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Abstract

We consider a classical field system with discretized spatial coordinates and a quadratic
Hamiltonian. Typicality for the system is shown in the sense that, for functions of state which
satisfy certain conditions including the invariance under the spatial translations of the state,
the values of the functions at almost all individual states in a microcanonical ensemble are
almost equal to their microcanonical ensemble averages. A statewise entropy for the system is
constructed in such a way that it satisfies the above conditions and its microcanonical average
coincide with the entropy in standard formalism of statistical mechanics.

1 Typicality for classical field systems

In standard formalism of statistical mechanics, a thermal equilibrium state is described by an
ensemble of states in the classical or quantum mechanical system. Recently, the justification
of the ensemble description has been discussed by employing the concept of typicality. In
general, typicality may be stated as follows. Consider an ensemble of states and functions
of state such that their values at almost all individual states, called typical states, hardly
deviate from their ensemble averages, then, as far as these functions are concerned, every
typical state in the ensemble can represent the ensemble and inversely, the ensemble average
can be utilized to obtain information of the typical states.

It is shown in Refs. [1, 2, 3, 4] that, for almost all pure states in the microcanonical
ensemble of a large quantum system, the reduced density matrix of a small subsystem is very
close to its microcanonical ensemble average, that is, the canonical density matrix.

In Ref. [5], the typicality is considered from a classical perspective. In its construction, the
state space is discrete and an ensemble of probability distributions on the discrete state space
is introduced. Then, the typicality with respect to this ensemble of probability distribution
can be analyzed in a similar way as that of the quantum systems. However, in order to discuss
the justification of the standard formalism of statistical mechanics, one must deal with the
typicality with respect to the ensemble of states, such as the microcanonical ensemble. The
relation between the typicality with respect to the ensemble of the probability distributions
in Ref. [5] and that with respect to the ensemble of states in classical systems is not evident.

In this letter, we consider the typicality with respect to the microcanonical ensemble, an
ensemble of states, for classical systems. We work in a field-theoretical formalism, that is, the
degrees of freedom are labeled by spatial position. Let the spatial size of the system be finite
and the spatial coordinates are discretized so that the total number of the degrees of freedom
is finite. Since we consider real-valued fields, the state space, namely the phase space, is
continuous in contrast to that considered in Ref. [5]. In all previous studies Refs. [1, 2, 3, 4, 5],
they separate the total system into a subsystem and the bath, and the typicality is analyzed
with respect to the functions of variables in the subsystem. In addition to that, functions
of lower order moments of variables in the full system are considered in Refs. [1, 2]. In the
present field-theoretical formalism, we take a different approach. The typicality is analyzed
with respect to the functions of the state, namely the functionals of the field, that are invariant
under spatial translations of the field.
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The precise setting is given as follows. We consider a classical Hamiltonian system with
real canonical coordinates q̂ℓ(x) and p̂ℓ(x) that are labeled by position x in a spatial domain
and the index ℓ = 1, · · · ,M/2 representing the other arbitrary degrees of freedom. We employ
the notation q̂ℓ+M/2(x) = p̂ℓ(x) for convenience. The spatial domain is a d-dimensional cube
with sides of length L applied with periodic boundary conditions. The spatial coordinate
is discretized with the unit length ∆x in each direction as x = (n1∆x, · · · , nd∆x)(ni =
0, · · · , N − 1) where N = L/∆x is an integer. The total number of the degrees of freedom of
this system is ν = MNd where we counted q̂ℓ(x) and q̂ℓ+M/2(x) = p̂ℓ(x) as different degrees
of freedom. The Fourier transform of q̂ℓ(x) is introduced by

qℓ(k) =
∑
x

(∆x)de−ik·xq̂ℓ(x), (1)

where k = (n1∆k, · · · , nd∆k), ni = (−N/2,−N/2+1, · · · , 0, · · · , N/2−1) and ∆k = 2π/L =
2π/N∆x. We have qℓ(−k) = q∗ℓ (k) from the reality of q̂ℓ(x). A state is specified by ν/2
complex values {q} = {qℓ(k)}(ℓ = 1, · · · ,M,k ∈ K) where K is a set of Nd/2 wavevectors
such that only either of k and −k is contained in it for each k( ̸= 0). In this letter, we take
as K = {k|(n1 > 0) ∨ (n1 = 0 ∧ n2 > 0) ∨ · · · ∨ (n1 = · · · = nd−1 = 0 ∧ nd > 0) ∨ (n1 =
· · · = nd = 0)}. Here, some wavevectors with ni = −N/2 are neglected, but the number of
those wavevectors are O(Nd−1) and its ratio to the total number of wavevectors vanishes as
N → ∞. Here and hereafter, the parameters d,M and ∆x are fixed, and the system size is
changed by changing N , or equivalently, L, ν or ∆k.

