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Abstract 

Removal of pollutants from industrial wastewater has become one of the most important issues 

recently for the increase in industrial activities, especially for heavy metals and radionuclides. Since 

the big nuclear accident at Fukushima, Japan in 2011, a large amount of radionuclides were released 

into water, soil and air, and the hazardous influence of radioactive wastewater has drawn much 

attention all over the world. Among radionuclides, 
137

Cs is considered the most abundant and 

hazardous due to diverse sources and relatively long half-life. Furthermore, it can be easily 

incorporated into terrestrial and aquatic organisms because of its similar chemical characteristics with 

potassium. As a result, numerous efforts have been undertaken to find effective and low cost methods 

to separate and remove cesium (Cs) from waste solutions. 

In this study, walnut shell (WS, biosorbent), akadama clay (AC, clay material) and ammonium 

molybdophosphate – polyacrylonitrile (AMP-PAN) beads (synthetic material) were used as 

adsorption materials for cesium removal from aqueous solution. The comprehensive comparison was 

carried out and the best application scopes of these materials were determined. 

For the WS experiments, the rapid adsorption process was fitted well with the pseudo 

second-order kinetic model. The good correlation coefficient (R
2
=0.93), low χ

2
 and normalized 

standard deviation (NSD) values suggest that cesium adsorption on nickel hexacyanoferrate modified 

walnut shell (NiHCF-WS) could be best described by the Freundlich adsorption isotherm. The 

maximum adsorption capacity (Qmax) could reach about 4.94±0.5 mg g
-1

 for the NiHCF-WS. Results 

showed that, in comparison with other adsorbents, cesium adsorption onto NiHCF-WS was enhanced 

under acidic (80% removal at pH of 2) and suppressed under alkaline (40% removal at pH of 11) 

conditions, which makes it especially appropriate in treating acidic radioactive liquid waste. Cesium 

loaded NiHCF-WS could be reduced significantly through incineration at 500
o
C for 2 h and the total 

reduction (in volume) from liquid waste to slag residue was up to 99.9%, leading to a considerable 
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space and cost reduction in disposing the spent adsorption material.  

For the AC experiments, AC was transferred into a typical mesoporous material and adsorption 

performance was greatly enhanced. The newly developed material had a much wider applicable pH 

range (5~12) than pristine one. The Qmax could reach about 16 mg g
-1

 for the modified AC, much 

higher than pristine one (4.5 mg g
-1

). The distribution coefficient was strongly affected (negatively) 

by K
+
 rather than Na

+
 for both pristine and modified AC. Finally, modified AC was testified as a 

potential efficient adsorbent material for Cs
+
 in the treatment of lake water. Above 80% of adsorbed 

Cs
+
 could be desorbed in 0.1 M HCl and KCl, while relatively stable in synthetic groundwater.  

AMP-PAN bead was synthesized in this study. Effect of different compositions on adsorption 

capacity was investigated through batch adsorption experiments. The prepared AMP-PAN beads were 

thermal stable under 300
o
C and chemical stable in acidic solution but unstable in alkaline solution. 

Multilayer chemical adsorption process was testified through kinetic and isotherm studies. The 

estimated Qmax for 2#, 3# and 4# beads were 138.9±21.3, 95.4±11.7 and 71.6±8.5 mg g
-1

, 

respectively. The adsorption behavior could not be inhibited at acidic conditions until the pH was as 

low as 2.5. Competitive ions (Na
+
, K

+
 and Ca

2+
) had little negative effect on the removal efficiencies, 

indicating a high selectivity for Cs
+
 adsorption on AMP-PAN beads. A close relationship between the 

amounts of adsorbed Cs
+
 and released NH4

+
 was demonstrated. Spent AMP-PAN beads were stable 

in DW and acidic solutions and relatively unstable in 0.1 M NH4Cl solution, indicating a recycle 

capability. 

The results of this thesis would provide useful information for applying these kinds of materials 

into Cs
+
 wastewater treatment. Also, the results indicate a bright future for adopting these materials 

into treating nuclear wastewater from Fukushima nuclear plant, which would make this study more 

meaningful.  
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Chapter 1 Introduction 

Removal of pollutants from industrial wastewaters has become one of the most important issues 

recently for the increase of industrial activities, especially for heavy metals and radionuclides. For 

example, chormium and arsenic in groundwater had led to serious problems for human health all over 

the world. Many countries have set rigorous concentration limits for drinking water and these 

standards will be much more severe in the future. This calls for much more efforts in controlling the 

release of these hazardous heavy metals into water environment. Fortunately, for the heavy metals’ 

removal, there have been extensive researches, while for the radionucildes’ removal, there is not yet 

enough research. It is worth noting that the negative impact brought by the radionuclides would be 

much more serious than common heavy metals because of the impact range and relatively long 

impact time. As the big nuclear accident occurred in Fukushima, Japan 2011 led a large amount of 

radionuclides released into water, soil and air, the hazardous influences of radioactive wastewater 

draw much attentions all over the world. Not only from the routine operation of nuclear power station, 

but also from the accident caused by unpredictable natural disasters such as earthquake and tsunami, 

liquid and solid wastes containing radionuclides are produced. Cesium is a commonly used 

radionuclide during the nuclear power generation and therefore a most important pollutant through 

the radioactive wastes. For instance, the great east Japan disaster of March 11, 2011 crippled the 

Fukushima Daiichi Nuclear Power Plant (NPP) leading to a long-term radiation contamination issue. 

The radioisotopes on the order of 630,000-770,000 terabecquerel (TBq) were released into the 

environment and left the region with contaminated soil, air and water [1, 2]. Cesium, including 
134

Cs 

(approximately 2.15×10
16

 Bq) and 
137

Cs (approximately 1.86×10
16

 Bq), has been released into the air 

and sea in the disaster affected areas [3]. Among radionuclides, 
137

Cs is considered the most abundant 
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and hazardous due to diverse sources and relatively long half-life (approximately 30.5 years). 

Furthermore, it can be easily incorporated into terrestrial and aquatic organisms because of its similar 

chemical characteristics with potassium [4, 5]. 

1.1 Cesium species 

Cesium has many kinds of isotopes and 
133

Cs, 
134

Cs and 
137

Cs are most common used ones. It is 

worth noting that the first isotope is nonradioactive and the latter two are radioactive.  

1.2 Treatment technologies 

Generally speaking, the investigated physical-chemical methods for separation and removal of Cs 

are precipitation, solvent extraction, adsorption, ion exchange, electrochemical and membrane 

processes [6-11]. Among them, solvent extraction, ion exchange and adsorption methods are most 

widely used. However, due to the high cost of materials, large-scale application of solvent extraction 

is limited. In the case of ion exchange process, inorganic ion exchangers are found to be superior 

over organic ion exchangers due to their thermal stability, resistance to ionizing radiation and good 

compatibility with final waste forms [5, 12]. Natural occurring clay minerals such as zeolite, 

bentonite and montmorillonite are usually used as low cost adsorption materials for Cs
+
 removal 

from aqueous solution [5, 13-16]. As for most clay materials, the main mechanism occurring in the 

adsorption process is known as ion exchange. According to the special cubic structure and driving 

force caused by concentration gradients, ion exchange can be accomplished by releasing metal ions 

existing in clay materials into solutions (such as Na
+
, K

+
, Ca

2+
 and etc.) and adsorbing cesium ions 

simultaneously. Though the adsorption capacity is high, the disadvantage is low/no selectivity for ion 

exchange during the adsorption process. This means, not only the target metal ion but also other 

metal ions can be exchanged during the process, which undoubtedly leads to a waste of adsorption 
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capacity, especially under high ionic strength conditions such as sea water. For clay materials, it is 

comparatively much more difficult to improve the selectivity of the ion exchange process than it is to 

increase adsorption capacity due to their complex compositions. As a result, much more attention 

from researchers has been paid to the improvement of adsorption capacity of clay material [11, 17]. 

Transition metals are known to undergo complexation with compounds containing aromatic groups 

based on an electron donation and back donation process [18]. In addition, modification with 

transition metals could result in a pillared material with microporosity and mesoporosity in layered 

crystalline inorganic compounds [19]. ZSM-5 zeolite [20] and kaolin [21] has been successfully 

modified with transition metal in previous studies. Still, it is unknown whether transition metals 

could be modified into other kinds of clay materials and whether the modification is positive for 

increasing adsorption capacity or not. 

1.3 Objective, originality and structure of the dissertation 

As mentioned above, each method has its own advantages and disadvantages. The most 

concerned topic is to find much proper material for each method. In addition, until now there is no 

study conducting on the comparison of different kinds of materials, which is relatively important 

when treating with different kinds of liquid wastes. As a result, the objective of this study is to find 

different kinds of materials for Cs
+
 removal from different kinds of liquid wastes.  

Several kinds of low cost biosorbent have been investigated for the removal of heavy metals 

recently. Walnut shell, an abundant agricultural residue with good stability has been successfully used 

in removing heavy metals by adsorption. To the best of our knowledge, however, few of them 

focused on equilibrium, kinetic and thermodynamic modeling studies of Cs
+
 adsorption by walnut 

shell. In addition, transition metal hexacyanoferrates, especially nickel hexacyanoferrate (NiHCF) is 

known as a highly selective agent for Cs
+
 adsorption. It possesses a special cubic structure with 
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channel diameter of about 3.2Å, through which only small hydrated ions like Cs
+
 can permeate. And 

larger hydrated ions like Na
+
 get blocked. However, very fine particle size of NiHCF restricts its 

direct use in practice, thus proper support materials are necessary. This study presents a low cost 

biosorbent derived from walnut shell incorporated with NiHCF (NiHCF-WS), firstly fabricated for 

Cs
+
 adsorption. Also, a special kind of clay material, akadama clay was firstly used for this purpose. 

This low cost clay material comes from the volcanic ash and generally used for culturing plants. In 

order to improve its application in removing Cs
+
, nickel oxide was introduced into akadama clay 

through modification. Finally, a synthetic compound, ammonium molybdophosphate – 

polyacrylonitrile was developed for removing Cs
+
 from aquous solution. Different kinds of this 

material with different compositions were developed to find a best composition. 

The contents of this thesis are divided into the following three parts so as to comprehensively 

evaluate the adsorption performance of Cs
+ 

onto different kinds of materials.  

The first study focused on the removal of cesium from aqueous solution using agricultural residue 

– walnut shell (Chapter 2). Through various kinds of characterization, adsorption isotherms and 

kinetics insight and removal performance evaluation, Cs
+ 

removal mechanism was investigated.  

The second part is the removal of cesium from aqueous solution using modified clay material 

(Chapter 3). A common and inexpensive andic soil in Japan, akadama clay (AC), was utilized in 

lab-scale experiments and its application in Cs
+ 

removal was evaluated. In order to improve its 

adsorption efficiency and widen adsorption conditions, a special modification process was adopted and 

the positive results indicated its success. Also, except the effects of pH, contact time, initial 

concentration, dosage, and coexisting ions, the adsorption isotherms and kinetics were also 

investigated. Based on the experimental results, removal mechanism was finally discussed.  

The third part was the removal of cesium from aqueous solution using ammonium 
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molybdophosphate - polyacrylonitrile (AMP-PAN) beads (Chapter 4). As a synthetic compound with 

high capacity, its stable characteristics and the effect of coexisting ions were especially investigated. 

The removal mechanism was also disclosed and discussed. 
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Chapter 2 Removal of cesium from aqueous solution using agricultural residue – 

Walnut shell 

2.1 Introduction 

Removal of pollutants from industrial wastewater has become one of the most important issues 

recently for the increase in industrial activities, especially for heavy metals and radionuclides. Since 

the big nuclear accident at Fukushima, Japan in 2011, a large amount of radionuclides were released 

into water, soil and air, and the hazardous influence of radioactive wastewater has drawn much 

attention all over the world. Among radionuclides, 
137

Cs is considered the most abundant and 

hazardous due to diverse sources and relatively long half-life. Furthermore, it can be easily 

incorporated into terrestrial and aquatic organisms because of its similar chemical characteristics with 

potassium [4, 5]. As a result, numerous efforts have been undertaken to find effective and low cost 

methods to separate and remove Cs
+
 from waste solutions [4, 7, 11, 22, 23]. 

Generally speaking, the investigated physical-chemical methods for separation and removal of 

Cs
+
 are precipitation, solvent extraction, adsorption, ion exchange, electrochemical and membrane 

processes [6-11]. Among them, solvent extraction, ion exchange and adsorption methods are most 

widely used. However, due to the high cost of materials, large-scale application of solvent extraction 

is limited. In the case of ion exchange process, inorganic ion exchangers are found to be superior 

over organic ion exchangers due to their thermal stability, resistance to ionizing radiation and good 

compatibility with final waste forms [5, 12]. Natural occurring clay minerals such as zeolite, 

bentonite and montmorillonite are usually used as low cost adsorption materials for Cs
+
 removal 

from aqueous solution, however the main disadvantage is the competitive interactions of other 

monovalent cations, in particular Na
+
 and K

+
 that can considerably block Cs

+
 adsorption [5, 13-16]. 
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Transition metal hexacyanoferrates, especially nickel hexacyanoferrate (NiHCF) is known as a 

highly selective agent for Cs
+
 adsorption [5, 6]. It possesses a special cubic structure with a channel 

diameter of about 3.2 Å, through which only small hydrated ions like Cs
+ 

can permeate. Larger 

hydrated ions like Na
+
 get blocked [5, 24]. However, the very fine particle size of NiHCF restricts its 

direct use in practice, thus proper support materials are necessary.  

Recently, several kinds of low cost biosorbents have been investigated for the removal of heavy 

metals [5, 25, 26]. Walnut shell, an abundant agricultural residue with good stability has been 

successfully used in removing heavy metals by adsorption [27-29]. However, previous studies mainly 

focused on the determination of the adsorption mechanisms and improvement of adsorption capacity. 

To the best of our knowledge, the report about treating the spent adsorption material in order to 

obtain waste reduction before final disposal (deep landfill) is sparse. According to the IAEA 

guidelines, thermal treatment is the most suitable option for the volume reduction, especially of the 

organics-rich waste [30]. The main components in WS including lignin, cellulose and hemicellulose 

could be burned after incineration and the end result of the treatment process is the volume reduction 

from a huge amount of radioactive wastewater to a small volume of char or slag residue that can be 

converted to a stable form suitable for ultimate disposal, which makes it a particularly attractive 

adsorption/support material.  

Therefore, as a first attempt to fill the knowledge gap, the removal behaviors of Cs
+
 by the 

resulting functionalized biomass material – NiHCF-WS were investigated under different 

experimental conditions such as the contact time, initial pH, adsorbent dosage, initial Cs
+
 

concentration and competitive ions in detail. Adsorption kinetic, equilibrium and thermodynamic 

studies were also investigated. To highlight the economical advantage during the final disposal, the 

volume reduction of spent material (Cs-NiHCF-WS) after thermal treatment was analyzed. The aim 
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of this work is to obtain a functionalized biomass material that can be reduced effectively by thermal 

treatment. The results of this study are expected to shed light on the understanding of the underlying 

removal behavior of Cs
+
 on NiHCF-WS. In addition, they are also of great significance for achieving 

a low cost treatment for the large quantity of radioactive liquid waste.  

2.2 Materials and methods 

2.2.1 Materials 

Walnut shell used in this study was obtained from Shandong province, China and was immersed 

and washed with deionized water (DW) to remove soluble impurities until the water turned clear. The 

clean WS was completely dried in an oven (EYELA WFO-700, Japan) at 105
o
C for more than 24 h, 

ground and sieved through No. 8 and 16 size meshes. The granules with diameter between 1~2.36 

mm were selected and stored in a desiccator for further use or modification. 

2.2.2 Reagents 

The chemicals nickel chloride (NiCl2·6H2O) and potassium hexacyanoferrate (K3[Fe(CN)6]· 

3H2O) of A.R. grade were purchased from Wako Pure Chemical Industries Ltd., Japan. 

Non-radioactive cesium chloride (CsCl) purchased from Tokyo Chemical Industry Co. Ltd., Japan 

was used as a surrogate for 
137

Cs because of its same chemical characteristics. All the other reagents 

used in this study were purchased from Wako Pure Chemical Industries Ltd., Japan with no 

purification before use. DW generated from a Millipore Elix 3 water purification system (Millipore, 

USA) equipped with a Progard 2 pre-treatment pack was used throughout the experiments except for 

ICP-MS analysis. 

1.26 g CsCl was weighed exactly and dissolved into 1 L DW as standard stock Cs
+
 solution 

(~1000 mg L
-1

), which could be diluted to desired concentrations of Cs
+
 solution for further 
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experiments.  

2.2.3 Modification of walnut shell 

The modification of walnut shell contains the following steps. 10 g of clean WS granules were 

immersed in 100 mL of 50% (v/v%) hydrochloric acid (HCl) for 10 h at a temperature of 50
o
C. Then, 

the WS was dried in an oven at 105
o
C overnight after being washed until the eluent pH was almost 

neutral. The loading of NiCl2 onto WS and the treatment of K3[Fe(CN)6]·3H2O with NiCl2 loaded 

WS was carried out according to the method reported by Parab and Sudersanan [22]. In brief, 5 g of 

WS was immersed in 20 mL of 0.5 M NiCl2·6H2O solution and placed in a double shaker (Taitec 

NR-30, Japan) at 200 rpm and room temperature (25±1
o
C) for 24 h followed by filtration and 

washing with DW to remove excess NiCl2·6H2O. Next, the NiCl2 loaded WS was added to 10 mL of 

5% (wt%) K3[Fe(CN)6]·3H2O solution and placed into a water bath (SANSYO SWR-281D, Japan) at 

30
o
C for 24 h. The resultant NiHCF loaded WS was separated by filtration, washed with DW and 

dried at 60
o
C. The entire procedure was repeated three times to ensure the incorporation of NiHCF 

onto the WS. This NiHCF-WS material was used for further characterization as well as Cs
+
 

adsorption studies. 

2.2.4 Removal behavior and adsorption stability studies 

Batch experiments were conducted to investigate the removal behavior of Cs
+
 on NiHCF-WS. 

Much attention was paid to the effects of influencing factors such as contact time, initial pH, 

adsorbent dosage, initial Cs
+
 concentration and competitive ions on the removal process. Desired 

concentrations of Cs
+
 solutions including standards were prepared by diluting known volumes of the 

standard Cs
+ 

stock solution with DW. The solution pH was adjusted by 0.1 M HCl and NaOH 

solutions and measured by a pH meter (Mettler Toledo SG8, Switzerland).  
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To determine the effect of contact time, 4 g of NiHCF-WS was mixed with 200 mL of 10 mg L
-1

 

Cs
+
 solution in a 250 mL-glass flask (AS ONE, Japan). Supernatants (about 1 mL for each) were 

withdrawn at predetermined time intervals along with the initial solution (zero min point). For the 

effect of initial pH, 0.2 g of NiHCF-WS was mixed with 20 mL of 10 mg L
-1

 Cs
+
 solutions with 

initial pH value of 2, 4, 7, 10 and 11, respectively. To determine the effect of adsorbent dosage, 0.1, 

0.2, 0.3 or 0.4 g of NiHCF-WS was mixed with 20 mL of 10 mg L
-1

 Cs
+
 solution respectively. To 

determine the effect of initial Cs
+
 concentration, 0.4 g of NiHCF-WS was mixed with 20 mL of Cs

+
 

solutions of 1, 5, 10, 20, 50, 75 and 100 mg L
-1

, respectively. To determine the effect of competitive 

ions, the initial Cs
+ 

concentrations of 1, 5, 10 mg L
-1

 and 100, 1000 mg L
-1

 of Na
+
 or K

+
 were 

adopted.  

