r_MEK1-Rev., 

5'-ggggacaacttttgtatacaaagttgtttagacgccagcagcatgggttggtgtgctgggc-3'. PCR reactions 

were performed in a total volume of 50 μL containing 10 μM of each primer, 0.5 ng of 

pF1KE0668 as the template DNA, and 1.25 U PrimeSTAR
®
 GXL DNA Polymerase 

(TaKaRa Bio) according to the manufacturer's instructions. PCR reactions were 

incubated at 98°C for 1 min, followed by 30 cycles of 98°C for 10 s, 60°C for 15 s, and 

68°C for 2 min, with a final extension period at 68°C for 5 min. The PCR products (1.3 

kbp) were purified from agarose gels using a QIAEX II Gel Extraction Kit (QIAGEN). 

BP reactions were performed in a total volume of 10 μL containing 2 μL of BP 
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Clonase™ II Enzyme Mix, 150 ng pDONR P1-P5r (Invitrogen), and 100 ng PCR 

product. The reaction was incubated for 2 h at 25°C. After proteinase treatment, the 

mixture was transformed into Escherichia coli TOP10 cells (Invitrogen). Colonies that 

grew on Lysogeny Broth (LB) plate (containing 50 μg/mL kanamycin) were picked and 

the insert was sequenced. 

 

Site-directed mutagenesis 

pENTR_L1-MEK1(C121S)-R5, a MEK1-C121S mutant ENTRY vector, was 

generated by site-directed mutagenesis with a PrimeSTAR
®
 Mutagenesis Basal Kit 

(TaKaRa Bio) according to the manufacturer's instructions. The primers used were 

MEK1(C121S)-Fwd., 5'-catgagtccaactctccgtacatcgtgggc-3' and MEK1(C121S)-Rev., 

5'-agagttggactcatgcagaacctgcagctc-3'. PCR reactions were performed in a total volume 

of 50 μL containing 10 μM of each primer, 10 pg of pENTR_L1-MEK1-R5 as the 

template DNA, and 25 μL of 2 PrimeSTAR Max Premix. PCR reactions were 

incubated at 98°C for 1 min, followed by 30 cycles of 98°C for 10 s, 55°C for 15 s, and 

72°C for 50 s, with a final extension period at 72°C for 2 min. The PCR product (2.5 

L) was transformed into E. coli TOP10 cells (Invitrogen) by using the heat shock 

method, and recombinants were selected on LB agar media supplemented with 50 
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μg/mL kanamycin. Two att-site sequences and the MEK1 region were checked by 

sequencing. 

 

Construction of pCLxIP_MEK1 (WT or C121S)-IRES-hmAG vectors 

(MEK1-internal ribosomal entry site–dependent Azami-Green protein expression 

vectors) 

pCLxIP_MEK1-IRES-hmAG vector was constructed by using a MultiSite Gateway® 

Pro Kit (Invitrogen) according to manufacturer's instructions. pCLxIP-DEST 

(Cytomegalovirus promoter–based expression vector) and pENTR_L5-IRES-hmAG-L2 

(IRES [internal ribosomal entry site]-dependent Azami-Green protein expression 

vector) were used in this study. These two vectors were created in-house. MultiSite LR 

reactions were performed in a 10-μL total volume containing 10 fmoles 

pENTR_L1-MEK1-R5, 10 fmoles pENTR_L5-IRES-hmAG-L2, 20 fmoles 

pCLxIP-DEST, and 2 μL LR II Clonase
TM Plus (Invitrogen). The reaction was 

incubated overnight at 25°C. After proteinase treatment, the mixture was transformed 

into E. coli TOP10 cells (Invitrogen) by using the heat shock method, and recombinants 

were selected on LB agar media supplemented with 100 μg/mL ampicillin. The MEK1 

and IRES-hmAG regions were checked by sequencing. A MEK1-C121S mutant 
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expression vector (pCLxIP_MEK1[C121S]-IRES-hmAG) was constructed via the same 

method. These expression vectors were designed so that the IRES-dependent 

Azami-Green gene and puromycin resistance gene were co-expressed with the MEK1 

gene. 

