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Findings and analysis of novel spreading mode in 
influenza virus infection: Tamiflu-resistant but 

HA-mediated cell-to-cell transmission through apical 
membranes of cell-associated virions 

By 

Takahiro Haruyama 

Abstract 

In first study (Chapter 1), through the evaluation of anti-influenza virus activity 

which had been exhibited by well-known natural medicine, we serendipitously noticed a 

strange but an interesting phenomenon in the spreading mode of influenza viruses. In 

general, it was believed that influenza viruses were released as cell-free virions from 

infected host cells. The released progenitor virions can spread into the outside environment 

and infect into next host cells far from producer cells. However, our observation suggested 

that influenza virus had another route for spreading between host cells and could be 

transmitted to adjacent cells directly without releasing of cell-free virions.  

To investigate the possibility, in second study (Chapter 2), we generated 

release-defect influenza viruses by reverse genetics and performed time-lapse photography. 

The results clearly showed that influenza virus was capable of spreading via cell-to-cell 

transmission without enzymatic activities of neuraminidase (NA) which were required for 

releasing of progenitor virions from infected host cells. Further examination revealed that 

the cell-to-cell transmission was mediated by mature hemagglutinin (HA) and occurred on 

the apical surface of polarized host cells. These evidence that cell-to-cell transmission 

occurs in influenza virus lead to the caution that local infection proceeds even when treated 

with neuraminidase inhibitors which allow to generate mutant variants. These finding were 

not only newly but also significant for developing more effective drugs against influenza 

virus infection.  
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Chapter 1 

INTRODUCTION 

 

1.1 Influenza virus 

Influenza viruses are negative stranded, segmented, enveloped RNA viruses 

containing helical ribonucleocapsid (also called viral ribonucleoprotein [vRNP]) and 

belong to the Orthomyxoviridae family. There are three types of influenza viruses: A, B 

and C. Human influenza A and B viruses cause seasonal epidemics of disease almost every 

year. It causes highly contagious infections of the human respiratory tract [1]. Millions of 

people are struck by influenza infection each year, resulting in more than 500,000 deaths 

worldwide. In Japan, the morbidity is almost 10,000 per year and the mortality is 

calculated as 0.05%. It’s causing severe suffering and economic loss. In particular, during 

a pandemic caused by the emergence of a new and very different influenza virus, the 

effects are far more deadly (Table 1-1). An estimated 50 million lives were lost in the 1918 

"Spanish flu" pandemic, widely regarded as the most devastating pandemic in recorded 

world history [2]. On the other hands, influenza type C infections cause a mild respiratory 

illness and are not thought to cause epidemics. 
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Influenza A viruses are classified by antigenic properties of two surface 

glycoproteins, hemagglutinin (HA) and neuraminidase (NA).  Sixteen HA subtypes 

(H1-H16) and nine NA subtypes (N1-N9) have been defined to the date.  Influenza virus 

infection is limited by the interaction between HA and sialic acid moieties of 

glycoconjugates on host cells [4]. Viral particles are usually spherical and approximately 

100 nm in diameter [5]. The viral envelope consists of lipid bilayer derived from the host 

plasma membrane but are selectively enriched in cholesterol and glycosphingolipids [6, 7]. 

The structure of viral envelope can be clearly observed by negative-stained transmission 

electron micrograph (TEM) (Figure 1-1). The viral envelope contains transmembrane 

proteins on the outside and matrix protein (M1) on the inside as an undercoat. Three 

transmembrane envelope proteins; hemagglutinin (HA), neuraminidase (NA) and M2 (ion 

Name of pandemic Subtype 
involved Date Deaths Mortality 

1918 flu pandemic (Spanish flu) [2] H1N1 1918�1920 50 million 2% 

Asian flu H2N2 1957�1958 1 to 1.5 million 0.13% 

Hong Kong flu H3N2 1968�1969 0.75 to 1 million <0.1% 

Russian flu H1N1 1977�1978 no accurate count N/A 

2009 flu pandemic [3] H1N1 2009�2010 18,000 0.03% 

Table 1-1. History of pandemic flu. 
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channel) are anchored in the lipid bilayer of the viral envelope. HA, a type I 

transmembrane protein, is a homotrimer and is the major envelope protein (�80%) forming 

the spikes. HA provides the receptor-binding site and elicits neutralizing antibodies. 

Cleavage of HA is essential for fusion and virus infectivity. NA, a type II transmembrane 

protein, is present as a homotetramer on the viral envelope. NA removes the cell surface 

receptor (sialic acid) and is critical for the release of virus particles from the cell surface 

and spread of virus. M2, a type III transmembrane protein, is a minor protein component 

(only 16–20 molecules/virion) of the viral envelope. M2 is a homotetramer, functions as an 

ion channel [8, 9], and is crucial during uncoating for dissociating the vRNP from M1 in 

the early phase of the infectious cycle. The viral core consists of helical ribonucleocapsids 

(vRNP) containing vRNA (negative stranded) and NP and three polymerase proteins (PB1, 

PB2, PA) which form the viral RNA polymerase complex [10, 11] (Figure 1-2). Influenza 

A virus has eight gene segments, which encode for the ten proteins (Figure 1-3).  
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Figure 1-1. Negative-stained transmission electron micrograph (TEM) of 
influenza virus particles. (virus strain: A/Puerto Rico/8/34) 
 

Figure 1-2. Schematic diagram of influenza A virus. Influenza A virus is an enveloped, 
negative-sense, single-stranded RNA virus. Within the lipid bilayer enveloped, the virus has eight 
gene segments, which encode for the ten proteins. The viral surface is decorated with spike-like 
projections of the glycoproteins HA and NA, which are inserted in the lipid bilayer. The viral core 
consists of helical ribonucleocapsids (i.e. vRNP) containing vRNA (negative stranded) and NP and 
three polymerase proteins (PB1, PB2, PA) which form the viral RNA polymerase complex. 
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Influenza virus particles bind to cell surface sialic acid, ubiquitously present on 

glycoproteins or glycolipids. The specificity of the sialic acid (�2,3-linked or �

2,6-linked sialic acid) and preferred binding of a particular strain of influenza virus to a 

specific sialic acid receptor are important determinants for species-specific restriction of 

influenza viruses [12]. During the infectious cycle, virus particles, bound to cell surface 

sialic acid, are internalized by receptor-mediated endocytosis and viruses possessing 

cleaved HA undergo fusion with the endosomal membrane [13, 14] at low pH (pH �5.0). 

Cleavage of HA is an absolute requirement for infectivity and the nature of the HA 

cleavage site is an important virulence determinant for influenza viruses. In the acid pH of 

Basic&transcriptase&(cap%binding)�1�

Basic&transcriptase&(elonga/on)�2�

Acidic&transcriptase&(protease%ac/vity)�3�

Hemagglu6nin&(adsorp/on%and%membrane%fusion)�4�

Nucleoprotein&(RNA%binding%and%transport%of%vRNA)�5�
Neuraminidase&(release%of%virus)�6�

Matrix&protein&1&(undercoat%for%virus%par/cle)%
Matrix&protein&2&(Ion%channel)�7�

Nonstructural&protein&1&(RNA%transport,%transla/on,%splicing)%
Nonstructural&protein&2&(func/on%not%known)�8�

PB2 �

PB1 �

PA�

HA�

NP�

NA�

M1/M2 �

NS1/NS2 �

Figure 1-3. Influenzavirus genomes. Influenza A virus has eight gene segments, which encode for 
the ten proteins. The color bar represents the relative size of vRNA strands. The name of encoded 
proteins are shown in each bar and the functions of proteins are given in parentheses. 
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the endosome, the cleaved HA undergoes conformational changes releasing the NH2 

terminal fusion peptide of HA2 and causing fusion of viral and endosomal membranes [15]. 

Virus particles containing uncleaved HA can bind and be endocytosed but cannot undergo 

fusion and are therefore noninfectious. The M2 ion channel opens up in the acidic pH of 

the endosome, acidifies the internal virion core, and thereby facilitates the release of vRNP 

from M1 into the cell cytoplasm. M1-free vRNP is then imported into the nucleus through 

nuclear pores using nuclear transport signals of NP [16]. Inside the nucleus, vRNP 

undergoes transcription (mRNA synthesis) and replication (complete positive-sense 

complementary RNA [cRNA], vRNA [minus strands], and vRNP synthesis) [10, 11]. 

Progeny vRNPs, made inside the nucleus, are exported out of the nucleus into the 

cytoplasm with the help of M1 and nuclear export protein (NS2) [17]. Eventually, the 

envelope proteins (HA, NA, M2), matrix protein (M1) and vRNP (containing vRNA 

minus-strand, NP, PB2, PB1, PA and NS2) are transported to the assembly site on the 

plasma membrane where virus particles bud and are released into the outside environment. 

NA is required to facilitate the release of newly synthesized viruses from infected cells by 

cleavage the sialic acid receptor [18, 19]. The life cycle of influenza viruses are 

summarized in Figure. 1-4. 
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Figure 1-4. Life cycle of influenza virus replication. (i) Adsorption: Influenza viruses attach to host 
cells via multivalent interactions of HA with sialic acids on cell surface glycoproteins to initiate 
infection and replication. (ii) Endocytosis: The virus is then internalized by endocytic compartments. 
(iii) Membrane fusion and uncoating: The H+ ions enter the virus through the M2 ion channel, and the 
low pH triggers a conformational change in HA. This activates virus-endosome fusion, and releases 
the genomic contents into the cytosol. (iv) Intracellular processes: The viral genome is transported 
into the nucleus, where viral RNA synthesis is carried out by the RNA-dependent RNA polymerase 
complex, and the viral proteins are expressed through the resulting mRNA. Copies of the 
negative-strand RNA are also made and packaged into ribonucleoprotein complexes for packaging 
into new viruses. (v) Assembly, budding and release: The viruses assemble, bud, and are released 
from the cell membrane. NA cleaves sialic acids from the cell surface proteins to release the virions 
from the host cell [29].  
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The widespread 2009 A (H1N1) pandemic, constant antigenic drift of seasonal 

influenza, and the rapid emergence of antiviral resistance in recent years highlight the 

ability of this pathogen in adapting to the human population and in evading antiviral drugs 

[20]. The survival and persistence of influenza virus can be attributed to several of its 

unique properties. First, the virus transmits easily from person to person by aerosol, and 

spreads globally through travel and migratory birds. Second, the error-prone viral RNA 

polymerase lacks proofreading ability, resulting in a high mutation rate of 1.5 x 10-5 per 

nucleotide per infection cycle [21]. Given the size of the influenza genome of 15,000 bases, 

this corresponds to an average of one mutation for every 10 viruses produced by an 

infected cell. This error-prone replication, coupled with the selective pressure of the 

immune system readily promotes the antigenic variation in the viral proteins HA and NA 

among seasonal influenza strains [22]. The high mutation rate is also the driving force 

behind the appearance of drug resistant strains, either in naturally occurring variants, or�by 

drug selection pressure in treated patients [23-25]. Third, the segmented nature of the 

influenza genome allows for mixing or reassortment of the eight viral gene segments, 

which can occur in cells infected with two different influenza viruses [26, 27]. The 

resulting hybrid may contain gene segments from influenza viruses of different species, 

and can be especially virulent as the population lacks previous exposure to the newly 
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introduced protein subtypes. Termed antigenic shift, this mechanism underlies the 

emergence of all three influenza pandemics since the 1918 Spanish flu [28]. 

 

1.2 Prophylaxis and Treatment for Influenza Virus 

There are currently two distinct strategies in use to control the spread of influenza: 

vaccines and conventional small-molecule antiviral drugs. Vaccination with the trivalent 

inactivated or live attenuated vaccines offers only limited protection [29], and is hampered 

by logistical issues, such as prediction of future circulating strains, and reliability of supply 

[18]. In the event of a pandemic, rapid production of sufficient quantities of vaccine can be 

a challenging task [30]. Antivirals present an attractive alternative, and can potentially 

inhibit viruses of different subtypes or genetic variation. There are six clinically approved 

antivirals for influenza treatment and prophylaxis (Table 1-2). Amantadine and 

rimantadine are inhibitors of the M2 ion channel, and interferes with viral fusion [31]. 

Zanamivir, oseltamivir, peramivir and laninamivir inhibit NA enzymatic activity, thus 

blocking the release of newly made virions from infected cells [32, 33]. Despite their 

efficacy, these antivirals suffer from limitations such as a short therapeutic window, high 

dosage, side effects, and high costs [34-36]. In addition, all the circulating viruses (both 
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H3N2 and H1N1 strains) are already resistant to the M2 inhibitors [37-39], and resistance 

to the NA inhibitors has been appearing at an alarming rate in recent years [23, 40]. 

 

 

 

 

 

 

 

 

 

 

 

 

Common%name%
(Trade'name)'
[Manufacture]�

Structural%formula� Approval%
in%Japan�

Administra6on%
route�

Amantadine%
(Symmetrel®)'
[Endo'Pharmaceu:cal]�

Approved''
in'1998�

oral'drug�

Rimantadine%
(Flumadine®)'
[Du'Pont'&'Co.]�

Not'approve� oral'drug�

Zanamivir%
(Relenza®)'
[GlaxoSmithKline]�

Approved'
in'2001�
�

inhalant�

Oseltamivir%
(Tamiflu®)'
[Roche,'Chugai(Japan)]�

Approved'
in'2001�
�

oral'drug�

Peramivir%
(Rapiacta®)'
[Shionogi'(Japan),'
BioCryst'Pharmaceu:cals]�

Approved''
in'2010�
�

injec:on�

Laninamivir%
(Inavir®)'
[Daiichi'Sankyo'(Japan)]�

Approved''
in'2010�
�

inhalant�

Table 1-2. Approved drugs against influenza.  
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Other influenza antiviral drugs under clinical trials include inhibitors of transcription 

and genome replication, T-705 (favipiravir) is a pyrazinecarboxamide derivative, and its 

active form, T-705-4-ribofuranosyl-5'-triphosphate, has been postulated to selectively 

inhibit the influenza RNA-dependent RNA polymerase [40]. T-705 has been shown to 

inhibit both oseltamivir- or amantadine-resistant 2009 H1N1 influenza at pM 

concentrations, however, it is unexpectedly much less effective against dually resistant 

viruses [41]. In addition, there are few published data on resistance to T-705 [19]. 

The antiviral drugs under clinical development seem to be promising. Nevertheless, 

it is expected that resistant strains will eventually develop if these antivirals are used as 

monotherapy clinically, as that observed with the M2 and NA inhibitors [42]. Therefore, 

the continuous research and developments of new anti-influenza drugs are both urgent and 

important. Particular emphasis should be placed on exploring the possiblity of combination 

therapy, and developing novel antivirals with a different mechanism of action that can 

significantly reduce drug resistance [43, 44]. 
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1.3 Viral spreading mode 

Viruses can cross the cellular boundaries and spread from one infected cell to other 

cells as well as from organism to organism.  The mechanism of viral dissemination has 

been examined in several studies for each virus, since the virus spreading mode is closely 

related to its pathogenesis and a better understanding of its mechanism can be strongly 

helpful to develop effective antiviral therapeutic strategies.   

It is generally accepted that viruses, released as cell-free virions from an infected 

cell, transmit to distant cells and tissues.  This spreading pathway contributes to 

wide-ranged diffusion of cell-free viruses.  However, in this spreading pathway, viruses 

are exposed to host anti-virus defense systems.  In contrast, direct infection to a 

neighboring cell is considered to be beneficial for the virus in terms of evasion from the 

host anti-virus defense.  There are two typical manners in infection to “right next door”:  

One is the virus transmission through cell-cell fusion by forming syncytium without 

production of progeny virions, and the other is mediated by virions without virus diffusion, 

generally designated cell-to-cell transmission [45,46].   

