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ABSTRACT 

 

Drastic changes in river discharge and salinity levels are threatening the phenology 

and morphology of the coastal mangrove of Sundarbans along the southwest coast of 

Bangladesh. The study have used AVHRR GIMMS (1985-2006) and MODIS (2005-2010) 

satellite Normalized Difference Vegetation Index (NDVI) data to identify the temporal 

variation of the phenology of the mangroves. Linear interpolation and Fourier-based 

adjustment were applied to remove noise from the NDVI time series. Then linear regression 

analysis on a single area (8 km ✕ 8 km) and a composite of 36-Areas for three NDVI statistics, 

the annual minimum, annual average, and annual maximum, were performed over the time 

periods 1985-1990, 1990-2000, 2000-2006 and 2005-2010 to identify possible functional 

changes in NDVI time series around the Sundarbans. Furthermore, to characterize the local 

morphological behavior of the southwestern coast, seven non-overlapping segments along the 

coast designated as A through G were studied. Segments A-D are covered with mangrove 

forest, segments E and F have a small mangrove forest area at their tip, and G is a flat sandy 

beach. Fourteen LANDSAT images spanning the period 1989-2010 are analyzed to estimate 

the spatiotemporal rate of shoreline changes over the three time periods 1989-2000, 2000-2006, 

and 2006-2010. Beside the satellite data, hydrological, metrological and wave hindcast data 

also have been taken into consideration to identify the possible relation of these factors with 

the phonological and morphological changes along Sundarbans. In addition, a field survey 

was conducted in March, 2013 to understand the present conditions of salinity, soil 

characteristics, forest etc. 

Annual variations of NDVI of 36-Areas are categorized into three types. Type-1 is 

found mainly at high saline zone, southwest corner of Sundarbans, while moderate saline 

zone (central part) and fresh water zone (north to northeast corner) is dominated by Type-2 

and Type-3 respectively. A decreasing trend in the annual minimum NDVI was observed in 
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most of the areas of the Sundarbans for the period 1990-2000, especially in the areas which are 

categorized into Type-2 and Type-3. On the other hand, mangroves of high saline zones, 

categorized as Type-1, still had increasing trends in the annual minimum NDVI for this 

period. During the years 2000-2006, the trends of the three NDVI statistics became 

significantly positive at all over 36-Areas, indicating an improvement of the mangrove 

phenology. Some positive trends are found at the southwest and east corner of Sundarbans in 

the present period of 2005-2010, whereas most of area is facing decreasing trends in annual 

minimum NDVI. Decreasing trend also was dominating in other NDVI variables at all 36- 

Areas. The coast underwent rapid erosion from 1989-2000 and 2006-2010. However, the rate 

substantially declined between 2000 and 2006, when accretion was dominant.  

The advent of the upstream Farakka barrage caused a significant reduction in the 

Ganges-Gorai river discharge and increased the salinity in and around the Sundarbans. This 

study suggests that this may be responsible for the degradation of mangrove phenology and 

accelerated erosion in the earlier and recent periods. In the interim, 2000-2006, improved river 

discharge and salinity levels due to the Ganges water sharing agreement (1996) and dredging 

of the Gorai river bed (1998-1999) enhanced the mangrove phenology and helped the coast to 

gain land.  

Shorelines of segments covered with mangroves (segment, A-D) changed more 

rapidly than flat sandy beaches (segment, G), contradicting the general consensus that 

mangrove stabilizes the land. Low river discharge and concomitant higher salinity level 

within mangrove covered segments may have adversely affected, with some delay, the 

growth of the mangrove forests and accelerated the rate of erosion through slaking and 

dispersion. On the other hand, sandy beach is little affected by slaking and dispersion induced 

by adverse saline conditions anyway in contrast to the clayey soil of the segments covered 

with mangroves, which may be one of possible reason for the lower erosion rate of sandy 
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segment G. Further, southwestern side of southerly facing shoreline of every segment was 

facing continuous erosion over all time periods, which may due to prevailing waves from 

south-south-west and consequent sediment transport from west to east.  
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CHAPTER ONE 

INTRODUCTION 

1.1 General 

Mangroves forests are found in the intertidal zone in the tropical and subtropical 

regions of the world (e.g. Bangladesh, India, and Kenya). The area where mangrove occurs 

includes estuaries and marine shorelines. This ecosystem acts as buffer zone between the land 

and sea which protects the coast against cyclones and reduce erosion due to wind, waves, 

water currents and protect coral reefs, sea-grass bed and shipping lanes against siltation. 