We restrict the form of the Hamiltonian to be that of harmonic oscillators, i.e.

H({q}) = 2
∑

k∈K,ℓ

(
∆k

2π

)d

hℓ(k)qℓ(k)qℓ(−k), (2)

where hℓ(k) is defined for k ∈ [−π/∆x, π/∆x]d with hℓ(k) > 0. We introduced the factor
(∆k/2π)d considering that

∑
k(∆k/2π)d →

∫
dk/(2π)d in the limit ∆k → 0. Note that the

Hamiltonian is defined for arbitrary possible ν once hℓ(k) is fixed. The probability density
function (PDF) ρ({q}) for the microcanonical ensemble with energy E is given by

ρ({q}) = 1

Ω(E)
δ (H({q})− E) , (3)

Ω(E) = J

∫
d{q} δ (H({q})− E) , (4)

where δ(·) is the Dirac delta function, d{q} =
∏

k∈K,ℓ d [Re qℓ(k)] d [Im qℓ(k)] and the fac-

tor J = |∂q̂ℓ(x)/∂[Re qℓ′(k), Im qℓ′(k)]| = (∆k/2π)dν/2[(∆x)d/2]−ν/2 is the Jacobian of the
Fourier transform. Let the average of a function of state F ({q}) over the microcanonical
ensemble be denoted by ⟨F ({q})⟩, i.e.

⟨F ({q})⟩ = J

∫
d{q}ρ({q})F ({q}). (5)

A function of state F ({q}) which is invariant under the spatial translation q̂ℓ(x) → q̂ℓ(x−
n∆x) or qℓ(k) → e−ik·n∆xqℓ(k) with n being a vector with integer components can be given
in general by

F ({q}) = F (0) +

∞∑
j=1

F (j)({q}), (6)

F (j)({q}) =
∑

k1,··· ,kj
ℓ1,··· ,ℓj

(
∆k

2π

)jd (
∆k

2π

)−d

δ∑j
m=1 km

× f
(j)
ℓ1···ℓj (k1, · · · ,kj)

j∏
m′=1

qℓm′ (km′), (7)

where F (0) is a constant in {q}, and δk is 1 for k = 0 and 0 otherwise. We introduced
the factor (∆k/2π)−d in Eq. (7) considering that (∆k/2π)−dδk → (2π)dδ(k) in the limit
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∆k → 0. Let the function f
(j)
ℓ1···ℓj (k1, · · · ,kj) in Eq. (7) be given as a term or a summation

of terms such that they are asymptotically ν-independent function as ν → ∞ defined for
km ∈ [−π/∆x, π/∆x]d(1 ≤ m ≤ j) possibly multiplied by a number of functions of the form
(∆k/2π)−dδg(k1,··· ,kj) and a factor of the form να, where g(k1, · · · ,kj) is a d-dimensional
vector-valued function whose form differs in the different factors and α is a constant whose
value may differ in different terms. Since the ν-dependence of f

(j)
ℓ1···ℓj (k1, · · · ,kj) is specified,

F ({q}) is defined for states {q} of the systems with arbitrary possible ν.
Let F be the set of functions such that F ({q}) ∈ F if and only if F ({q}) satisfies the

conditions, (F0) it can be written in the form Eq. (6) with Eq. (7) and the ν-dependence noted
above, (F1) for every j and j′(1 ≤ j′ ≤ j), the number of the wavevectors kj′ satisfying that

there exist k1 · · · ,kj′−1,kj′+1, · · ·kj and ℓ1, · · · , ℓj such that f
(j)
ℓ1···ℓj (k1, · · · ,kj′ , · · ·kj) ̸= 0

is O(ν) unless F (j)({q}) = 0, (F2) F (j)({q}) = 0 when j is odd. It can be shown that, for
F ({q}) ∈ F , the relative variance (∆F )2/⟨F ({q})⟩2 is O(ν−1) in the thermodynamic limit
ν → ∞ with fixed E/ν, where (∆F )2 = ⟨[F ({q})− ⟨F ({q})⟩]2⟩.