Adsorption stability studies were conducted after the removal behavior studies with synthetic 

groundwater (GW) and tap water (TW). Cs
+
 loaded NiHCF-WS was collected from the contact time 

effect experiment. The amount of released Cs
+
 and percentage was deemed as indicators of 

adsorption stability. The amount of released Cs
+
 (µg) was calculated from the Cs

+
 concentration and 

volume of the GW or TW. Chemical compositions of the GW was as follows (in 1 L of DW): 23 mg 

MgSO4·7H2O, 73.9 mg MgCl2, 131 mg NaHCO3, 13 mg KHCO3, 8.5 mg K2HPO4·3H2O and 128 mg 

NaNO3 (Table 2-1). A trace element stock solution was also prepared by adding 13.4 mg 

MnCl2·6H2O and 5.0 mg FeCl2·4H2O to 1 L of DW. Before the test, trace element solution was 

diluted in the synthetic solution by a factor of 100:1 [31]. TW was obtained from University of 

Tsukuba, Japan and used without any purification. 

All the experiments were conducted in 50 mL-polypropylene tubes (Violamo, Japan) vigorously 

shaken (200 rpm) and at room temperature (25±1
o
C) for 24 h (except contact time experiments). All 

the samples including initial solutions were collected by filtering the supernatants through 0.22 µm 
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mixed cellulose ester membrane (Millipore, Ireland) and diluted with DW to a proper extent (less 

than 1 mg L
-1

) into 15 mL-polypropylene tubes (Violamo, Japan) prior to inductively coupled 

plasma-mass spectrometry (ICP-MS) (Perkin Elmer Elan DRC-e, USA) analysis. Along with the 

batch adsorption experiments, blank and control tests were also carried out to observe any 

precipitation and to determine the extent of wall adsorption. The negligible differences between the 

initial and final concentrations indicated that no precipitation or wall adsorption occurred in this 

study. 

2.2.5 Kinetic studies 

4 g of NiHCF-WS was mixed with 200 mL Cs
+
 solution (adsorbent dosage of 20 g L

-1
) in a 250 

mL-glass flask (AS ONE, Japan) under initial Cs
+ 

concentration of 10 mg L
-1

, and the flask was 

shaken by a double shaker (TAITEC NR-30, Japan) at 200 rpm for 48 h. Supernatants (about 1 mL 

for each) including the initial solution (as the zero min point) were withdrawn at predetermined time 

intervals prior to the Cs
+
 concentration determination.  

In order to investigate the mechanism of adsorption, non-linearized Lagergren pseudo first-order 

kinetic model [11] and pseudo second-order kinetic model [22] were applied to analyze the 

adsorption process, which were expressed as follows: 

Lagergren pseudo first-order kinetic model:  

  
)1( 1tk

et eqq



              (2-1) 

pseudo second-order kinetic model: 

  
tqk

tqk
q

e

e
t

2

2

2

1
                 (2-2) 
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where t (min) is the contact time, k1 (min
-1

) and k2 (g mg
-1

 min
-1

) are the adsorption rate constants; qe 

and qt (mg g
-1

) represent the uptake amount of ion by the adsorbent at equilibrium and time t, 

respectively. 

In addition, the determination of the limiting step of the adsorption process is necessary by 

predicting the diffusion coefficient using a diffusion based model. The possibility of intra-particle 

diffusion resistance affecting the adsorption was explored in this study by using the intra-particle 

diffusion equation [10] as follows: 

  Ctkq pt  2/1                   (2-3) 

where t (min) is the contact time, qt (mg g
-1

) is the Cs
+
 uptake amount at time t, kp (mg g

-1
 min

−1/2
) is 

the intra-particle diffusion rate constant determined from the slopes of the linear plots. C is the 

constant, which indicates the thickness of the boundary layer, i.e., the larger the value of C the 

greater is the boundary layer effect. 

2.2.6 Equilibrium studies 

A fixed amount of NiHCF-WS was mixed with 20 mL Cs
+
 solution in a 50 mL-polypropylene 

tube (VIOLAMO, Japan) at a shaking speed of 200 rpm. Resultant supernatants were withdrawn after 

24 h prior to the Cs
+
 concentration determination. 

(1) Adsorption isotherms 

To optimize the design of a adsorption system, it is important to establish the most appropriate 

correlation for equilibrium conditions [22]. According to different adsorption mechanisms, there are 

currently several different adsorption isotherms used for fitting experimental adsorption results. 

Among these, Langmuir [32], Freundlich [33] and Dubinin-Radushkevich (D-R) [34] isotherms are 

widely used and therefore are applied in this study. The nonlinear forms of these isotherms are given 
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as follows: 

  Langmuir isotherm: 
e

em
e

bC

bCq
q




1
         (2-4) 

  Freundlich isotherm: 
n

efe Ckq            (2-5) 

  D-R isotherm: )exp( 2 me qq          (2-6) 

  )
1

1ln(
eC

RT                         (2-7) 

where, qe (mg g
-1

) is the amount of Cs
+
 adsorbed at equilibrium, Ce (mg L

-1
) is the equilibrium 

concentration of Cs
+
. b (L mg

-1
) is a constant related to the free energy or net enthalpy of adsorption 

(be
-ΔG/RT

) [35], and qm (mg g
-1

) is the adsorption capacity at the isotherm temperature. kf and n are 

equilibrium constants indicative of adsorption capacity and adsorption intensity respectively. β 

(mol
2
/kJ

2
) is the constant related to the adsorption energy, R (8.314 J mol

-1
 K

-1
) is the gas constant 

and T (K) is the absolute temperature of the aqueous solution. 

(2) Role of ion exchange 

In the case of anionic metal hexacyanoferrate complexes, it is assumed that there is a true 

exchange between K
+
 and Cs

+ 
[13, 36]. Therefore, an attempt was made to link the Cs

+
 adsorption to 

its likely ion exchange reaction with K
+
 through equilibrium studies. In addition to the batch 

experiments, a blank experiment was carried out by adding a corresponding amount of adsorbent into 

the same volume of DW instead of Cs
+
 solutions. The Cs

+
 adsorbed and K

+
 released was calculated 

according to mass balance using the equations below: 

  1000
133

)( 0 




VCC
A e

Cs
         (2-8) 
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where ACs+ (µmol) is the amount of Cs
+
 adsorbed by NiHCF-WS, C0 (mg L

-1
) is the initial 

concentration of Cs
+
, Ce (mg L

-1
) is the equilibrium concentration of Cs

+
, V (L) is the volume of 

solution and 133 is the molar mass of Cs. 

  1000
39

)(





VCC
R be

K
          (2-9) 

where RK+ (µmol) is the amount of K
+
 released into solution, Ce (mg L

-1
) is the equilibrium 

concentration of K
+
, Cb (mg L

-1
) is the concentration of K

+
 in the blank solution, V (L) is the volume 

of solution and 39 is the molar mass of K. 

2.2.7 Thermodynamic studies 

In order to obtain the thermodynamic nature of the adsorption process, 0.2 g NiHCF-WS was 

added into 20 mL Cs
+
 solutions with an initial concentration of 10 mg L

-1
 (adsorbent dosage of 10 g 

L
-1

) at different temperatures (298, 308 and 318 K) for 24 h. Thermodynamic parameters, namely, 

standard Gibbs free energy (ΔG°), standard enthalpy (ΔH°) and standard entropy (ΔS°) changes were 

also determined in order to obtain the thermodynamic nature of the adsorption process. The amounts 

of ΔH° and ΔS° could be calculated from the slope and intercept of the straight line obtained from 

plotting lnKd versus 1/T, respectively using the following equation [4, 37]: 

  
RT

H

R

S
Kd





ln                  (2-10) 

where Kd (mL g
-1

) is the distribution coefficient, R (8.314 J mol
-1

 K
-1

) is the gas constant and T (K) is 

the absolute temperature of the aqueous solution. 

After obtaining ΔH° and ΔS° values of the adsorption, ΔG° of each temperature was calculated 

by the well-known equation as follows: 
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  STHG                   (2-11)  

2.2.8 Incineration of Cs-NiHCF-WS 

The incineration experiment was conducted in triplicate in a muffle furnace (TGK F-1404, Japan) 

and the Cs-NiHCF-WS used in this experiment was obtained as described in Section 2.2.4. The 

Cs-NiHCF-WS (0.2 g for each) was completely dried and the volume was measured in a 

1mL-syringe based on the Archimedes drainage method. A temperature higher than the calculated 

cesium dew point of 1000 K is generally not suggested for avoiding cesium volatilization during 

incineration [38]. In addition, according to the thermal analysis of NiHCF-WS, the decomposing 

temperature was approximately 450
o
C. Therefore, the Cs-NiHCF-WS was placed into a crucible 

(with a cover) and incinerated at 500
o
C for 2 h in this study in order to ensure a complete 

decomposition of walnut shell and no volatilization of cesium. Similarly, the volume of slag residue 

was thereafter determined as described previously.  

2.2.9 Analysis 

All of the samples were collected by filtering supernatants through 0.22 µm mixed cellulose ester 

membrane (Millipore, Ireland) and diluted with pure water to a proper extent (below 1 mg L
-1

) into 

15 mL-polypropylene tubes (VIOLAMO, Japan) prior to inductively coupled plasma-mass 

spectrometry (ICP-MS) (Perkin Elmer ELAN DRC-e, USA) analysis.  

In order to evaluate the probable differences in structure between raw and modified walnut shell, 

field emission scanning electron microscope (FE-SEM) analysis was performed using a JEOL 

JSM-6330F type microscope. A thermogravimetric and differential thermal analysis (TG-DTA) of 

WS and NiHCF-WS was carried out using a thermal analyzer (EXSTAR TG/DTA 7300, Japan) 

equipped with an AS-3 auto sampler. About 7.5 mg of each sample was prepared into an 
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aluminum-PAN, heated up to 500
o
C at a constant rate of 10

o
C min

-1
 in normal atmosphere for 

thermal analysis using an open-Al-pan as reference.  

The concentrations of Cs
+
 and K

+
 in aqueous samples were analyzed by a fully quantitative 

analytical method on a Perkin Elmer ELAN DRC-e ICP-MS in standard mode. Each sample was 

analyzed 5 times and the average was taken. The relative standard deviation (RSD) of multiple 

measurements was less than 2% and in most cases, less than 1.5%. 

2.2.10 Calculation 

The Cs
+
 adsorption results are given as uptake amount (q) and distribution coefficient (Kd). The 

Cs
+
 uptake amount q (mg g

-1
) was calculated from the mass balance as follows: 

  
M

VCC
q t

1000

)( 0                            (2-12) 

Distribution coefficient Kd (mL g
-1

), which is mass-weighted partition coefficient between solid 

phase and liquid supernatant phase reflecting the selectivity for objective metal ions, was calculated 

according to the formula: 

  
M

V

C

CC
K

t

t
d 


 0                         (2-13) 

where, C0 and Ct (mg L
-1

) are the concentrations of Cs
+
 at contact time of 0 (initial concentration) and 

t determined by ICP-MS, V (mL) is the volume of Cs
+
 solution and M (g) is the mass of adsorbent 

used. 

2.2.11 Quality assurance and quality control 

In order to ensure reliability and improve accuracy of the experimental data in this study, kinetic 
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and equilibrium studies on Cs
+
 adsorption were conducted in duplicate with a mean ± SD being 

reported. All of the figures and the kinetic fitting displayed in this paper were accomplished using the 

Origin 7.5 program (OriginLab, USA). 

2.3 Results and discussion 

2.3.1 Characterization of biosorbent  

(1) Field emission scanning electron microscope (FE-SEM) 

The FE-SEM images of walnut shell before and after modification are shown in Fig.2-1. It can 

be seen that the raw walnut shell has a complex and multilayer structure including the obvious 

fibrous lignocellulosic (Fig.2-1a). After modification, there is a remarkable difference in the surface 

structure of walnut shell with NiHCF particles attached on the surface of walnut shell, as depicted by 

the arrows in Fig.2-1b. 

(2) Thermogravimetric and differential thermal analysis (TG-DTA) 

A large number of reactions occur during the thermal degradation of lignocellulosic materials. 

Therefore, a thermal degradation pre-study conducted on the biomass material, is very important in 

terms of the efficient design of thermochemical processes for the conversion of biomass into energy 

and products [39]. The TG-DTA curves, which display the thermal degradation characteristics for the 

WS and NiHCF-WS, were recorded as a function of time (Fig.2-2). Based on the TG curves, it can be 

said that the major mass loss occurred in the thermal degradation of WS (98.2%) and NiHCF-WS 

(96.4%), respectively. Their TG curves can be divided into three parts, representing loss of water, 

volatilation of hemicellulose like contents, and decomposition of celloluse and lignin components 

[40]. Compared with WS, the second and last parts of the TG curves obtained from the NiHCF-WS 

were obviously different with shorter time needed. It can be seen that approximately 37.4% of TG 
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loss occurred during the second part and finished at a time of about 28 minute for the NiHCF-WS. 

However, the positive peak of the DTA curve was more obvious than that of WS, which might be 

due to the loss of impurities with lower calorific value than hemicellulose during the modification. 

Another great difference, the third part began at time of 30 minutes and temperature of about 350
o
C, 

much lower than WS, indicating the decomposition temperature greatly decreased after modification. 

During this step, approximately 52.3% of TG was lost, higher than that of WS. 

Through comparing the TG-DTA results of WS and NiHCF-WS, it can be concluded that the 

modification process didn’t alter the thermal stability of WS and therefore NiHCF-WS can be used as 

a thermally stable adsorbent. 

2.3.2 Removal behavior studies 

(1) Effect of contact time  

Besides the concentration of Cs
+
, the variation in concentration of Ni

2+
 released into solution 

versus contact time was also measured and the results are presented in Fig.2-3. Significant difference 

between the Cs
+
 adsorption performances of the WS and NiHCF-WS was observed: slow and 

unstable for WS while high and stable for NiHCF-WS. 

From the WS curve in Fig.2-3, during the first 3 h, the Cs
+ 

concentration in solution basically 

decreased slowly and gradually, probably due to the physical adsorption by the irregular surface of 

WS. However, the Cs
+ 

concentration increased after 5 h, demonstrating that Cs
+
 sorption onto WS 

was unstable. On the other hand, an obviously rapid uptake of Cs
+
 was observed at first by the 

NiHCF-WS, possibly due to the easy availability of spare adsorbent surface compared to the Cs
+ 

concentration applied. The equilibrium could be attained within about 2 h (0.27 mg L
-1

) with an 

adsorption percentage of nearly 100%, and its equilibrium uptake amount was calculated to be 0.52 

mg g
-1

. Rapid adsorption kinetics is a very important feature of adsorption materials for their 
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application in wastewater treatment, resulting in a short operation cycle, small reactor volume and 

low investment and operation cost. As a heavy metal, which may be hazardous to human health, the 

concentration of Ni
2+

 released into solution was also detected. From the results, it can be seen that the 

concentration of Ni
2+

 gradually increased with the contact time and was 0.38 mg L
-1

 at the contact 

time of 2 h, which is lower than the short-term effluent reuse limit of 2.0 mg L
-1

 set by U.S. 

Environmental Protection Agency (USEPA) [41].  

(2) Effect of initial pH
 

Metal adsorption from aqueous solutions can be greatly affected by solution pH, which impacts 

not only the binding sites (e.g., degree of protonation) but also the metal chemistry (e.g., speciation 

and precipitation) [42, 43]. Therefore the influence of pH on the removal of Cs
+
 was examined in the 

pH range from 2.0 to 11.0 and the results are shown in Fig.2-4. It can be seen that, the adsorption 

percentage of Cs
+
 gradually decreased with increasing pH from 2.0 to 10.0 and dramatically from 

10.0 to 11.0, which was different from other researches [4, 11, 43] in which the sorption of Cs
+
 was 

mostly reported to be suppressed under acidic conditions due to the competition of H3O
+
. However, 

the results of this study indicated that the sorption of Cs
+
 was not suppressed but enhanced under 

acidic conditions, demonstrating that H3O
+
 was preferred for Cs

+
 sorption on NiHCF-WS. These 

special characteristics might be meaningful in expanding the application scope of adsorption methods 

in treating acidic radioactive liquid waste. In addition, there was no significant difference between the 

pH values of the initial solution and final solution, indicating no competition sorption occurred 

between H3O
+
 and Cs

+ 
under acidic conditions. On the other hand, Cs

+
 sorption was significantly 

affected under the alkaline conditions, probably due to the formation of cesium hydroxides, 

especially at the initial pH of 11.0. The negatively charged Cs(OH)2
−
 might lead to the decrease of 

Cs
+
 adsorption due to electrostatic repulsion [6, 44]. This observation is in accordance with the 
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phenomenon reported by Lilga et al. [45] who observed a similar decreased Cs
+
 adsorption on 

hexacyanoferrates film in basic waste solutions. In addition, it can be seen from Fig.2-4 that all of the 

pH values of the final solutions decreased under initial neutral and alkaline conditions, indicating the 

decrease in OH
–
. This phenomenon denotes that the suppress of Cs

+
 sorption under neutral and 

alkaline conditions was mainly attributed to the formation of Cs(OH)2
–
. 

(3) Effect of adsorbent dosage 

In order to evaluate the effect of adsorbent dosage on Cs
+
 adsorption, 0.1, 0.2, 0.3 and 0.4 g 

NiHCF-WS were added into 20 mL of Cs
+
 solutions with initial Cs

+ 
concentration of 10 mg L

-1
, 

corresponding to the dosage of 5, 10, 15 and 20 g L
-1

 respectively. As shown in Fig.2-5, with the 

increase of adsorbent dosage from 5 to 15 g L
-1

, the adsorption percentage increased gradually due to 

the greater availability of the sorption sites. Further increase in adsorption percentage was not 

observed when the dosage increased to 20 g L
-1

, possibly due to the relatively low equilibrium 

concentration of Cs
+
 (data not shown) resulting in a low driving force. The Cs

+
 uptake amount, 

however, was relatively stable compared to the variation of adsorption percentage, about 0.53-0.62 

mg g
-1

 when NiHCF-WS dosage varied from 5-15 g L
-1

. 15 g L
-1

 of NiHCF-WS dosed into 10 mg L
-1

 

of initial Cs
+
 solution could achieve the highest Cs

+
 uptake amount (0.62±0 mg g

-1
) and adsorption 

percentage (93.6±0.08 %).  