 

Cell lines and cell cultures 

The human melanoma cell lines HMV-1 and SEKI were obtained from the Japanese 

Collection of Research Bioresources in 1987. The human melanoma cell lines HMCB, 

CHL-1, MDA-MB435S, and A375 were obtained from the American Type Culture 

Collection in 2008, 2008, 1998 and 2010 respectively. The melanoma cell line G-361 

was obtained from DS Pharma Biomedical in 2010. A375/MEK1 WT and 

A375/MEK1-C121S cells were prepared by stable transfection of MEK1 WT- or 

C121S-expressing plasmids into parental A375 cells. HMV-1, SEKI, MDA-MB435S, 

and A375 cell lines were cultured in RPMI-1640 containing 10% FBS. HMCB and 

CHL-1 cell lines were cultured in Dulbecco’s modified Eagle’s medium containing 10% 

FBS. G-361 cell line was cultured in McCoy's medium containing 10% FBS. All cell 

lines were cultured at 37°C under a humidified atmosphere containing 5% CO2, and 

authenticated by short-tandem repeat analysis. 
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BRAF DNA Sequencing 

BRAF mutation status was assessed by using next-generation sequencing technology. 

Reverse transcribed cDNAs were prepared from HMV-1, HMCB, CHL-1, A375, SEKI, 

MDA-MB435S, and G361 cell lines and then used as templates for amplification of 

several genes of interest, including BRAF. Because it was difficult to amplify full-length 

BRAF cDNA, three pairs of primers that together cover the whole BRAF cDNA coding 

region were used (sense primer 1: GCCCCGGCTCTCGGTTATAAGATG, antisense 

primer 1: CCGTTCCCCAGAGATTCCAA; sense primer 2: 

TGCCATTCCGGAGGAGGTGT, antisense primer 2: 

GCCCATCAGGAATCTCCCAA; sense primer 3: ATCTGGATCATCCCCTTCCGC, 

antisense primer 3: CCCGGAACAGAAAGTAAAGCCTCTAG). PCR products from 

each cell line were mixed, and a library was constructed by using a Genomic DNA 

Sample Prep Kit (Illumina). Sequencing data were produced by using a Genome 

Analyzer II (Illumina) and Standard Cluster Generation and 36 Cycle Sequencing kits 

(Illumina). 

 

Western blot analysis 
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Cells were incubated with a serial dilution of the test compounds in complete medium 

at 37°C for 24 h. Cells were lysed with cell lysis buffer (Cell Signaling Technology) 

containing 1 mM phenylmethylsulfonyl fluoride. Cellular debris was removed by 

centrifugation at 15,000 g for 20 min at 4°C. Western blotting was performed as 

described (28). Supernatants containing 10 g of protein were subjected to SDS-PAGE 

under reducing conditions. The proteins were then transferred onto polyvinylidene 

fluoride membranes (Millipore) blocked with TBS containing 0.05% Tween-20 and 5% 

skim milk. The membranes were then probed with the following antibodies: 

anti-phospho Erk1/2 (Thr202/Tyr204), anti-ERK1/2 (Cell Signaling Technology), and 

anti-Cyclin D1 (BD Biosciences). Immunoreactive bands were visualized by detecting 

chemiluminescence with a ChemiDoc XRS gel imaging system (BIO-RAD). 

 

Cell proliferation assay 

Cells (2  10
3
 cells/100 L/well) were seeded in 96-well culture plates. After 

overnight incubation at 37°C under a humidified atmosphere containing 5% CO2, 

various concentrations of each compound were added, and cultured for 3 days. Then, 10 

L of WST-8 reagent (Dojindot) was added to each well, and absorbance was measured 

at 450 nm by using an Envision multilabel plate reader (Perkinelmer) and compared 
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with a reference measurement at 665 nm. 