 The cell-cell fusion infection pathway is characteristic for a variety of virus such 

as paramyxoviruses, herpesviruses, some retroviruses, and so on.  For example in the case 

of measles virus belonging to Paramyxoviridae, infection is initiated by the interaction of 
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the viral hemagglutinin glycoprotein with host cell surface receptors.  The virus 

penetrates into the cell through membrane fusion mediated by the interaction of the fusion 

glycoprotein.  In later stages of infection, newly synthesized glycoproteins accumulate at 

the cell membrane resulting in fusion of the infected cell with neighboring cells by 

producing syncytia.  Thus, viruses can spread from cell to cell without producing cell-free 

virus particles (Figure 1-5A). 

The examples of the cell-to-cell transmission are diverse, and these mechanisms 

are dependent on pairs of viruses and host cells.  Vaccinia virus particles bound on the 

filopodium of an infected cell are repelled toward neighboring uninfected cells by the 

formation of filopodia using actin filament [76].  The filopodia direct viruses to 

uninfected cells.  Immunotropic viruses including retroviruses utilize an immunological 

synapse, designed as virological synapses for the cell-to-cell transmission [52-55].  

Claudin-1 and occludin, components of tight junction, are involved in hepatitis C virus 

(HCV) entry through the cell-to-cell transmission [48,49].  The cell-to-cell transmission 

through tight junction is also observed in other viruses which infect epithelial layers 

[50,51].  These retroviruses and HCV remain on the surface of an infected cell even after 

budding.  The uninfected cells adjacent to these infected cells can accept or take over 

viruses from the infected cell.  Thus, the cell-to-cell transmission can be categorized into 
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two manners based on the state of infecting viruses, either cell-free or cell-associated 

virions (Figure 1-5B). 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

On the other hand, it is generally believed that influenza viruses bud from infected 

cell surfaces and are efficiently released into the extracellular environment [56. 57].  

Since the releasing process is believed as a critical step for the viral transmissibility and 

Figure 1-5. Diversity of virus cell-to-cell transmission  
(A) cell-to-cell transmission via cell-cell fusion. (B) cell-to-cell transmission via cell-associated 
virions. [Abbreviation] CMV: cytomegalovirus, VSV: varicella zoster virus, VV: vaccinia virus, 
HCV: hepatitis C virus, HSV: helps simplex virus, HIV: human immunodeficiency virus, HTLV: 
human T-lymphotrophic virus. 
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pathogenicity in host organisms, neuraminidase required release of inhibitors the target of 

antiviral therapeutic have tended to be focus on the prevention of the virus release in recent 

years.  Although influenza viruses also belong to enveloped viruses, the existence of 

cell-to-cell transmission and its contribution have been hardly described so far.   
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1.4 Motivation for this thesis and thesis outline 

Recently, several kinds of air cleaner are developed and used for the elimination of 

dust or toxic substances from air. The pathogens related to respiratory infectious disease 

are also one of the important targets for such cleaners.  This study had started from the 

investigation about a material coated on the filter unit of an air cleaner.  We tested 

whether the material can eliminate influenza viruses from air by trapping the virions on it.  

The material was one of famous medical plant: Ginkgo biloba leaf extract (EGb).  

Through the investigation, EGb was not only capable of trapping the virions but also 

markedly reducing the infectivity of influenza viruses.  Since EGb was hardly described 

as an antiviral substance so far, we focused on the anti-influenza virus activity of EGb 

itself. 

In first study (Chapter 2), we evaluated anti-influenza virus activities of EGb to find 

new candidate for the influenza therapeutic. Through the evaluation, we serendipitously 

noticed the strange but interesting phenomena in the spreading mode of influenza viruses. 

In general, it was believed that influenza viruses were released as cell-free virions from 

infected host cells. Therefore, progenitor virions can spread into the outside environment 

and infect into next host cells far from producer cells. This property is useful to explain 

about the extremely high transmission ability of influenza viruses. However, our 
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observation in this study could not be explained by such conventional concepts and 

suggested the existence of unknown nature of influenza viruses in spreading between cells. 

This finding became the strong motivation to investigate the existence of novel 

transmission modes in influenza virus infection. 

In second study (Chapter 3), we focused on the transmission mode of influenza 

viruses. By reverse genetics, we generated recombinant influenza viruses that expressed 

GFP instead of NA and performed time-lapse photography in vitro. These results 

suggested that influenza viruses were capable of spreading via cell-to-cell transmission 

mode independent on NA activities. Furthermore, we examined the details of the newly 

transmission mode of influenza viruses and its significances.  

In final section (Chapter 4), I summarized our findings and discussed about the 

significances of cell-to-cell transmission in influenza virus infection. Furthermore, I 

proposed future directions of this study, so that further research about novel transmission 

modes of influenza viruses may lead to new insights and concepts for developing more 

effective drugs. 
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Chapter 2 

ANTI-INFLUENZA VIRUS ACTIVITY OF GINKGO 

BILOBA LEAF EXTRACTS 

 

Abstract 

We have examined the influence of Ginkgo biloba leaf extract (EGb) on the infectivity 

of influenza viruses in Madin-Darby canine kidney (MDCK) cells.  Plaque formation 

assays demonstrated that the multiplication of influenza viruses after the viral adsorption 

onto host cells was not affected in the overlaid agarose gel containing EGb.  However, 

when influenza viruses were pre-treated with EGb prior to exposure to cells, their 

infectivity was markedly reduced.  In contrast, the inhibitory effect was not observed 

when MDCK cells were pre-treated with EGb before the infection of influenza viruses.  

Hemagglutination inhibition assays revealed that EGb interfers with the interaction 

between influenza viruses and erythrocytes.  The antiviral effect of EGb was observed 

against influenza A (H1N1), and A (H3N2), and influenza B viruses.  These results 

suggested that EGb contains an anti-influenza virus substance(s), which directly affects 

influenza virus particles and disrupts the function of viral hemagglutinin for virus 

adsorption to host cells.  In addition to the finding of the anti-influenza virus activity of 
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EGb, our results demonstrated interesting and important insights into the screening system 

for anti-influenza virus activities.  In general, the plaque formation assay by using 

overlaid agarose gel containing drugs is used as the most authentic method to detect 

antiviral activities.  However, our results showed that EGb had no effects on not only the 

number of plaques but also the size of them in the plaque formation assay.  These may 

suggest the existence of “overlooked” inhibitory activities against influenza virus in past 

studies. 
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Introduction 

Influenza viruses, belonging to the family of Orthomyxoviridae, cause the epidemic 

disease in the human population every year despite the availability of effective vaccines.  

In a severe pandemic year, millions of people die from the virus infection.  Influenza 

viruses are classified by antigenic properties of two surface glycoproteins, hemagglutinin 

(HA) and neuraminidase (NA).  Sixteen HA subtypes (H1-H16) and nine NA subtypes 

(N1-N9) have been defined to date.  Influenza virus infection is limited by the interaction 

between HA and sialic acid moieties of glycoconjugates on host cells [4]. 

Some synthetic drugs such as amantadine and remantadine (both of them are known as 

the inhibitor of M2 ion channel), oseltamivir and zanamivir (both of them are known as 

neuraminidase inhibitor) have been available for decades, but all of them have side effects 

and some limitation in use [60, 64].  Therefore, novel substances and approaches are 

needed to control and prevent the virus disease.  The various natural products have 

distinct anti-influenza virus activities [67].  We have demonstrated that the high 

molecular weight lignin-related fraction from pine cone extracts (PCE) of Pinus parviflora 

Sieb. et Zucc. suppresses the multiplication of influenza virus through prevention of the 

viral RNA synthesis [62, 68].  We reported that Sanicula europaea L. leaf extracts 

contain an anti-influenza virus substance(s), which selectively inhibits influenza A virus, 
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but not influenza B virus [66].  Studies on natural products in terms of their anti-influenza 

virus activity have increased dramatically in the past several years [67].   

Ginkgo biloba leaf extract (EGb) is known as a potential phytomedicine 

having various drug actions, in particular, anti-coagulant, vasodilator, and 

anti-inflammatory activities [69].  In many countries, EGb and similar 

products have been prescribed as therapeutic medicines for cerebral and 

peripheral vascular inefficiency and cognitive impairments associated with 

aging [58, 59].  Unlike other herbal drugs, EGb has hardly been tested in its 

anti-influenza virus activity.  In the present study, we have examined the 

antiviral effect of EGb on influenza viruses.   
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Results 

Effect of EGb on the viability and growth of MDCK cells 

Prior to the examination of the anti-influenza virus activity of EGb, we investigated 

whether EGb affects the viability and growth of MDCK cells, host cells routinely used for 

influenza viruses.  The cell viability and growth were evaluated by counting the number 

of living cells as a function of time using the neutral red assay as described in Materials 

and Methods.  The cytotoxic effects of EGb were not observed at the concentrations less 

than 10 µg/ml (CC50 = 180 µg/ml) (Figure 2-1A).  Neither the growth rate nor the final 

cell density were affected in the presence of 10 µg/ml of EGb (Figure 2-1B), while a 

marked decrease in the cell growth rate was observed at 100 µg/ml (Figure 2-1B).  Thus, 

EGb at the concentration less than 10 µg/ml could be considered essentially non-toxic to 

MDCK cells.  It was confirmed that the solvent DMSO had no effect on the viability and 

the growth of MDCK cells in the range of concentrations used in this study (data not 

shown). 
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Figure 2-1  Effect of EGb on the viability and the growth of MDCK cells.  (A) MDCK cells 
(3.5 x 104) were seeded in 24-well tissue culture plates and incubated at 37°C in the presence of 
various concentrations of EGb (closed circles) or solvent DMSO alone (open circles).  After 
incubation for 24 h, the viable cell number was determined by the neutral red assay.  (B) MDCK 
cells (2 x 104) were seeded in 24-well tissue culture plates and incubated at 37°C in the absence 
(open circles) or presence of 10 µg/ml (closed square) and 100 µg/ml (closed triangles) of EGb, and 
0.01%(v/v) and 0.1%(v/v) of DMSO alone (open square and open triangle, respectively).  After 
incubation for the indicated periods, the viable cell number was determined by the neutral red assay. 
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Inhibition of the influenza virus infectivity by EGb 

To examine whether EGb is inhibitory for multiplication of influenza virus, plaque 

assays were carried out as described in Materials and Methods.  Cells were infected with 

influenza A/PR/8/34 virus at 37°C for 1 h.  The cells were washed extensively with 

serum-free MEM and then overlaid with the overlay medium (0.8% agarose in MEM) 

containing EGb at various concentrations.  The number of plaques and the size of them in 

the presence of EGb were not different from those in the absence of EGb (Figure. 2-2A), 

indicating that EGb does not inhibit the plaque formation by influenza virus infection.  

We further examined whether EGb is effective when mixed with viruses prior to exposure 

to cells.  Influenza virus was mixed with EGb at various concentrations at room 

temperature for 10 minutes and then exposed to MDCK cells.  In this case, EGb markedly 

inhibited the virus infectivity in a dose-dependent manner (Figure 2-2B).  EGb at the 

concentration of 5 µg/ml inhibited almost completely the plaque forming activity (IC50 = 

1.86 µg/ml).  These suggest that EGb inhibits the initial step of influenza virus infection 

prior to the viral internalization into the cytoplasm.  Next, we examined whether the 

inhibitory effect of EGb was directly or indirectly against influenza virus.  Plaque 

formation assays were performed using MDCK cells which were pre-treated with EGb at 

various concentrations for 1 h before the inoculation of influenza viruses.  There was no 
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statistically significant difference in the number of plaques and their sizes betwee tested 

groups in the presence of EGb and the control group in the absence of EGb (Figure 2-3).  

It was suggested that EGb directly interacts with influenza viruses and markedly reduced 

the infectivity. 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Figure 2-2  Effect of EGb on plaque formation.  Plaque assays were carried out as described in 
Materials and Methods.  (A) MDCK cells were infected with virus suspension (500 pfu/ml) and 
then overlaid with the overlay medium containing various concentrations of EGb.  The profile of 
plaques was shown in right panels.  Panels: 1, 2, 3, 4, 5, and 6 represent assays carried out in the 
presence of 0, 0.625, 1.25, 2.5, 5, and 10 µg/ml of EGb, respectively.  (B) Influenza A virus (500 
pfu/ml) was incubated with various concentrations of EGb prior to exposure to MDCK cells.  The 
profile of plaques was shown in right panels.  Panels: 1, 2, 3, 4, 5, and 6 represent assays in the 
presence of 0, 0.625, 1.25, 2.5, 5, and 10 µg/ml of EGb, respectively.  Results are represented as the 
value relative to the percent of the plaque number formed in the absence of EGb.   
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Figure 2-3  Effect of pre-treatment of host cells with EGb on influenza virus infection.  
MDCK cells were exposed by EGb at various concentrations and incubated at 37°C for 1h prior to 
virus infections.  After removing EGb, MDCK cells were inoculated with influenza A/PR/8/34 
viruses (500 pfu/ml), and plaque formation assays were carried out as described Materials and 
Methods.  Results are represented as the value relative to the percent of the plaque number formed 
in the absence of EGb.  All data were represented as mean ± SD, and the statistical analysis was 
performed using t-test to compare two groups. 
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Inhibition of hemagglutination by EGb 

Influenza virus infection initiates with the interaction of hemagglutinin (HA) on the 

virion with sialic acids on the cell surface.  To understand how EGb prevents the virus 

adsorption to cells, we examined whether EGb inhibits the influenza virus-mediated 

hemagglutination competitively. As shown in Figure. 2-4, EGb inhibited hemagglutination 

in a dose-dependent manner, suggesting that EGb interferes with the interaction between 

HA and sialic acids.   
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Figure 2-4  HA titers of influenza A virus treated with various concentrations of EGb.  (A) 
Influenza A/PR/8/34 virus and EGb were diluted by 2-fold dilution at each time and then mixed.  
After incubation at room temperature for 5 min, 0.5% chicken erythrocyte suspension was added to 
each of these mixtures in a 96-well assay plate, and the plate was incubated at room temperature for 
30 min for hemagglutination.  (B) Results were represented as a plot where the x-axis and y-axis 
indicate concentrations of EGb and HA titer, respectively.  The result is representative of three 
independent experiments. 
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Susceptibility of other influenza virus strains to EGb 

Our results suggest that EGb binds to HA and prevents the virus 

adsorption to cells.  We further examined whether the inhibitory effect of EGb 

is dependent on the type of influenza viruses.  EGb inhibited the infectivity of 

both A/Udorn/72 (H3N2) and B/Lee/40 viruses as well as A/PR/8/34 (H1N1) in 

an adsorption inhibition-dependent manner (compare Figure 2-5A and 2-5B), 

although the sensitivity was slightly different.  The 50% inhibitory 

concentration (IC50) value of EGb was calculated for three different types of 

influenza viruses which examined in this study.  Furthermore, the selectivity 

index (SI) was evaluated as the ratio of CC50 to IC50 and represented in Table 

2-1.  Influenza A/PR/8/34 virus was the most sensitive to EGb (Table 2-1).  

These suggest that the anti-viral activity of EGb is not dependent on the types 

of influenza viruses.   