On the other hand, the equilibrium adsorption capacity of the newly developed NiHCF-WS was 

found to be lower than that reported in other literature [4, 22]. However, this result is still promising 

when considering that the amount of NiHCF particles introduced into WS by surface modification 

were very little. In addition, the adsorption capacity had a close relationship with the pattern and 

characteristics of adsorbent such as the size (i.e. particle and pore size) and density.  
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(4) Effect of initial Cs
+
 concentration 

Cs
+
 solutions of desired concentrations were prepared by diluting known volumes of the standard 

Cs
+ 

stock solution with DW. As stated, the pH values of solutions with different initial Cs
+
 

concentration were all about 7 and unadjusted. 

As shown in Fig.2-6, the Cs
+
 adsorption percentage decreased significantly with the increase in 

initial Cs
+
 concentration, especially when initial Cs

+
 concentration higher than 50 mg L

-1
. When 

initial Cs
+
 concentration was lower than 20 mg L

-1
, above 90% of adsorption percentages could be 

obtained, whereas it was only about 70% when initial Cs
+
 concentration increased to 50 mg L

-1
. This 

is because after consuming all of the higher energy sites, excess Cs
+
 would then be adsorbed on the 

lower energy sites, resulting in loose binding of cesium and the decrease of removal efficiency [46]. 

On the other hand, the Cs
+
 uptake amount increased with the increase of initial Cs

+
 concentration, 

from 0.05 mg g
-1

 to 3.44 mg g
-1

 when initial Cs
+
 concentration varied from 1 mg L

-1
 to 100 mg L

-1
. 

The best Cs
+
 adsorption percentage and uptake amount were 99.1±0.1% and 3.4±0.02 mg g

-1
, which 

were obtained at the initial concentration of 20 mg L
-1 

and 100 mg L
-1

, respectively.  

(5) Effect of competitive ions 

As well known, selectivity is a very important factor for an adsorption material, as it will 

influence its application in real wastewater treatment, especially for Cs
+
. Generally, the concentration 

of Cs
+
 in wastewater is much lower than that of Na

+
 or K

+
, normally present in natural water bodies. 

Therefore, the selectivity of Cs
+
 adsorption on NiHCF-WS was evaluated by using Na

+
 and K

+
 as 

competitive ions in this study. 

As a highly efficient adsorption material, NiHCF has a higher selectivity towards Cs
+
 because of 

its cubic structure with a channel diameter of about 3.2 Å, which may permeate small hydrated ion 

such as Cs
+
, whereas block larger hydrated ions like Na

+
. Chen et al. [6] pointed out that similar and 

relatively high Kd values could be obtained by using NiHCF loaded electrode under both conditions 
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of with and without competitive ions.  

In this study, as shown in Fig.2-7, when the initial Cs
+
 concentration was 1 mg L

-1
, the Kd value 

was higher than 10
4
 under a non-competitive ion condition, which was relatively higher than previous 

researches [4, 47]. Under competitive ion conditions, however, the value of Kd decreased, 

demonstrating that the negative influence brought by competitive ions. The same negative influence 

was also observed in other research using copper hexacyanoferrate–PAN composite as an ion 

exchanger for cesium removal [4]. In addition, as the concentration of competitive ions increased 

from 100 mg L
-1

 to 1000 mg L
-1

, the Kd value decreased slightly in accordance with the results of 

Avramenko et al. [8]. The negative effect of competitive ions might be caused by a lesser amount of 

NiHCF loaded on the WS, which was difficult to resist the strong influence of relatively high 

concentration of competitive ions. This observation could be confirmed by the low uptake amount in 

Section 2.3.2. According to the results of Chen et al. [6], the Cs
+
 uptake amount reached 250 mg g

-1
 

and smaller differences existed between the Kd values with and without competitive ions addition. In 

this study, the Cs
+
 uptake amount was not greater than 10 mg g

-1
 which may contribute to the varied 

Kd values under different conditions. On the other hand, the concentrations of competitive ions were 

much higher in this study compared with other literature (1 mg L
-1

) [6], which might also explain the 

much stronger influence of competitive ions. However, from Fig.2-7 it can be seen that the 

differences in equilibrium concentration of Cs
+ 

brought by the competitive ions were not as 

significant as those in Kd values, especially for K
+
. For example, when the initial Cs

+
 concentration 

was 10 mg L
-1

, the equilibrium Cs
+
 concentration was 0.15 mg L

-1
 and 0.19 mg L

-1
, respectively 

without and with K
+
 (100 mg L

-1
). This observation demonstrated that NiHCF-WS still had some 

selectivity for Cs
+
 adsorption although the Kd values decreased. In addition, it can be concluded that 

under the initial Cs
+
 concentration of 1 mg L

-1
, K

+
 was more competitive than Na

+ 
due to the fact that 
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the lower Kd value was obtained for K
+
 addition at the same concentration with Na

+
. This 

phenomenon might be attributed to the similar characteristics between Cs
+
 and K

+
, resulting in much 

easier sorption of K
+
 rather than Na

+
. When the initial Cs

+
 concentration was increased to 5 mg L

-1
 

and 10 mg L
-1

, however, Na
+
 ions seemed to be much more competitive than K

+
. This observation 

implied that the effect of competitive ions on Cs
+
 adsorption might depend on the concentration ratio 

of Cs
+
 to the competitive ions. In addition, it is believed that the influence of competitive ions was 

much stronger with lower Cs
+ 

concentration. 

2.3.3 Adsorption stability studies 

As shown in Table 2-2, more Cs
+
 was released in GW than TW probably due to higher ionic 

strength. It was well believed that ion exchange occurred between Cs
+
 on Cs-NiHCF-WS and 

exchangeable metal ions in GW. Basing on this hypothesis, it was easy to understand the differences 

between amounts of Cs
+
 released in GW and TW. On the other hand, low liquid/solid ratio seemed 

unfavorable for safety disposal of Cs-NiHCF-WS in this study because much more Cs
+
 was released 

at lower liquid/solid ratio. This unusual phenomenon might be contradictive with the ion exchange 

hypothesis. Generally, more Cs
+
 would be released because of the more exchangeable ions in higher 

liquid/solid ratio. However, the concentrations of Cs
+
 in these solutions were very low (in ppb level) 

and therefore, experimental errors might lead to a contradictive result. In all these case, however, the 

amount of Cs
+
 released was very little, indicating the stable adsorption of Cs

+
 on NiHCF-WS.  

2.3.4 Adsorption kinetic study 

Fig.2-8 shows the effect of contact time on the Cs
+
 adsorption and application of kinetic models 

to Cs
+
 adsorption by WS and NiHCF-WS. Table 2-3 lists the sorption rate constants associated with 

pseudo first and second order kinetic models. It can be seen from Fig.2-8 that Cs
+
 adsorption is a 
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rapid process, about 2 h is needed to reach equilibrium for the NiHCF-WS. The equilibrium uptake 

amount of Cs
+
 was greater than 0.5 mg g

-1
. In addition, the adsorption process on only-WS is 

complicated and not efficient with an equilibrium uptake amount of approximately 0.1 mg g
-1

. It is 

clearly indicated that the NiHCF-WS has a much better adsorption performance for Cs
+
 than 

only-WS.  

Compared to the first-order model, the pseudo second-order kinetic model had a higher 

correlation coefficient (R
2
) for NiHCF-WS, suggesting that the Cs

+
 adsorption process is a 

chemisorption rather than physisorption. 

Fig.2-9 shows the amount of adsorbed Cs
+
, qt (mg g

-1
), versus the square root of time for 

NiHCF-WS. The presence of three linear regions on the curve is possibly due to the presence of three 

steps during the adsorption process [39]: An external mass transfer step such as the boundary layer 

diffusion occurred first, then an intra-particle diffusion step for the second and lastly a saturation 

step. In this study, the first linear region with a high slope signaled a rapid external diffusion stage 

depicting macro-pore or inter-particle diffusion, which is different from the second step, gradual 

adsorption stage controlled by intra-particle (micro-pore) diffusion, and the last step (saturation 

stage). This observation can also be linked with adsorption mechanisms mainly involving the surface 

layers of crystallites [48]. 

2.3.5 Equilibrium studies 

(1) Cesium adsorption isotherms 

In order to obtain the equilibrium isotherm, the initial Cs
+
 concentration varied from 5-400 mg 

L
-1

 (5, 10, 20, 50, 75, 100, 200, 400) while maintaining an adsorbent dosage of 20 g L
-1

, and the 

amount of adsorbed Cs
+
 was investigated. 

Fig.2-10 shows the application of nonlinear Langmuir, Freundlich and D-R isotherms to the Cs
+
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adsorption on NiHCF-WS. In this study, chi-square analysis was applied to estimate the degree of 

difference (χ
2
) between the experimental data and the isotherm data, which is calculated by the 

following equation [49]: 
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where qe
cal
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) is the equilibrium uptake amount calculated from the isotherm and qe
exp
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) 

is the experimental equilibrium uptake amount. A smaller χ
2
 value indicates a better fitting isotherm. 

In addition, the values of normalized standard deviation (NSD (%)) were also calculated to 

validate the fitness of isotherm to experimental data [11], which is defined as: 
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where N is the number of measurements. Similarly, a smaller NSD (%) value indicates a better fitting 

isotherm. 

The results of χ
2
 and NSD (%) are given in Table 2-4 and indicate the three adsorption isotherms 

match the experimental data (R
2 

> 0.9). Although the R
2
 value of the Freundlich isotherm is similar 

with that of the Langmuir or D-R isotherm, the χ
2 

and NSD (%) values of the Freundlich isotherm are 

much smaller, implying that the adsorption of Cs
+
 on NiHCF-WS is a multilayer adsorption rather 

than monolayer adsorption. Furthermore, the value of n is less than 1, suggesting this adsorption 

process is favorable [22].  

  As another important function, the Langmuir isotherm could give us the estimated maximum 

adsorption capacity (qm) of NiHCF-WS, 4.94±0.5 mg g
-1

, which is similar to that provided by D-R 

isotherm. In conclusion, the adsorption isotherms demonstrated that the Cs
+
 adsorption onto 

NiHCF-WS is a multilayer chemical ion exchange process. 
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(2) Role of ion exchange with K
+ 

It is hypothesized that if adsorption is mainly caused by ion exchange reaction, then the quantity 

of the released cations (in gram-equivalent) would be close to that of the adsorbed target ions. Table 

2-5 shows the relationship between the Cs
+
 adsorbed and K

+
 released during the Cs

+
 adsorption 

process and two significant phenomena are observed. With the increase in dosage (No.1-4) and initial 

Cs
+
 concentration (No.4-7), both Cs

+
 adsorbed and K

+
 released increase, demonstrating affinity 

between them. On the other hand, the test results reveal that the amount of K
+
 released into solutions 

are greater than that of Cs
+
 adsorbed except for the dosage of 5 g L

-1 
(probably caused by 

experimental error). In other words, the released K
+ 

from the adsorbent is not completely exchanged 

by Cs
+ 

[8, 50], which is also in agreement with the relationship between Ca
2+

 released and Cs
+
 

adsorbed reported by Miah et al. [51]. This indicates that the amount of K
+
 released into the solution 

is partly through dissolution other than ion exchange with Cs
+
. However, it is not clearly 

demonstrated the existence of chemical ion exchange process between Cs
+
 and K

+ 
from the data 

reported in this table. Basing on the above conclusion that the existence of dissolution of K
+
, as a 

result, the variations between adsorbed Cs
+
 and released K

+
 at the same dosage (20 g L

-1
) and 

different initial Cs
+
 concentrations are compared in order to determine the possible equal relationship 

between them. As a comparison between No.4 and 5, the variation of adsorbed Cs
+
 is 8.94±0.07 

µmol, which is similar with the variation of released K
+
 (8.72±0.03 µmol). In addition, the variation 

of adsorbed Cs
+
 between No.5 and 6 is 2.01±0.08 µmol, which is also similar with the variation of 

released K
+
 (3.31±0.17 µmol). When the initial Cs

+
 concentration is increased from 200 to 400 mg 

L
-1

 (No.6 and 7), the variation of adsorbed Cs
+
 (2.21±0.11 µmol) is similar with released K

+
 

(2.91±0.09 µmol). Through the above comparisons, it is consequently concluded that there is indeed 

an exchange process between Cs
+
 and K

+
. The K

+
 in the NiHCF-WS plays an important role in the 

Cs
+
 adsorption process as the ion exchanger. 
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2.3.6 Thermodynamic study 

The distribution coefficient Kd was calculated using Eq. (2-13). The plotting of lnKd versus 1/T 

gave a straight line with a R
2
 of 0.99, from which the ΔH° and ΔS° was determined using Eq. (2-10). 

Furthermore, the standard Gibbs free energy at each temperature was calculated using Eq. (2-11) and 

the results are listed in Table 2-6. 

As shown in Table 2-6, the distribution coefficient of Cs
+
 adsorption by NiHCF-WS increased 

remarkably with the increase in temperature, implying that high temperature was favorable for Cs
+
 

adsorption. The same phenomenon was observed by Nilchi et al. [4], who used copper 

hexacyanoferrate to adsorb Cs
+
 from aqueous solution. The negative amounts of ΔG° at different 

temperatures and the positive amount of ΔH° revealed that the chemical ion exchange process was a 

spontaneous and endothermic adsorption reaction in this study. 

2.3.7 Reduction of Cs-NiHCF-WS after incineration 

Variations of weight and volume of Cs-NiHCF-WS before and after incineration are listed in 

Table 2-7. It can be seen that 10 mL of 10 mg L
-1 

Cs
+
 solution was reduced to 0.17 mL 

Cs-NiHCF-WS after adsorption process. Approximately 97.9% (in weight) and 91.9% (in volume) of 

Cs-NiHCF-WS was reduced after incineration (500
o
C for 2 h), probably due to the loss of water 

content, lignin, cellulose and hemicellulose. This result was in agreement with the TG-DTA analysis. 

Generally speaking, the waste volume is of more concern during the final disposal of radioactive 

wastes than weight (in deep landfill). Therefore, as shown in Table 2-7, the total reduction (from 

liquid waste to slag residue) was given in volume, which was as high as 99.9%. This will be much 

more attractive option when the volume of radioactive liquid waste is very large. The results show 

that the NiHCF-WS has great potential for reduction of radioactive liquid waste to a small volume of 
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slag residue, making it suitable for ultimate disposal. As discussed in Section 2.2.8, volatilization of 

cesium is not anticipated during the incineration process in this study.  

In order to obtain a better understanding of the changes in the structure of Cs-NiHCF-WS during 

the incineration process, the photographs and SEM images of Cs-NiHCF-WS before and after 

incineration are presented in Fig.2-11. As shown in Fig.2-11a, the Cs-NiHCF-WS has a diameter of 

approximately 2 mm, making it easy separated from wastewater. After incineration, as shown in 

Fig.2-11b, obvious color change was observed (from caesious to brown). Though the visual shape 

was still particulate, the incinerated Cs-NiHCF-WS could be easily transferred into powder form, 

indicating the main organic components (lignin, cellulose and hemicellulose) might have 

decomposed and the structure was destructed. In addition, it was found that the particulate form of 

incinerated Cs-NiHCF-WS could be immediately dispersed in water and transferred into powder 

form again after evaporation of water (Fig.2-11c). The surface morphology of the powder was 

observed by SEM and is depicted in Fig.2-11d (2500×) and Fig.2-11e (10000×). It can be seen that 

most of the components of WS have been burned to slag residue (Fig.2-11d). In addition, there were 

still some crystal-like structures observed in the incinerated Cs-NiHCF-WS (as shown in the circles 

in Fig.2-11e), probably the incineration product of NiHCF. 

2.3.8 Comparison of Cs
+
 adsorption performance 

For the sake of practical application of the newly developed NiHCF-WS, a comparison of Cs
+
 

removal performance was made with other available adsorbents in this study. In general, distribution 

coefficient, Kd is always taken as an important parameter in the comparison study. Table 2-8 shows 

the comparison results of Kd value of Cs
+
 adsorption using different adsorbents reported in other 

literature. Because the Kd value has a close relationship with experimental conditions, the information 

was listed with as much detail as possible, including initial Cs
+
 concentration, adsorbent dosage and 
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other important conditions. In comparison, it can be concluded that the Kd value of NiHCF-WS is 

higher than most clay mineral materials and lower than FC-Cu-EDA-SAMMS [43], demonstrating 

the NiHCF-WS is a potential efficient adsorbent for Cs
+
 adsorption when taking cost and volume 

reduction into consideration. WS is a renewable resource and can be reduced remarkably after 

incineration as described in Section 2.3.7 when compared with clay materials. The total volume 

reduction rate during the treatment process was up to 99.9%, which will result in a considerable 

space and cost reduction in disposing the spent adsorption materials. Furthermore, NiHCF-WS needs 

a simple modification process and is low cost, which makes it a competitive adsorption material in 

practical application.  

2.4 Summary 

NiHCF was incorporated with walnut shell for cesium removal. The equilibrium of removal 

process was attained within 2 h and the cesium uptake amount was 0.52 mg g
-1

. The adsorption 

process well fitted to the pseudo second-order kinetic model, suggesting chemisorption was the main 

rate-controlling step. In addition, in comparison with other adsorbents, cesium removal by 

NiHCF-WS was enhanced under acidic and suppressed under alkaline conditions, which makes it 

especially appropriate for treating acidic radioactive liquid wastes. Formation of Cs(OH)2
-
 during 

alkaline conditions might suppress the sorption of Cs
+
. NiHCF-WS had some selectivity to cesium 

adsorption and the adsorption was stable. The good correlation coefficient (R
2
 = 0.93), low χ

2
 and 

NSD values suggest that cesium adsorption on NiHCF-WS could be best described by the Freundlich 

adsorption isotherm. Results showed that the NiHCF-WS was an effective adsorbent for cesium 

adsorption and the adsorption process was endothermic and spontaneous. Spent NiHCF-WS could be 

reduced significantly through incineration at 500
o
C for 2 h and the total reduction (in volume) from 

liquid waste to slag residue was up to 99.9%, leading to a considerable space and cost reduction in 
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disposing of the spent adsorption material. Finally, compared with other adsorption materials, 

NiHCF-WS is a renewable resource and needs a simple modification process and is low cost, making 

it a competitive adsorption material in practice.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



31 

 

 

 

 

 

 

Table 2-1 Chemical composition of synthetic groundwater. 