Mangrove forests is a host of a number animal species, mammals, reptiles, amphibians and 

birds-offer nutrients to the marine food web and provide spawning grounds to a variety of 

fish and shellfish, including several commercial species. It provides a large variety of wood 

and non-wood forest product and also known to absorb pollutants. Among other services the 

forests control the water flow and maintain the water quality (Islam and Gnauck, 2009) 

makes breeding, feeding and nursery grounds for many estuarine and marine organisms (Giri 

et al., 2007). Their unique root systems create a great deal of physical roughness, thus 

capturing and storing vast quantities of sediment from upland and oceanic origin. Thus the 

distribution of mangrove forest can be used as an indicator of coastal changes (Blasco et al., 

1996). 

The socio-economic and environmental significance of mangroves is being 

increasingly recognized, but the extent and diversity of this forest are still decreasing globally 

at a rapid rate and much of the remaining forests are in degrade condition. Anthropogenic 

activities and their consequences, including climate change and natural threats, are negatively 

impacting mangrove biodiversity and ecosystem services. There has been considerable recent 

interest in the probable response of mangrove phenology and morphology to natural 

(Woodroffe, 1990) and other man made causes, both in terms of the mangroves themselves 

http://en.wikipedia.org/wiki/Estuary
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and their losses due to shore erosion. To mitigate these losses, a better understanding of how 

coastal mangrove ecosystems interact with the environment and how they respond to 

anthropogenic impacts is required. The understanding of mangrove forest dynamics can lead 

to conservation and management directives, such as the establishment, protection and 

management of re-afforestation plots in the framework of regeneration or restoration projects 

including projects related to minimize the possible anthropogenic effect on mangrove forest. 

Satellite imagery has been used to monitor and assess vast coastal areas such as 

mangroves (Ramachandran et al., 1998). To be effective, protection and restoration of 

mangroves require information on the exact distribution of these ecosystems and the extent to 

which they have been changed. This can be problematic as mangroves tend to be found in 

remote, relatively inaccessible areas, and degradation in these ecosystems tends to be 

sporadic (Islam et al., 1997, and Lucas et al., 2009). Satellite remote sensing provides 

supplementary information quickly and efficiently to gather information on inaccessible areas 

and offers many advantage including synoptic coverage, availability of low-cost or free 

satellite data availability of historical satellite data, and repeated coverage. In addition, recent 

advances in the hardware and software used for processing a large volume of satellite data 

has helped increase the usefulness of remotely sensed data. Moreover, it is extremely difficult 

to get into vast swamps of mangrove forests, and conducting field inventory is time 

consuming and costly. With the difficulty of conventional monitoring techniques in mangrove 

environments, the data obtained from satellite remote sensing is an efficient tool that has been 

adopted increasingly, particularly when analyzing vegetation history and coast dynamics 

(Giri et al., 2007).  

The “Normalized Difference Vegetation Index” (NDVI), the most commonly used 

satellite product, has being satisfactorily related to functional characteristics of vegetation, 

particularly with the fraction of photosynthetically active radiation intercepted by vegetation, 
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and consequently with primary productivity (Seller et al., 1992, and Paruelo et al., 1997). 

Long term series (~20 years) of NDVI data, generated from coarse spatial resolution sensors, 

are valuable tools for the detection of both temporally discrete changes, like forest clearing, 

as well as gradual changes such as long term change of vegetation activity (Heumann et al., 

2007, and Hansen et al., 2004). On the other hand, multispectral remote sensing satellites 

provide digital imagery in various spectral bands, including the near infrared where the 

land-water interface is well defined. Owing to this characteristic of infrared bands in satellite 

imageries can be used successfully to extract shoreline positions with sufficient accuracies. 

The shoreline, which is defined as the position of the land-water interface at one instant in 

time (Gens, 2010), is a highly dynamic feature and is an indicator for coastal morphological 

changes (erosion and accretion). 

This study makes use of such capabilities of remote sensing data to assess the long 

term change of mangroves phenology and coast dynamics in the Sundarbans mangrove forest 

in Bangladesh. A number of studies conducted in the Sundarbans have begun to develop and 

apply remote-sensing techniques mainly for mapping and change detection purposes (Islam et 

al., 1997, Dwivedi et al., 1999, Blasco et al., 2001, and Michael and Peterson, 2006). These 

studies were conducted either in Bangladeshi or Indian parts of the Sundarbans at different 

times. 