 

 

 

 

 



Chapter 2: Anti-influenza virus activity of Ginkgo biloba leaf extracts 

 36 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2-5  Effect of EGb on plaque formation by two different subtypes of influenza virus.  
Plaque assays were carried out as described Materials and Methods.  (A) MDCK cells were infected 
with 0.5 ml of 500 pfu/ml of influenza A/Udorn/72 (H3N2), and B/Lee/40 viruses and then overlaid 
with the overlay medium containing various concentrations of EGb.  (B) Each influenza virus strain 
was diluted to 500 pfu/ml and incubated with various concentrations of EGb prior to exposure to 
MDCK cells.  One hour after virus inoculation, MDCK cells were washed with serum-free MEM 
and subsequently overlaid with the overlay medium without EGb.  Results are represented as the 
percent of the plaque number formed in the absence of EGb.  In Fig. 2-5A and 5B, results of 
A/Udorn/72 (H3N2) and B/Lee/40 are represented by gray bar and black bar, respectively. 
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Figure 2-5  (C) Results of plaque assay for A/Udorn/72 (H3N2) was represented.  
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Table 2-1  Selectivity indices of EGb in three different influenza virus strains. 
a IC50: 50% Inhibitory Concentration of EGb was calculated from the results of the plaque formation 
assay performed as shown in Fig. 2-2b and Fig. 2-5b.  b SI: Selectivity Index was evaluated as the 
ratio of CC50 to IC50, i.e., SI = CC50/IC50.  CC50: 50% Cytotoxic Concentration of EGb was 
calculated from the dose-response curve shown in Fig. 2-1a and its value (= 180 µg/mL) was used for 
the calculation of each SI.  All calculation was performed by using GraphPad Prism software as 
described in Materials and Methods. 
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Discussion 

In this study, we found the anti-influenza virus activity in Ginkgo biloba leaf extract 

(EGb).  Our results showed that EGb acted directly on influenza viruses and prevented 

the viral adsorption onto the host cell surface, suggesting that EGb interfered the 

interaction between influenza virus HAs and sialic acids on the host cell surface, although 

we could not exclude the possibility that EGb had a virucidal activity and directly 

inactivated influenza virus (Figure 2-6). 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-6. Working hypothesis of EGb to prevent influenza virus infection. 



Chapter 2: Anti-influenza virus activity of Ginkgo biloba leaf extracts 

 40 

The contents of an active constituent(s) in EGb are standardized around the world, i.e., 

24% of ginkgo flavonol glycosides (quencetin, kaempferol, and isorhammetin) and 6% of 

terpene lactones (ginkgolides and bilobalide).  EGb also contains a class of condensed 

tannins, which are polymers of primarily flavan-3-ols (catechin and epicatechin) with a 

covalent bond between the individual flavonol units.  Nakayama et al. have previously 

reported that tea-condensed tannins, (-)epigallocatechin gallate (EGCG) and teaflavin 

digallate, bind to the haemagglutinin of influenza virus, and inhibit its adsorption to 

MDCK cells [63].  Furthermore, Song et al. have shown that catechin-derivatives, 

including EGCG from green tea, inhibit not only the influenza virus hemagglutination but 

also the viral neuraminidase activity [65], the latter of which is thought to play a key role 

in the release of progeny virions from infected cells by cleavage of sialic acid moieties of 

host cell receptors and the prevention of self-aggregation of virions by cleavage of sialic 

acid still bound to the virus surface.  These findings provide important insights into the 

molecular mechanism of the action of EGb. 

Ginkgetin is a biflavone originally isolated form Ginkgo biloba leaf and has been 

found to inhibit the influenza virus sialidase [61].  However, our results showed that EGb 

prevented the viral adsorption in the initial step of influenza virus infection.  Therefore, in 

our case, an effective substance(s) in EGb may be different from Ginkgetin.   
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EGb was effective on three different types of influenza viruses tested so far, i.e., 

influenza A/PR/8/34 (H1N1), A/Udorn/72 (H3N2), and B/Lee/40 viruses, even though the 

sensitivity towards EGb was slightly different among them.  It is suggested that EGb may 

be potential have wide range inhibitor against influenza virus infection. 

As shown in Figure 2-2A, when plaque formation assays were performed with 

overlay medium containing EGb, there were no effects on not only the number of plaques 

but also their sizes.  Since our results suggested that EGb acts directly on influenza virus 

and prevent the initial step of viral infections, it was expected that the infectivity of 

progenitor virions would be decreased due to interaction with EGb present in overlay 

medium and consequently the size of an individual plaque should be reduced under the 

plaque formation assay.  The discrepancy between the predicted results and experimental 

results may raise an interesting and newly insight into influenza virus spreading modes. In 

general, it has been believed that influenza viruses were capable of spreading via cell-free 

virions released from infected cells depending on the enzymatic activity of NA.  In plaque 

assay, if cell-free virions were released into overlay medium containing agarose and 

antiviral agents (i.e., EGb) at active concentrations, the cell-free virions might have the 

opportunity to interact with EGb in microenvironments and its infectivity was decreased 
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immediately as well as in case of pre-treatment experiments. However there was no 

changing in the plaque size according to actual results.   

The initial step of virus infection has been generally described as the binding of 

cell-free virions to their host cell surface followed by internalization and replication.  

However, some kinds of virus, even if the virus does not have activities to form syncytium, 

also spread between cells without diffusing of progenitor virions into the extracellular 

environment. Recently, it has been highlighted the significance of such a secondary viral 

spreading mode [45, 46].  The secondary mode is often designated cell-to-cell 

transmission [45].  In the cell-to-cell transmission, progenitor virions are remaining on the 

surface of the producer cell even after budding, and cross the cellular boundaries via the 

cell-cell contact.  Therefore, newly produced virions are capable of spreading between 

adjacent cells, directly. For instance, Hepatitis C virus (HCV) is able to switch the 

spreading mode from via cell-free virions to cell-to-cell transmission so that progenitor 

virions can be escaped from host immune defence. Claudin-1 and occludin known as 

components of tight junction are involved in HCV entry to target host cells through 

cell-to-cell transmission [48, 49]. Besides the case of HCV infection, the cell-to-cell 

transmission had been also observed in other enveloped viruses (HSV-1[70-72], 

HTLV-1[54], HIV-1[73-75] and so on). Thus, the cell-to-cell transmission certainly plays 
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significant roles for the dissemination of several enveloped viruses. The strange results in 

this study raise one possibility that influenza viruses can spread without diffusing of 

progenitor cell-free virions and it may be capable of transferring to adjacent cells via 

cell-to-cell transmission as well as HCV. 

In conclusion, the results presented here showed that EGb interacts directly with 

influenza viruses and markedly reduces the infectivity by preventing the virus adsorption 

to host cells.  Furthermore, it was suggested that the inhibitory effect of EGb was not 

restricted to a certain subtype of influenza viruses.  Taken together, EGb is considered to 

be useful as a prevention agent against influenza virus infection, although further studies 

are necessary to confirm the anti-influenza virus activity in vivo. 

In addition to the finding of the anti-influenza virus activity of EGb, we demonstrated 

an interesting and important insight(s) into the screening system for the anti-influenza virus 

activity.  As is the case for the anti-influenza virus activity of EGb found in this study, 

some candidates for antiviral agents had been overlooked in past studies because of the 

existence of unknown transmission mode of influenza viruses.  Our results raise a caution 

for investigators who try to find anti-influenza virus compounds. 

In next study (chapter 3), we went to investigate the possibility that influenza viruses 

were capable of spreading via cell-to-cell transmission without cell-free virion. 
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Materials and Methods 

 

Reagents 

The powder of Ginkgo biloba leaf extract was gifted from Mitsubishi Paper Mills Co., 

Ltd., Japan, and dissolved in DMSO at the concentration of 100 mg/ml and stored at –30°C 

until use. 

 

Viruses 

Influenza A/PR/8/34 (H1N1), A/Udorn/72 (H3N2), and B/Lee/40 viruses were grown 

at 35.5°C for 48 h in allantoic sacs of 11 days old embryonated eggs (MIYAKE 

HATCHERY), and then the infected allantoic fluid was collected and stored at –80°C until 

use. 

 

Cells 

Madin-Darby canine kidney (MDCK) cells were maintained in Eagle’s minimum 

essential medium (MEM) at 37°C, in 5% CO2 atmosphere, supplemented with 10% 

fetal bovine serum, 0.03% L-glutamine, 100 U/ml penicillin and 100 µg/ml streptomycin.  
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Neutral red assay 

The neutral red assay is based on incorporation of neutral red into lysosomes in living 

cells.  To determine the effect of EGb on the cell viability, MDCK cells (3.5 x 104 

cells/well) were seeded into 24-well tissue culture plates and kept at 37°C overnight.  

After removal of the culture medium, 0.4 ml of MEM containing various concentrations of 

EGb or DMSO was added to each well of the plates. After incubation for 24 h at 37°C, 0.2 

ml of neutral red solution (0.15 mg/ml) was added to each well.  After incubation at 37°C 

for 3h, wells were washed with 0.2 ml of a fixative (1% formalin and 1% CaCl2).  To 

extract the dye, 0.2 ml of 1% acetic acid in 50% ethanol was added to each well.  After 

incubation at room temperature for 20 min, the amount of neutral red in each well was 

determined by measuring absorbance at 550 nm using a spectrometer.  Results were 

represented as the cell number that was calculated from the standard curve of cell numbers.  

Furthermore, to determine the effect of EGb on the cell growth, MDCK cells (2.0 x 104 

cells/well) were seeded into 24-well tissue culture plates and kept at 37°C overnight.  

After removal of the medium, 0.4 ml of MEM containing 0, 10, and 100 µg/ml of EGb 

were added to each well.  As control groups, DMSO was added to each well at final 

concentrations of 0.01% or 0.1%.  After incubation at 37°C for 0, 24, 48, and 72 h, viable 

cells were determined with the neutral red assay as described above.  
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Treatment of viruses and cells by EGb 

For pre-treatment of viruses by EGb, influenza A/PR/8/34 virus (500 pfu/ml) was 

mixed with EGb at several concentrations, incubated at room temperature for 10 minutes, 

and then subjected to plaque formation assay.  For post-treatment by EGb, MDCK cells 

infected with influenza viruses were overlaid with 0.8% agarose containing EGb at several 

concentrations in plaque formation assay.  To investigate the direct effect of EGb on host 

cells, MDCK cells were exposed by EGb at several concentrations and incubated at 37°C 

for 1 h.  After removing the medium containing EGb, MDCK cells were infected with 

influenza viruses followed by the plaque formation assay. 

  

Plaque formation assay 

A confluent monolayer culture of MDCK cells in a 6-well tissue culture plates was 

washed with serum-free MEM and then infected with 0.5 ml of influenza virus solution 

(500 pfu/ml = MOI of 2.5 x 10-4 ) in serum-free MEM.  After allowing at 37°C for 1 h for 

virus adsorption, the cells were washed with serum-free MEM and then overlaid with 

MEM containing 0.8% agarose, 0.2% BSA, and 1 µg/ml TPCK 

(L-1-Tosylamide-2-phenylethyl chloromethyl ketone) treated trypsin (sigma).  After 
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incubation at 37°C for 2 - 3 days, plaques were visualized by staining cells with 0.5% 

amido black.  Results were represented as a ratio of the plaque number formed in the 

presence of EGb to that in the absence of EGb. 

 

Hemagglutination assay 

Influenza A/PR/8/34 virus (2 x 108 pfu/ml) was diluted 9 times with PBS (-) by 2-fold 

dilution at each time, while 200 µg/ml of EGb were also diluted 10 times with PBS(-) 

containing 0.2% DMSO by 2-fold dilution at each time.  Fifty microliter of each diluted 

virus was mixed with 50 µl of each diluted EGb.  These mixtures were then maintained at 

room temperature for 5 min.  One hundred microliter of 0.5% chicken erythrocyte 

suspension (Nippon Bio-Test Laboratories Inc., Japan) was added to each of these mixtures 

in 96-well round bottom plates, and then the plate was incubated at room temperature for 

30 min for hemagglutination.  Results were represented as a plot where the x-axis and 

y-axis indicate concentrations of EGb and HA titer, respectively. 

 

Statistical analysis 

All of the data were represented as mean ± standard error of the mean (SEM).  

Comparisons for all pairs were performed by the Student t-test.  A p value > 0.05 was 
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considered to be no significant.  The calculation of 50% cytotoxicity concentration (CC50) 

and effective concentrations with 50% plaque reduction (EC50) were performed by 

nonlinear regression using GraphPad Prism’s “log (inhibitor) vs. response – variable slope” 

function (GraphPad Prism Version 5.01 for Windows, GraphPad Software Inc.). 
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Chapter 3 

TAMIFLU®-RESISTANT BUT HA-MEDIATED 

CELL-TO-CELL TRANSMISSION THROUGH APICAL 

MEMBRANES OF CELL-ASSOCIATED INFLUENZA 

VIRUSES  

 

Abstract 

The infection of viruses to a neighboring cell is considered to be beneficial in 

terms of evasion from host anti-virus defense systems.  There are two pathways for viral 

infection to “right next door”:  One is the virus transmission through cell-cell fusion by 

forming syncytium without production of progeny virions, and the other is mediated by 

virions without virus diffusion, generally designated cell-to-cell transmission.  Influenza 

viruses are believed to be transmitted as cell-free virus from infected cells to uninfected 

cells.  Here, we demonstrated that influenza virus can utilize cell-to-cell transmission 

pathway through apical membranes, by handover of virions on the surface of an infected 

cell to adjacent host cells.  Live cell imaging techniques showed that a recombinant 

influenza virus, in which the neuraminidase gene was replaced with the green fluorescence 

protein gene, spreads from an infected cell to adjacent cells forming infected cell clusters.  
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This type of virus spreading requires HA activation by protease treatment.  The 

cell-to-cell transmission was also blocked by amantadine, which inhibits the acidification 

of endosomes required for uncoating of influenza virus particles in endosomes, indicating 

that functional hemagglutinin and endosome acidification by M2 ion channel were 

essential for the cell-to-cell influenza virus transmission.  Furthermore, in the cell-to-cell 

transmission of influenza virus, progeny virions could remain associated with the surface 

of infected cell even after budding, for the progeny virions to be passed on to adjacent 

uninfected cells.  The evidence that cell-to-cell transmission occurs in influenza virus lead 

to the caution that local infection proceeds even when treated with neuraminidase 

inhibitors. 
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Introduction 

It is generally accepted that viruses, released as cell-free virions from an infected 

cell, transmit to distant cells and tissues.  This spreading pathway contributes to 

wide-ranged diffusion of cell-free viruses.  However, in this spreading pathway, viruses 

are exposed to host anti-virus defense systems.  In contrast, direct infection to a 

neighboring cell is considered to be beneficial for the virus in terms of evasion from the 

host anti-virus defense.  There are two typical manners in infection to “right next door”:  

One is the virus transmission through cell-cell fusion by forming syncytium without 

production of progeny virions, and the other is mediated by virions without virus diffusion, 

generally designated cell-to-cell transmission [45,46].   

 The cell-cell fusion infection pathway is characteristic for a variety of virus such 

as paramyxoviruses, herpesviruses, some retroviruses, and so on.  For example in the case 

of measles virus belonging to Paramyxoviridae, infection is initiated by the interaction of 

the viral hemagglutinin glycoprotein with host cell surface receptors.  The virus 

penetrates into the cell through membrane fusion mediated by the interaction of the fusion 

glycoprotein.  In later stages of infection, newly synthesized glycoproteins accumulate at 

the cell membrane resulting in fusion of the infected cell with neighboring cells by 
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producing syncytia.  Thus, viruses can spread from cell to cell without producing cell-free 

virus particles. 