The proof is as follows. By substituting the formula

δ(X) =

∫ ∞

−∞

dλ

2π
e(ϵ−iλ)X (ϵ > 0) (8)

into Eq. (4) and using the formula∫ ∞

−∞

dλ

2π

e(ϵ−iλ)X

(ϵ− iλ)n
=

Xn−1

(n− 1)!
(ϵ > 0, X > 0), (9)

where n is a positive integer, we have

Ω(E) = π
ν
2 (∆x)−

dν
2

E
ν
2
−1

( ν
2
− 1)!

∏
k∈K,ℓ

(
hℓ(k)

)−1
. (10)

We also have ⟨
m∏

m′=1

(
qℓm′ (km′) qℓm′ (−km′)

)jm′

⟩

=
( ν
2
− 1)!

( ν
2
+ j − 1)!

(
∆k

2π

)−jd
Ej

2j

×
m∏

m′=1

[
jm′ !

(
hℓm′ (km′)

)−jm′
]
, (11)

where j =
∑m

m′=1 jm′ . Note that, if qℓ(k) is not paired with qℓ(−k), the average of the term
containing qℓ(k) is 0.

The relative variance can be written as

(∆F )2

⟨F ⟩2 =

∑∞
j,j′=0

(
⟨F (2j)F (2j′)⟩ − ⟨F (2j)⟩⟨F (2j′)⟩

)
∑∞

j,j′=0⟨F (2j)⟩⟨F (2j′)⟩
, (12)

where the condition (F2) is used. Here and hereafter, the arguments {q} in F ({q}) and
F (j)({q}) are omitted for brevity. There are two types of terms in the numerator of the right
hand side of Eq. (12), that are, (i) all the wavevector pairs (km,−km) in the term are included

in either of F (2j) or F (2j′), e.g., the term proportional to f
(2j)
ℓ1ℓ1······ℓjℓj (k1,−k1, · · · ,kj ,−kj)

f
(2j′)
ℓj+1ℓj+1···ℓj+j′ ℓj+j′

(kj+1,−kj+1, · · · ,kj+j′ ,−kj+j′), and (ii) elements of some wavevector

pairs (km,−km) in the term are contained separately in F (2j) and F (2j′), e.g., the term

proportional to f
(2j)
ℓ1···ℓpℓp+1ℓp+1···ℓj+p/2ℓj+p/2

(k1, · · · ,kp,kp+1,−kp+1, · · · , kj+p/2,−kj+p/2)

f
(2j′)
ℓ1···ℓpℓj+p/2+1ℓj+p/2+1···ℓj+j′ ℓj+j′

(−k1, · · · ,−kp,kj+p/2+1,−kj+p/2+1, · · · ,kj+j′ ,−kj+j′).

Each term of type (i) has its counterpart in the denominator of the right hand side of Eq. (12)
and the ratio of the term to its counterpart is(

ν
2
+ j − 1

)
!
(
ν
2
+ j′ − 1

)
!(

ν
2
+ j + j′ − 1

)
!
(
ν
2
− 1
)
!
= jj′ν−1 +O(ν−2), (13)
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which can be shown by using Eq. (11). The terms of type (ii) do not have their counterparts
in the denominator and the ratio of the terms to those in the denominator with the same j
and j′ scale as O(ν0) due to the ν-dependence of f (2j) and f (2j′). The condition (F0) imposes
an extra constraint

∑p
m=1 km = 0 on wavevectors of the terms of type (ii). The constraint

eliminates summation over one wavevector, say k1. Then, from the the condition (F1), the
number of the terms of type (ii) is reduces by a factor of O(ν) in comparison with the terms
of type (i) or those in denominators. Thus, the right hand side of Eq. (12) is O(ν−1). This
ends the proof.

With the use of Chebyshev’s inequality, the probability such that |F ({q})− ⟨F ⟩| > ϵ|⟨F ⟩|
is bounded from above by a term scaling as ϵ−2O(ν−1) for arbitrary ϵ > 0. In this sense,
for almost all states {q}, denoted as typical states, in a microcanonical ensemble, F ({q})
is almost equal to the microcanonical ensemble average ⟨F ⟩ for F ∈ F and ν ≫ 1. The
statement implies typicality in the classical system.