 

1.2 Background and Review of Literature  

Bangladesh is a small, densely populated country (over 140 million in 2011) 

bordered on the west, north, and east by India and on the south along a 710-km-long coastline 

by the Bay of Bengal. The country is a low-lying delta, formed at the confluence of the 

Ganges, Brahmaputra, and Meghna Rivers (GBM) and their tributaries, as high volume of 

discharge of these river system traditionally carried extremely large sediment loads (~10
9 



4 

 

ton/yr from different parts of Himalayas and up stream of Bengal delta (Goodbred and Kuehl, 

2000). About 90% of the country is less than ten meter above mean sea level, making it one 

of the most vulnerable countries in the world to natural catastrophes every year (Karim and 

Mimura, 2008). 

The coastal zone of Bangladesh, important for its natural resources and ecosystems, 

covers 19 out of the country’s 64 districts and contains 28% of the country’s population. The 

Sundarbans, the world’s largest stretch of mangrove forest, is on the southwest coast of 

Bangladesh (Iftekhar and Saenger 2008). The Sundarbans is located in the lower basin of the 

 

Figure 1.1 Bangladesh's main river systems and location of Sundarbans and △ Farakka 

Barrage.  
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Ganges River, and a large number of channels and creeks flow into larger river networks. Its 

hydrology is dominated by the flow of freshwater from the Ganges, which exhibits very high 

seasonal variation. The Gorai River (Fig. 1.1) is the major distributary of the Ganges River 

and an important provider of freshwater to the channels and creeks of the Sundarbans. The 

river system has mitigated surge amplification (Sinha et al., 1985), salinity intrusion, and the 

backwater effect (Ali, 1999) and increased sediment accretion. 

The disappearance of some distributaries and diversion of river water has diminished 

the flushing of freshwater along the southwest coast and consequently affected the 

biodiversity of the Sundarbans (Brij and Chauhan, 2006). The Ganges River system has 

undergone some drastic changes since India completed a barrage on the Ganges River in 

1975 at Farakka, 16.5 km from the border of Bangladesh (Fig. 1.1). The consequent changes 

in sediment and discharge processes of the rivers and increase in salinity levels has severely 

affected the phenology and morphology of Sundarbans. There have been several studies 

carried out which describe the undesirable effects of this diversion on agriculture, forestry, 

industry, and drinking water in the southwest region of Bangladesh (Mirza 1998, Islam and 

Gnauck, 2009).  

Michael and Peterson (2006) quantified changes in the Sundarbans, using 

LANDSAT satellite imagery from 1989 and 2000, and identified areas of deforestation. The 

study suggested that higher water and soil salinities due to low river discharge, shrimp 

farming, and other human influences are partly responsible for the degradation of the 

Sundarbans. Of these factors, increases in salinity and decreases in river discharge are more 

pronounced in the post-Farakka period (Mirza, 1998). 

Using LANDSAT images from 1973, 1979, 1989, 2000, and 2010 to monitor the 

dynamics of the coastline of the Sundarbans, Rahman et al., (2011) found an average erosion 

rate of 7.2 km
2
/yr from 1973 to 2010. Accretion showed a rate of 10 km

2
/yr between 1973 
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and 1989, but substantially declined to ~4 km
2
/yr between 1989 and 2010. Accretion rate has 

declined in the recent years but erosion rate has remained relatively high. This would be an 

evidence of low sediment supply from the upstream river at this period. 

 Sarwar and Woodroffe (2013) reported a systematic assessment of rates of shoreline 

changes over 20 years periods along whole Bangladesh coast from 1989-2009, using six 

LANDSAT images for each year of 1989 and 2009.  

These erosion rates are significantly higher than previously stated by Allision (1998), 

who used digitized survey maps from 1792, 1840, 1904, and 1908 and a LANDSAT image 

from 1984 to estimate a net erosion rate of about 1.9 km
2
/yr for the Sundarbans delta. On the 

contrary, Giri et al. (2007), using LANDSAT images from 1973, 1979, 1989, and 2000, 

reported that the forested area had not changed significantly throughout the 25 years of their 

study period. However, they claimed that 38 km
2
 of land along the major river channels and 

extreme southern edge of the Sundarbans were eroded during that same period. All of these 

studies reported that the rate of accretion has been declining and erosion has been increasing 

in the all successive year along the Sundarbans coast. This may due to the fact that decreased 

Ganges River discharge and sediment deprived in the Sundarbans due to the advent of the 

Farakka Barrage and other anthropogenic disturbances in upland.  

Due to the 30-year treaty between India and Bangladesh on sharing the Ganges 

waters (signed on 12 December 1996) and the pilot dredging project for the Gorai River (Fig. 