Ion Concentration (mmol L
-1

) 

Cl
−
 1.72 

HCO3
−
 1.69 

SO4
2−

 0.09 

PO4
3−

 0.04 

NO3
−
 1.51 

Na
+
 1.56 

K
+
 0.2 

Mg
2+

 0.87 

Mn
2+

 0.06 

Fe
2+

 0.03 

Ca
2+

 0.762 
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Table 2-2 Cesium sorption stability of NiHCF-WS in synthetic groundwater and tap water. 
*
 

M (g) 
Q 

(mg g
-1

) 

Solution 

type 

V 

(mL) 

Cs
+
 released (µg) 

1 day 10 days 15 days 

0.1 0.52±0.02 

GW 

10 
2.65±1.83 

(5.0±4.7%) 
ND ND 

20 
0.23±0.11 

(0.43±0.27%) 

0.52±0.25 

(1.0±0.68%) 

0.11±0.02 

(0.21±0.05%) 

40 
0.12±0.07 

(0.23±0.18%) 
ND ND 

TW 20 
0.05±0.02 

(0.09±0.05%) 
ND ND 

* 
Adsorption stability study was conducted in room temperature without any shake to simulate the real environment. The 

values represented in the brackets means the percentage of released Cs
+
 accounts for the adsorbed Cs

+
. ND means not 

detected. 
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Table 2-3 Kinetic parameters of Cs
+
 adsorption on WS and NiHCF-WS. 

Pseudo first-order kinetic model 
  

Pseudo second-order kinetic model 

 WS NiHCF-WS   WS 
NiHCF-WS 

qeexp 
a
 (mg g

-1
) 0.11±0.04 0.52±0.004  qeexp (mg g

-1
) 0.11±0.04 0.52±0.004 

k1 (min
-1

) 0.37±0.39 0.071±0.006  k2 (g mg
-1

 min
-1

) (-3.8±4.0)×10
45

 0.23±0.03 

qecal 
b
 (mg g

-1
) 0.10±0.01 0.52±0.009  qecal (mg g

-1
) 0.099±0.01 0.54±0.01 

R
2
 0.492 0.946   R

2
 0.483 0.981 

a
 means the equilibrium sorption capacity estimated from the experimental data. 

b
 means the equilibrium sorption capacity calculated from the kinetic model. 
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Table 2-4 Adsorption isotherm parameters of Cs
+
 on NiHCF-WS. 

Langmuir isotherm   Freundlich isotherm   D-R isotherm 

qm (mg g
-1

) 4.94±0.5  kf (mg g
-1

 L
1/n

 mg
-1/n

) 1.12±0.2  qm (mg g
-1

) 4.43±0.4 

b (L mg
-1

) 0.06±0.02  n 0.27±0.04  β (mol
2
/kJ

2
) (3±0.8)×10

-5
 

R
2
 0.93  R

2
 0.93  R

2
 0.92 

χ
2
 21.1  χ

2
 0.96  χ

2
 1.3×10

281
 

NSD (%) 57.3  NSD (%) 60.7  NSD (%) 310.2 
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Table 2-5 Relationship between Cs
+
 adsorbed and K

+
 released during the adsorption process of Cs

+
 

on NiHCF-WS.
a
 

No. Dosage 

(g L
-1

) 

Initial Cs
+
 

concentration 

(mg L
-1

) 

Cs
+
 adsorbed 

(µmol) 

K
+
 released 

(µmol) 

1 5 10 0.5±0.02 0.1±0.0 

2 10 10 0.9±0.002 1.5±0.06 

3 15 10 1.4±0.001 4.6±0.3 

4 20 10 1.4±0.001 4.7±0.2 

5 20 100 10.3±0.07 13.4±0.2 

6 20 200 12.3±0.01 16.7±0.02 

7 20 400 14.6±0.1 19.6±0.1 

a
 Samples were tested in 50 mL polypropylene tubes with 20 mL Cs

+
 solutions at room 

temperature and 200 rpm for 24 h. 
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Table 2-6 Thermodynamic parameters of Cs
+
 adsorption on NiHCF-WS. 

Temp. (K) Kd (mL g
-1

) ΔG° (kJ mol
-1

) ΔH° (kJ mol
-1

) ΔS° (kJ K
-1

 mol
-1

) 

298 171.4 −12.9 

101.8 0.385 308 757.1 −16.8 

318 2264.3 −20.6 
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Table 2-7 Variation of weight and volume of cesium loaded NiHCF-WS before and after incineration. 

 

 

 

 

 

 

 

 

 

 

 

 

 Items concerned Values 

Liquid waste 

Initial Cs
+ 

concentration (mg L
-1

) 10.7 (0.3) 

Final Cs
+ 

concentration (mg L
-1

) 0.26 (0.0) 

Volume (mL) 10 

Cs-NiHCF-WS 

Before 

incineration 

Weight (g) 0.198 (0.01) 

Volume (mL) 0.17 (0.01) 

After 

incineration 

Weight (g) 0.004 (0.00) 

Volume (mL) 0.014 (0.00) 

Reduction 
Weight (%) 97.9 (0.3) 

Volume (%) 91.9 (0.9) 

Total reduction Volume (%) 99.9 (0.02) 

The results are expressed as Means (Standard Deviations). 
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Table 2-8 Comparison of distribution coefficients between NiHCF-WS and other adsorbents. 

Adsorbent 

Initial Cs
+
 

concentration 

(mg L
-1

) 

Dosage 

(g L
-1

) 

Solution condition 

or competitive 

ions 

Distribution 

coefficient, Kd 

(L g
-1

) 

References 

A-X zeolite 50 1 - 0.19 [16] 

Natural zeolite, 

Turkey 

8.45×10
5 
Bq L

-1 a 
10 - 3.75-4.45 [52] 

Ain Oussera soil 1 2 - 0.37 [53] 

Antimony silicate - 5 0.23 g L
-1

 Na
+
 1 [54] 

Antimony silicate - 5 3.9 g L
-1

 K
+
 1 [54] 

Copper 

hexacyanoferrate

-PAN 

13.3 - - 1.67 [4] 

Copper 

hexacyanoferrate

-PAN 

13.3 - 10
-4 

M K
+
 0.17 [4] 

NaSM zeolite 2.280×10
4 
Bq L

-1
 10 0.0119 M K

+
 4.65 [15] 

ISM-25mg 

Calix[4] arene 

2.280×10
4 
Bq L

-1
 10 0.0119 M K

+
 27.63 [15] 

Aluminum-pillar

ed 

montmorillonite 

0.133 - 1.95 g L
-1

 K
+
 0.4 [11] 

CoFC@Silica-Py 10 - 9.6 g L
-1

 Na
+
 >10 [10] 

CoFC@Glass-Py 10 - 9.6 g L
-1

 Na
+
 1 [10] 

FC-Cu-EDA-SA

MMS 

0.5 1 Sequim Bay 

seawater 

240 [43] 

FC-Cu-EDA-SA

MMS 

0.5 1 Hanford 

groundwater 

1400 [43] 

Raw bentonite 0.133 66.7 Synthetic 

groundwater 

1.9 [55] 

Activated 

bentonite 

0.133 66.7 Synthetic 

groundwater 

8.9 [55] 

GE clay 0.133 66.7 Synthetic 

groundwater 

3.1 [55] 

Local Taiwan 

laterite 

1.33 33.3 - 0.025 [56] 

Bure mudrock - - - 0.1-0.6 [57] 

NiHCF-WS 1 5 0 10.8 This study 

NiHCF-WS 1 5 1 g L
-1

 K
+
 3.5 This study 

NiHCF-WS 1 5 0.1 g L
-1

 Na
+
 4.7 This study 

a 
1M Bq L

-1
 
137

Cs is equivalent to 9.044×10
-4 

mg L
-1

. 

- No data in the literature. 
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Fig.2-1 Typical scanning electron microscope images of walnut shell before (a) and after (b) 

modification. (Acceleration voltage of 5.0 kV and 2000 × magnification, arrows show the nickel 

hexacyanoferrate particles) 
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Fig.2-3 Effect of contact time on adsorption of cesium (C0=10 mg L
-1

) with the dosage of 20 g L
-1

 

and shaking speed of 200 rpm. 
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Fig.2-4 Effect of initial pH on the cesium (C0=10 mg L
-1

) adsorption by NiHCF-WS (10 g L
-1

) with 

the shaking (200 rpm) time of 24 h at 25
o
C. 
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Fig.2-5 Effect of sorbent dosage on the cesium (C0=10 mg L
-1

; V=20 mL) adsorption by NiHCF-WS 

with shaking (200 rpm) time of 24 h at 25
o
C. 
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Fig.2-6 Effect of initial concentration on the cesium adsorption on NiHCF-WS (20 g L
-1

) with the 

shaking (200 rpm) time of 24 h at 25
o
C. 
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Fig.2-7 Selectivity for cesium sorption by NiHCF-WS with shaking (200 rpm) time of 24 h at 25
o
C. 

(When the initial Cs
+ 

concentration was 1 mg L
-1

, the sorbent dosage was 5 g L
-1

; when 5 mg L
-1

 and 

10 mg L
-1

, the dosage was 10 g L
-1

) 
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Fig.2-8 Application of non-linearized pseudo first (solid line) and second (dash line) order kinetic 

models for cesium (10 mg L
-1

) adsorption by walnut shell (square) and nickel hexacyanoferrate 

incorporated walnut shell (circle) at 25
o
C (20 g L

-1
). (B shows the enlarged dark part in A) 
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Fig.2-9 Intra-particle diffusion model of cesium (10 mg L
-1

) adsorption by nickel hexacyanoferrate 

incorporated walnut shell (20 g L
-1

) at 25
o
C. (Symbols represent the experimental data.) 
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Fig.2-10 Nonlinear Langmuir (solid line), Freundlich (dash line) and D-R (dot line) isotherms of 

cesium adsorption on nickel hexacyanoferrate incorporated walnut shell at 25
o
C. (Symbols represent 

the experimental data, whereas the lines represent the simulated data fitted using the adsorption 

isotherms.) 
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Fig.2-11 Photographs of Cs-NiHCF-WS before (a) and after (b and c) incineration process (500
o
C for 

2 h) and surface morphology images of incinerated Cs-NiHCF-WS (d and e). (b is the particulate 

form of incinerated Cs-NiHCF-WS, c is the powder form of incinerated Cs-NiHCF-WS, d is the 

SEM image with 2,500 × magnification and e is the SEM image with 10,000 × magnification) 
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Chapter 3 Removal of cesium from aqueous solution using modified Akadama 

clay 

3.1 Introduction 

As a new clean energy, nuclear power has drawn much attention throughout the world, especially 

since the application of nuclear enrichment technology. However, during the operation of nuclear 

power stations, some radioactive nuclides are released into the surrounding environment (air, water 

and soil) which inevitably, are a potential danger to human health. The most abundant and important 

radioactive waste, namely low-level liquid radioactive waste (LLRW), comes from the operation, 

repair and disposal of facilities in nuclear power stations. Moreover, cost-effective volume reduction 

of LLRW has become of great concern in recent decades [47]. 

Among various radioactive nuclides, 137-cesium (
137

Cs) is considered to be the most hazardous 

because of its large quantity and relatively long half-life (approximately 30.5 years) [51]. 

Accordingly, extensive research has been carried out with respect to the adsorption of cesium on 

various materials [7, 8, 11, 15, 16, 22, 23, 53, 58]. Among these developed materials, most attention 

has been paid to clay materials because of their structural and economic advantages, such as large 

quantity, low cost, physical stability and high adsorption capacity [11, 15, 16]. As for most clay 

materials, the main mechanism occurring in the adsorption process is known as ion exchange. 

According to the special cubic structure and driving force caused by concentration gradients, ion 

exchange can be accomplished by releasing metal ions existing in clay materials into solutions (such 

as Na
+
, K

+
, Ca

2+
 and etc.) and adsorbing cesium ions simultaneously. Though the adsorption capacity 

is high, the disadvantage is low/no selectivity for ion exchange during the adsorption process. This 

means, not only the target metal ion but also other metal ions can be exchanged during the process, 
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which undoubtedly leads to a waste of adsorption capacity, especially under high ionic strength 

conditions such as sea water. For clay materials, it is comparatively much more difficult to improve 

the selectivity of the ion exchange process than it is to increase adsorption capacity due to their 

complex compositions. As a result, much more attention from researchers has been paid to the 

improvement of adsorption capacity of clay material [11, 17].  

Transition metals are known to undergo complexation with compounds containing aromatic 

groups based on an electron donation and back donation process [18]. In addition, modification with 

transition metals could result in a pillared material with microporosity and mesoporosity in layered 

crystalline inorganic compounds [19]. ZSM-5 zeolite [20] and kaolin [21] has been successfully 

modified with transition metal in previous studies. Still, it is unknown whether transition metals 

could be modified into other kinds of clay materials and whether the modification is positive for 

increasing adsorption capacity or not. 

On the other hand, it is necessary to find alternative ways to resolve environmental pollution, 

especially for resources limited countries like Japan. Through our laboratory’s efforts, akadama clay 

(AC), a common and inexpensive andic soil in Japan has been utilized in lab-scale experiments, 

demonstrating its use as a potential adsorbent material for hazardous pollutants (like arsenate) [59, 60] 

and odorous compounds (like geosimin [61] and 2-methylisoborneol [62]). Up to now, however, little 

information could be found on cesium adsorption by AC. The aim of this work is to develop an 

efficient adsorption material for cesium removal from AC through transition metal modification. The 

adsorption kinetics and capacity of pristine and modified AC were determined in relation to the effect 

of factors such as contact time, initial pH of the solution, adsorbent dosage, initial concentration and 

the presence of competitive cations. In addition, in order to evaluate the feasibility of the modified 

AC in practice, fresh lake water was chosen as the background water in this study due to its 
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importance in natural waterbodies in Japan and the probable contamination of many lakes and pools 

resulting from the Fukushima nuclear accident [63].  

3.2 Materials and methods 

3.2.1 Materials 

Akadama clay used in this study was provided by Makino Store, Kiyosu, Japan. pHpzc and 

electrical conductivity of akadama clay were 6.9 and 0.052 mS cm
-1

, respectively. The akadama clay 

was ground and sieved through a No. 150 mesh. Particles with a diameter below 105 µm were dried 

in an oven (EYELA WFO-700, Japan) at 105
o
C and further used for modification. Synthetic zeolite 

A-4 and bentonite powder were purchased from Wako Pure Chemical Industries Ltd., Japan. 

The chemicals, nickel chloride (NiCl2•6H2O) and sodium hydroxide (NaOH), were of A.R. 

grade and purchased from Wako Pure Chemical Industries Ltd., Japan. Non-radioactive cesium 

chloride (CsCl) purchased from Tokyo Chemical Industry Co. Ltd., Japan was used as a surrogate for 

137
Cs as it has the same chemical characteristics. All the other reagents used in this study were 

purchased from Wako Pure Chemical Industries Ltd., Japan and used without any purification. 

Deionized water (DW) generated from a Millipore Elix 3 water purification system (Millipore, USA) 

equipped with a Progard 2 pre-treatment pack was used throughout this study. 

3.2.2 Modification process 

Briefly, the modification process included overall two steps. Firstly, 10 g of dried akadama clay 

was added to a mixed solution (100 mL 0.5 M NiCl2 solution with 100 mL 1 M NaOH solution) with 

a ratio of 5 mmol Ni per gram of clay and left to react for 1 h during vigorous stirring at 70
o
C in a 

thermostated shaking machine (IKA RET basic, Germany). Once the first step was completed, the 
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precipitate was repeatedly washed, centrifuged and finally dried at 105
o
C. During the second step, the 

dried precipitate was ground into powder form and heated in air at 600
o
C for 1 h using a muffle 

furnace (TGK F-1404, Japan) in order to create a rigid, non-swelling, three dimensional zeolite-like 

structure [64]. Finally, the resultant modified AC was stored in an oven at 105
o
C prior to the Cs

+
 

removal experiments. 

3.2.3 Cs
+
 removal studies 

For the Cs
+
 removal experiments in DW, a stock Cs

+
 solution (~1000 mg L

-1
) was prepared by 

dissolving 1.26 g CsCl accurately into 1 L DW. Cs
+
 solutions of desired concentrations were prepared 

by diluting known volumes of the standard Cs
+ 

stock solution in DW. The solution pH was adjusted 

by 0.1 M HCl and NaOH solutions and measured by a pH meter (Mettler Toledo SG8, Switzerland). 

To determine contact time and kinetic properties, 1 g of pristine and modified AC were mixed with 

200 mL 10 mg L
-1

 Cs
+
 solution in 250 mL-glass flasks, and the flasks were shaken by a double 

shaker (TAITEC NR-30, Japan). Supernatants (about 1 mL for each) were retrieved at predetermined 

time intervals along with the initial solution (zero min point). In order to ensure reliability and 

improve accuracy of the kinetic data in this study, the kinetic studies were carried out in duplicate 

and the results reported in this paper are average values with standard deviations. For the other 

experiments, clay sample was added to 20 mL Cs
+
 solution in a 50 mL-polypropylene tube and 

placed in a double shaker for 2 h till equilibrium was reached. The contact time of 2 h is much longer 

than the equilibrium times determined from typical kinetic experiments. In order to compare the 

adsorption capacities of modified AC, zeolite and bentonite, namely commercial synthetic zeolite A-4 

and bentonite powder were also utilized for Cs
+
 adsorption isotherm experiments. During the 

competitive ion experiments, two competitive ions (Na
+
 and K

+
) and three ratio levels of Na

+
/ K

+ 
: 

Cs
+
 (10, 100 and 1000) with a constant Cs

+
 concentration (1 mg L

-1
) were utilized in this study.  
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For Cs
+
 removal experiments in lake water, considering the extremely low concentration of Cs

+
 

in surface water (less than 1 ppb even in the case of a nuclear accident) [11] and the detection limit of 

ICP-MS, two low initial Cs
+
 concentrations were used in this experiment, which were 10 and 100 µg 

L
-1

, respectively. The experimental conditions were similar to those in the DW tests with the pH 

unadjusted. Lake water used in this study was collected from Matsumi lake (36°6 3́0´́ N, 140°6 1́5´́ 

E) located in the University of Tsukuba, Japan, which mainly receives stormwater. The lake water 

was filtrated with a glass microfiber (Whatman, England) prior to the experiments. The naturally 

existing metal ions in the lake water were determined by ICP-MS and are given in Table 3-1.  

The whole study was conducted at room temperature (25±1
o
C) with a shaking speed of 200 rpm 

to obtain vigorous contact between solution and solid adsorbent. All of the solution samples were 

collected by filtering supernatants with 0.22 µm mixed cellulose ester membrane (Millipore, Ireland), 

diluted with DW to a proper extent (less than 1 mg L
-1

) into 15 mL-polypropylene tubes and finally 

stored at 4
o
C in a refrigerator prior to concentration determination. Along with the removal studies, 

blank control tests were also carried out to observe any precipitation and to determine the extent of 

adsorption on the wall of tubes, and the negligible differences between the initial and final 

concentrations indicated no precipitation or adsorption on wall of tubes in this study. 