The examples of the cell-to-cell transmission are diverse, and these mechanisms 

are dependent on pairs of viruses and host cells.  Vaccinia virus particles bound on the 

filopodium of an infected cell are repelled toward neighboring uninfected cells by the 

formation of filopodia using actin filament [76].  The filopodia direct viruses to 

uninfected cells.  Immunotropic viruses including retroviruses utilize an immunological 

synapse, designed as virological synapses for the cell-to-cell transmission [52-55].  

Claudin-1 and occludin, components of tight junction, are involved in hepatitis C virus 

(HCV) entry through the cell-to-cell transmission [48,49].  The cell-to-cell transmission 

through tight junction is also observed in other viruses which infect epithelial layers 

[50,51].  These retroviruses and HCV remain on the surface of an infected cell even after 

budding.  The uninfected cells adjacent to these infected cells can accept or take over 

viruses from the infected cell.  Thus, the cell-to-cell transmission can be categorized into 

two manners based on the state of infecting viruses, either cell-free or cell-associated 

virions. 

Influenza virus, belonging to the family of Orthomyxoviridae, is one of the most 

serious zoonotic pathogens and causes seasonal epidemics or periodic pandemics among 
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human beings around the world.  The viral envelope consists of a lipid bilayer derived 

from cells that anchors three of viral transmembrane proteins, hemagglutinin (HA), 

neuraminidase (NA), and matrix protein 2 (M2).  Influenza virus infection is initiated by 

the attachment of HA on virus particles to cell surface receptors containing sialic acids [4].  

It has been known that the specific interaction between HA and sialic acid species is one of 

the determinants of the host range of influenza viruses [77].   Beside its role in the viral 

attachment, HA is also involved in intracellular fusion between viral envelope and host cell 

endosome membrane in the endocytotic pathway, by which the virus content is released 

inside the host cell [78].  The functional maturation of HA is mediated by the cleavage of 

HA into two disulfide-linked glycopolypeptides, HA1 and HA2 [79], accomplished by 

trypsin or trypsin-like proteases derived from host cells [80-83].  The membrane fusion is 

induced by a conformational change in the mature HA, which is triggered at low pH in the 

endosome, allowing viral ribonucleoprotein complexes to release into the cytoplasm 

[84,85].  Thus, HA plays a critical role in initiation and progression of influenza virus 

infection.  Influenza virus NA possesses the enzymatic activity that cleaves α-ketosidic 

linkages between terminal sialic acids and adjacent sugar residues of cellular 

glycoconjugates [86].  The sialidase activity of NA removes terminal sialic acid residues 

from HA and NA proteins as well as host cell surface glycoproteins.  Since the terminal 
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sialic acid of sialyloligosaccharides is critical for HA binding, the receptor-destroying 

activity of NA serves to counter the receptor-binding activity of HA.  It is quite likely that 

this activity contributes to prevention of successive superinfection of an infected cell [87].  

In the absence of the functional sialidase activity, progeny virions aggregate on the cell 

surface due to the HA receptor-binding activity and can not be released [19,88].  Thus, 

NA cleaves sialic acids from the cell surface and facilitates virus release from infected 

cells.  However, it is not clear whether every progeny virion is released as cell-free virion 

to infect the uninfected cells after diffusion into the extracellular environment.  Influenza 

viruses are generally transmitted as cell-free viruses from infected to uninfected cell but 

they may also infect through the cell-to-cell transmission, in particular during local lesion 

formation. 

Here, we examined whether influenza virus transmits from an infected cell to 

adjacent uninfected cells without virus release.  Live cell imaging techniques showed that 

a recombinant influenza virus, in which the NA gene was replaced with the green 

fluorescence protein gene, spreads from an infected cell to adjacent cells forming infected 

cell clusters.  Furthermore, progeny virions remain associated on the surface of infected 

cell even after budding, and then progeny virions could be passed to adjacent uninfected 

cells. 
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Results 

Influenza virus can spread in an NA-independent manner to adjacent cells. 

To examine the transmission pathway of influenza virus, we performed 

immunofluorescence analyses by using anti-nucleoprotein (NP) polyclonal antibody.  

Influenza virus can form an infection center even in the presence of oseltamivir, a potent 

NA inhibitor (commercially known as Tamiflu) [89-91].  Oseltamivir at the concentration 

of 50 µg/ml completely prevented the release of progeny influenza viruses (Figure 3-1A).  

Noted that a large number of single fluorescent foci caused by initial infection markedly 

expanded and formed cell clusters consisting of 5-10 infected cells in an MDCK cell 

monolayer (Figures 3-1B and 3-2), suggesting influenza virus can spread to some extent in 

the presence of oseltamivir.  To verify that NA is not involved in this spreading, we 

generated an NA-deficient influenza virus by a reverse genetics method as described 

previously [92,93].  The NA-deficient influenza virus contains a mutated NA segment, in 

which the NA coding region including a sialidase catalytic domain was replaced with the 

enhanced green fluorescent protein (EGFP) gene [92].  By this replacement, the NA 

activity is eliminated from the recombinant influenza virus, and EGFP can be utilized as a 

marker for viral infections.  Immunofluorescence analyses demonstrated that the 

NA-deficient influenza virus also forms infected cell clusters similarly to those formed by 
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wild-type influenza virus in the presence of oseltamivir (Figure 3-1B).  The fluorescence 

pattern of NP overlapped with the localization of GFP derived from the EGFP gene of the 

NA-deficient influenza virus (Figure 3-3).  Thus, NA-deficient influenza virus can be 

used to investigate the NA-independent infection pathway of influenza virus.   

Next, we performed live cell imaging analyses to directly observe the infection 

time course of the NA-deficient influenza virus.  The GFP fluorescence derived from the 

NA-deficient influenza virus first appeared in a single cell on an MDCK cell monolayer at 

24 hours post infection.  The virus started to spread from an infected cell to adjacent cells 

in 5-6 hours after the first appearance of a GFP-positive cell (Figure 3-4).  The spreading 

rate was clearly faster than the rate of cell divisions.  The mean doubling time of 

uninfected MDCK cells was 20-24 hours under the condition employed here, and it is 

expected that the proliferation speed would be much slowly because infected MDCK cells 

were maintained in the serum-free medium and formed cell monolayer at the high cell 

density.  These suggest that NA-deficient influenza viruses may infect adjacent cells 

through the cell-to-cell transmission mechanism without apparent production of cell-free 

virions.   
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Figure 3-1.  Influenza viruses can spread independent of the NA activity.  (A) MDCK cells 

were infected with influenza virus A/WSN/33 at a multiplicity of infection (MOI) of 0.001 PFU per 

cell.  At 48 hours post infection (hpi), culture supernatant was collected, and then its virus titer was 

determined by plaque assays.  Each result was represented by a value relative to that in the absence 

of the drug.  Error bars indicate standard deviation (s.d.) from 3 independent experiments.  (B) 

Confluent MDCK cells were infected by wild-type influenza virus A/WSN/33 or NA-deficient 

influenza virus at MOI of 0.0001 in the presence or absence of 50 µg/ml oseltamivir phosphate.  

NA-deficient influenza virus was generated by reverse genetics as previously described [92].  After 

incubation at 37˚C for 36 hours, immunofluorescence analyses were performed using 

anti-nucleoprotein (NP) polyclonal antibody and anti-rabbit IgG antibody conjugated to Alexa Fluor 

568 (Invitrogen).  Scale bar, 100 µm. 
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Figure 3-2.  Formation of cell cluster caused by initial infection.  MDCK cells were infected 

with influenza virus A/WSN/33 at moi of 0.0003 in the presence or absence of 50 µg/ml oseltamivir 

phosphate.  After incubation for 8 and 24 h, immunofluorescence analyses were performed using 

anti-NP antibody and anti-rabbit IgG antibody conjugated to Alexa Fluor 488 (Invitrogen).  Nuclear 

DAPI and viral NP staining patterns are shown in blue and green, respectively.  Enlarged views are 

shown in red borders.  Scale bar, 100 µm. 
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Figure 3-3.  The expression of GFP derived from NA-deficient influenza virus overlapped 

with the localization of NP.  MDCK cells were infected with NA-deficient influenza viruses at 

MOI of 0.0001.  After incubation at 37˚C for 48 hours, immunofluorescence analyses were 

performed using anti-NP antibody.  Scale bar, 100 µm. 

Figure 3-4.  NA-deficient influenza virus spreads through cell-to-cell transmission.  Confluent 

MDCK cells were infected with the NA-deficient influenza virus at MOI of 0.0001.  After incubation at 

37˚C for 24 hours, a single GFP-positive cell, in which the recombinant virus replicated, was found at 1 

hour after starting monitoring, and then this cell and its neighborhood were traced during the period from 

24 hpi to 48 hpi at interval of 1 hour.  Scale bar, 50 µm. 
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Cell-to-cell transmission pathway of influenza viruses is less sensitive to neutralizing 

antibody 

The cell-to-cell virus transmission pathway could be interpreted as one of viral 

evolving strategies to avoid neutralizing antibody responses [45,94,95].  Therefore, we 

examined the effect of neutralizing antibody on NA-deficient influenza virus.  A 

polyclonal antibody with the neutralizing activity against influenza virus particles inhibited 

infection of cell-free viruses to less than 50% at the concentration of 0.03%, although the 

cell cluster formation was observed at the concentration less than 0.01%.  On the other 

hand, the NA-independent transmission of the NA-deficient influenza virus was blocked 

only when neutralizing antibody was present at the concentration of 0.3% (Figure 3-5).  

These results indicated that the NA-independent transmission of influenza viruses is less 

sensitive to the neutralizing antibody. 
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Figure 3-5.  The cell-to-cell transmission of the NA-deficient influenza virus is less sensitive to the 

neutralizing antibody.  (A) Infection of the wild-type and (B) NA-deficient influenza virus were performed 

in the presence or absence of antiserum containing neutralizing antibodies.  Immunofluorescence analyses 

were performed with cells infected with wild-type influenza virus at 18 hpi using anti-NP antibody and 

anti-rabbit IgG antibody conjugated to Alexa Fluor 488 (Invitrogen).  GFP fluorescence derived from the 

recombinant virus was observed at 36 hpi.  Scale bar, 100 µm.  (C) The level of viral spreading was 

indicated in the graph by measuring NP and GFP derived from wild-type and NA-deficient virus, 

respectively.  Five different microscope fields were taken randomly, and then the intensity of green color 

was analyzed with ImageJ NIH image processing software.  Each result was represented by a value relative 

to that in the absence of neutralizing antibodies.  Error bars indicate s.d. from 3 independent experiments. 
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NA-independent transmission of influenza virus is HA-dependent.   

Next, to investigate the mechanism of NA-independent transmission of influenza 

virus, we examined whether HA is involved in this transmission.  In the absence of the 

NA activity, virus spreading from an infected cell to adjacent cells was dramatically 

suppressed by omission of trypsin, essential for maturation of HA, from the experimental 

condition (Figure 3-6A).  The GFP fluorescence derived from NA-deficient influenza 

virus appeared in a single cell at 24 hours post infection.  However, this virus did not 

spread, but rather disappeared during subsequent 24 hours (Figure 3-7).  These 

observations indicate that the NA-independent cell-to-cell transmission of influenza virus 

is dependent on HA maturation mediated by trypsin, as is the case for the general cell-free 

transmission of this virus. 

To clarify whether virus particles or viral RNP complexes are transmitted to adjacent 

cells, we examined the effect of amantadine on the cell-to-cell transmission of influenza 

virus.  Amantadine inhibits the early step of uncoating of influenza virus RNP from virion 

in endosomes [96,97].  For this study, other influenza virus strain, influenza virus 

A/Udorn/72, was used instead of influenza virus A/WSN/33 because influenza virus 

A/WSN/33 is highly resistant to amantadine [98].  We confirmed that influenza virus 

A/Udorn/72 is sensitive to oseltamivir (Figure 3-8) and could also spread via cell-to-cell 
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transmission independent of the NA activity as did for influenza virus A/WSN/33 (Figures 

3-1B and 3-6B).  In the case of a single administration of amantadine, fluorescent foci 

derived from infected cells scattered, and the number of single foci was greatly decreased 

compared with that in the absence of the drugs.  In contrast, a single administration of 

oseltamivir, fluorescent foci formed some clusters and expanded in a time-dependent 

manner (Figure 3-6B).  This dissimilarity of inhibitory manner was caused by the 

difference of the sites of action between amantadine and oseltamivir.  Amantadine 

inhibits the replication of influenza A virus by preventing the translocation of vRNP 

complexes from endosomes to the cytoplasm, whereas oseltamivir has no effects on viral 

replication itself but inhibits the release of cell-free virions from infected host cells.  We 

investigated the inhibitory effect of amantadine on the cell-to-cell transmission of 

influenza viruses.  The formation of infected cell clusters was observed with 

co-administration of amantadine and oseltamivir, as well as with a single administration of 

oseltamivir (Figure 3-6B).  However, the quantitative analysis revealed that the size of 

infected cell clusters with the co-administration were decreased as compared to that with 

oseltamivir alone (Figure 3-6C).  These observations indicated that the NA 

activity-independent cell-to-cell transmission of influenza virus was susceptible to the 

inhibitory effect of amantadine, suggesting that the cell-to-cell transmission undergoes 
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through endocytosis but vRNP complex itself is not incorporated in the infected cells by 

adjacent cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-6.  The cell-to-cell transmission of the NA-deficient influenza virus requires functional HA.  

(A) Confluent MDCK cells were infected with the NA-deficient influenza virus at MOI of 0.0001 in the 

presence or absence of 1 µg/ml trypsin.  GFP fluorescence derived from the recombinant virus was observed 

at 36 hpi.  Scale bar, 100 µm.  (B) MDCK cells were infected with influenza virus A/Udorn/72 at moi of 

0.0001 in the presence or absence of 50 µM amantadine or 50 µg/ml oseltamivir phosphate.  Amantadine at 

the concentration of 50 µM almost completely inhibited the production of progeny virions (data not shown).  

After incubation for 12, 24, and 48 h, immunofluorescence analyses were performed using anti-NP antibody 

and anti-rabbit IgG antibody conjugated to Alexa Fluor 488 (Invitrogen).  Viral NP and nuclear DAPI 

staining are shown in green and blue, respectively.  Scale bar, 100 µm.  (C) Median sizes of clusters were 

shown as box plots summarizing sizes of 60 individual infectious foci formed in the presence of oseltamivir 

alone, or both oseltamivir and amantadine.  Immunofluorescence analyses were performed as described in 

(B) at 24 hpi.  Boxes enclose the lower and upper quartiles; thick horizontal lines represent the median; 

dashed lines indicate the extreme values; and black dots are outliers of individual infectious foci.  The size of 

infectious foci was measured with AxioVision Release 4.7.2 imaging software (Carl Zeiss).  Median sizes 

shown in red letters were clearly different from each other (p < 0.01). 
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Figure 3-7.  NA-deficient influenza virus does not spread in the absence of trypsin.  Confluent 

MDCK cells were infected with the NA-deficient influenza virus at MOI of 0.0001 in the absence of 

trypsin.  After incubation at 37˚C for 24 hours, a single GFP-positive cell was detected, and then this cell 

and neighborhood cells was traced during the period from 24 hpi to 48 hpi at interval of 1 hour.  Live cell 

imaging data analyses were performed by Biostation ID (GE healthcare).  An infected cell is represented 

by red arrowhead.  Scale bar, 50 µm. 
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Figure 3-8.  Influenza virus A/Udorn/72 was sensitive to oseltamivir.  MDCK 
cells were infected with influenza virus A/Udorn/72 at a MOI of 0.001 PFU per 
cell.  At 36 hpi, the culture supernatant was collected, and then its virus titer was 
determined by plaque assays.  Each result was represented by a value relative to 
that in the absence of the drug.  Error bars indicate s.d. from 3 independent 
experiments. 
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Cell-to-cell transmission occurs on the apical cell membrane.   