 

In vitro MEK1 and MEK2 kinase assay 

An ELISA assay kit containing MEK1 and MEK2 recombinant protein was purchased 

from Carna Biosciences. The assay was performed according to Carna Biosciences’ 

internal protocol. 

 

Immunocytochemistry 

A375 cells were seeded (5  10
5
 cells/100 L/well) in six-well plates the day before 

transfection. The cells were transfected with MEK1 expression vectors using 

lipofectamine 2000 (Invitrogen) according to the manufacturer’s protocol. The 

following day, the cells were harvested by trypsinization and seeded (2.5  10
4
 

cells/well) in 96-well imaging plates (BD falcon). After overnight incubation at 37°C 

under a humidified atmosphere containing 5% CO2, the cells were treated with serial 

dilutions of the test compounds for 24 h. For immunostaining, the cells were fixed with 

2% paraformaldehyde for 45 min and permeabilized with 100% MeOH for 10 min. 

After blocking with 1% bovine serum albumin (BSA)/PBS for 3 h, the cells were 

incubated overnight with rabbit anti-Cyclin D1 (Abcam) in 0.1% BSA/PBS at 4°C. 
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After being washed with PBS, the cells were incubated with Alexa568-conjugated 

anti-rabbit IgG (Invitrogen) and 10 μg/ml Hoechst 33342 (Invitrogen) in 0.1% 

BSA/PBS for 1 h and then washed with PBS. 

Image acquisition for each well was performed on an IN Cell Analyzer 1000 (GE 

Healthcare) by using a 20 objective lens with 360-, 475-, and 555-nm excitation filters 

monitored through 460-, 517-, and 620-nm emission filters, respectively. The Cyclin D1 

expression level of the vector-transfected Azami-Green-positive cells was determined 

by using the IN Cell Developer software (GE Healthcare). Images collected from 

460-nm emission filters were used to define nuclear regions. The Azami-Green 

expression level and Cyclin D1 expression level of each cell were defined as the level of 

517-nm and 620-nm intensity in the nuclear region, respectively. The mean and SD 

background value at 517-nm intensity was determined by analyzing wells that did not 

contain cells. Cells with Azami-Green expression levels higher than mean + 8 × SD of 

the background value at 517-nm intensity were defined as Azami-Green-positive. The 

Cyclin D1 expression level of each well was determined as the median Cyclin D1 

expression level of Azami-Green-positive cells in the well. 

 

Protein structure and docking simulations with MEK1 protein 
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1) Homology modeling of protein structure 

The coordinates for human-MEK1 and the allosteric inhibitor G-894 complex were 

obtained from the Research Collaboratory for Structural Bioinformatics Protein Data 

Bank (PDB entry code: 3V04) (29), and the protein structure was prepared by using the 

Maestro software package (Schro ̈dinger). Hydrogen atoms were added and a brief 

relaxation was performed on each starting structure using the Protein Preparation 

module in the Maestro software. These coordinates were used for the selumetinib 

docking simulation. For the E6201 simulation, a MEK1 model was built by using the 

Prime homology modeling program (30, 31) and the human-ERK2 crystal structure 

(PDB entry code: 2E14) (32) coordinates as the template structure. 

2) Induced-fit docking simulation 

The Induced-Fit Docking (IFD) (33) module in the Maestro software was used. IFD 

uses the Glide docking program (34) to account for ligand flexibility, as well as the 

refinement module. The Prime algorithm is implemented in Glide to account for the 

flexibility of the receptor. Residues within 10 Å of the ligand poses were minimized to 

form suitable pose conformations at the binding site. Finally, each ligand was redocked 

to its corresponding low-energy protein structures and the resulting complexes were 

ranked according to their GlideScore. The IFD, given in kilocalories per mole, was 
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computed based on the GlideScore and a small fraction of the Prime energy by using the 

following formula: IFD Score = GlideScore + 0.05 Prime energy. 
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Results 

 

E6201 is an ATP-competitive MEK1 and MEK2 inhibitor 

To determine whether E6201 is an ATP-competitive or -noncompetitive MEK 

inhibitor, the inhibitory activity of E6201 on MEK1 and MEK2 was evaluated by using 

a cell-free kinase assay with various concentrations of ATP (Fig. 2). The IC50 values of 

E6201 in the MEK1 cell-free assay were 0.020, 0.12, and 1.4 M at ATP concentrations 

of 10, 30, and 100 M, respectively. The IC50 values in the MEK2 cell-free assay were 

0.028, 0.067, and 0.70 M at ATP concentrations of 10, 30, and 100 M, respectively. 