3.2.4 Desorption tests 

In order to evaluate the recycle performance and adsorption stability of modified AC, desorption 

tests were carried out using three kinds of desorption solutions: 0.1 M HCl (acidic solution), 0.1 M 

KCl (high strength ion exchange solution) and synthetic groundwater (GW). The chemical 

compositions of synthetic groundwater were listed in Table 2-1. The former two solutions were used 

to evaluate recycling capability and the last one was to investigate the adsorption stability when the 
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final disposal of spent adsorbents was supposed to utilize deep landfill. DW was adopted in this study 

as the reference. 0.2 g of modified AC was firstly contacted with 40 mL 10 mg L
-1

 Cs
+
 solution for 1 

d under vigorous shaking and separated by centrifugation. The resultant Cs
+
 adsorbed clay sample 

was then resuspended into a 50 mL desorption solution with no shaking. The supernatant was 

collected at predetermined time intervals, filtered and analyzed in a similar way as described 

previously. The quantity of Cs
+
 desorbed was determined by the amount of Cs

+
 in solution after the 

desorption experiment. All the experiments were conducted at room temperature (25±1
o
C) and 

without pH adjustment. 

3.2.5 Analysis and characterization 

(1) Elemental analysis 

Coarse elemental analysis is performed with an energy dispersive X-ray spectroscopy (EDS) 

equipped on a JSM 7000F field emission scanning electron microscope (FE-SEM) operated at an 

acceleration voltage of 20.0 kV. In addition, elemental mapping technology was applied to determine 

the distribution of elements on the surface of samples. 

(2) Scanning electron microscope (SEM) 

The surface morphology of the pristine and modified akadama clay was observed by a JSM 

6330F SEM. The samples were put onto a conductive carbon tape above the metal stub and coated 

with a thin layer of platinum for charge dissipation during SEM imaging. Acceleration voltage of 5.0 

kV and magnification of 5000 × were applied. 

(3) Powder X-ray diffraction (XRD) 

The XRD patterns were recorded on a computer controlled Rigaku X-ray diffractometer with 

CuK radiation source (=1.540562 Å) at operation conditions of 40 kV and 150 mA. A step of 
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0.02 and a scan speed of 10  min
-1

 were selected. 

(4) Fourier transform infrared spectroscopy (FT-IR) 

Fourier transform infrared spectroscopy was recorded in the region of 4000-400 cm
-1

 by a 

JASCO 300E FT-IR spectrophotometer (JASCO, Japan) using KBr pellet at a resolution of 4 cm
-1

. 

(5) Surface area and pore size distribution 

The specific surface area and pore size distributions were measured by N2 adsorption-desorption 

isotherms at -196
o
C (77 K) after out-gassing the powder clay samples for 90 min at 120

o
C with a 

Coulter SA3100 specific surface area analysis device. The Brunauer–Emmett–Teller (BET) equation 

was used for the determination of the specific surface area (SBET) while the Kelvin equation was used 

to determine the Barrett-Joyner-Halenda (BJH) pore size distribution and pore volume. The total pore 

volume (Vt) was calculated from the volume adsorbed at Ps/Po=0.98 in the desorption branch of the 

isotherm and the micropore volume (Vmic) was calculated by means of the t-plot method. 

(6) Thermogravimetric-differential thermal analysis (TG-DTA) 

Simultaneous thermogravimetric and differential thermal analysis of pristine and modified 

akadama clay was carried out using an Exstar TG/DTA 7300 thermal analyzer (Japan). About 7 mg of 

each sample was placed into a Pt pan and heated up to 1000
o
C in air (carrier gas, 200 mL min

-1
) 

atmosphere at a rate of 20
o
C min

-1 
for thermal analysis. 

(7) Cation exchange capacity (CEC) determination 

The CEC of pristine and modified akadama clay was determined according to the sodium acetate 

method (EPA method 9081, USA). 

(8) Surface charge (SC) determination 

The SC of pristine and modified akadama clay was determined according to the colloid titration 
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technique described by Kawamura and Tanaka [65]. Polybren and potassium polyvinyl sulfate 

(PVSK) were used as the standard cationic and anionic colloids [66]. A known weight (0.05 g) of the 

sample was suspended in DW (20 mL) and mixed with excess 0.001 M Polybren then titrated against 

0.001 M PVSK until electrical neutrality was reached. Equal volumes of Polybren in distilled water 

were used as blanks. The colloid charge expressed as milliequivalents per gram of positive or 

negative colloid charge can then be determined from the expression given below. 

M

NB)-(A
(meq/g) SC


     (3-1) 

where A (mL) and B (mL) represents the volumes of PVSK added to the sample and blank 

respectively, N represents the normality of PVSK (0.001 M), M (g) represents the mass of sample 

used. 

(9) Zeta potential determination 

Samples for zeta potential determination were prepared by suspending 0.01 g of clay in 40 mL of 

DW containing 1.0 mM NaNO3. The suspensions were shaken at a speed of 200 rpm for 2 h to be 

dispersed completely. Suspension pH was adjusted to 2.0-12.0 using 0.1 M HNO3 or NaOH solutions. 

After equilibrating for 24 h, the zeta potential was measured using a Malvern zetasizer (Malvern, 

England). 

(10) Inductively coupled plasma mass spectrometer (ICP-MS) 

The concentration of metal ions was analyzed by using a fully quantitative analytical method on 

an ICP-MS (Perkin Elmer Elan DRC-e, USA) in standard mode throughout this study. ICP-MS 

tuning solution (1 ppb) was used as the calibration solution to monitor the quality of the ICP. Each 

sample was set to be analyzed 5 times with average being used. The relative standard deviation of 

multiple measurements was less than 2% and in most cases, less than 1.5%. 
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3.2.6 Experimental calculation 

Two main factors should be taken into account to evaluate the efficiency of an adsorbent: (i) the 

maximum adsorption capacity, Qmax (mg g
-1

), which indicates the efficiency of the material to uptake 

target ions at (or near) saturation. It can be estimated from the adsorption isotherm’s plateau; (ii) 

distribution coefficient, Kd (mL g
-1

), evaluates the selectivity of the adsorbent to extract the target 

ions at very low concentrations in the presence of other competitive ions such as Na
+
 and K

+
 at high 

concentrations [7]. Therefore, the Cs
+
 removal results were given as both adsorption amount (q) and 

distribution coefficient (Kd) in this study, where the adsorption amount could reflect the adsorption 

capacity in most cases.  

3.3 Results and discussion 

3.3.1 Characterization of pristine and modified AC samples 

For the coarse chemical compositions of clay samples, duplicate tests were conducted and the 

average was finally taken. As shown in Table 3-2, the atom percentage of nickel was greatly 

increased after modification, indicating the successful modification process. Almost all of other 

elements were decreased due to the introduction of nickel other than sodium. 

In order to observe the change of surface morphology after the modification process, the SEM 

images of pristine and modified AC samples were obtained and presented in Fig. 3-1A and B. 

SEM images showed that obvious crystals were developed after modification, which was 

believed as nickel oxide. In addition, the EDS elemental analysis demonstrated that nickel has been 

introduced into clay samples successfully and accordingly, the content of silicon decreases 

significantly. Perhaps due to the dose of NiCl2 during the modification, the peak of chlorine appeared 

in Fig.3-1E.  
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TG/DTA curves indicated that the modified AC samples had a better thermal stability compared 

with pristine ones. There was only 5% of weight lost until the temperature increased to 700
o
C. The 

first sharp weight loss at around 100
o
C in pristine AC samples was probably attributed to the 

evaporation of water content. 

According to the XRD patterns, obvious peaks of quartz (JCPDS 65-0466) were detected in all 

the three samples, indicating the main composition of pristine AC is quartz. And nickel oxide 

(JCPDS 44-1159), sodium hydride (JCPDS 65-9247) and iron silicon (JCPDS 65-0994) were clearly 

detected in the modified AC (before adsorption, red pattern in Fig.3-2A). Also, after the adsorption of 

cesium, peaks of nickel oxide were still detected in the sample, whereas those of sodium hydride and 

iron silicon disappeared. 

Similar absorption peaks were detected in the FTIR spectrums of both pristine and modified AC 

samples. As shown in Fig.3-2B, the broad absorption peaks observed at the range of 3300-3600 cm
-1

 

are assigned to the stretching vibration of hydroxyl groups. The broad band is indicative of hydroxyl 

group stretching vibrations when the hydroxyl group is hydrogen bonded [67]. Those at 1570-1655 

cm
-1

 are the C=O stretching mode of the functional groups on the surface of the clay samples [68]. 

Band at 462 cm
−1

 is assigned to a T–O bending mode (where T = Si or Al). The intensity of this band 

is independent on the degree of crystallinity [69]. It could be seen that the peak at 462 cm
-1

 is much 

more intensified after modification, indicating the degree of crystallinity in AC increased after the 

modification process. This result was in well agreement with the SEM results, where well grown 

crystals were observed.  

Generally speaking, a higher SBET would lead to a better contact between adsorbent and solution 

resulting in a higher adsorption capacity. However, the SBET was decreased from 174.3 to 64.3 m
2
 g

-1 

after modification in this study, probably due to the accumulation of clay particles and introduction 
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of transition metal oxides during the calcination. As described in the SEM images, the well grown 

crystals through modification process may be another explanation to the decreased surface area. In 

addition to the SSA, some more details about PSD could also give further knowledge on the 

structural changes. 

According to the definitions of international union of pure and applied chemistry (IUPAC) [70], 

as shown in Fig.3-3 and Table 3-3, both macropores (diameter of larger than 50 nm) and mesopores 

(diameter of between 2 and 50 nm) were presented in the pristine and modified AC. And there was 

no micropore (with diameter < 2 nm) in either of them according to the Vmic of 0 (data not shown). In 

addition, an evident phenomenon was found that the PSD in the two samples were greatly different. 

As shown in Fig.3-3, the majority of pore volume (above 50% of total pore volume) is contributed by 

pores with diameter > 20 nm in the pristine AC, whereas < 8 nm in the modified AC. When further 

compared the PSD results, significant difference in pore volume could be found between the pores 

with diameter > 20 nm and < 12 nm. In the pristine AC, approximately 31.8% of total pore volume 

was contributed by pores with diameter of 20~80 nm and 22.4% by pores with diameter > 80 nm, 

indicating meso/macro pores with diameter > 20 nm played an important role. On the other hand, 

approximately 33.5% and 23.6% of total pore volume were contributed by pores with diameter < 

smaller than 6 nm and 6~8 nm in the modified AC, respectively. Taking into account of the above 

discussion, it can be concluded that the macropores and mesopores with diameter > 20 nm in the 

pristine AC were transformed into mesopores with diameter < 12 nm to a great extent through the 

modification process. Based on the fact that most pores (above 95% of the total pore volume) are 

mesopores, the modified AC can be defined as a typical mesoporous material. According to the 

previous studies, mesoporous materials should have better pollutants removal performance than 

macro-mesoporous materials due to their smaller pore size [71-73]. 
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3.3.2 Cs
+
 removal experiments in DW 

(1) Effect of contact time and kinetic study 

As an important characteristic of adsorbent material, adsorption rate could be a crucial factor that 

limits the application of a new adsorbent material. The most direct mean to evaluate the adsorption 

rate of an adsorbent material is to determine the equilibrium time of adsorption process. Generally 

speaking, different adsorbent materials have their own equilibrium times for adsorption process due 

to their different physical and chemical characteristics, such as adsorption mechanism, pore size and 

etc. Besides, the equilibrium time may also have some relationship with the adsorbent dosage and 

initial Cs
+
 concentration. As reported in previous studies, around 10 d is needed for Cs

+
 adsorption 

(0.114-23.9 mg L
-1

) by ceiling tiles (about 8 g L
-1

) to attain the adsorption equilibrium [51], 8 h for 

crushed granite (initial Cs
+
 concentration of 1×10

-3
-1×10

-7
 M and dosage of approximately 33.3 g L

-1
) 

[37], 6 h for zeolite (initial Cs
+
 concentration of 2.280×10

4 
Bq L

-1
 and dosage of 10 g L

-1
) [15], 280 

min for copper hexacyanoferrate polyacrylonitrile (CHCF-PAN, initial Cs
+
 concentration of 10

-4
 M 

and dosage of 10 g L
-1

) [4], 30 min for coir pith (initial Cs
+
 concentration of 200 mg L

-1
 and dosage 

of 2 g L
-1

) [22], 30 min for aluminum-pillared montmorillonite (initial Cs
+
 concentration of 1 mM 

and dosage of 0.5 g L
-1

) [11] and synthesized A-X zeolite (initial Cs
+
 concentration of 50 mg L

-1
 and 

dosage of 1 g L
-1

) [16]. Consequently, in order to evaluate the equilibrium time of the adsorption of 

Cs
+
 on the clay samples, 1 g of each adsorbent was added into 200 mL Cs

+
 solution (dosage of 5 g L

-1
) 

with the initial concentration of 10 mg L
-1 

and water samples were collected at determined time 

intervals. Relatively long adsorption duration (2 d) and time intervals (1 h at least) were applied 

during the preliminary experiment (data not shown). Depending on the preliminary results, much 

more detailed investigations with the time intervals of 0 (initial solution), 5, 10, 20, 30, 60, 90, 120, 

210, 300 min and 24 h were carried out for the pristine AC and 0 (initial solution), 5, 10, 20, 30, 60, 
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90, 120 and 180 min for the modified AC samples, respectively. The variation of Ct/C0 as a function 

of time for the adsorption of Cs
+
 on the clay samples were depicted in Fig.3-4.  

It was clearly indicated that both clay samples exhibited rapid adsorption of Cs
+
 with an 

equilibrium time of approximately 10 min, which was superior compared with previous adsorbents [4, 

11, 15, 37, 51]. This might be a great advantage for AC in its future application in real pollution 

remediation because a more rapid process means a much smaller volume of reactor thus large 

decrease in investment. In order to observe the initial period of adsorption process more clearly, the 

experimental data of the first 1.5 h were enlarged. From the detailed figure, it could be seen that 

compared with the pristine AC samples, the modified ones had a much higher removal efficiency 

(approximately twice) and a shorter equilibrium time, demonstrating that the modification process 

improved the Cs
+
 removal behavior of clay samples. According to the results, the contact time was 

determined as 2 h conservatively for the following experiments. 

Kinetic study is one of the most important means for investigating adsorption process, through 

which the rate constants could be obtained. Pseudo first and second order kinetic models could 

generally simulate the most physical and chemical adsorption processes [11, 16, 22, 23, 26, 49, 51, 

74, 75] and therefore were selected to fit the experimental results in this study. Fig.3-5 showed the 

comparison of pseudo first and second order kinetic models for the fitting of Cs
+
 adsorption on 

pristine and modified AC samples. Besides, Table 3-4 listed the adsorption rate constants associated 

with pseudo first and second order kinetic model in this study. It could be seen that both pseudo first 

and second order kinetic models fitted very well with the experimental results, especially the second 

order model for the modified AC (R
2
 = 1). 

(2) Effect of solution pH value 

It could be seen that both pristine and modified AC samples had a similar tendency that alkaline 
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rather than acidic condition was favorable for Cs
+
 adsorption. The Cs

+
 removal efficiency on pristine 

AC followed an order of acidic<neutral<alkaline, whereas the order was acidic<neutral≈alkaline for 

modified AC. When pH value < 5, significant decreases in Cs
+
 removal efficiency were observed for 

both clay samples. This phenomenon had been reported previously during the Cs
+
 adsorption on 

other clay materials [11, 16, 56, 76-78], probably attributable to the competition behavior between 

H3O
+
 and Cs

+
 during the adsorption process under acidic condition. On the other hand, the negative 

charge on the surface of clay samples was preferentially compensated by H3O
+
 ions. The detailed 

competition process was noted by Avena et al. [79] who interpreted the process as 

SOHH  SO  and 2  SOHHSOH  where S stands for any surface site. While when pH 

value > 5, even at extremely alkaline condition (pH approximately 12), no significant decrease in Cs
+
 

removal efficiency was observed, possibly due to the decrease of the competition of hydronium ions 

for modified AC’s sites under alkaline condition [11]. In addition, it can also be found that the 

removal efficiency of pristine AC could be approximately 90% when pH > 11, similar with that of 

modified AC when pH = 8-12, indicating the potential feasibility of pristine AC in extremely alkaline 

conditions.  

Compared with Cs
+
 removal efficiency and adsorption amount, distribution coefficient could 

display their difference much more remarkably (Fig.3-6B). The variation of distribution coefficient as 

a function of pH value (Fig.3-6B) indicates that the best adsorption performance was obtained at pH 

about 10. Overall, it can be concluded that the applicable pH range for Cs
+
 removal (>90%) was 

extended from extremely alkaline condition (>11) to neutral condition ( 5) after modification. 

(3) Effect of adsorbent dosage 

From the results of Section 3.3.2(1), it could be concluded that 5 g L
-1

 of the adsorbent dosage 

was not enough for effectively removing Cs
+
 from solution under initial Cs

+
 concentration of 10 mg 
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L
-1

. Therefore, four adsorbent dosages, i.e. 2.5, 5, 7.5 and 10 g L
-1

 were adopted to the following 

adsorption experiments under initial Cs
+
 concentration of 1 and 10 mg L

-1
, respectively in order to 

evaluate the effect of adsorbent dosage on the Cs
+
 adsorption on modified AC.  

It can be seen from Fig.3-7 that, under relatively higher Cs
+
 concentration (10 mg L

-1
), the Cs

+
 

removal efficiency increased with the increase of adsorbent dosage. This observation was in good 

agreement with the previous study [78], indicating that the more adsorption sites available, the better 

Cs
+
 adsorption can be achieved. However, the Cs

+
 adsorption amount had a symmetrical variation, 

which can be explained as the increase rate of (C0-Ct) was lower than adsorbent dosage. The 

phenomenon implied that larger adsorbent dosage favored the increase of adsorption efficiency while 

lowered the adsorbent utilization rate.  

(4) Effect of initial concentration  

Fig.3-8 showed that the Cs
+
 adsorption amount increased with the initial Cs

+
 concentration, 

whereas the removal efficiency did not. This might be due to the fact that after all the higher energy 

sites being occupied, excess Cs
+
 would then be adsorbed on the lower energy sites, resulting in loose 

binding of Cs
+
 and the decrease of removal efficiency [80]. The modified AC had a much higher Cs

+
 

adsorption amount than pristine ones, which became much remarkable with the increase of initial Cs
+
 

concentration.  