Conceptually, the conditions (F0) and (F1) are introduced to restrict the functions of
state to those appropriately representing macroscopic variables. When the Hamiltonian is
invariant under the spatial translation, field variables summed over spatial coordinates, such as∑

x(∆x)dq̂ℓ(x) or
∑

x(∆x)dq̂ℓ(x+r)q̂ℓ(x), may be regarded as natural macroscopic quantities.
Since spatially summed quantities are invariant under spatial translations of the field, it
seems to be appropriate to require the condition (F0) for the functions of state representing
macroscopic variables. The condition (F1) is imposed in order to exclude functions of state
such that only few modes (k, ℓ) are involved, e.g.

∑
(k,ℓ)∈L(∆k/2π)dqℓ(k)qℓ(−k) where the

size of the set L is much smaller than ν. The condition (F2) is introduced for the sake of
simplicity in the proof. It is expected that the condition would be relaxed in same way.

2 Statewise entropy

By virtue of the typicality, for functions F ∈ F and typical states {q}, F ({q}) can be re-
garded as a quantity characterizing the microcanonical ensemble that {q} belongs to. Since
each microcanonical ensemble corresponds to a thermal equilibrium state specified by the
value of energy E in thermodynamics, F ({q}) is characterizing the thermal equilibrium state
that the microcanonical ensemble corresponds to. Recall that all the thermodynamical infor-
mation of the system is contained in the entropy S(E) as a function of energy E. Then, the
function S({q}) ∈ F that corresponds to the entropy S(E) is of vital importance from the
thermodynamical point of view.

In the following, we construct the statewise entropy S({q}) ∈ F that satisfies ⟨S({q})⟩ =
SMC(E), where SMC(E) = ln[Ω(E)∆E] is the standard definition of the entropy for the
microcanonical ensemble, ∆E is a energy width which scales as O(E) and the unit in which
the Boltzmann constant is unity is used. The basic idea of the construction is as follows.
In conventional statistical mechanics, the entropy S is defined to an ensemble of states, or
in other words, a PDF on the state space. For a single state {q}, we generate an ensemble
of states {χ}({q},a)(a ∈ A), as will be introduced below, and define the statewise entropy
S({q}) to the PDF of {χ}({q},a) by analogy with the conventional statistical mechanics.

For a state {q}, we introduce shifted states {χ}({q},a) in wavevector space as

χℓ(k, {q},a)

=


qℓ(k + a)

(
∆k
2π

) d
2 ((k ∈ K) ∧ (k + a ∈ K))

qℓ(k − a)
(
∆k
2π

) d
2 ((k ∈ K−) ∧ (k − a ∈ K−))

0 (otherwise)

, (14)

where K− = {k| − k ∈ K}, a ∈ A and A = {a|a = (n1∆k, · · · , nd∆k), ni = −⌊ζN/2⌋,
−⌊ζN/2⌋ + 1, · · · , 0, 1, · · · , ⌊ζN/2⌋ − 1} with ζ being a ν-independent constant such that
0 < ζ ≪ 1. Once ζ is fixed, N is varied in the range N ≫ ζ−1. The factor (∆k/2π)d/2 in
Eq.(14) is introduced so as the variance ⟨χℓ(k, {q})χℓ(−k, {q})⟩ to scale as O(ν0). Let us
denote the average over the ensemble of a by ⟨·⟩a, i.e.

⟨X(a)⟩a =
1

⌊ζN⌋d
∑
a∈A

X(a). (15)
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The moment generating function of {|χ|2}({q},a) with respect to the ensemble of a is given
by

φ({ξ}; {q})

=

⟨
exp

i ∑
k∈K,ℓ

(
∆k

2π

)d

ξℓ(k) |χℓ(k, {q},a)|2
⟩

a

= 1 +

∞∑
j=1

[ ∑
k1,···k2j
ℓ1···ℓ2j

(
∆k

2π

)(2j−1)d

δ∑2j
m=1 km

× φ
(2j)
ℓ1···ℓ2j ({ξ};k1, · · · ,k2j)

2j∏
m′=1

qℓm′ (km′)

]
, (16)

where

φ
(2j)
ℓ1···ℓ2j ({ξ};k1, · · · ,k2j) =

ij

j!