The virus transmission undergoes from infected to uninfected cells through either 

basolateral [99-101] or apical [102-105] sides.  In the case of influenza virus, cell-free 

progeny virions are released only from the apical surface of polarized epithelial cells [57].  

This releasing polarity is achieved by directed transport of viral membrane proteins to the 

apical plasma membrane [106].  Indeed, that HA and NA glycoproteins are associated 

with lipid rafts, and the raft association has been implicated in apical transport [107,108].   

To determine whether or not the cell-to-cell transmission of the NA-deficient 

influenza virus occurs on the apical surface, we performed transwell assays in the presence 

of the neutralizing antibody to influenza A viruses.  The neutralizing antibody was added 

to infected MDCK cell monolayer from apical or basolateral side, and the inhibitory effect 

on the spread of GFP fluorescence derived from the recombinant virus was examined.  

Addition of high concentrations of the neutralizing antibody from the apical side blocked 

the cell-to-cell transmission of the NA-deficient influenza virus, whereas the addition from 

the basolateral side had no effect (Figure 3-9).  These observations indicated that the 

polarity in the influenza virus budding in the cell-to-cell transmission pathway is apical. 

 



Chapter 3: Cell-to-Cell Transmission of Influenza Virus 

 68 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-9.  The cell-to-cell transmission of the NA-deficient influenza virus occurs the apical 

cell surface.  Confluent MDCK cells were prepared in transwell inserts and infected with the 

NA-deficient influenza virus at MOI of 0.0001 in the presence or absence of 0.3% (v/v) antiserum 

containing neutralizing antibodies (nAb) to influenza A virus.  After virus adsorption, the antiserum 

was added from apical or basolateral side.  GFP fluorescence derived from the recombinant virus 

was observed at 36 hpi.  The antiserum added from the apical side could markedly block the 

cell-to-cell transmission of the NA-deficient influenza virus, whereas the antiserum added from the 

basolateral side could not.  Scale bar, 100 µm. 
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Influenza viruses can not re-infect previously infected cells 

Previous report showed that influenza viruses were refractory to superinfection with 

a second cell-free virus [87].  In the case of the cell-to-cell transmission of influenza virus 

in the presence of oseltamivir, it is possible that a progeny virion is temporarily bridged by 

HA between an infected cell and adjacent uninfected cells, since viruses cannot be released 

from infected cell surface due to the inhibition of the NA activity by oseltamivir.  The 

cell-associated progeny virion may have an opportunity to re-infect the previously infected 

cell, compared to a cell-free progeny virion in the general spreading.  Thus, we examined 

whether influenza viruses can infect the cell which had already been infected, using ts53 

mutant and wild-type influenza virus A/WSN/33.  ts53 virus has a substitution mutation 

from U to C at the nucleotide position of 701 in the PA gene.  This substitution introduces 

an amino acid change from wild-type Leu 226 to Pro 226 and gives a defect in the viral 

genome replication process [109,110].  At first, cells were infected with ts53 virus at moi 

of 10, and after incubation for 0, 2, 4, 6, and 8 hours, cells were superinfected with 

wild-type virus at moi of 10.  The amount of segment 3 viral RNA (vRNA) encoding PA 

was determined quantitatively by RT-PCR.  Then, using a mutated primer for PCR, we 

could introduce a Stu I site only in the PCR products derived from the wild-type sequence 
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(Figure 3-10A).  Thus, DNA fragments amplified from the wild-type and ts53 could be 

distinguished by Stu I digestion.  The digested DNA fragments containing 220 and 199 

base pairs derived from ts53 and wild-type, respectively, were separated through PAGE.  

After 6 hours or later post infection, re-infection with the second challenging virus hardly 

occurs in the absence of oseltamivir.  However, in the presence of oseltamivir, appearance 

of wild-type fragment suggests that the re-infection had occurred (Figure 3-10B).  The 

result indicates that progeny virus particles remain on the surface of infected cell even after 

budding, and can infect the cell previously infected, as well as uninfected cells adjacent to 

the infected cell, when oseltamivir is present. 
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Figure 3-10.  Influenza viruses can not re-infect previously infected cells.  (A) A method for 

determination of the amount of segment 3 genome derived from ts53 and wild-type.  Total RNA was 

reverse-transcribed with the primer PA-895-rev, which is complementary to the segment 3 positive-sense 

RNA.  The cDNA was amplified by PCR using primers, PA-895-rev and PA-695-cut partially corresponding 

to segment 3 positive sense RNA between the nucleotide sequence positions 678 to 700 except for 696 and 

697, which are shown in red letters.  Since segment 3 of ts53 has a substitution mutation from U to C at the 

nucleotide position of 701, the PCR product derived from wild-type could be digested by Stu I but not that 

from ts53.  Then, PCR products were digested with Stu I and separated through 8% PAGE.  (B) Detection 

of the genome of the segment 3 derived from ts53 or wild-type.  At 3 hours post superinfection of wild-type 

virus, total RNA was extracted, and semi-quantitative RT-PCR was performed.  Subsequently, the amplified 

DNA products were digested with Stu I and separated through 8% PAGE.  Large and small fragments 

derived from ts53 and wild-type viruses were 220 and 199 base pairs, respectively.  The relative amount of 

wild-type segment 3 to that at 0 hour in the absence of oseltamivir phosphate was shown in the graph.  Error 

bars indicate S.D. from 3 independent experiments.  White bar, in the absence of oseltamivir phosphate; 

black bar, in the presence of oseltamivir phosphate. 
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Discussion 

With the except for the virus which spreads through the cell-cell fusion 

transmission, virus infection is initiated by the binding of cell-free virions to their host 

cells.  Recently, the virus transmission mechanism from an infected cell to adjacent cells 

without virus diffusion into the extracellular environment is highlighted from the aspect of 

its significance in virus spreading in the presence of antibodies [45,46].  This 

antibody-insensitive pathway is often called cell-to-cell transmission [45].  The 

cell-to-cell transmission may be categorized into two pathways, i.e., transmission of 

cell-free virions to adjacent uninfected cells, and transmission of progeny virions 

associated on the surface of an infected cell even after budding through narrow synaptic 

space between an infected cell and adjacent uninfected cells.  As an example of the 

former mechanism, cell-free vaccinia virus particles associated with the filopodium of an 

infected cell are repelled toward neighboring uninfected cells by inducing the formation of 

actin filament [76].  Several cases have been reported for the latter mechanism:  

Immunotropic viruses including retroviruses utilize the immunological synapses [52-55].  

Immune cells are not constitutively polarized, but contain the machinery that directs their 

secretory apparatus towards a cell that is involved in an immunological synapse.  This 

machinery can be subverted by retroviruses containing human immunodeficiency virus 
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(HIV).  An HIV-infected cell can polarize viral budding towards a target cell expressing 

receptor through a structure called a virological synapse.  Virions bud from an infected 

cell into a synaptic cleft, from which they fuse with the target-cell plasma membrane 

[111-114].  The progeny virions of HCV are trapped between infected and uninfected cell 

membranes at the tight junction.  Using Claudin-1 known as a component of the tight 

junction and one of the entry factors of HCV [48], virions fuse with and penetrate 

uninfected target cells [94].  Therefore, HCV may acquire the ability to spread within 

polarized liver epithelium.  Thus, the cell-to-cell transmission certainly plays significant 

roles for the dissemination of several enveloped viruses.  However, the cell-to-cell 

transmission of influenza virus has not been discussed well.  Here, we have shown that 

influenza virus spreads by forming infected cell clusters even in the presence of an NA 

inhibitor.  Live cell imaging clearly showed that influenza virus lacking the NA activity 

spreads from an infected cell to adjacent cells through the cell-to-cell transmission 

mechanism (Figure 3-4).  This was also the case for wild-type influenza virus during 

early phases of infection (Figure 3-6B).  In the cell-to-cell transmission of influenza virus, 

progeny virions could remain associated with the surface of infected cell even after 

budding, and then these progeny virions can be passed on to adjacent uninfected cells. 

We showed that the cell-to-cell transmission of the NA-deficient influenza virus 
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depends on functional HA.  The viral spreading was dramatically suppressed without HA 

activation by trypsin treatment (Figure 3-6A).  Moreover, the cell-to-cell transmission 

was also blocked by amantadine, which inhibits the acidification of endosomes required 

for uncoating of influenza virus particles in endosomes [96,97].   These findings indicate 

that functional HA and endosome acidification by M2 ion channel are required for the 

cell-to-cell influenza virus transmission, thereby allowing viruses to enter the adjacent cells 

through the endocytotic pathway (Figure 3-6). 

Our findings showed that the NA-deficient influenza virus is not diffused into the 

extracellular environment.  The viral spreading in the absence of oseltamivir appears to be 

much faster compared to the viral spreading in the presence of the drug, suggesting that 

NA could be involved in determination of spreading speed (Figure 3-6B).  The NA 

activity prevented progeny virions from entering cells which virus came from (Figure 

3-10), implying that progeny virus particles should be transmitted to adjacent uninfected 

cells.  The cell-to-cell transmission started in early phase of infection, and the virus 

spread through diffusion of cell-free viruses (Figure 3-6B).  Indeed, it was reported that 

the cell-to-cell transmission is a rapid spreading pathway in the case of vaccinia virus [76].  

Vaccinia virus induces a blocking mechanism of superinfection and thereby infects to 

adjacent uninfected cells efficiently.  In early phases of vaccinia virus infection, viral 
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proteins A33 and A36 are expressed at the infected cell surface.  Once cell-free virus 

particles contact the filopodium, the A33/A36 complex induces the formation of actin 

filament, which causes this superinfected virion to be repelled toward uninfected cells [76].  

Influenza viruses can re-infect the cells previously infected in the presence of oseltamivir 

(Figure 3-10), suggesting that a progeny virion may be bridged by HA between infected 

and adjacent uninfected cells temporarily (Figure 3-11).  Thus, in the case of the 

cell-to-cell transmission of influenza virus, we propose that progeny virions associated 

with the surface of infected cells even after budding are directed to adjacent uninfected 

cells. 

 

 

 

 

 

 

 

  The cell-to-cell transmission mechanism of influenza virus is distinctly 

different from that of vaccinia virus in the infecting virus status: Infected cell-associated 

Figure 3-11. Working hypothesis for cell-to-cell transmission of influenza virus.  

In cell-to-cell transmission, influenza virus may be bridged by HA between infected 

and adjacent uninfected cells temporarily. The progeny virion can re-infect the cells 

previously infected in the presence of oseltamivir.  
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virions and cell-free virions are involved in the cell-to-cell transmission of influenza virus 

and vaccinia virus, respectively.  The strategy for influenza virus appears to be similar to 

that for HCV.  HCV progeny virions budded from an infected cell are trapped between 

infected and uninfected adjacent cell membranes at the tight junction.  HCV virions then, 

enter into adjacent cells through endocytosis and low pH-dependent membrane fusion 

using Claudin-1 [48].  The cell-to-cell transmission of influenza virus also required 

functional HA and endosome acidification by M2 ion channel.  However, it has not been 

reported that HCV has a gene encoding a receptor destroying enzyme similar to NA of 

influenza virus.  We speculated that HCV progeny particles are bridged between infected 

and adjacent uninfected cells temporarily like influenza virus in the presence of oseltamivir.  

Progeny influenza virus particles could be transmitted to adjacent uninfected cells 

efficiently in the presence of the NA activity, suggesting that the cell-to-cell transmission 

of influenza virus is more strategic than that of HCV. 

Our findings raise an interesting question as to what is the biological significance 

of cell-to-cell transmission for influenza virus infection in vivo.  Until now, it had been 

believed that influenza virus was released from infected cells as cell-free virions and then 

spread from cell to cell as well as from organism to organism.  The transmission mode by 

cell-free virions undergoes the extremely high-speed of its diffusion and causes epidemic 
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or pandemic infection.  The tropism in an infected animal body is generally restricted to 

respiratory tract or lung and its periphery, and the requirement of a trypsin-like protease 

has been generally described for the reason of the restriction.  It is possible that the 

cell-to-cell transmission mode may play a significant role for the virus spreading inside of 

organism, although cell-free influenza virions are causative of high-speed spreading.  At 

the least, the limited but distinct level of infection followed by replication could provide 

some opportunity to generate influenza virus variants.  It is an open question whether the 

cell-to-cell transmission mode is involved in the pathogenesis caused by influenza virus 

infection in vivo. 

The existence of cell-to-cell transmission pathway gives a caution when NA 

inhibitors are used, because NA inhibitors may not be sufficient to completely block the 

spread of influenza virus in local microenvironments.  Since this cell-to-cell transmission 

pathway exists, development of antiviral therapeutic strategies in addition to NA inhibitors 

is highly recommended. 
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Materials and Methods 

 

Cells and viruses  

Madin-Darby canine kidney (MDCK) cells were kindly gifted by A. Ishihama (Hosei 

University), and maintained in minimal essential medium (MEM) (Nissui) containing 10% 

fetal bovine serum.  Human embryonic kidney 293T cells were kindly gifted by Y. 

Kawaoka (University of Tokyo), and maintained in Dulbecco modified Eagle medium 

(DMEM) (Nissui) supplemented with 10% fetal bovine serum.  Influenza virus 

A/Udorn/72 was grown in allantoic sacs of 11 day-old embryonated eggs (MIYAKE 

HATCHERY).  Wild-type influenza virus A/WSN/33 and ts53 mutant were used after 

single-plaque isolation.  MDCK cells were infected with influenza virus A/WSN/33 or 

ts53 at a multiplicity of infection (MOI) of 0.1 PFU/cell, and incubated at 37°C and 34°C, 

respectively.  After incubation for 24 h, the culture fluid was harvested and centrifuged at 

1,700 × g for 10 min.  The virus suspension was stored at −80°C until use. 

 

Antibodies 

The production of rabbit polyclonal anti-NP antibody was described previously 

[115], and this antibody was used as a primary antibody for indirect immunofluorescence 
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assay.  A goat anti-rabbit IgG antibody conjugated to Alexa Fluor 488 or Alexa Fluor 568 

was purchased from Invitrogen and used as a secondary antibody for indirect 

immunofluorescence assay.  A polyclonal antibody against influenza A virus was 

obtained from 2-month-old female rabbit immunized with 250 µg of purified virions of 

influenza virus strain A/Puerto Rico/8/34 [116].  The generation of antibodies was 

boosted three times and used as neutralizing antibodies to block the influenza virus 

infection. 

 

Determination of the inhibition effect of oseltamivir on virus production 

MDCK cells were infected with influenza virus A/WSN/33 at a multiplicity of 

infection (MOI) of 0.001 PFU per cell.  After virus adsorption at 37˚C for 1 hour, the 

cells were washed with serum-free MEM and incubated at 37˚C with maintenance medium 

(MEM containing vitamins and 0.1% BSA) containing oseltamivir.  At 48 hours post 

infection (hpi), culture supernatant was collected, and then its viral titer was determined by 

plaque assays.  