(5) Effect of competitive ions 

According to previous studies [7], it was well believed that the abundant metal ions in natural 

waters (sea, surface and ground waters) such as Na
+
 and K

+
 had great negative effects on adsorption 

of target species through competing for the binding sites [43], especially for Cs
+
, which was much 

less than Na
+
 or K

+
 even in the radioactive contaminated wastewater. Table 3-5 showed the effect of 

Na
+
 and K

+
 on the removal efficiency and distribution coefficient of Cs

+
 adsorption on pristine and 
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modified AC. It was found that the removal efficiency and distribution coefficient was highly 

affected (negative) by K
+
 rather than Na

+
 no matter for the pristine or modified AC, similar with the 

observations by Borai et al. [15, 53]. This could be attributed to the closer similarity in Pauling’s 

ionic radii between Cs
+
 (1.69 Å) and K

+
 (1.33 Å) rather than Cs

+
 and Na

+
 (0.95 Å). This phenomenon 

also indicated that Cs
+
 adsorption was the result of ion exchange reaction, in which cations, with 

similar radius and hydration energy, could compete more effectively against Cs
+
 on the mineral 

surface [53, 81]. In addition, it can be seen that the distribution coefficient of modified AC was much 

higher than that of pristine AC when no competitive ions existed in the solution, indicating a better 

adsorption behavior after modification. However, the difference became insignificant when large 

amount of competitive ions were existed in the solution, especially K
+
. This observation could be 

attributed to that the concentration of K
+
 was much higher than the adsorption capacity of AC in the 

experiment. Detailed mechanism is still under investigation. 

3.3.3 Adsorption isotherms 

All the non-linear fittings and the statistical analysis were performed with Origin 7.5 software. 

The estimated model parameters with the R
2
 and χ

2
/DoF for the different isotherms are calculated by 

the software and given in Table 3-6. Basing on the physical meanings of these two parameters, a 

higher R
2
 and lower χ

2
/DoF values usually mean a better isotherm fit. It is shown that the 

experimental data of Cs
+
 adsorption on modified akadama clay could be well fitted by these 

isotherms except Temkin isotherm, which provides the lowest R
2
 and highest χ

2
/DoF values. 

According to the assumption of Temkin isotherm, it is therefore deduced that the heat of adsorption 

of all the molecules in the layer did not decrease linearly with coverage. As shown in Fig.3-9, the 

isotherm curves of Langmuir, Redlich-Peterson and Langmuir-Freundlich almost coincide with each 

other. As a matter of fact, the three-parameter isotherms provided better fitting in terms of R
2
 and 
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χ
2
/DoF values than most of the two-parameter isotherms (except Langmuir isotherm), which agreed 

well with the conclusion from other study [82]. Among all the isotherms, Langmuir isotherm gave 

the highest R
2
 and lowest χ

2
/DoF values, meaning the adsorption of Cs

+
 on modified akadama clay is 

probably a monolayer adsorption process.  

Although the fits of adsorption data to these adsorption isotherms are more mathematically 

meaningful and don’t reflect the actual adsorption process, some of the isotherm parameters could be 

helpful to determine the adsorption mechanism. The essential characteristic of the Langmuir isotherm 

may be expressed in terms of a dimensionless equilibrium parameter RL, which is defined as [83]: 

0

L
1

1

CK
R

L
      (3-2) 

where KL is the Langmuir constant and C0 is the initial solute concentration (initial Cs
+
 concentration 

in this study). For the value of KL in this study is 0.07, which is a positive value, the calculated RL 

must be located between 0 and 1. Similarly, when using the constant of Langmuir-Freundlich 

isotherm, the expression for RL-F can be modified as [82]: 

nFL
bC

R
/1

01

1


     (3-3) 

where b and n are the Langmuir-Freundlich constants, and C0 is the initial solute concentration. 

Given the fact that b is a positive value (0.08), the RL-F must be located between 0 and 1. In any case, 

the values of RL and RL-F in this study fall between 0 and 1, indicating a favorable adsorption of Cs
+
 

on modified akadama clay. As another important parameter, QL or qm in Langmuir or 

Langmuir-Freundlich isotherm, representing the maximum adsorption capacity of Cs
+
 on modified 

akadama clay, were 16.1±0.85 and 16.6±2.5 mg g
-1

, respectively. It is worth noting that the 

maximum adsorption capacity of clay material prepared in this study is comparatively lower than the 

other well-known clay materials such as zeolite [15] and montmorillonite [11], whose adsorption 
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capacities are approximately 100 mg g
-1

. However, it is relatively higher than those of natural soils 

and rocks such as ceiling tiles (0.21 mg g
-1

) [51], bure mudrock (13.3 mg g
-1

) [57] and Ain Oussera 

soil (4.31 mg g
-1

) [53]. In addition, the clay material used in this study has not been well explored for 

other applications except horticulture and it is widely distributed in Japan. Compared with zeolite and 

montmorillonite, it has much more meaning to expand the application of this clay material. Therefore, 

this study would contribute for its application in environmental remediation. On the other hand, this 

alternative clay material would also save zeolite and montmorillonite, which have much more other 

applications such as catalysis and medicine industries.  

3.3.4 Desorption studies 

It is well believed that the surface charge of clay material is positive at the acidic condition 

(pH<pHpzc). As shown in Fig.3-10, a large portion (approximately 70%) of adsorbed Cs
+
 was 

desorbed in 0.1 M HCl (acidic solution), indicating a reversible adsorption of Cs
+
 on modified 

akadama clay. This phenomenon might be well explained by the electric repulsion between the 

positive charge and adsorbed positive charged Cs
+
 on the surface of modified akadama clay. In 

addition, this phenomenon seems lead to a conclusion that there is electrostatic adsorption during the 

Cs
+
 adsorption on modified akadama clay, which could well explain the relationship between the 

increase of negative charge (Table 3-3) on the surface of modified akadama clay and adsorption 

performance. On the other hand, approximately 40% of adsorbed Cs
+
 was desorbed in the 0.1 M 

NaOH (alkaline solution), indicating there is other mechanism in the adsorption process of Cs
+
 on 

modified akadama clay except the electrostatic adsorption. In addition, a similar phenomenon was 

also observed between 0.1 M HCl and 0.1 M KCl (Fig.3-10), a strong ion exchange solution, 

indicating the existence of exchange between Cs
+
 and K

+
. This phenomenon might demonstrate the 

existence of ion exchange during the Cs
+
 adsorption on modified akadama clay. Finally, as shown in 
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Fig.3-10, there is almost no Cs
+
 desorbed from modified akadama clay in DW, indicating a relatively 

stability of adsorption. Above all, the desorption results revealed that the adsorption of Cs
+
 on 

modified akadama clay might include electrostatic adsorption and ion exchange process. 

3.3.5 Adsorption mechanisms speculation 

As a clay material with complex composition, there may be many different kinds of adsorption 

mechanisms during the Cs
+
 adsorption on modified akadama clay. As deduced from the kinetic 

analysis, there might be both physical and chemical adsorption processes in the Cs
+
 adsorption on 

modified akadama clay. Adsorption isotherm studies gave the conclusion that the adsorption process 

was probably a monolayer adsorption process and the isotherm parameters indicated a favorable 

adsorption of Cs
+
 on modified akadama clay. Furthermore, desorption study provided a much more 

detailed description about the adsorption mechanisms, which might include electrostatic adsorption 

and ion exchange process.  

Zeta potential, which is an important indicator for the stability of colloidal dispersions, indicates 

the potential difference between the dispersion medium and the stationary layer of fluid attached to 

the dispersed particle. In addition, surface charge is another important parameter for a clay material 

during the adsorption process. As well known, both of them have much relationship with the 

electrical characteristics on the surface of clay materials, and therefore, with the electrostatic 

adsorption. As shown in Fig.3-11, the zeta potential of akadama clay colloid decreased after the 

modification, which maybe contributed by the grafting of positive Ni
2+

 and loss of some alkali-earth 

metals. In addition, the change of clay surface properties could also reduce the zeta potential of 

modified clay. On the other hand, the differences of zeta potential between pristine and modified 

akadama clay decreased with the increase of pH. The similar phenomenon is observed for the Cs
+
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removal efficiency, indicating there is a close relationship between zeta potential and Cs
+
 removal 

efficiency. When the pH value is approximately 11.0, there is no obvious difference between the zeta 

potentials, and also between the removal efficiencies. Obviously, there is a good correspondence 

between the variation of zeta potential and Cs
+
 adsorption performance, which is opposite. Besides, 

the adsorption performance is favored at alkaline conditions and suppressed at acidic conditions 

(Fig.3-11). The explanation for this phenomenon could be related with the surface charge. It is well 

believed that low pH value (pH<pHpzc) could result in positive surface charge, which is not favorable 

for the adsorption of positive Cs
+
 basing on the electrostatic adsorption theory. Whereas, high pH 

value (pH>pHpzc) could result in negative surface charge, which benefits the adsorption of Cs
+
. As 

shown in Fig.3-11, there is an obvious decrease of adsorption behavior at the pH < 5, which well 

agrees with the pHpzc value of modified akadama clay (Table 3-3). As listed in Table 3-3, the surface 

charge of pristine and modified akadama clay is negative at neutral condition. In addition, the 

negative charge of akadama clay at neutral condition is greatly enhanced after modification, which 

well agrees with the decrease of pHpzc. According to the electrostatic adsorption theory, the 

enhancement of negative charge on the surface of modified akadama clay at neutral condition might 

be the main reason why the adsorption performance was greatly enhanced. Above all, according to 

the desorption study and surface charge analysis, it could be deduced that there was a possible 

electrostatic adsorption during the Cs
+
 adsorption on modified akadama clay. Probably due to the 

enhancement of negative charge on the surface of modified akadama clay, the Cs
+
 adsorption 

performance was greatly enhanced. 

As deduced from the desorption study, the ion exchange process might be existed in the Cs
+
 

adsorption on modified akadama clay. Ion exchange process is a common mechanism in metal ion 

adsorption process by using clay materials [15, 16, 84]. It was hypothesized that if adsorption is 
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mainly caused by ion exchange reaction, then the quantity of the released cations (in gram-equivalent) 

would be close to that of the adsorbed target ions. Unfortunately, the results show that there is not a 

good relationship between the quantities (in gram-equivalent) of adsorbed Cs
+
 and released cations 

(Table 3-7). However, the increase of the initial concentration enhanced the release of cations, which 

might indicate that there was but not just ion exchange process during the Cs
+
 adsorption on modified 

akadama clay. It was also observed that large amounts of Na
+
 were released into DW without Cs

+
 

(Table 3-7), probably due to the dissolution of soluble sodium compounds. The similar phenomenon 

was also reported by Miah et al. [51], who used ceiling tiles as adsorbent for cesium removal. The 

author found the cations were released into solutions in much greater quantities compared to cesium. 

As an important indicator for the ion exchange process, CEC values of pristine and modified 

akadama clay were detected and listed in Table 3-3. The results showed that the CEC value of 

akadama clay decreased after modification, indicating that the ion exchange process is not the most 

important mechanism during the Cs
+
 adsorption on modified akadama clay. Above all, it is 

concluded that there is ion exchange during the adsorption process but it is not the most important 

mechanism. 

3.3.6 Cs
+
 removal in treating lake water 

It could be seen from Table 3-8 that high dosage resulted in high removal efficiency. On the 

other hand, higher removal efficiency was achieved at lower initial Cs
+
 concentration. As in this case, 

the concentration ratio of competitive ions to Cs
+
 was more than 3000, however, a satisfactory 

removal efficiency (about 85%) was obtained, implying the clay material developed in this study 

could be used as an efficient adsorption material for Cs
+
 removal from natural water. 
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3.3.7 Comparison with other clay materials  

According to the previous studies [7, 11, 15, 22, 43, 53], there are many adsorbent materials 

applied in Cs
+
 adsorption from aqueous solution. In general, they can be divided into three categories 

based on their compositions, including natural and modified clay materials, synthetic compounds and 

modified biosorbents. Because of their significantly different physical and chemical characteristics, it 

is not comparable among the different kinds of adsorbent materials. However, for the same kind of 

adsorbent material, clay material in this study, it is meaningful to compare their adsorption 

performance so as to evaluate the potential of application. As described in Section 3.2.3, in order to 

make the comparison more valuable, commercial synthetic zeolite and bentonite were used to carry 

out the adsorption capacity determination under the same conditions in this study. The adsorption 

results of zeolite and bentonite fitted with Langmuir isotherm were listed in Table 3-9.  

Distribution coefficient and adsorption capacity are usually used as two important indices when 

doing this kind of comparison [15]. As shown in Table 3-9, the modified AC developed in this study 

has a relatively higher Kd value compared with other reported clay minerals, indicating it is a 

potential efficient adsorbent material for Cs
+
 removal. Although a lower adsorption capacity was 

obtained from the modified AC compared with zeolite or bentonite in this study, its adsorption 

capacity was relatively higher than other natural soils [53] or rocks [57]. Its applicability in 

wastewater with low Cs
+
 concentration was still promising. In addition, different with zeolite and 

bentonite, which have been demonstrated as useful materials for many other applications such as 

catalyst and medicine industries, akadama clay, an andic soil widely distributed in Japan has not been 

well developed for other applications except as horticultural medium. The enhancement of adsorption 

capacity towards Cs
+
 would be meaningful for exploring its application in environmental pollution 



72 

remediation. This work would also be helpful for its further investigation and improvement of its 

adsorption capacity of radionuclides towards practical application. 

3.4 Summary 

 Novel transition metal modified akadama clay (AC) was prepared for cesium adsorption from 

aqueous solution. After modification, akadama clay was transferred into a typical mesoporous 

material and adsorption performance was greatly enhanced. The newly developed material had a 

much wider applicable pH range (5~12) than the pristine one. Removal efficiency increased with 

adsorbent dosage, while the uptake amount showed an opposite trend. The maximum adsorption 

capacity (Qmax) reached about 16mg g
-1

 for the modified AC, much higher than the pristine one. The 

distribution coefficient was strongly affected (negatively) by K
+
 rather than Na

+
 for both pristine and 

modified AC. Adsorption isotherms indicate the Cs
+
 adsorption on modified akadama clay is a 

monolayer adsorption process. Multiple adsorption interaction mechanisms including electrostatic 

adsorption and ion exchange are proved during the Cs
+
 adsorption on modified akadama clay. 

Modified AC is therefore regarded as a potential efficient adsorbent material for Cs
+
 in the treatment 

of lake water. Above 80% of adsorbed Cs
+
 could be desorbed in 0.1 M HCl and KCl, while relatively 

stable in synthetic groundwater. The modified AC developed in this study is more efficient than other 

natural soils and rocks. This study is meaningful and valuable for exploring the application of 

akadama clay in environmental remediation. 
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Table 3-1 Characteristics of lake water.* 

Parameter Value 

pH 7.5±0 

Na
+
 (mg L

-1
) 12.6±0.7 

K
+
 (mg L

-1
) 2.8±0.3 

Ca
2+

 (mg L
-1

) 16.7±0.9 

Mg
2+

 (mg L
-1

) 4.6±0.05 

Cs
+ 

(mg L
-1

) 0 
Measurement was conducted in quadruplicates and the mean 

values ± standard deviations were undertaken. 
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Table 3-4 Adsorption rate constants associated with pseudo first and second order kinetic models. 

Pseudo first-order kinetic model  Pseudo second-order kinetic model 

 Pristine AC Modified AC  Pristine AC Modified AC 

qeexp (mg g
-1

) 0.83±0.01 1.76±0.007 qeexp (mg g
-1

) 0.85±0.02 1.76±0.003 

k1 (h
-1

) 23.2±2.6 49.9±2.2 k2 (g mg
-1

 h
-1

) 95.5±43.3 406.9±85.5 

qecal (mg g
-1

) 0.83±0.01 1.76±0.002 qecal (mg g
-1

) 0.82 1.76 

R
2
 0.994 0.999 R

2
 0.987 1.0 
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Table 3-5 Effect of Na
+
 and K

+
 on the removal efficiency and distribution coefficient of cesium 

adsorption on pristine and modified AC. (Initial Cs
+
 concentration: 1 mg L

-1
, dosage: 2.5 g L

-1
) 

Na
+
 (mg L

-1
) K

+
 (mg L

-1
) Removal efficiency (%) Kd (mL g

-1
) 

  Pristine Modified Pristine Modified 

0 0 71 90.5 979.3 3810.5 

10 0 66.4 87.7 790.5 2852.0 

100 0 62.7 78.5 672.4 1460.5 

1000 0 37.3 69 237.9 890.3 

0 10 44.2 86.5 316.8 2562.9 

0 100 16.4 41.7 78.5 286.1 

0 1000 21.5 24.6 109.5 130.5 

50 50 34.5 67.7 210.7 838.4 

500 500 26.1 24.7 141.3 131.2 
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Table 3-6 Estimated isotherm parameters for cesium adsorption on modified AC.* 

Langmuir isotherm 

(q=QLKLCe/(1+KLCe) 

QL (mg g
-1

) KL (L mg
-1

)  R
2
 χ

2
/DoF 

16.1±0.85 0.07±0.01  0.988 0.336 

Freundlich isotherm 

(q=KfCe
1/n

) 

Kf (mg g
-1

 L
1/n

 mg
-1/n

) 1/n  R
2
 χ

2
/DoF 

2.19±0.4 0.45±0.05  0.965 1.00 

Dubinin-Radushkevich 

isotherm 

(q=Qmexp[-β(RTln(1+1/Ce))
2
]

, E=1/(2β)
1/2

) 

Qm (mg g
-1

) β (mol
2
/J

2
×10

-6
) E (kJ mol

-1
) R

2
 χ

2
/DoF 

12.04±1.04 6.68±2.3 0.27 0.901 2.88 

Temkin isotherm 

(q=a+blnCe) 

a b  R
2
 χ

2
/DoF 

2.55±0.96 2.21±0.36  0.862 4.02 

Redlich-Peterson isotherm 

(q=aCe/(1+bCe
n
)) 

a b n R
2
 χ

2
/DoF 

1.22±0.34 0.09±0.08 0.97±0.17 0.988 0.400 

Langmuir-Freundlich 

isotherm 

(q=qmbCe
1/n

/(1+bCe
1/n

)) 

qm (mg g
-1

) b (L mg
-1

) n R
2
 χ

2
/DoF 

16.6±2.5 0.08±0.02 1.04±0.21 0.988 0.399 

* Adsorbent dosage: 2.5 g L
-1

. 
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Table 3-7 Comparison between amounts of adsorbed cesium and released ions during the 

adsorption process of modified AC (5 g L
-1

). 

Background water 
Adsorbed (μmol) Released (μmol) 

Cs
+
 Na

+
 K

+
 Ca

2+
 Mg

2+
 Ni

2+
 

10 mg L
-1

 Cs
+
 solution 1.4 26.6 0.47 0.16 0.21 0.01 

100 mg L
-1

 Cs
+
 solution 11.4 39.3 2.8 4.8 6.1 0.04 

DW 0 34.7 0.55 0.15 0.18 0.01 
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Table 3-8 Efficiency of modified AC on removing cesium from lake water. 

Initial Cs
+
 concentration (μg L

-1
) Dosage (g L

-1
) Removal efficiency (%) 

10 1 72.5±1.0 

10 2.5 85.9±0.5 

100 1 63.3±1.1 

100 2.5 84.6±0.1 
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Table 3-9 Comparison between distribution coefficients and adsorption capacities of Cs
+
 

adsorption on various adsorbents. 