The inhibitory activity of E6201 decreased with increasing ATP dose indicating that 

E6201 is an ATP-competitive MEK1 and MEK2 inhibitor. 

 

Efficacy of E6201 against BRAF-V600E or -WT melanoma 

BRAF-V600E melanoma is reported to be more sensitive than BRAF-WT melanoma 

to the MAPK pathway inhibition caused by BRAF inhibitors or allosteric MEK 

inhibitors (35, 36). To assess whether E6201 shows selective growth suppression in 

BRAF-V600E melanoma, we prepared a melanoma cell-line panel comprising three 

BRAF-WT (CHL-1, HMCB, and HMV-1) and four BRAF-V600E melanoma cell lines 
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(G361, MDA-MB435, SEKI and A375). The BRAF mutation status of these cell lines 

was confirmed by DNA sequencing. Cell lines harboring the BRAF-V600E mutation 

were more sensitive to vemurafenib and selumetinib compared with BRAF-WT cell 

lines (Fig. 3A). E6201 also showed potent growth inhibitory activity in BRAF-V600E 

melanoma cell lines compared with BRAF-WT cell lines. 

Next, we examined the MAPK pathway inhibitory activity of E6201 in a 

BRAF-V600E mutant (A375 and G361) and BRAF-WT melanoma (HMV-1) cell line 

(Fig. 3B and Supplementary Fig. S1). Vemurafenib inhibited extracellular 

signal-regulated kinase (ERK) phosphorylation in the BRAF-V600E mutant but not in 

the BRAF-WT melanoma (Fig. 3B), whereas selumetinib inhibited ERK 

phosphorylation in both the BRAF-V600E mutant and the BRAF-WT melanoma. 

E6201 also inhibited ERK phosphorylation in both the BRAF-V600E mutant and the 

BRAF-WT melanoma (Fig. 3B and Supplementary Fig. S1). E6201 inhibited ERK 

phosphorylation at a lower dose in the BRAF-V600E mutant than in the BRAF-WT 

melanoma; whereas selumetinib inhibited ERK phosphorylation in the BRAF-V600E 

mutant at approximately the same dose as in the BRAF-WT melanoma. These results 

indicate that the growth inhibitory activity of E6201 in melanoma cell lines harboring 

the BRAF-V600E mutation is mediated via MEK inhibition. 
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E6201 effectiveness on cells transiently or constitutively expressing MEK1-C121S  

MEK1-C121S point mutation confers resistance to both vemurafenib and selumetinib 

(12). E6201 is an ATP-competitive MEK inhibitor that binds to MEK1 or MEK2 

differently from allosteric MEK inhibitors. E6201 may therefore be active against 

BRAF-V600E melanomas harboring MEK1-C121S. 

To assess whether MEK1-C121S confers resistance to E6201 in melanoma cells, we 

transiently transfected A375 human melanoma cells with a MEK1-C121S-expressing 

vector. A375 was used because this cell line is reported to harbor the BRAF-V600E 

mutation and has frequently been used in similar experiments (15, 37). The presence of 

the BRAF-V600E mutation in A375 was confirmed by DNA sequencing. After 

treatment with the test compounds, transfected cells were immunocytochemically 

stained for Cyclin D1, which is a marker of the cytostatic effect of MAPK inhibitors (35, 

38, 39). Only about 10% of cells were transfected with expression vectors in our 

transfection protocol, so to be able to identify transfected cells, we designed expression 

vectors for the co-expression of the IRES-dependent Azami-Green and MEK1 genes. 