 

Generation of neuraminidase (NA)-deficient viruses 

An NA-deficient influenza virus possessing the terminal sequences of NA 
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segment but lacking the NA coding region, which was replaced with enhanced green 

fluorescent protein (EGFP) gene, was generated by reverse genetics as described 

previously [92,93].  For reverse genetics, we used plasmids containing cDNAs of the 

influenza virus A/WSN/33 viral genome under the control of the human RNA polymerase 

I promoter (referred to as Pol I plasmids).  Briefly, 293T cells were transfected with seven 

Pol I plasmids for production of all vRNA segments of influenza virus A/WSN/33 and one 

for the mutant NA vRNA segment containing EGFP ORF, together with protein 

expression vectors for PB2, PB1, PA, and NP controlled by the chicken β-actin promoter 

(pCAGGS).  TransIT-293 (Mirus) was used for transfection.  At 24 hours post 

transfection, recombinant viruses were harvested from the cell surface using bacterial NA 

derived from Clostridium perfringens (sigma).  MDCK cells were infected with harvested 

recombinant viruses treated with N-tosyl-L-phenyl-alanine chloromethyl ketone 

(TPCK)-trypsin (1 µg/ml).  After confirmation of GFP fluorescence derived from 

amplified recombinant virus genomes at 48 hours after infection, the recombinant viruses 

on the cell surface were collected using bacterial NA (Figure 3-12).  The viral titer of 

recombinant viruses was determined by counting the number of infected foci using a 

fluorescence microscopy (Carl Zeiss). 

 



Chapter 3: Cell-to-Cell Transmission of Influenza Virus 

 81 

 

 

 

 

 

 

 

 

 

 

 

Indirect immunofluorescence assay 

Cells on coverslips were fixed with 4% paraformaldehyde in phosphate-buffered 

saline (PBS) for 10 min and permeabilized with 0.2% NP-40 in PBS. The coverslips were 

soaked in 1% bovine serum albumin in PBS, and then incubated at room temperature for 1 

hour with a primary antibody.  After being washed twice with PBS, the coverslips were 

incubated at room temperature for 1 hour with a secondary antibody.  The coverslips were 

then incubated at room temperature for 5 min with 3 µM 4’,6’-diamidino-2-phenylindole 

HA 

PB1 

M 

PB2 NP PA 

NA NS 

PB1 PB2 NP PA 

8 plasmids for viral RNA synthesis 
(by human RNA polymerase I promoter) 

4 plasmids for viral protein synthesis 
(by chicken β-actin promoter) 

GFP�

Transfect 12 plasmids to 293T cells�

Harvest recombinant viruses by 
exogenous NA derived from 
Clostridium perfringens  �

24 hrs�

Figure 3-12. Experimental scheme of reverse genetics to generate NA-deficient viruses. 
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(DAPI) and finally mounted on glass plates, and cells were observed under the 

fluorescence microscope. 

 

Live cell imaging analyses 

Living cells were analyzed using BioStation ID system (GE Healthcare).  

Confluent MDCK cells were infected with the NA-deficient influenza virus at the 

multiplicity of infection (MOI) of 0.0001 in the presence or absence of 1 µg/ml 

TPCK-trypsin.  At 24 hours post infection, culture dishes containing infected cells were 

set into the chamber of BioStaion ID system, which was maintained at 37˚C under 5% CO2 

and 95% humidity.  Then, images were acquired during next 24 hours at interval with 1 

hour.  The excitation wavelength was controlled by a manual filter wheel equipped with 

filters suitable for enhanced green fluorescence protein (EGFP). 

 

Transwell assay 

Confluent MDCK cell monolayer was prepared on transwell inserts (BD Falcon, pore 

size 0.4 µm) and infected with the NA-deficient influenza virus at MOI of 0.0001.  After 

virus adsorption at 37˚C for 1 hour, the cell monolayer was washed with serum-free MEM, 

and maintenance medium was added into both sides within the transwells.  The 
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neutralizing antibody to influenza A virus was added into the inside or the outside of 

transwell inserts with the maintenance medium.  Subsequently, cells were incubated at 

37˚C for 36 hours followed by analyses using the fluorescence microscopy. 

 

RT-PCR 

ts53 virus has a substitution mutation from U to C at the nucleotide position of 

701 in the PA gene.  This substitution introduces an amino acid change from wild-type 

Leu 226 to Pro 226 and gives a defect in the viral genome replication process [110].  

However, under the permissive temperature, the level of viral genome replication is no 

difference between wild-type and ts53 [109].  To discriminate the genome of wild-type 

and that of ts53, total RNA was reverse-transcribed by reverse transcriptase (TOYOBO) 

with PA-895-rev (5’-TTAATTTTAAGGCATCCATCAGCAGG-3’), which is 

complementary to the segment 3 positive sense RNA.  The cDNA was amplified by PCR 

using primers, PA-895-rev and PA-695-cut (5’-TCTCCCGCCAAACTTCTCAGGCC-3’) 

partially corresponding to segment 3 positive sense RNA between nucleotide sequence 

positions 678 to 700 except for nucleotide positions 696 and 697.  Since segment 3 of 

ts53 has a substitution mutation from U to C at the nucleotide position of 701, the PCR 

product derived from wild-type was digested by Stu I but not that from ts53.  After PCR 
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reactions, PCR products were digested with Stu I and separated through PAGE.  Large 

and small fragments derived from ts53 and wild-type viruses were 220 and 199 base pairs, 

respectively.  DNA was stained with GelRed (BIOTIUM) and visualized by UV 

illumination. 
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Chapter 4 

SUMMARY OF FINDINGS, DISCUSSION AND 

FUTURE DIRECTIONS 

 

Summary of findings and discussion 

The examples of cell-to-cell transmission pathway, which is mediated by virions 

without virus diffusion, were reported in HCV, immunotropic viruses including 

retroviruses, and some neurotropic viruses.  However, the cell-to-cell transmission of 

influenza virus has not been discussed well.  This study has shown that influenza viruses 

lacking the neuraminidase activity were capable of spreading from an infected cell to 

adjacent uninfected cells via the cell-to-cell transmission mechanism.  Live imaging 

technique clearly demonstrated the cell-to-cell transmission of influenza viruses in a 

neuraminidase independent manner. 

In the case of cell-to-cell transmission of HCV, virus particle can be transported 

via tight junction and it has been explained as one of the viral strategy to escape from the 

host immune defence.  In contrast, influenza virus particles were transported via apical 

surface and its transmission were markedly blocked by neutralizing antibodies.   

Although influenza virus could spread via cell-to-cell transmission mode as same as HCV, 
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there are substantial differences in the virological significance and aim.     

Moreover, our results demonstrated that neuraminidase activity played an 

important role in blocking the super-infection to producer cells by eliminating functional 

receptor molecules on it and thereby enhanced infection of uninfected neighboring cells 

around the infected cells.  It was suggested that neuraminidase might be involved in the 

determination of the speed and the direction of the cell-to-cell transmission of wild-type 

influenza viruses.  The new aspect of neuraminidase function has not been described yet. 

Our data disclosed the existence of a novel infection mode for influenza viruses.  

This finding may warn against the biased using of neuraminidase inhibitors, because it was 

suggested that the effects of neuraminidase inhibitors are not enough to completely block 

the spread and replication of influenza viruses in microenvironments.  This situation 

probably confers some opportunities to change viral properties and generate mutant 

variants.  As long as this transmission mode exists, we have to search for other targets as 

antiviral therapeutic strategies against the influenza virus infection. 

 

Future directions 

■ Biological significances of cell-to-cell transmission of influenza viruses in vivo. 

■ Screening of the specific inhibitor against cell-to-cell transmission. 

■ Evaluation of the specific inhibitor as the drugs for influenza therapeutics.  
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Tamiflu-Resistant but HA-Mediated Cell-to-Cell
Transmission through Apical Membranes of
Cell-Associated Influenza Viruses
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Abstract

The infection of viruses to a neighboring cell is considered to be beneficial in terms of evasion from host anti-virus defense
systems. There are two pathways for viral infection to ‘‘right next door’’: one is the virus transmission through cell-cell fusion
by forming syncytium without production of progeny virions, and the other is mediated by virions without virus diffusion,
generally designated cell-to-cell transmission. Influenza viruses are believed to be transmitted as cell-free virus from infected
cells to uninfected cells. Here, we demonstrated that influenza virus can utilize cell-to-cell transmission pathway through
apical membranes, by handover of virions on the surface of an infected cell to adjacent host cells. Live cell imaging
techniques showed that a recombinant influenza virus, in which the neuraminidase gene was replaced with the green
fluorescence protein gene, spreads from an infected cell to adjacent cells forming infected cell clusters. This type of virus
spreading requires HA activation by protease treatment. The cell-to-cell transmission was also blocked by amantadine,
which inhibits the acidification of endosomes required for uncoating of influenza virus particles in endosomes, indicating
that functional hemagglutinin and endosome acidification by M2 ion channel were essential for the cell-to-cell influenza
virus transmission. Furthermore, in the cell-to-cell transmission of influenza virus, progeny virions could remain associated
with the surface of infected cell even after budding, for the progeny virions to be passed on to adjacent uninfected cells.
The evidence that cell-to-cell transmission occurs in influenza virus lead to the caution that local infection proceeds even
when treated with neuraminidase inhibitors.
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Introduction

It is generally accepted that viruses, released as cell-free virions
from an infected cell, transmit to distant cells and tissues. This
spreading pathway contributes to wide-ranged diffusion of cell-free
viruses. However, in this spreading pathway, viruses are exposed
to host anti-virus defense systems. In contrast, direct infection to a
neighboring cell is considered to be beneficial for the virus in terms
of evasion from the host anti-virus defense. There are two typical
manners in infection to ‘‘right next door’’: one is the virus
transmission through cell-cell fusion by forming syncytium without
production of progeny virions, and the other is mediated by virions
without virus diffusion, generally designated cell-to-cell transmis-
sion [1,2].

The cell-cell fusion infection pathway is characteristic for a
variety of virus such as paramyxoviruses, herpesviruses, some
retroviruses, and so on. For example in the case of measles virus
belonging to Paramyxoviridae, infection is initiated by the interaction
of the viral hemagglutinin glycoprotein with host cell surface
receptors. The virus penetrates into the cell through membrane

fusion mediated by the interaction of the fusion glycoprotein. In
later stages of infection, newly synthesized glycoproteins accumu-
late at the cell membrane resulting in fusion of the infected cell
with neighboring cells by producing syncytia. Thus, viruses can
spread from cell to cell without producing cell-free virus particles.

The examples of the cell-to-cell transmission are diverse, and
these mechanisms are dependent on pairs of viruses and host cells.
Vaccinia virus particles bound on the filopodium of an infected
cell are repelled toward neighboring uninfected cells by the
formation of filopodia using actin filament [3]. The filopodia direct
viruses to uninfected cells. Immunotropic viruses including
retroviruses utilize an immunological synapse, designed as
virological synapses for the cell-to-cell transmission [4–7].
Claudin-1 and occludin, components of tight junction, are
involved in hepatitis C virus (HCV) entry through the cell-to-cell
transmission [8,9]. The cell-to-cell transmission through tight
junction is also observed in other viruses which infect epithelial
layers [10,11]. These retroviruses and HCV remain on the surface
of an infected cell even after budding. The uninfected cells
adjacent to these infected cells can accept or take over viruses from
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the infected cell. Thus, the cell-to-cell transmission can be
categorized into two manners based on the state of infecting
viruses, either cell-free or cell-associated virions.

Influenza virus, belonging to the family of Orthomyxoviridae, is one
of the most serious zoonotic pathogens and causes seasonal
epidemics or periodic pandemics among human beings around the
world. The viral envelope consists of a lipid bilayer derived from
cells that anchors three of viral transmembrane proteins,
hemagglutinin (HA), neuraminidase (NA), and matrix protein 2
(M2). Influenza virus infection is initiated by the attachment of HA
on virus particles to cell surface receptors containing sialic acids
[12]. It has been known that the specific interaction between HA
and sialic acid species is one of the determinants of the host range
of influenza viruses [13]. Beside its role in the viral attachment,
HA is also involved in intracellular fusion between viral envelope
and host cell endosome membrane in the endocytotic pathway, by
which the virus content is released inside the host cell [14]. The
functional maturation of HA is mediated by the cleavage of HA
into two disulfide-linked glycopolypeptides, HA1 and HA2 [15],
accomplished by trypsin or trypsin-like proteases derived from host
cells [16–19]. The membrane fusion is induced by a conforma-
tional change in the mature HA, which is triggered at low pH in
the endosome, allowing viral ribonucleoprotein complexes to
release into the cytoplasm [20,21]. Thus, HA plays a critical role
in initiation and progression of influenza virus infection. Influenza
virus NA possesses the enzymatic activity that cleaves a-ketosidic
linkages between terminal sialic acids and adjacent sugar residues
of cellular glycoconjugates [22]. The sialidase activity of NA
removes terminal sialic acid residues from HA and NA proteins as
well as host cell surface glycoproteins. Since the terminal sialic acid
of sialyloligosaccharides is critical for HA binding, the receptor-
destroying activity of NA serves to counter the receptor-binding
activity of HA. It is quite likely that this activity contributes to
prevention of successive superinfection of an infected cell [23]. In
the absence of the functional sialidase activity, progeny virions
aggregate on the cell surface due to the HA receptor-binding
activity and can not be released [24,25]. Thus, NA cleaves sialic
acids from the cell surface and facilitates virus release from
infected cells. However, it is not clear whether every progeny
virion is released as cell-free virion to infect the uninfected cells after
diffusion into the extracellular environment. Influenza viruses are
generally transmitted as cell-free viruses from infected to uninfected
cell but they may also infect through the cell-to-cell transmission,
in particular during local lesion formation.

Here, we examined whether influenza virus transmits from an
infected cell to adjacent uninfected cells without virus release. Live
cell imaging techniques showed that a recombinant influenza
virus, in which the NA gene was replaced with the green fluorescence
protein gene, spreads from an infected cell to adjacent cells forming
infected cell clusters. Furthermore, progeny virions remain
associated on the surface of infected cell even after budding, and
then progeny virions could be passed to adjacent uninfected cells.

Results

Influenza virus can spread in an NA-independent manner
to adjacent cells

To examine the transmission pathway of influenza virus, we
performed immunofluorescence analyses by using anti-nucleopro-
tein (NP) polyclonal antibody. Influenza virus can form an
infection center even in the presence of oseltamivir, a potent NA
inhibitor (commercially known as Tamiflu) [26–28]. Oseltamivir
at the concentration of 50 mg/ml completely prevented the release
of progeny influenza viruses (Figure 1A). Noted that a large

number of single fluorescent foci caused by initial infection
markedly expanded and formed cell clusters consisting of 5–10
infected cells in an MDCK cell monolayer (Figures 1B and S1),
suggesting influenza virus can spread to some extent in the
presence of oseltamivir. To verify that NA is not involved in this
spreading, we generated an NA-deficient influenza virus by a
reverse genetics method as described previously [29,30]. The NA-
deficient influenza virus contains a mutated NA segment, in which
the NA coding region including a sialidase catalytic domain was
replaced with the enhanced green fluorescent protein (EGFP) gene [29].
By this replacement, the NA activity is eliminated from the
recombinant influenza virus, and EGFP can be utilized as a marker
for viral infections. Immunofluorescence analyses demonstrated
that the NA-deficient influenza virus also forms infected cell

Figure 1. Influenza viruses can spread independent of the NA
activity. (A) MDCK cells were infected with influenza virus A/WSN/33 at
a multiplicity of infection (MOI) of 0.001 PFU per cell. At 48 hours post
infection (hpi), culture supernatant was collected, and then its virus titer
was determined by plaque assays. Each result was represented by a
value relative to that in the absence of the drug. Error bars indicate
standard deviation (s.d.) from 3 independent experiments. (B) Confluent
MDCK cells were infected by wild-type influenza virus A/WSN/33 or NA-
deficient influenza virus at MOI of 0.0001 in the presence or absence of
50 mg/ml oseltamivir phosphate. NA-deficient influenza virus was
generated by reverse genetics as previously described [29]. After
incubation at 37uC for 36 hours, immunofluorescence analyses were
performed using anti-nucleoprotein (NP) polyclonal antibody and anti-
rabbit IgG antibody conjugated to Alexa Fluor 568 (Invitrogen). Scale
bar, 100 mm.
doi:10.1371/journal.pone.0028178.g001

Cell-to-Cell Transmission of Influenza Virus
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clusters similarly to those formed by wild-type influenza virus in
the presence of oseltamivir (Figure 1B). The fluorescence pattern
of NP overlapped with the localization of GFP derived from the
EGFP gene of the NA-deficient influenza virus (Figure S2). Thus,
NA-deficient influenza virus can be used to investigate the NA-
independent infection pathway of influenza virus.