Adsorbent Distribution coefficient, Kd (L g
-1

) 
Adsorption 

capacity (mg g
-1

) 
References 

A-X zeolite 0.19-0.39 (50, 1) 
a
 30 (50)

 c
 [16] 

Natural zeolite 3.75-4.45 (8.45×10
5
Bq L

-1
 
b
, 10) 199-266 (app.) 

d
 [52] 

Ain Oussera soil 0.37 (1, 2) 4.31 (100)
 c
 [53] 

NaSM zeolite 3.8-4.9 (2.280×10
4
Bq L

-1
, 10) 159.7-248.0 [15] 

Bentonite 1.4 (133, 50) 96.5 [77] 

Local Taiwan 

laterite 
0.025 (1.33, 33.3) 39.9 [56] 

Bure mudrock 0.1-0.9 (0.12, 7-200) 13.3 [57] 

Ceiling tiles - 0.21 [51] 

Synthetic zeolite 

A-4 
38.5 (5, 2.5) 58.7 This work 

Bentonite 10.2 (5, 2.5) 40.0 This work 

Pristine AC 0.98 (1, 2.5) 4.5 This work 

Modified AC 3.8 (1, 2.5) 16.1 This work 

a
 The values in brackets were initial concentration of Cs

+
 (mg L

-1
, otherwise stated) and dosage (g L

-1
), respectively.  

b
 1 MBq L

-1
 
137

Cs is equivalent to 9.044×10
-4 

mg L
-1

. 

c
 The adsorption capacity was not given directly in this literature and the capacity shown here was obtained at a 

certain initial concentration (given in the brackets, unit: mg L
-1

). 

d
 approximate value as no exact value was given in the literature, and the data obtained here were based on the figures 

in this literature. 

- Not mentioned in the literature. 
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Fig.3-1 SEM images (acceleration voltage: 20.0 kV and 5000 × magnification) of pristine (A) and 

modified (B: before Cs
+
 adsorption, C: after Cs

+
 adsorption) AC, EDS spectrums and TG/DTA 

curves of pristine (D, F) and modified AC powders (E, G) (particle size: approximately 100 μm). 
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Fig.3-3 BJH pore size distribution in the pristine (red) and modified (blue) AC samples (particle 

size: approximately 100 μm). 
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Fig.3-4 Variation of Cs
+
 concentrations in solution, Ct/C0, as a function of time, t, for adsorption 

of Cs
+
 on the pristine and modified AC samples at 25

o
C. (Initial Cs

+
 concentration: 10 mg L

-1
, 

sample dosage: 5 g L
-1

, the right figure shows the enlarged dark part of the left figure) 
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Fig.3-5 Comparison of pseudo first-order and second-order kinetic models for the fitting of 

cesium adsorption on clay samples. (Initial Cs
+
 concentration: 10 mg L

-1
, adsorbent dosage: 5 g 

L
-1
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Fig.3-7 Variation of removal efficiency and adsorption amount of cesium adsorption on modified 

AC as a function of adsorbent dosage. 
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Fig.3-8 Effect of initial concentration on the cesium uptake amount (open symbols) and removal 

efficiency (solid symbols) of cesium adsorption on pristine (squares) and modified (circles) AC 

(2.5 g L
-1

). 
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Fig.3-9 Application of adsorption isotherms to cesium adsorption on modified akadama clay (2.5 

g L
-1

). 
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Fig.3-10 Desorption rate of cesium adsorbed modified akadama clay at different solutions. 

(Solid/Liquid: 4 g L
-1
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Fig.3-11 Zeta potential of pristine (square) and modified (circle) akadama clay in 1 mM NaNO3 

and variation of cesium (1 mg L
-1

) adsorbed under different pH conditions (5 g L
-1

). 
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Chapter 4 Removal of cesium from aqueous solution using ammonium 

molybdophosphate - polyacrylonitrile (AMP-PAN) beads 

4.1 Introduction 

Removal of radionuclides attracts much attention of researchers all over the world after the 

Fukushima nuclear accident caused by the big earthquake in northeast Japan. Before this accident, 

some related studies have been carried out and many removal processes have been proposed such 

as adsorption/ion exchange, precipitation, solvent extraction, electrochemical and membrane 

processes [4, 6-10, 15, 16, 22, 23, 53, 85]. Adsorption/ion exchange process is well known as an 

efficient and convenient method for radionuclides removal from aqueous solution due to its 

advantages such as stable, high capacity and low cost [7, 8, 15, 53]. For this process, a general 

drawback is its capacity loss in high ionic strength wastewater [7]. In other words, a high capacity 

adsorption material with high selectivity towards target ions is still under investigation. Therefore, 

developing new adsorption materials and trying to improve their capacities and selectivities 

become a research hotspot in this field.  

Ammonium molybdophosphate, (NH4)3P(Mo3O10)4·3H2O (AMP), is a yellow crystalline 

inorganic compound which has been demonstrated have the requisite high capacity and selectivity 

towards Cs
+
. As illustrated in previous studies [86, 87], the phosphomolybdate complex ion, 

(PMo12O40)
3-

, consists of a hollow sphere formed by twelve MoO3 octahedra with the PO4 group 

in the center. The ammonium ions with associated water molecules are likely fit in between these 

spheres of negative ions thus accounting for the cohesion of these ions. According to the special 

crystal structure of AMP, it exhibits a selectivity sequence for the alkali metals similar to other 

heteropoly acids of the Keggin structure: Cs
+
 > Rb

+
 > K

+
 > Na

+
 > Li

+ 
[86]. The ion exchange 

mechanism of AMP is reported as an isomorphous exchange of Cs
+
 for NH4

+
 in the crystal lattice 

[88]. The ion exchange process could be expressed as follows [89]:  
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(aq)44012x-34x

leirreversib
(aq)401234 )x(NHOPMo)(NHCsxCsOPMo)(NH      (4-1) 

Although the AMP possesses many advantages on Cs
+
 removal from liquid wastes, its fine 

powder size limits its industrial scale practice. A binding agent, substrate, or support that allows it 

to be used in a packed bed with reasonable flow rate and minimal pressure drop, e.g., acceptable 

hydrodynamics is necessary [90]. As a result, ammonium molybdophosphate-polyacrylonitrile 

(AMP-PAN) has been developed and demonstrated as an efficient material for Cs
+
 removal 

through both batch and dynamic column tests [91-93]. The undergoing removal mechanism is the 

physical adsorption due to weak van der Waals forces and ion exchange between NH4
+
 and Cs

+
, 

where the latter plays a much more important role. Tranter et al. [91] reported that the AMP-PAN 

maintained high Cs
+
 exchange capacity (32 g Cs/kg adsorbent) with high flow rates of heavily 

salted feed solutions in bench scale column tests. Todd et al. [92] reported batch equilibrium data 

for AMP-PAN in simulated INEEL (Idaho National Engineering and Environmental Laboratory, 

USA) composite tank waste solutions. Cesium adsorption followed the classical Langmuir 

isotherm and the presence of potassium reduced the distribution coefficient (Kd) to the greatest 

extent. Park et al. [47] reported that the AMP-PAN beads could remove Sr
2+

, Cs
+
 and Co

2+
 from 

radioactive laundry wastewater.  

AMP and PAN play different roles during the adsorption process by using AMP-PAN beads. 

It is generally believed that AMP is the ion exchanger and therefore plays a much more important 

role than PAN, which is served as a binder. However, the effect of compositions of AMP-PAN 

beads including the ratio of AMP/PAN on adsorption capacity is yet unknown up to date. In this 

study, therefore, AMP-PAN beads with different compositions were synthesized and applied to 

remove Cs
+
 from aqueous solutions. The objective of this study is to determine the best 

composition of AMP-PAN beads for Cs
+
 removal. The thermal stability and its chemical stability 

in acidic and alkaline solutions were investigated. Effects of experimental conditions on 

adsorption behavior were conducted with respect to contact time, pH, initial concentration and 
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competitive ions. Adsorption kinetic and isotherm studies were also investigated through batch 

adsorption experiments. In addition, desorption tests were carried out to evaluate the recycle 

capability of as synthesized material.  

4.2 Materials and methods 

4.2.1 Chemicals 

Triammonium 12-molybdo(VI)phosphate trihydrate (AMP, (NH4)3[PO4Mo12 O36]·3H2O, 

98%+, Wako Pure Chemical Industries, Ltd., Japan), dimethyl sulfoxide (DMSO, (CH3)2SO, 

98%+, Wako Pure Chemical Industries, Ltd., Japan) and PAN (polyacrylonitrile, MW=150,000, 

Polysciences, Inc., USA) were used to synthesize AMP-PAN. Tween 80 was purchased from 

Kanto Chemical Co. Inc., Japan. Non-radioactive cesium chloride (CsCl) purchased from Tokyo 

Chemical Industry Co. Ltd., Japan was used as a surrogate for 
137

Cs because of its same chemical 

characteristics. Deionized water (DW) generated from a Millipore Elix 3 water purification 

system (Millipore, USA) equipped with a Progard 2 pre-treatment pack was used throughout the 

experiments. All the other reagents used in this study were purchased from Wako Pure Chemical 

Industries Ltd., Japan without further purification. 

4.2.2 Preparation of AMP-PAN beads 

Four kinds of AMP-PAN beads (named 1#, 2#, 3# and 4#) with different compositions (Table 

4-1) were synthesized following the procedure reported by Moon et al. [94]. AMP was used to 

prepare the inorganic active ion exchangers. AMP and Tween 80 were combined with DMSO. 

After stirring the solution for 1 h at 50
o
C and 250 rpm, 8 g of PAN was added to this solution and 

then stirred using a magnetic stirrer for 5 h at 50
o
C and 1000 rpm to obtain a homogeneous 

solution. The composite mixture was fed into a syringe with a needle (0.55×25 mm) manually to 

obtain the spherical composite beads. The prepared AMP-PAN beads were washed three times 
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with DW and then dried in an oven for 24 h at 60
o
C.  

4.2.3 Thermal and chemical stability of AMP-PAN beads 

In order to evaluate the thermal and chemical stability of as prepared AMP-PAN beads, 

thermogravimetric and differential thermal analysis (TG/DTA) and acidic/alkaline solutions were 

carried out. For the TG/DTA analysis, approximately 7 mg of AMP-PAN beads were prepared 

into an aluminum pan and heated up to 550
o
C at a constant rate of 10

o
C min

-1
 in normal 

atmosphere. Carrier gas (air) rate was kept at 200 mL min
-1

. The TG loss and DTA curves were 

recorded. For the chemical stability evaluation, 0.01 g of AMP-PAN beads were immersed into 20 

mL 0.1 M HCl and NaOH solutions. After a contact time of 24 h, the beads were dried completely 

and the weight losses were recorded.  

4.2.4 Adsorption experiments 

1.26 g CsCl was weighed exactly and dissolved into 1 L DW as standard stock Cs
+
 solution 

(~1000 mg L
-1

), which could be diluted to desired concentrations of Cs
+
 solution for further 

experiments. The solution pH was adjusted by 0.1 M HCl and NaOH solutions and measured by a 

pH meter (Mettler Toledo SG8, Switzerland). To determine the effect of contact time, amount of 

AMP-PAN beads was mixed with 200 mL of Cs
+
 solution in a 200 mL-glass flask (AS ONE, 

Japan). Supernatants (about 1 mL for each) were withdrawn at predetermined time intervals along 

with the initial solution (zero min point). For the dosage effect, different amounts of 4# 

AMP-PAN beads were mixed with 50 mL of 1 mg L
-1

 Cs
+
 solutions. For the effect of initial pH, 

0.4 g L
-1

 of AMP-PAN beads was mixed with 20 mL of 1 mg L
-1

 Cs
+
 solutions with initial pH 

value of 2.5, 3.5, 4.5, 5.5 and 7, respectively. To determine the effect of initial Cs
+
 concentration, 

0.02 g of AMP-PAN beads was mixed with 25 mL of Cs
+
 solutions of 5, 10, 20, 50, 80, 100 and 

200 mg L
-1

, respectively. To determine the effect of competitive ions, Na
+
, K

+ 
and Ca

2+
 with 

concentrations of 10, 50, 100, 200 and 400 mg L
-1

 were added in their hydrochloride salt forms 
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into the solutions with the initial Cs
+ 

concentration of 1 mg L
-1

, respectively.  

All the experiments were conducted in 50 mL-polypropylene tubes (Violamo, Japan) 

vigorously shaken (200 rpm) and at room temperature (25±1
o
C) for 24 h (except contact time 

experiment). All the samples including initial solutions were collected by filtering the 

supernatants through 0.22 µm mixed cellulose ester membrane (Millipore, Ireland) and diluted 

with DW to a proper extent (less than 1 mg L
-1

) into 15 mL-polypropylene tubes (Violamo, Japan) 

prior to inductively coupled plasma-mass spectrometry (ICP-MS) (Perkin Elmer Elan DRC-e, 

USA) analysis. Along with the batch adsorption experiments, blank and control tests were also 

carried out to observe any precipitation and to determine the extent of wall adsorption. The 

negligible differences between the initial and final concentrations indicated that no precipitation 

or wall adsorption occurred in this study. 

4.2.5 Desorption experiment 

0.1 M HCl and NH4Cl were used as desorption solutions in this study along with DW as 

reference to evaluate the recycle capability of AMP-PAN beads. The concentrations of Cs
+
 

desorbed were detected with a similar method as described in adsorption experiments. 

4.2.6 Adsorption kinetic and isotherm studies 

 Nonlinear pseudo-first and pseudo-second order models corresponding to Eqs. (2-1) and (2-2), 

respectively, are adopted to investigate kinetic behavior of Cs
+
 on AMP-PAN beads. 

 Additionally, the moving boundary model [95, 96] was used to distinguish the relative roles 

of adsorption steps involved to play. If the adsorption process was controlled by liquid film 

diffusion, intraparticle diffusion or chemical interaction, the rate constant can be expressed by Eqs. 

(4-2), (4-3) and (4-4), respectively. 

)1ln( Fk                 (4-2) 
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)1(2)1(31 3/2 FFk      (4-3) 

3/1)1(1 Fk                (4-4) 

where F is the adsorption fraction (qt/qe), and k is the adsorption rate constant. By plotting a linear 

relationship of k versus contact time t (min), the regression coefficients (R
2
) for three adsorption 

steps can be obtained, of which the one with the highest R
2
 value is assumed to be the rate 

controlling step. 

 Langmuir [32] and Freundlich [33] isotherm were adopted to fit the adsorption results in this 

study. The nonlinear forms of these isotherms are given in Eqs. (2-4) and (2-5), respectively. 

4.2.7 Characterization 

Video Microscope (VM) observation was performed using a Shimadzu STZ-40TBa type 

microscope (Shimadzu, Japan). The roundness of the bead samples was determined using a Motic 

Images Plus 2.3S
®
 (Motic, China) that employs optical imaging with two adaptive 

full-framematrix cameras. The roundness of the beads was calculated using the following 

equation:  

2

4
Roundness

P

A
          (4-5) 

where A is the area occupied by a single bead image, and P is its perimeter. The two-dimensional 

image of a sphere has a roundness score of 1. Other shapes have a roundness score less than 1. 

Scanning electron microscope (SEM) analysis was performed using a JEOL JSM-6330F type 

microscope (JEOL, Japan) operated at 5.0 kV. The samples were put onto a conductive carbon 

tape above the metal stub and coated with a thin layer of platinum for charge dissipation during 

SEM imaging. Fourier transform infrared spectroscopy (FTIR) was recorded in the region of 

4000-400 cm
-1

 by a JASCO 300E FT-IR spectrophotometer (JASCO, Japan) using KBr pellet at a 

resolution of 4 cm
-1

. As mentioned, TG/DTA was carried out using an Exstar TG/DTA 7300 

thermal analyzer (Japan). 
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4.2.8 Analytical methods 

Concentrations of metal ions were analyzed by a fully quantitative analytical method on a 

Perkin Elmer ELAN DRC-e ICP-MS in standard mode. Each sample was analyzed 5 times and 

the average was taken. The relative standard deviation (RSD) of multiple measurements was less 

than 2% and in most cases, less than 1.5%. Concentrations of NH4
+
 in solutions were analyzed by 

an UV-1800 ultraviolet spectrophotometer (Shimadzu, Japan) according to Nessler reagent 

colorimetric method.  

4.3 Results and discussion 

4.3.1 Physicochemical and structural properties of AMP-PAN beads 

As shown in Table 4-2, according to different compositions, different physicochemical 

properties were presented in four kinds of AMP-PAN beads. As for industrial production and 

application, those beads with consistent size and high roundness were preferred. In this study, the 

4# beads presented the largest size, highest roundness and best sphere. 2# and 3# beads had good 

sphere and roundness. 1# beads presented the worst sphere and roundness. These phenomenon 

were related with the compositions of AMP-PAN beads, such as the ratio of AMP/PAN, 

AMP/DMSO, and DMSO/PAN. Because the AMP is the ion exchanger which plays an important 

role in an ion exchange process, the theoretical ion exchange capacity (IEC) of these AMP-PAN 

beads follows as: 1#>4#>2#>3# along with the decrease of AMP/(PAN+Tween 80) ratio. It is 

worth noting that the hypothesis of the calculation of theoretical IEC is that all the NH4
+
 existed 

in AMP are exchangeable. Also, it is generally considered that the maximum adsorption capacity 

(qmax) is no larger than the theoretical IEC. As a result, as shown in Table 4-1, the qmax follows: 

2#>3#>4#. It can be seen that though the 2# and 4# AMP-PAN beads have similar theoretical IEC, 

the qmax of them have a remarkable difference. The increase of AMP and PAN while DMSO kept 

constant in synthesizing 4# AMP-PAN beads results to a larger size and much more compact 
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internal structure compared with 2# beads. As demonstrated in Table 4-2, 4# beads have larger 

size and higher roundness, which have much relationship with the mass transfer process during 

the adsorption process. It is generally believed that large beads size and high roundness lead to a 

low specific surface area and further a low adsorption capacity. These results also indicate that all 

the compositions of AMP, DMSO and PAN have effects on adsorption capacity of AMP-PAN 

beads. 

 Based on the physicochemical properties of these four kinds of AMP-PAN beads, 1# bead is 

excluded for its bad sphere and roundness and 3# bead is also removed for its relatively low 

adsorption capacity. As a result, 2# and 4# beads are selected in this study for the following 

characterization and adsorption experiments. 

Fig.4-1 shows the VM and SEM images of the four kinds of AMP-PAN beads. It can be 

easily found that all the beads present good sphere except 1# bead. The result can be explained by 

the low dose of PAN, which provides a highly stable, porous support for the fine AMP particles 

and allows the sorbent to be formed into larger particles well suited for large-scale application 

[92]. From the cross section SEM images of 2# and 4# beads, it can be seen that highly porous 

structure has been developed inside the beads. The magnification SEM images of the walls in 2# 

and 4# beads indicate their different structures, which are porous in 2# and network in 4# beads.  