(
∆k

2π

)d

×

(
j−1∏
m=1

δk2m−1+k2m

)⟨
j∏

m′=1

ξℓm′ (k2m′−1 − a)

⟩
a

, (17)

with ξℓ(k) being a real function of k = (k1, · · · , kd) with k1 ∈ [0, π/∆x), ki ∈ [−π/∆x, π/∆x)
(i = 2, · · · d) and ξℓ(k) = 0 otherwise. Let ξℓ(k) be given as a term or a summation of
terms such that they are ν-independent functions or functions of the form B(∆k/2π)−dδk−K

multiplied by a factor of the form να, where B,α and K are constants whose values may differ
in different terms. It can be shown that φ({ξ}; {q}) satisfies the condition (F0) for every {ξ}
by noting that

lim
ν→∞

⟨X(a)⟩a =

(
∆x

ζ

)d ∫
[−ζπ/∆x,ζπ/∆x)d

da

(2π)d
X(a), (18)

for a ν-independent function X(a). It is evident that (F2) is satisfied for φ({ξ}; {q}) with
every {ξ}. When ξℓ(k) = (∆k/2π)−dδk−Kδℓℓ0 , we see that (F1) is satisfied since

φ
(2j)
ℓ1···ℓ2j ({ξ};k1, · · · ,k2j) ̸= 0 for k2m−1 = −k2m = K + a (m = 1, · · · , j) with a ∈ A and

ℓm = ℓ0(m = 1, · · · , 2j). This example suffices to show that (F1) is satisfied for φ({ξ}; {q})
with every {ξ}. Consequently, we have φ({ξ}; {q}) ∈ F for every {ξ}.

For every fixed {q}, the PDF of {|χ|2}({q},a) with respect to the ensemble of a, which is
denoted by P2({|χ|2}; {q}), is given by the inverse Fourier transform of φ({ξ}; {q}), i.e.

P2({|χ|2}; {q}) =
(
∆k

2π

) dν
2
∫

d{ξ}
(2π)

ν
2

× exp

{ ∑
k∈K,ℓ

[
−i

(
∆k

2π

)d

ξℓ(k)|χℓ(k)|2

− 1

2

(
∆k

2π

)2d

(ξℓ(k))
2σ2

]}
φ({ξ}; {q}), (19)

where σ > 0 is introduced for the regularization of the PDF that is otherwise an ensemble of
Dirac delta functions. The PDF, P ({χ}; {q}), of {χ}({q},a) with respect to the ensemble of
a, which is consistent with P2({|χ|2}; {q}) and independent of {argχ}, is given by

P ({χ}; {q}) = 1

π
ν
2
P2({|χ|2}; {q}). (20)

Let us define the statewise entropy by

S({q}) = −
∫

d{χ}P ({χ}; {q}) lnP ({χ}; {q}). (21)

It can be shown that P2({|χ|2}; {q}), P ({χ}; {q}) ∈ F for every {χ} and S({q}) ∈ F by
expanding them into the Maclaurin series with respect to {q}. Therefore, S({q}) is almost
equal to ⟨S({q})⟩ for typical states {q} in the microcanonical ensemble.
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The average of φ({ξ}; {q}) over the microcanonical ensemble is given by

⟨φ({ξ}; {q})⟩ ≈

⟨ ∏
k∈K,ℓ

(
1− i

E

ν

(
∆k

2π

)d
ξℓ(k − a)

hℓ(k)

)−1⟩
a

≈
∏

k∈K,ℓ

(
1− i

E

ν

(
∆k

2π

)d
ξℓ(k)

hℓ(k)

)−1

, (22)

where, in the first line, Eq. (9) and ν ≫ 1 are used, and, in the second line, the change of the
variable k → k + a is applied with neglecting the effect of wavevectors such that k ± a /∈ K,
the ratio of whose number to the total number of wavevectors in K is O(ζ), and hℓ(k) is
assumed to be smooth so that hℓ(k + a) ≈ hℓ(k) with |a| = O(ζ). It follows that

⟨P ({χ}; {q})⟩ =
∏

k∈K,ℓ

(
1

π

ν

E
hℓ(k)e

− ν
E

hℓ|χℓ(k)|2
)
, (23)

where we took the limit σ → 0 after taking the ensemble average over the microcanonical
ensemble and using ν ≫ 1 for Eq. (19). We finally obtain

⟨S({q})⟩ ≈ −
∫

d{χ} ⟨P ({χ}; {q})⟩ ln ⟨P ({χ}; {q})⟩

=
ν

2
ln

(
πe

E

ν

)
−
∑

k∈K,ℓ

lnhℓ(k). (24)

Note that we can add an arbitrary term of the form Cν, where C is a constant, to the
definition of the entropy without changing the thermodynamical properties of the system. By
adding −(ν/2) ln[(∆x)d/2], the second line of (24) coincides with the result from the standard
definition of entropy SMC(E) with Eq. (4).