We quantified the expression of Cyclin D1 in Azami-Green-negative and -positive 

(exogenous MEK1-WT/C121S-negative and -positive) cells separately by using an IN 
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Cell Analyzer high-content analysis system. Cyclin D1 expression decreased after 

treatment with 3.3 M vemurafenib or 1.1 M selumetinib in almost all of the 

Azami-Green-negative cells, but not in all of the Azami-Green-positive cells (Fig. 4A). 

However, Cyclin D1 expression decreased after treatment with 1.1 M E6201 in both 

the Azami-Green-positive and -negative cells. Quantitatively, the Cyclin D1 expression 

inhibitory activities of vemurafenib and selumetinib in Azami-Green-positive cells 

(exogenous MEK1-C121S-positive cells) were remarkably lower compared with that in 

Azami-Green-negative cells (exogenous MEK1-C121S-negative cells) (Fig. 4B). The 

Cyclin D1 expression inhibitory activity of vemurafenib and selumetinib in 

Azami-Green-positive cells (exogenous MEK1-WT-positive cells) did not change 

compared with that in Azami-Green-negative cells (exogenous MEK1-WT-positive 

cells) (Supplementary Fig. S2). In contrast, the Cyclin D1 expression inhibitory activity 

of E6201 in Azami-Green-positive (exogenous MEK1-WT or C121S-positive) cells 

barely changed compared with Azami-Green-negative (exogenous MEK1-WT- or 

C121S-negative) cells (Fig. 4 and Supplementary Fig. S2). Moreover, the same result 

was obtained by using G361 (Supplementary Fig. S3). In A375 and G361, apoptosis 

was not inducted by MAPK inhibition. (Supplementary Fig. S4)  

Next, to confirm the result of the transient transfection experiments regarding growth 
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inhibition, stable MEK1-WT or -C121S transfectants were established by using the 

A375 cell line. The growth inhibitory activities of vemurafenib and selumetinib in the 

MEK1-C121S transfectants were approximately 10 times weaker than in the 

MEK1-WT transfectants (Fig. 5A). However, that of E6201 in the MEK1-C121S 

transfectant was that same as that in the MEK1-WT transfectants (Fig. 5A). These 

results indicate that the MEK1-C121S mutation confers resistance to both vemurafenib 

and selumetinib but not E6201.  

 

Mechanism of acquired vemurafenib and selumetinib resistance and effectiveness 

of E6201 against MEK1-C121S melanoma 

To confirm the mechanism of vemurafenib and selumetinib resistance and the 

effectiveness of E6201 against MEK1-C121S mutant melanoma, ERK phosphorylation 

inhibitory activity was assessed in A375 MEK1-WT and -C121S transfectants (Fig. 5B). 

The ERK phosphorylation inhibitory activities of vemurafenib and selumetinib in the 

MEK1-C121S transfectant were approximately 10 times lower than those in the 

MEK1-WT transfectants. In contrast, the inhibitory activity of E6201 in the 

MEK1-C121S transfectants was the same as that in the MEK1-WT transfectants. These 

results indicate that vemurafenib and selumetinib resistance and the effectiveness of 
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E6201 against MEK1-C121S mutant melanoma is caused by inhibition of the MAPK 

pathway. 

Both selumetinib and E6201 are MEK inhibitors; however, the MEK1-C121S 

mutation confers resistance only to selumetinib. To elucidate why this difference occurs, 

we simulated the docking process between selumetinib or E6201 and MEK1. The most 

energy-stable models are presented in Figure 6. Selumetinib binds to a hydrophobic 

pocket adjacent to the ATP binding site, like other allosteric inhibitors. (37) This 

hydrophobic pocket includes residues from both -helix C and the activation loop. The 

binding of allosteric inhibitors within this pocket prevents the structural reorganization 

of -helix C and other motifs, which generates a catalytically active MEK1 

conformation. -Helix C contains Cys_121, so Cys_121 mutations may cause 

resistance either by direct interference or by alteration of the C helix conformation. 