Next, we performed live cell imaging analyses to directly
observe the infection time course of the NA-deficient influenza
virus. The GFP fluorescence derived from the NA-deficient
influenza virus first appeared in a single cell on an MDCK cell
monolayer at 24 hours post infection. The virus started to spread
from an infected cell to adjacent cells in 5–6 hours after the first
appearance of a GFP-positive cell (Figure 2 and Video S1). The
spreading rate was clearly faster than the rate of cell divisions. The
mean doubling time of uninfected MDCK cells was 20–24 hours
under the condition employed here, and it is expected that the
proliferation speed would be much slowly because infected
MDCK cells were maintained in the serum-free medium and
formed cell monolayer at the high cell density. These suggest that
NA-deficient influenza viruses may infect adjacent cells through
the cell-to-cell transmission mechanism without apparent produc-
tion of cell-free virions.

Cell-to-cell transmission pathway of influenza viruses is
less sensitive to neutralizing antibody

The cell-to-cell virus transmission pathway could be interpreted
as one of viral evolving strategies to avoid neutralizing antibody
responses [2,31,32]. Therefore, we examined the effect of
neutralizing antibody on NA-deficient influenza virus. A poly-
clonal antibody with the neutralizing activity against influenza
virus particles inhibited infection of cell-free viruses to less than 50%
at the concentration of 0.03%, although the cell cluster formation
was observed at the concentration less than 0.01%. On the other
hand, the NA-independent transmission of the NA-deficient

influenza virus was blocked only when neutralizing antibody was
present at the concentration of 0.3% (Figure 3). These results
indicated that the NA-independent transmission of influenza
viruses is less sensitive to the neutralizing antibody.

NA-independent transmission of influenza virus is HA-
dependent

Next, to investigate the mechanism of NA-independent
transmission of influenza virus, we examined whether HA is
involved in this transmission. In the absence of the NA activity,
virus spreading from an infected cell to adjacent cells was
dramatically suppressed by omission of trypsin, essential for
maturation of HA, from the experimental condition (Figure 4A).
The GFP fluorescence derived from NA-deficient influenza virus
appeared in a single cell at 24 hours post infection. However, this
virus did not spread, but rather disappeared during subsequent
24 hours (Video S2). These observations indicate that the NA-
independent cell-to-cell transmission of influenza virus is depen-
dent on HA maturation mediated by trypsin, as is the case for the
general cell-free transmission of this virus.

To clarify whether virus particles or viral RNP complexes are
transmitted to adjacent cells, we examined the effect of
amantadine on the cell-to-cell transmission of influenza virus.
Amantadine inhibits the early step of uncoating of influenza virus
RNP from virion in endosomes [33,34]. For this study, other
influenza virus strain, influenza virus A/Udorn/72, was used
instead of influenza virus A/WSN/33 because influenza virus A/
WSN/33 is highly resistant to amantadine [35]. We confirmed
that influenza virus A/Udorn/72 is sensitive to oseltamivir (Figure
S3) and could also spread via cell-to-cell transmission independent
of the NA activity as did for influenza virus A/WSN/33
(Figures 1B and 4B). In the case of a single administration of
amantadine, fluorescent foci derived from infected cells scattered,
and the number of single foci was greatly decreased compared

Figure 2. NA-deficient influenza virus spreads through cell-to-cell transmission. Confluent MDCK cells were infected with the NA-deficient
influenza virus at MOI of 0.0001. After incubation at 37uC for 24 hours, a single GFP-positive cell, in which the recombinant virus replicated, was found
at 1 hour after starting monitoring, and then this cell and its neighborhood were traced during the period from 24 hpi to 48 hpi at interval of 1 hour.
Scale bar, 50 mm.
doi:10.1371/journal.pone.0028178.g002
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with that in the absence of the drugs. In contrast, a single
administration of oseltamivir, fluorescent foci formed some clusters
and expanded in a time-dependent manner (Figure 4B). This
dissimilarity of inhibitory manner was caused by the difference of
the sites of action between amantadine and oseltamivir. Aman-
tadine inhibits the replication of influenza A virus by preventing
the translocation of vRNP complexes from endosomes to the
cytoplasm, whereas oseltamivir has no effects on viral replication
itself but inhibits the release of cell-free virions from infected host
cells. We investigated the inhibitory effect of amantadine on the
cell-to-cell transmission of influenza viruses. The formation of
infected cell clusters was observed with co-administration of
amantadine and oseltamivir, as well as with a single administration
of oseltamivir (Figure 4B). However, the quantitative analysis
revealed that the size of infected cell clusters with the co-
administration were decreased as compared to that with
oseltamivir alone (Figure 4C). These observations indicated that
the NA activity-independent cell-to-cell transmission of influenza
virus was susceptible to the inhibitory effect of amantadine,

suggesting that the cell-to-cell transmission undergoes through
endocytosis but vRNP complex itself is not incorporated in the
infected cells by adjacent cells.

Cell-to-cell transmission occurs on the apical cell
membrane

The virus transmission undergoes from infected to uninfected
cells through either basolateral [36–38] or apical [39–42] sides. In
the case of influenza virus, cell-free progeny virions are released
only from the apical surface of polarized epithelial cells [43]. This
releasing polarity is achieved by directed transport of viral
membrane proteins to the apical plasma membrane [44]. Indeed,
that HA and NA glycoproteins are associated with lipid rafts, and
the raft association has been implicated in apical transport [45,46].

To determine whether or not the cell-to-cell transmission of the
NA-deficient influenza virus occurs on the apical surface, we
performed transwell assays in the presence of the neutralizing
antibody to influenza A viruses. The neutralizing antibody was
added to infected MDCK cell monolayer from apical or

Figure 3. The cell-to-cell transmission of the NA-deficient influenza virus is less sensitive to the neutralizing antibody. (A) Infection of
the wild-type and (B) NA-deficient influenza virus were performed in the presence or absence of antiserum containing neutralizing antibodies.
Immunofluorescence analyses were performed with cells infected with wild-type influenza virus at 18 hpi using anti-NP antibody and anti-rabbit IgG
antibody conjugated to Alexa Fluor 488 (Invitrogen). GFP fluorescence derived from the recombinant virus was observed at 36 hpi. Scale bar, 100 mm.
(C) The level of viral spreading was indicated in the graph by measuring NP and GFP derived from wild-type and NA-deficient virus, respectively. Five
different microscope fields were taken randomly, and then the intensity of green color was analyzed with ImageJ NIH image processing software.
Each result was represented by a value relative to that in the absence of neutralizing antibodies. Error bars indicate s.d. from 3 independent
experiments.
doi:10.1371/journal.pone.0028178.g003
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basolateral side, and the inhibitory effect on the spread of GFP
fluorescence derived from the recombinant virus was examined.
Addition of high concentrations of the neutralizing antibody from
the apical side blocked the cell-to-cell transmission of the NA-
deficient influenza virus, whereas the addition from the basolateral
side had no effect (Figure 5). These observations indicated that the
polarity in the influenza virus budding in the cell-to-cell
transmission pathway is apical.

Influenza viruses can not re-infect previously infected
cells

Previous report showed that influenza viruses were refractory to
superinfection with a second cell-free virus [23]. In the case of the
cell-to-cell transmission of influenza virus in the presence of
oseltamivir, it is possible that a progeny virion is temporarily
bridged by HA between an infected cell and adjacent uninfected
cells, since viruses can not be released from infected cell surface
due to the inhibition of the NA activity by oseltamivir. The cell-
associated progeny virion may have an opportunity to re-infect the
previously infected cell, compared to a cell-free progeny virion in

the general spreading. Thus, we examined whether influenza
viruses can infect the cell which had already been infected, using
ts53 mutant and wild-type influenza virus A/WSN/33. ts53 virus
has a substitution mutation from U to C at the nucleotide position
of 701 in the PA gene. This substitution introduces an amino acid
change from wild-type Leu 226 to Pro 226 and gives a defect in
the viral genome replication process [47,48]. At first, cells were
infected with ts53 virus at moi of 10, and after incubation for 0, 2,
4, 6, and 8 hours, cells were superinfected with wild-type virus at
moi of 10. The amount of segment 3 viral RNA (vRNA) encoding
PA was determined quantitatively by RT-PCR. Then, using a
mutated primer for PCR, we could introduce a Stu I site only in
the PCR products derived from the wild-type sequence (Figure 6A).
Thus, DNA fragments amplified from the wild-type and ts53 could
be distinguished by Stu I digestion. The digested DNA fragments
containing 220 and 199 base pairs derived from ts53 and wild-
type, respectively, were separated through PAGE. After 6 hours or
later post infection, re-infection with the second challenging virus
hardly occurs in the absence of oseltamivir. However, in the
presence of oseltamivir, appearance of wild-type fragment suggests
that the re-infection had occurred (Figure 6B). The result indicates

Figure 4. The cell-to-cell transmission of the NA-deficient influenza virus requires functional HA. (A) Confluent MDCK cells were infected
with the NA-deficient influenza virus at MOI of 0.0001 in the presence or absence of 1 mg/ml trypsin. GFP fluorescence derived from the recombinant
virus was observed at 36 hpi. Scale bar, 100 mm. (B) MDCK cells were infected with influenza virus A/Udorn/72 at moi of 0.0001 in the presence or
absence of 50 mM amantadine or 50 mg/ml oseltamivir phosphate. Amantadine at the concentration of 50 mM almost completely inhibited the
production of progeny virions (data not shown). After incubation for 12, 24, and 48 h, immunofluorescence analyses were performed using anti-NP
antibody and anti-rabbit IgG antibody conjugated to Alexa Fluor 488 (Invitrogen). Viral NP and nuclear DAPI staining are shown in green and blue,
respectively. Scale bar, 100 mm. (C) Median sizes of clusters were shown as box plots summarizing sizes of 60 individual infectious foci formed in the
presence of oseltamivir alone, or both oseltamivir and amantadine. Immunofluorescence analyses were performed as described in (B) at 24 hpi. Boxes
enclose the lower and upper quartiles; thick horizontal lines represent the median; dashed lines indicate the extreme values; and black dots are
outliers of individual infectious foci. The size of infectious foci was measured with AxioVision Release 4.7.2 imaging software (Carl Zeiss). Median sizes
shown in red letters were clearly different from each other (p,0.01).
doi:10.1371/journal.pone.0028178.g004
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that progeny virus particles remain on the surface of infected cell
even after budding, and can infect the cell previously infected, as
well as uninfected cells adjacent to the infected cell, when
oseltamivir is present.

Discussion

With the except for the virus which spreads through the cell-cell
fusion transmission, virus infection is initiated by the binding of
cell-free virions to their host cells. Recently, the virus transmission
mechanism from an infected cell to adjacent cells without virus
diffusion into the extracellular environment is highlighted from the
aspect of its significance in virus spreading in the presence of
antibodies [1,2]. This antibody-insensitive pathway is often called
cell-to-cell transmission [2]. The cell-to-cell transmission may be
categorized into two pathways, i.e., transmission of cell-free virions
to adjacent uninfected cells, and transmission of progeny virions
associated on the surface of an infected cell even after budding
through narrow synaptic space between an infected cell and
adjacent uninfected cells. As an example of the former mechanism,
cell-free vaccinia virus particles associated with the filopodium of an
infected cell are repelled toward neighboring uninfected cells by
inducing the formation of actin filament [3]. Several cases have
been reported for the latter mechanism: Immunotropic viruses
including retroviruses utilize the immunological synapses [4–7].
Immune cells are not constitutively polarized, but contain the
machinery that directs their secretory apparatus towards a cell that
is involved in an immunological synapse. This machinery can be
subverted by retroviruses containing human immunodeficiency
virus (HIV). An HIV-infected cell can polarize viral budding
towards a target cell expressing receptor through a structure called
a virological synapse. Virions bud from an infected cell into a
synaptic cleft, from which they fuse with the target-cell plasma
membrane [49–52]. The progeny virions of HCV are trapped
between infected and uninfected cell membranes at the tight
junction. Using Claudin-1 known as a component of the tight

junction and one of the entry factors of HCV [8], virions fuse with
and penetrate uninfected target cells [31]. Therefore, HCV may
acquire the ability to spread within polarized liver epithelium.
Thus, the cell-to-cell transmission certainly plays significant roles
for the dissemination of several enveloped viruses. However, the
cell-to-cell transmission of influenza virus has not been discussed
well. Here, we have shown that influenza virus spreads by forming
infected cell clusters even in the presence of an NA inhibitor. Live
cell imaging clearly showed that influenza virus lacking the NA
activity spreads from an infected cell to adjacent cells through the
cell-to-cell transmission mechanism (Figure 2). This was also the
case for wild-type influenza virus during early phases of infection
(Figure 4B). In the cell-to-cell transmission of influenza virus,
progeny virions could remain associated with the surface of
infected cell even after budding, and then these progeny virions
can be passed on to adjacent uninfected cells.

We showed that the cell-to-cell transmission of the NA-deficient
influenza virus depends on functional HA. The viral spreading was
dramatically suppressed without HA activation by trypsin treatment
(Figure 4A). Moreover, the cell-to-cell transmission was also blocked
by amantadine, which inhibits the acidification of endosomes
required for uncoating of influenza virus particles in endosomes
[33,34]. These findings indicate that functional HA and endosome
acidification by M2 ion channel are required for the cell-to-cell
influenza virus transmission, thereby allowing viruses to enter the
adjacent cells through the endocytotic pathway (Figure 4).