We have constructed the statewise entropy S({q}) whose value almost coincide with the
standard entropy SMC(E) for typical states {q} in the system of an ensemble of classical
harmonic oscillators. Note that the shifted states in the wavevector space {χ}({q},a) are
auxiliary states for the formal construction of S({q}) and they need not be realized physically.
One interpretation of employing the shifted states can be given as follows. Note that

⟨qℓ(k)qℓ′(−k′)⟩ = E

νhℓ(k)

(
∆k

2π

)−d

δk−k′δℓℓ′ , (25)

which is a special case of Eq.(11) with the subsequent sentence. Eq.(25) implies that, as far
as the second order moments are concerned, qℓ(k) and qℓ(k

′) are uncorrelated for k ̸= k′

and they have similar value of moments for k ≈ k′ considering hℓ(k) ≈ hℓ(k
′). Then, it is

tempting to use an ensemble of qℓ(k) generated by fixing a state {q} and varying k around
k0 as a substitute of the ensemble generated by varying states {q} and fixing k = k0.

We used the HamiltonianH({q}) only to specify the value of the energy and no information
of H({q}) as the generator of time evolution is used. Therefore, S({q}) has nothing to do
with any kind of time averaging.

States {q} with atypical value of S({q}) are rare but do exist. It is expected that they are
regarded as nonequilibrium states. Although the meaning of S({q}) for nonequilibrium states
is not clear yet in the context of thermodynamics, we can formally obtain the time evolution of
S({q}) from a single trajectory in the state space. Unlike conventional definitions of entropy,
an ensemble of trajectories or time evolution of a PDF in the state space is not necessary.
Furthermore, since the total system is not divided into a subsystem and the bath, we can
discuss the time evolution of S({q}) in isolated systems. However, in order to study the
redistribution of energy among different wavevector modes, that is essential in time evolution
of nonequilibrium processes, possibly small but nonzero interaction terms among different
wavevectors, which are higher order in {q} and neglected in Eq. (2), are necessary.

Let us see the statewise entropy S({q}) in a simple example of a nonequilibrium state
and a nonequilibrium process. We consider the case that the Hamiltonian of the system
is given by H(1) for time t < t0 and H(2) for time t ≥ t0, where H(i) are specified by
h
(i)
ℓ (k)(i = 1, 2) in Eq.(2). Let the system be macroscopically at the thermal equilibrium
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state of energy E(1) for t < t(1). We assume that the Hamiltonian is suddenly changed at
t = t(1) without changing the microscopic state {q(t(1))}. Then, the energy of the system is

typically changed to E(2) = ⟨H(2)⟩(1)
E(1) , where ⟨F ⟩(i)E denotes the ensemble average of F ({q})

over the microcanonical ensemble specified by H(i) = E. It is expected that the system
becomes nonequilibrium with the change of the Hamiltonian at t = t1 and that the system
reaches a new thermal equilibrium state after a sufficiently long time, say at t = t(2), through
a non-quasistatic, i.e. nonequilibrium, adiabatic process in the presence of small but nonzero
interaction terms among different wavevectors. Since the statewise entropy S({q}) is defined
for states without referring to the Hamiltonian, we typically have S({q(t(1))}) = S

(1)
MC(E

(1)). It

can be checked that S
(2)
MC(E

(2)) ≥ S
(1)
MC(E

(1)), where the equality holds when h
(2)
ℓ (k)/h

(1)
ℓ (k)

is constant in k and ℓ. Hence, we typically have S({q(t(2))}) ≥ S({q(t(1))}) for the non-
quasistatic adiabatic process. The result is consistent with the conventional thermodynamics.

It would be a future study to extend the present results, the proof of typicality and the
construction of statewise entropy, to classical systems whose Hamiltonians have the higher
order terms. Although typicality for quantum systems has already been discussed in a general
framework in Refs. [1, 2, 3, 4], the subject would be studied from a new aspect by applying
the present field-theoretical formalism to quantum systems.
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