E6201, however, binds at the ATP binding site, meaning that Cys_121 mutations are 

unable to affect its inhibitory activity. These results indicate that the different actions of 

selumetinib and E6201 in BRAF-V600E melanoma result from the different binding 

modes to MEK 1. 
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Discussion 

On the basis of its MEK inhibitory activity, E6201 was shown here to be an 

ATP-competitive MEK inhibitor that is active against BRAF-V600E melanoma in a 

preclinical setting. Furthermore, we showed that E6201 is active in a preclinical model 

against BRAF-V600E melanoma harboring the MEK1-C121S mutation. Almost all of 

the MEK inhibitors previously reported are allosteric inhibitors, not ATP-competitive 

inhibitors (40). Our docking simulation showed that E6201 and selumetinib bind to 

different sites when they dock with MEK1. These results suggest that the inhibitory 

mode of action of E6201 is different from that of allosteric MEK inhibitors.  

The MEK1-C121S mutation, which confers resistance to vemurafenib, increases MEK 

activity independently from BRAF and also confers resistance to the allosteric MEK 

inhibitor selumetinib (15). Our docking simulation showed that the MEK1-C121S 

mutation induced by vemurafenib treatment is located where selumetinib binds with 

MEK1, but is far from where E6201 binds with MEK1. This may account for the 

selumetinib resistance in BRAF-V600E melanoma harboring the MEK1-C121S 

mutation. In contrast, E6201 suppressed ERK phosphorylation and inhibited cell growth 

equivalently in BRAF-V600E melanoma harboring MEK1-C121S and in WT 

melanoma cells. Thus, this is the first paper showing that E6201 potentially retains 



27 

anti-cancer activity against melanomas with acquired resistance to vemurafenib 

associated with the MEK1-C121S mutation.  

A combination therapy clinical trial in melanoma using a BRAF inhibitor together with 

an allosteric MEK inhibitor is ongoing (Trial registration ID: NCT01072175, 

NCT01271803); however, this combination may not be effective upon acquisition of the 

MEK1-C121S mutation because the mutation confers resistance to both BRAF 

inhibitors and allosteric MEK inhibitors. On the bases of this clinical information, the 

combination of vemurafenib and E6201 may lead to a prolonged response compared 

with vemurafenib by inhibiting acquisition of the MEK1-C121S mutation in vitro and in 

vivo preclinical model.  

The clinical benefit of trametinib monotherapy (an allosteric MEK inhibitor) was 

demonstrated in BRAF mutant melanoma with a V600E or V600K BRAF mutation (38). 

Trametinib was approved by both the United States Food and Drug Administration and 

the European Medicines Agency (13) for the treatment of patients with unresectable or 

metastatic melanoma harboring the BRAF-V600E mutation. In the near future, a MEK 

mutation induced by trametinib treatment may appear as has occurred with the other 

kinase inhibitors. Acquired resistance to allosteric MEK inhibitors through MEK1 

mutations has been reported in a preclinical study (39). Some of these mutations are at 
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the allosteric binding site. E6201 may be active against melanomas with these mutations 

because the binding mode of E6201 to MEK1 is different from that of allosteric MEK 

inhibitors. Further preclinical investigation may be important to prove this hypothesis.  

In addition to MEK1-C121S mutation, BRAF inhibitor resistance mechanisms were 

reported. These include MEK1 mutation, BRAF amplification, NRAS mutation, 

PDGFR overexpression, COT overexpression, IGF1R activation, dimerization of 

aberrantly spliced BRAF V600E, FGFR3 activation, KRAS mutation and up regulation 

of FOXD3 (15-23). The chemotherapies that overcome each class of acquired resistance 

are required. Therefore, the resistant mechanisms have to be identified to select 

corrective therapy.    

Recently, MEK1 C121S mutation is discovered in hairy-cell leukemia variant (41) and 

Langerhans cell histiocytosis (42). E6201 may be active if growth and apoptosis depend 

on MAPK pathway in this leukemia. 