4.3.2 Thermal stability study  

Studies to determine the thermal stability of AMP-PAN beads were performed by TG/DTA 

and Fig.4-2 shows the thermal analysis results of 2# and 4# AMP-PAN beads. Both of these two 

samples present two remarkable DTA peaks (exothermic) at temperature of approximately 310
o
C 

and 430
o
C, respectively. And the second one is much more severe. Especially in 4# beads, two 

typical TG losses were detected at the corresponding temperatures, which are probably caused by 

the decomposition of PAN and AMP, respectively. The TG losses no larger than 10% before 
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310
o
C are perhaps due to the loss of water contents in these two kinds of AMP-PAN beads. 

Because the compositions of AMP and PAN are similar, the TG losses in these two AMP-PAN 

beads are also similar. The total TG losses of these two samples are approximately 37.8% and 

36.7%, respectively. The temperature of the AMP-PAN beads would not be expected to reach 

temperatures exceeding 310
o
C, even if loaded with 

137
Cs, therefore, the thermal stability of the 

material is adequate for processing radioactive wastes. 

4.3.3 FTIR analysis 

Functional groups on the surface of AMP-PAN beads are detected through FTIR analysis. As 

shown in Fig.4-3, the results indicate that the 2# beads present much more intensive peaks than 4# 

beads, especially at the range of 792, 866 and 1057 cm
-1

, which are assigned to stretching 

vibration of P–O, Mo=O, and Mo–O–Mo in AMP, respectively. The peak range of 1390-1500 

cm
-1

 is assigned to NH4
+
 [47]. Maximum adsorption at 2234 cm

-1
 is due to the nitrile groups in 

PAN [97, 98]. The broad absorption peaks observed at the range of 3300-3600 cm
-1

 are assigned 

to the stretching vibration of hydroxyl groups. The broad band is indicative of hydroxyl group 

stretching vibrations when the hydroxyl group is hydrogen bonded [67]. 

4.3.4 Chemical stability study  

The results show that the as synthesized AMP-PAN beads are relatively stable in 0.1 M HCl 

solution rather than NaOH solution (Fig.4-4). In acidic solutions, no larger than 10% of weight 

loss was detected for all of the AMP-PAN beads. Whereas in alkaline solutions, over 60% of 

weight losses are observed for all of the beads, which is probably attributed to the reaction 

between NaOH and AMP. This deduction could be proved by the discoloration of AMP-PAN 

beads (from yellow to white) after the contact with NaOH solution. As we know, the AMP powder 

is yellow and PAN powder is white. 
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4.3.5 Adsorption studies 

(1) Effect of contact time and kinetic study 

The removal rate is related with the removal mechanism and particle size. As shown in 

Fig.4-5, the removal process is relatively slow compared with other materials [11, 16, 22], 

probably due to the ion exchange process and its large size. Same as previous study [47], the 

contact time of 1 d is determined in this study for the following experiments.  

Kinetic model plots and parameters are given in Fig.4-5 and Table 4-3, respectively. Through 

comparing the R
2
 and chi-square analysis, it can be determined that the pseudo second order 

model fits better with the experimental results than the first order model. The better fitting of 

second order kinetic model indicates that the Cs
+
 adsorption process on AMP-PAN beads is a 

chemisorption rather than physisorption [22]. 

As generally viewed, a liquid-solid adsorption process may compose of several successive 

kinetic steps [99, 100]. Transport in the bulk solution, diffusion across the film surrounding the 

adsorbents and in the pores of the adsorbents are the initial three steps driven mainly by mass 

balance and/or Fick diffusion, belonging to physical adsorption processes [101, 102]. Reasonably, 

they reflect the nature of the first order kinetic order that usually governed by the concept of 

linear driving force. The hindmost step of an adsorption process is adsorption on the solid surface, 

which is a chemical reaction as expressed in Formula (4-1) in this study. This step is usually the 

most important step and would make the whole adsorption process follow the common rate law of 

chemical reaction, which is well described by the second order kinetic model [100].  

As in this case, extra theoretical adsorption models are supplemented to accurately 

discriminate the adsorption processes. Moving boundary model is designated to identify the 

controlling adsorption step, by distinguishing the roles of liquid film diffusion, intraparticle 

diffusion and chemical interaction [96]. The R
2
 values of moving boundary models for the 

adsorption processes, representing their relative importance, are summarized in Table 4-4. The 
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consistence of the values clearly reveals the liquid film diffusion is the main rate controlling step 

in adsorption process. This is probably ascribed to poor solvation potential of the surfactant 

(Tween 80) on the surface of AMP-PAN beads limiting the mass transport of Cs
+
 from liquid 

solutions to AMP-PAN beads. On the other hand, this indicates the well-developed porous 

structure and nature of loose network, as shown in SEM images, promotes the intraparticle 

diffusion, making it a relatively rapid process. Meanwhile, the chemical interaction (ion exchange) 

between adsorbent and adsorbate is also relatively fast and not the rate controlling step.  

(2) Effect of pH 

As the AMP-PAN beads are not applicable in alkaline solutions, the pH is adjusted to be 

approximately 2.5, 3.5, 4.5, 5.5 and 7, respectively. As indicated in Fig.4-7, all the pH values were 

acceptable for Cs
+
 adsorption with removal efficiencies higher than 95%. The good Cs

+
 uptake is 

attributed to the ion exchange between NH4
+
 in AMP and Cs

+
 and the adsorption of Cs

+
 onto the 

macropores in the AMP-PAN beads [89]. When pH value was as low as 2.5, perhaps inhibited due 

to the competition between H
+
 and Cs

+
 for the adsorption sites, the removal efficiency had a small 

decrease. All the effluent pH values decreased after adsorption and became much more significant 

with the increase of initial pH value. This is because NH4
+
 was released during the adsorption 

process and thereafter produced H
+
 through hydrolysis. Meanwhile the hydrolysis reaction of 

NH4
+ 

was suppressed when the concentration of H
+
 in solution was high. That may be the reason 

why the decrease was significant at high initial pH solutions and negligible at low initial pH 

solutions. 

(3) Effect of dosage 

As shown in Fig.4-8, dosage of 0.1 g L
-1

 was adequate for 1 mg L
-1

 Cs
+
 adsorption on 

AMP-PAN beads and the removal efficiency reached 96.7%. The removal efficiency increased 

with dosage due to the greater availability of the adsorption sites. However, there is no obvious 

increase in the removal efficiency when the dosage was larger than 0.2 g L
-1

, indicating this 
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dosage was optimal in this experiment. 

(4) Effect of initial concentration and adsorption isotherm study 

It was found that the 2# beads had the highest adsorption capacity, which well agrees with the 

highest AMP/PAN ratio. 4# beads had the lowest adsorption capacity, as mentioned above, 

probably due to the compact internal structure and large size suppressing adsorption process. 

Furthermore, plot fitting results of Langmuir and Freundlich isotherms are also presented in 

Fig.4-9 and Table 4-5, respectively. The higher R
2
 and lower χ

2
/DoF values throughout all the 

cases indicated that Freundlich isotherm fitted better with Cs
+
 adsorption results than Langmuir 

isotherm in this study. According to the theoretical hypothesis of Freundlich isotherm, the Cs
+
 

adsorption on AMP-PAN beads was more like a multilayer than a monolayer adsorption process. 

In addition, the values of Freundlich exponent n were in the range of 1-10, indicating the 

favorable adsorption [22, 33, 103]. Although the Langmuir isotherm did not give a well fit with 

the adsorption results, the estimated maximum adsorption capacity could be undertaken for 

comparison, which was in the order of 2#>3#>4#. Park et al. [47] reported a qm value of 81 mg g
-1

 

for removing Cs
+
 from radioactive laundry wastewater by using AMP-PAN beads with a 

composition of as same as the 4# AMP-PAN beads in this study. Todd and Romanovskiy [90] 

reported a qm value of 85 mg g
-1

 for removing Cs
+
 from simulated composite INEEL tank waste 

by using an AMP-PAN beads with a composition of 85.7 wt% AMP and 14.3 wt% PAN.  

(5) Effect of competitive ions 

As another important factor that could affect the adsorption of target ions on adsorbents, 

competitive ions are essential to be investigated for a typical adsorption study. Three normal 

metal ions in natural water bodies including two monovalent ions (Na
+
 and K

+
) and one divalent 

ion (Ca
2+

) were utilized in this study as competitive ions. The concentrations of Cs
+
 (1 mg L

-1
) 

and competitive ions (0, 10, 50, 100, 200 and 400 mg L
-1

) were mentioned in the methods part. 4# 

beads were used for this study and dosage was 0.4 g L
-1

. Fig.4-10A showed the variations of 
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removal efficiencies and B showed the variations of distribution coefficients (Kd). It is obvious 

that the Kd values displayed larger differences than removal efficiencies. This difference could be 

attributed to the calculations of these two results. There was no obvious change on the removal 

efficiencies with addition of competitive ions. It decreased from 99.6% without competitive ions 

to 95.7%, 94.1% and 91.3% with 400 mg L
-1

 of Na
+
, Ca

2+
 and K

+
, respectively. Throughout all 

the cases, the removal efficiencies exceeded 90%, indicating the AMP-PAN beads had selectivity 

for Cs
+
 adsorption. However, probably due to the similar radius and hydration energy [81], K

+
 

competed more effectively against Cs
+ 

than other ions, resulting in a lower Kd value (Fig.4-10B). 

The phenomenon was also observed by other researchers.  

(6) Role of ion exchange between Cs
+
 and NH4

+
 

It is hypothesized that if adsorption is mainly caused by ion exchange reaction, then the 

quantity of the released cations (in gram-equivalent) would be close to that of the adsorbed target 

ions. Fig.4-11 shows the relationship between the Cs
+
 adsorbed and NH4

+
 released during the Cs

+
 

adsorption process using 2# and 4# AMP-PAN beads. Results indicated much more NH4
+ 

released 

than Cs
+
 adsorbed in all the cases, probably attributed to the dissolution of AMP. A close 

relationship could be observed between Cs
+
 adsorbed and NH4

+
 released at all the contact times 

except 2 h, indicating the dissolution rate of AMP at 2 h reached highest. 

4.3.6 Desorption study 

Desorption results indicated the AMP-PAN was relatively stable in these two kinds of 

desorption solutions. Both of the desorption rates were no larger than 10%. In addition, much 

more Cs
+
 could be desorbed in 0.1 M NH4Cl solution than HCl solution (Fig.4-12), probably 

attributed to the ion exchange between NH4
+
 and Cs

+
. It could be predicted that desorption rate 

would increase with the concentration of NH4
+
.  
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4.4 Summary 

Four kinds of AMP-PAN beads (1#, 2#, 3# and 4#) with different compositions were 

synthesized in this study for Cs
+
 removal from aqueous solution. All of them had well 

physicochemical and structural properties except 1# beads. Adsorption results indicated the 2# 

bead had highest ion exchange capacity due to the high ratio of AMP/PAN. Multilayer 

chemisorption dominated the adsorption process through adsorption kinetic and isotherm studies. 

The adsorption behavior could not be inhibited at acidic conditions until pH lower than 2.5. A 

close relationship between adsorbed Cs
+
 and NH4

+
 was testified, demonstrating the ion exchange 

process between them. Three competitive ions (Na
+
, K

+
 and Ca

2+
) were utilized in this study to 

evaluate the selectivity of AMP-PAN beads for Cs
+
 removal and positive results were obtained. 

Finally, spent AMP-PAN beads could be recycled in NH4Cl solutions. 
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Table 4-1 Composition of AMP-PAN beads. 

No. 
AMP  

(g) 

DMSO 

(mL) 

Tween 80 

(g) 

PAN 

(g) 

Theoretical 

IEC (meq/g)
a
 

qmax 

(meq/g)
b
 

1# 2.5 25 0.2 0.5 1.21 - 

2# 2.5 25 0.2 1 1.05 1.04 

3# 2.5 25 0.2 1.5 0.92 0.69 

4# 5 25 0.2 2 1.08 0.54 

a
 IEC stands for ion exchange capacity. This capacity is the result of the presence of NH4

+
 which is considered to be 

exchangeable. 

b
 means the maximum adsorption capacity towards Cs

+
, which is obtained from the adsorption isotherm studies. 
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Table 4-2 Physicochemical properties of AMP-PAN beads. 

  * Numbers in brackets means the amount of beads for this measurement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 1# 2# 3# 4# 

Beads diameter <1 mm 1-1.5 mm 1.5-2 mm 1.5-2 mm 

Sphere bad good good perfect 

Roundness 0.69±0.03 (8)* 0.85±0.16 (7) 0.94±0.14 (6) 1.0±0.0 (6) 
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Table 4-4 Correlation coefficients (R
2
) of moving boundary models for the Cs

+
 adsorption on 

AMP-PAN beads. 

Beads Dose 

(g L
-1

) 

Cs
+
 conc. 

(mg L
-1

) 

Liquid film 

diffusion 

Intraparticle 

diffusion 

Chemical 

interaction 

2# 0.5 10 ppm 0.998 0.952 0.939 

4# 0.5 1 ppm 
0.997 0.999 0.983 

0.954 0.912 0.929 

4# 1.0 10 ppm 
0.988 0.971 0.943 

0.908 0.866 0.884 
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Table 4-5 Estimated isotherm parameters for cesium adsorption on AMP-PAN beads. 

  2# 3# 4# 

Langmuir 

qm (mg g
-1

) 138.9±21.3 95.4±11.7 71.6±8.5 

b (L mg
-1

) 0.11±0.06 0.3±0.2 1.0±0.5 

R
2
 0.904 0.896 0.917 

χ
2
/DoF 262.7 171.4 72.3 

Freundlich 

kf (mg g
-1

 L
1/n

 mg
-1/n

) 36.0±3.0 38.0±3.1 30.6±3.4 

n 3.4±0.3 4.4±0.4 4.0±0.6 

R
2
 0.989 0.979 0.940 

χ
2
/DoF 29.4 33.9 52.3 
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Fig. 4-1 VM images of 1# (a), 2# (b), 3# (c) and 4# (d) AMP-PAN beads and cross section and 

internal SEM images of 2# (e and g) and 4# (f and h) beads. (Diameter of the calibrate circles in a, b, 

c and d is 1.5 mm; magnification: 100× (e and f), 5,000× (g and h).) 
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Fig. 4-3 FTIR spectrums of 2# (red) and 4# (blue) AMP-PAN beads. 
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Fig. 4-4 Weight loss of AMP-PAN beads in 0.1 M HCl and NaOH solutions. 
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Fig. 4-7 Effect of pH on the Cs
+
 adsorption on AMP-PAN beads. 
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Fig. 4-8 Effect of adsorbent dosage on the Cs
+
 (1 ppm) adsorption on 4# AMP-PAN bead. 
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Fig. 4-10 Effect of Na
+
, K

+
 and Ca

2+
 on Cs

+
 removal efficiency (A) and distribution coefficient (B) 

on AMP-PAN beads. 
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Fig. 4-11 Relationships between released NH4
+
 and adsorbed Cs

+
 during the adsorption process. 
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Fig. 4-12 Desorption rate of spent AMP-PAN beads in 0.1 M HCl and NH4Cl solutions. 
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Chapter 5 Comparative study and conclusions 

    In this paper, three kinds of material were used for cesium removal from aqueous solutions, 

which were biomass material (walnut shell), clay material (akadama clay) and synthetic material 

(AMP-PAN bead).  

For the biomass material, NiHCF was incorporated with walnut shell and the equilibrium time 

was 2 h. The adsorption process well fitted to the pseudo second-order kinetic model, suggesting 

chemisorption was the main rate-controlling step. Cesium removal by NiHCF-WS was enhanced 

under acidic and suppressed under alkaline conditions, which makes it especially appropriate in 

treating acidic radioactive liquid waste. In addition, NiHCF-WS had some selectivity to cesium 

adsorption and the adsorption was stable. The good correlation coefficient (R
2
 = 0.93), low χ

2
 and 

NSD values suggest that cesium adsorption on NiHCF-WS could be best described by the Freundlich 

adsorption isotherm. Moreover, spent NiHCF-WS could be reduced significantly through incineration 

at 500
o
C for 2 h and the total reduction (in volume) from liquid waste to slag residue was up to 

99.9%, leading to a considerable space and cost reduction in disposing of the spent adsorption 

material. This special characteristic makes biomass material appropriate for treating large amount of 

radioactive liquid wastes. Finally, compared with other adsorption materials, NiHCF-WS is a 

renewable resource and needs a simple modification process and is low cost, making it a competitive 

adsorption material in practice.  

While for the clay material, akadama clay was transferred into a typical mesoporous material 

after modification and adsorption performance was greatly enhanced. The newly developed clay 

material had a much wider applicable pH range (5~12) than the pristine one, indicating the modified 

AC was applicable for treating weak acidic and alkaline radioactive wastewater. After modification, 
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the maximum adsorption capacity reached about 16mg g
-1

, much higher than the pristine one. The 

distribution coefficient was strongly affected (negatively) by K
+
 rather than Na

+
 for both pristine and 

modified AC. Adsorption isotherms indicate the Cs
+
 adsorption on modified AC is a monolayer 

adsorption process. Multiple adsorption interaction mechanisms including electrostatic adsorption 

and ion exchange are proved during the Cs
+
 adsorption on modified AC. Finally, above 80% of 

adsorbed Cs
+
 could be desorbed in 0.1 M HCl and KCl, while relatively stable in synthetic 

groundwater, indicating the recyclability of this kind of material.  

For the synthetic compound, all the AMP-PAN beads had well physicochemical and structural 

properties except 1# beads. Adsorption results indicated the 2# bead had highest ion exchange 

capacity due to the high ratio of AMP/PAN. Multilayer chemisorption was determined through 

adsorption kinetic and isotherm studies. The adsorption behavior could not be inhibited at acidic 

conditions until pH lower than 2.5. A close relationship between adsorbed Cs
+
 and NH4

+
 was testified, 

demonstrating the ion exchange process between them. Finally, spent AMP-PAN beads could be 

recycled in NH4Cl solutions. 

The results of this study would provide useful information for radioactive wastewater treatment. 

Especially due to the low cost of these materials, it is appropriate for treating large quantity of low 

level radioactive liquid. 

All the experiments were conducted in batch study and laboratory scale in this study. In order to 

evaluate the real application of these materials, large scale test or column study is needed in the 

future. For the incineration of cesium loaded walnut shell, due to the experimental conditions, no 

detection of cesium was carried out. A much more detailed investigation on the transformation of 

cesium during the incineration process is suggested in the future. For the akadama clay, though the 

modification is effective in enhancing its adsorption capacity, its performance is still lower than 
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zeolite and bentonite. Much more effective modification process is recommended in the future study. 

For the synthetic process of AMP-PAN beads, the cost reduction is an important topic, which should 

be considered in the future work. 
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