1.1) in 1998 and 1999, a significant increase in freshwater flow has been achieved with a 

corresponding decrease in salinity in and around the Sundarbans (Wahid et al., 2007). We 

hypothesized that there has been some transitional variation of the mangrove phenology and 

coastal morphology due to this increased river discharge. The previous studies tried to 

estimate the mangrove vegetation (Michael and Peterson, 2006) and coastal dynamics 

(Allision, 1998, Giri et al., 2007, and Rahman et al., 2011) along the Sundarbans using 
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satellite images with ten-year or more gaps between images. None of the studies to date have 

clarified coastal dynamics and variation of the mangrove phenology using images with 

shorter one-year or fewer gaps or described the influence of variations in river discharge and 

salinity on the coast dynamics and phenology. 

 

1.3 Objectives of the Study 

In accordance with the background described above, the objectives of the study are set 

as follows: 

i) To analyze the changing features from 1985-2010 of the mangrove phenology of the 

Sundarbans using the Normalized Difference Vegetation Index from satellite database. 

ii) To detect the shoreline position using fourteen satellite images for the period 

1989-2010 to understand the morphological behavior of the southwest coast of 

Bangladesh, focusing on the mangrove forests, and  

iii) To identify the relation of phenological and morphological changes to the variations 

of river discharge and salinity. 

 

1.4 Organization of the Study 

The rest of the thesis is organized as follows. Chapter 2 describes brief information 

about the south-western coast of Bangladesh and segmentation of study area to observe the 

local phonological and morphological changes. Chapter 2 also describes the river system, 

hydrological and salinity regimes of the study area. In addition, mangroves distribution of 

Sundarbans depending on the salinity variation also is included. 

Chapter 3 presents data sets used in this study. This study used AVHRR (Advanced 

Very High Resolution Radiometer) GIMMS (Global Inventory Modeling and Mapping 

Studies) (1985-2006), and MODIS (2005-2010) satellite NDVI data set to identify the 
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temporal variation of the phenology of the mangroves. Furthermore, the study used fourteen 

LANDSAT images spanning the period 1989-2010 to estimate the spatiotemporal rate of 

shoreline changes over the different time periods. Chapter 3 also explains the satellite data 

processing techniques to smooth the NDVI data receiving from AVHRR GIMMS and 

MODIS data set and to detect the shoreline positions form LANDSAT images. To identify 

possible influencing factors on phenological and morphological changes, hydrological, 

metrological and wave hindcast data are also included in this chapter. A statistical method 

named Sequential Mann-Kendall (MK) test is applied to detect the potential turning points of 

trends in the time series of NDVI variables.  

 Chapter 4 presents seasonal and time series of NDVI variation, corrected with the 

procedures described in chapter 3. Linear trends analysis results of NDVI variables over 

different time periods are shown in this chapter. In addition, detected shoreline positions and 

rate of accretion and erosion over different time period is presented. Long term variations of 

river discharge and salinity around Sundarbans are presented and finally a cross correlation 

between NDVI variables, river discharge and salinity is performed in this chapter. 

 Chapter 5 discusses the impact of river discharge and salinity on the long term 

variation of vegetation phenology of Sundarbans and explains the role of river discharge and 

salinity on shore stability. Finally, this chapter describes the other possible factors which may 

have affected the Sundarbans phenology and morphology. 

Chapter 6 summarizes the study and illustrates the issues to be considered for future 

research.  
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CHAPTER TWO 

STUDY AREA: SOUTH-WESTERN COAST OF BANGLADESH 

2.1 General 

The southern coastal area of Bangladesh can be divided into three distinct regions, 

the eastern, the central, and the western regions (Fig. 2.1), based on geomorphological 

features.  

 

Figure 2.1 Bangladesh map showing three coastal regions. Solid box--blow up in Fig 2.2. 

Patenga 
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Eastern coastal zone are dominated by submerged sands and mudflats (Islam, 2003) 

and has a long sandy beach of 145 km extending from Cox’s Bazar to Tecknaf. Two of the 

country’s most important sandy beaches from tourists perspective, namely Patenga and Cox’s 

Bazar are located in this coastal zone. Fish farming, fishing in the bay, salt production and 

tourism are main economic activities of the zone. Except the eastern zone, all other parts of 

the Bangladesh coastal zones are plain land with extensive river networks and accreted land.  

The central zone receives a large volume of discharge from the 

Ganges-Bhrahmputra-Meghna (GBM) River system, and the land is formed from silty 

deposition. Because of the sediment supply and strong river current, the morphology of the 

 

Figure 2.2 Bangladesh's main river systems and the study area. ● Farakka Barrage,  Gorai 

Railway Bridge, ○ Khulna Station, Box--study area (blowup in Fig. 2.3). 

 


























































































































































