In previous report, MEK inhibitor is active in KRAS and NRAS mutated cells in 

addition to BRAF mutated cells because MAPK pathway is activated and growth is 

depend on this pathway in these cells. BRAF, NRAS and KRAS mutation are frequently 

occurred in colorectal cancer, thyroid cancer, pancreatic cancer, lung cancer and 

melanoma. Therefore, E6201 may be active in these cells. 
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 We show here that the inhibitory activity of E6201 was higher in BRAF-V600E 

melanoma than in BRAF-WT melanoma, whereas that of selumetinib in BRAF-V600E 

was the same as in BRAF-WT. This inhibitory selectivity of E6201 against BRAF-WT 

and BRAF-V600E may lead to a broader therapeutic window because of its weak 

activity in BRAF-WT cells. Further investigation about activity and toxicity is needed 

in vivo preclinical study.  

In conclusion, this preclinical study demonstrates that E6201, an ATP-competitive 

MEK inhibitor, retains full activity in BRAF inhibitor or allosteric MEK inhibitor 

resistant cancer cells. 
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Figure legends 

Figure 1. (A) Structure of E6201. (B) Structure of four allosteric MEK inhibitors. 

 

Figure 2. (A) MEK1 and (B) MEK2 inhibitory activity of E6201 at different 

concentrations of ATP. 

 

Figure 3. Effect of vemurafenib (BRAF inhibitor), selumetinib (allosteric MEK 

inhibitor), and E6201 (ATP-competitive MEK inhibitor) on BRAF-WT and -V600E 

melanoma cell lines. BRAF mutation status was confirmed by using DNA sequencing. 

(A) Growth inhibitory activity of each compound. White columns represent the result in 

BRAF-WT cell lines and black columns represent the result in BRAF-V600E cell lines. 

The growth IC50 values of each compound in BRAF-WT melanoma cell lines were all 
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above 1 M. (B) MAPK pathway inhibitory activity of the test compounds.  

 

Figure 4. Effect of vemurafenib, selumetinib, or E6201 on Cyclin D1 expression in 

exogenous MEK1-C121S-positive or -negative A375 cells. (A) Cells were treated with 

3.3 M vemurafenib, 1.1 M selumetinib, or 1.1 M E6201. Hoechst is a total cell stain. 

Azami-Green-positive cells represent exogenous MEK1-C121S-expressing cells. Scale 

bar represents 100 m. (B) Quantification of Cyclin D1 expression in exogenous 

MEK1-C121S-positive or -negative cells after treatment with the test compounds. 

 

Figure 5. Effect of vemurafenib, selumetinib, or E6201 in MEK1-WT or -C121S 

transfectants. (A) Growth inhibitory activity of the test compounds. (B) MAPK pathway 

inhibitory activity of each compound. 

 

Figure 6. (A) Most energy-stable complex models. Selumetinib binds to a hydrophobic 

pocket adjacent to the ATP binding site. (B) Most energy-stable complex model. E6201 

binds at the ATP binding site. 

 

Supplementary Figure 1. Effect of vemurafenib, selumetinib, or E6201 on Cyclin D1 
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expression in exogenous MEK1-WT-positive or -negative A375 cells (A) Cells were 

treated with 3.3 M vemurafenib, 1.1 M selumetinib, or 1.1 M E6201. Hoechst is a 

total cell stain. Azami-Green-positive cells represent exogenous MEK1-WT-expressing 

cells. Scale bar represents 100 m. (B) Quantification of Cyclin D1 expression in 

exogenous MEK1-WT-positive or -negative cells after treatment with the test 

compounds. 

 

Supplementary Figure 2. MAPK pathway inhibitory activity of the test compounds in 

G361. 

 

Supplementary Figure 3. Effect of vemurafenib, selumetinib, or E6201 on Cyclin D1 

expression in (A) exogenous MEK1-C121S-positive or -negative G361 cells and in (B) 

exogenous MEK1-WT-positive or -negative G361 cells. 

 

Supplementary Figure 4. Cleavaged -PARP induction in A375 and G361 parental cells. 
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