Our findings showed that the NA-deficient influenza virus is not
diffused into the extracellular environment. The viral spreading in
the absence of oseltamivir appears to be much faster compared to
the viral spreading in the presence of the drug, suggesting that NA
could be involved in determination of spreading speed (Figure 4B).
The NA activity prevented progeny virions from entering cells
which virus came from (Figure 6), implying that progeny virus
particles should be transmitted to adjacent uninfected cells. The
cell-to-cell transmission started in early phase of infection, and the
virus spread through diffusion of cell-free viruses (Figure 4B).
Indeed, it was reported that the cell-to-cell transmission is a rapid
spreading pathway in the case of vaccinia virus [3]. Vaccinia virus
induces a blocking mechanism of superinfection and thereby
infects to adjacent uninfected cells efficiently. In early phases of
vaccinia virus infection, viral proteins A33 and A36 are expressed
at the infected cell surface. Once cell-free virus particles contact the
filopodium, the A33/A36 complex induces the formation of actin
filament, which causes this superinfected virion to be repelled
toward uninfected cells [3]. Influenza viruses can re-infect the cells
previously infected in the presence of oseltamivir (Figure 6),
suggesting that a progeny virion may be bridged by HA between
infected and adjacent uninfected cells temporarily. Thus, in the
case of the cell-to-cell transmission of influenza virus, we propose
that progeny virions associated with the surface of infected cells
even after budding are directed to adjacent uninfected cells. The
cell-to-cell transmission mechanism of influenza virus is distinctly
different from that of vaccinia virus in the infecting virus status:
Infected cell-associated virions and cell-free virions are involved in
the cell-to-cell transmission of influenza virus and vaccinia virus,
respectively. The strategy for influenza virus appears to be similar
to that for HCV. HCV progeny virions budded from an infected
cell are trapped between infected and uninfected adjacent cell
membranes at the tight junction. HCV virions then, enter into
adjacent cells through endocytosis and low pH-dependent
membrane fusion using Claudin-1 [8]. The cell-to-cell transmis-
sion of influenza virus also required functional HA and endosome
acidification by M2 ion channel. However, it has not been
reported that HCV has a gene encoding a receptor destroying

Figure 5. The cell-to-cell transmission of the NA-deficient
influenza virus occurs the apical cell surface. Confluent MDCK
cells were prepared in transwell inserts and infected with the NA-
deficient influenza virus at MOI of 0.0001 in the presence or absence of
0.3% (v/v) antiserum containing neutralizing antibodies (nAb) to
influenza A virus. After virus adsorption, the antiserum was added
from apical or basolateral side. GFP fluorescence derived from the
recombinant virus was observed at 36 hpi. The antiserum added from
the apical side could markedly block the cell-to-cell transmission of the
NA-deficient influenza virus, whereas the antiserum added from the
basolateral side could not. Scale bar, 100 mm.
doi:10.1371/journal.pone.0028178.g005
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enzyme similar to NA of influenza virus. We speculated that HCV
progeny particles are bridged between infected and adjacent
uninfected cells temporarily like influenza virus in the presence of
oseltamivir. Progeny influenza virus particles could be transmitted
to adjacent uninfected cells efficiently in the presence of the NA
activity, suggesting that the cell-to-cell transmission of influenza
virus is more strategic than that of HCV.

Our findings raise an interesting question as to what is the
biological significance of cell-to-cell transmission for influenza virus
infection in vivo. Until now, it had been believed that influenza virus
was released from infected cells as cell-free virions and then spread
from cell to cell as well as from organism to organism. The
transmission mode by cell-free virions undergoes the extremely high-
speed of its diffusion and causes epidemic or pandemic infection.

The tropism in an infected animal body is generally restricted to
respiratory tract or lung and its periphery, and the requirement of a
trypsin-like protease has been generally described for the reason of
the restriction. It is possible that the cell-to-cell transmission mode
may play a significant role for the virus spreading inside of
organism, although cell-free influenza virions are causative of high-
speed spreading. At the least, the limited but distinct level of
infection followed by replication could provide some opportunity to
generate influenza virus variants. It is an open question whether the
cell-to-cell transmission mode is involved in the pathogenesis caused
by influenza virus infection in vivo.

The existence of cell-to-cell transmission pathway gives a
caution when NA inhibitors are used, because NA inhibitors
may not be sufficient to completely block the spread of influenza

Figure 6. Influenza viruses can not re-infect previously infected cells. (A) A method for determination of the amount of segment 3 genome
derived from ts53 and wild-type. Total RNA was reverse-transcribed with the primer PA-895-rev, which is complementary to the segment 3 positive-
sense RNA. The cDNA was amplified by PCR using primers, PA-895-rev and PA-695-cut partially corresponding to segment 3 positive sense RNA
between the nucleotide sequence positions 678 to 700 except for 696 and 697, which are shown in red letters. Since segment 3 of ts53 has a
substitution mutation from U to C at the nucleotide position of 701, the PCR product derived from wild-type could be digested by Stu I but not that
from ts53. Then, PCR products were digested with Stu I and separated through 8% PAGE. (B) Detection of the genome of the segment 3 derived from
ts53 or wild-type. At 3 hours post superinfection of wild-type virus, total RNA was extracted, and semi-quantitative RT-PCR was performed.
Subsequently, the amplified DNA products were digested with Stu I and separated through 8% PAGE. Large and small fragments derived from ts53
and wild-type viruses were 220 and 199 base pairs, respectively. The relative amount of wild-type segment 3 to that at 0 hour in the absence of
oseltamivir phosphate was shown in the graph. Error bars indicate S.D. from 3 independent experiments. White bar, in the absence of oseltamivir
phosphate; black bar, in the presence of oseltamivir phosphate.
doi:10.1371/journal.pone.0028178.g006
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virus in local microenvironments. Since this cell-to-cell transmis-
sion pathway exists, development of antiviral therapeutic strategies
in addition to NA inhibitors is highly recommended.

Materials and Methods

Cells and viruses
Madin-Darby canine kidney (MDCK) cells were kindly gifted

by A. Ishihama (Hosei University), and maintained in minimal
essential medium (MEM) (Nissui) containing 10% fetal bovine
serum. Human embryonic kidney 293T cells were kindly gifted by
Y. Kawaoka (University of Tokyo), and maintained in Dulbecco
modified Eagle medium (DMEM) (Nissui) supplemented with 10%
fetal bovine serum. Influenza virus A/Udorn/72 was grown in
allantoic sacs of 11 day-old embryonated eggs (MIYAKE
HATCHERY). Wild-type influenza virus A/WSN/33 and ts53
mutant were used after single-plaque isolation. MDCK cells were
infected with influenza virus A/WSN/33 or ts53 at a multiplicity
of infection (MOI) of 0.1 PFU/cell, and incubated at 37uC and
34uC, respectively. After incubation for 24 h, the culture fluid was
harvested and centrifuged at 1,7006 g for 10 min. The virus
suspension was stored at 280uC until use.

Antibodies
The production of rabbit polyclonal anti-NP antibody was

described previously [53], and this antibody was used as a primary
antibody for indirect immunofluorescence assay. A goat anti-
rabbit IgG antibody conjugated to Alexa Fluor 488 or Alexa Fluor
568 was purchased from Invitrogen and used as a secondary
antibody for indirect immunofluorescence assay. A polyclonal
antibody against influenza A virus was obtained from 2-month-old
female rabbit immunized with 250 mg of purified virions of
influenza virus strain A/Puerto Rico/8/34 [54]. The generation
of antibodies was boosted three times and used as neutralizing
antibodies to block the influenza virus infection.

Determination of the inhibition effect of oseltamivir on
virus production

MDCK cells were infected with influenza virus A/WSN/33 at a
multiplicity of infection (MOI) of 0.001 PFU per cell. After virus
adsorption at 37uC for 1 hour, the cells were washed with serum-
free MEM and incubated at 37uC with maintenance medium
(MEM containing vitamins and 0.1% BSA) containing oseltamivir.
At 48 hours post infection (hpi), culture supernatant was collected,
and then its viral titer was determined by plaque assays.

Generation of neuraminidase (NA)-deficient viruses
An NA-deficient influenza virus possessing the terminal

sequences of NA segment but lacking the NA coding region,
which was replaced with enhanced green fluorescent protein (EGFP)
gene, was generated by reverse genetics as described previously
[29,30]. For reverse genetics, we used plasmids containing cDNAs
of the influenza virus A/WSN/33 viral genome under the control
of the human RNA polymerase I promoter (referred to as Pol I
plasmids). Briefly, 293T cells were transfected with seven Pol I
plasmids for production of all vRNA segments of influenza virus
A/WSN/33 and one for the mutant NA vRNA segment
containing EGFP ORF, together with protein expression vectors
for PB2, PB1, PA, and NP controlled by the chicken b-actin
promoter (pCAGGS). TransIT-293 (Mirus) was used for transfec-
tion. At 24 hours post transfection, recombinant viruses were
harvested from the cell surface using bacterial NA derived from
Clostridium perfringens (sigma). MDCK cells were infected with
harvested recombinant viruses treated with N-tosyl-L-phenyl-

alanine chloromethyl ketone (TPCK)-trypsin (1 mg/ml). After
confirmation of GFP fluorescence derived from amplified
recombinant virus genomes at 48 hours after infection, the
recombinant viruses on the cell surface were collected using
bacterial NA. The viral titer of recombinant viruses was
determined by counting the number of infected foci using a
fluorescence microscopy (Carl Zeiss).

Indirect immunofluorescence assay
Cells on coverslips were fixed with 4% paraformaldehyde in

phosphate-buffered saline (PBS) for 10 min and permeabilized with
0.2% NP-40 in PBS. The coverslips were soaked in 1% bovine
serum albumin in PBS, and then incubated at room temperature for
1 hour with a primary antibody. After being washed twice with
PBS, the coverslips were incubated at room temperature for 1 hour
with a secondary antibody. The coverslips were then incubated at
room temperature for 5 min with 3 mM 49,69-diamidino-2-
phenylindole (DAPI) and finally mounted on glass plates, and cells
were observed under the fluorescence microscope.

Live cell imaging analyses
Living cells were analyzed using BioStation ID system (GE

Healthcare). Confluent MDCK cells were infected with the NA-
deficient influenza virus at the multiplicity of infection (MOI) of
0.0001 in the presence or absence of 1 mg/ml TPCK-trypsin. At
24 hours post infection, culture dishes containing infected cells
were set into the chamber of BioStaion ID system, which was
maintained at 37uC under 5% CO2 and 95% humidity. Then,
images were acquired during next 24 hours at interval with
1 hour. The excitation wavelength was controlled by a manual
filter wheel equipped with filters suitable for enhanced green
fluorescence protein (EGFP).

Transwell assay
Confluent MDCK cell monolayer was prepared on transwell

inserts (BD Falcon, pore size 0.4 mm) and infected with the NA-
deficient influenza virus at MOI of 0.0001. After virus adsorption at
37uC for 1 hour, the cell monolayer was washed with serum-free
MEM, and maintenance medium was added into both sides within
the transwells. The neutralizing antibody to influenza A virus was
added into the inside or the outside of transwell inserts with the
maintenance medium. Subsequently, cells were incubated at 37uC
for 36 hours followed by analyses using the fluorescence microscopy.

RT-PCR
ts53 virus has a substitution mutation from U to C at the

nucleotide position of 701 in the PA gene. This substitution
introduces an amino acid change from wild-type Leu 226 to Pro
226 and gives a defect in the viral genome replication process [48].
However, under the permissive temperature, the level of viral
genome replication is no difference between wild-type and ts53
[47]. To discriminate the genome of wild-type and that of ts53,
total RNA was reverse-transcribed by reverse transcriptase
(TOYOBO) with PA-895-rev (59-TTAATTTTAAGGCATC-
CATCAGCAGG-39), which is complementary to the segment 3
positive sense RNA. The cDNA was amplified by PCR using
primers, PA-895-rev and PA-695-cut (59-TCTCCCGCCA-
AACTTCTCAGGCC-39) partially corresponding to segment 3
positive sense RNA between nucleotide sequence positions 678 to
700 except for nucleotide positions 696 and 697. Since segment 3
of ts53 has a substitution mutation from U to C at the nucleotide
position of 701, the PCR product derived from wild-type was
digested by Stu I but not that from ts53. After PCR reactions, PCR
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products were digested with Stu I and separated through PAGE.
Large and small fragments derived from ts53 and wild-type viruses
were 220 and 199 base pairs, respectively. DNA was stained with
GelRed (BIOTIUM) and visualized by UV illumination.

Supporting Information

Figure S1 Formation of cell cluster caused by initial
infection. MDCK cells were infected with influenza virus A/
WSN/33 at moi of 0.0003 in the presence or absence of 50 mg/ml
oseltamivir phosphate. After incubation for 8 and 24 h, immuno-
fluorescence analyses were performed using anti-NP antibody and
anti-rabbit IgG antibody conjugated to Alexa Fluor 488 (Invitro-
gen). Nuclear DAPI and viral NP staining patterns are shown in
blue and green, respectively. Enlarged views are shown in red
borders. Scale bar, 100 mm.
(TIF)

Figure S2 The expression of GFP derived from NA-
deficient influenza virus overlapped with the localiza-
tion of NP. MDCK cells were infected with NA-deficient
influenza viruses at MOI of 0.0001. After incubation at 37uC for
48 hours, immunofluorescence analyses were performed using
anti-NP antibody. Scale bar, 100 mm.
(TIF)

Figure S3 Influenza virus A/Udorn/72 was sensitive to
oseltamivir. MDCK cells were infected with influenza virus A/
Udorn/72 at a MOI of 0.001 PFU per cell. At 36 hpi, the culture
supernatant was collected, and then its virus titer was determined
by plaque assays. Each result was represented by a value relative to
that in the absence of the drug. Error bars indicate s.d. from 3
independent experiments.
(TIF)

Video S1 NA-deficient influenza virus spreads through
cell-to-cell transmission. Confluent MDCK cells were
infected with NA-deficient influenza virus at MOI of 0.0001 in
the presence of trypsin. After incubation at 37uC for 24 hours, a
single GFP-positive cell and its vicinity were traced it during the
period from 24 hpi to 48 hpi at interval of 1 hour. Live cell
imaging data analyses was performed by Biostation ID (GE
healthcare). Scale bar, 50 mm.
(MOV)

Video S2 NA-deficient influenza virus does not spread
in the absence of trypsin. Confluent MDCK cells were
infected with the NA-deficient influenza virus at MOI of 0.0001 in
the absence of trypsin. After incubation at 37uC for 24 hours, a
single GFP-positive cell was detected, and then this cell and
neighborhood cells was traced during the period from 24 hpi to
48 hpi at interval of 1 hour. Live cell imaging data analyses were
performed by Biostation ID (GE healthcare). Scale bar, 50 mm.
(MOV)
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Abstract We examined the influence of Ginkgo biloba
leaf extract (EGb) on the infectivity of influenza viruses in

Madin–Darby canine kidney (MDCK) cells. Plaque assays

demonstrated that multiplication of influenza viruses after
adsorption to host cells was not affected in the agarose

overlay containing EGb. However, when the viruses were

treated with EGb before exposure to cells, their infectivity
was markedly reduced. In contrast, the inhibitory effect

was not observed when MDCK cells were treated with EGb

before infection with influenza viruses. Hemagglutination
inhibition assays revealed that EGb interferes with the

interaction between influenza viruses and erythrocytes. The

inhibitory effect of EGb was observed against influenza A
(H1N1 and H3N2) and influenza B viruses. These results

suggest that EGb contains an anti-influenza virus sub-

stance(s) that directly affects influenza virus particles and
disrupts the function of hemagglutinin in adsorption to host

cells. In addition to the finding of the anti-influenza virus

activity of EGb, our results demonstrated interesting and
important insights into the screening system for anti-

influenza virus activity. In general, the plaque assay using
drug-containing agarose overlays is one of the most reli-

able methods for detection of antiviral activity. However,

our results showed that EGb had no effects either on the
number of plaques or on their sizes in the plaque assay.

These findings suggest the existence of inhibitory activities
against the influenza virus that were overlooked in past

studies.

Keywords Antiviral effect ! Ginkgo biloba leaf extract !
Hemagglutination ! Influenza virus

Introduction

Influenza viruses, members of the Orthomyxoviridae fam-

ily, cause epidemics in the human population every year
despite the availability of effective vaccines. In a severe

pandemic year, millions of people die from the infection.

Influenza viruses are classified on the basis of the antigenic
properties of two surface glycoproteins: hemagglutinin

(HA) and neuraminidase (NA). Sixteen HA subtypes

(H1–H16) and nine NA subtypes (N1–N9) have so far been
defined. Influenza virus infection is initiated by the inter-

action between HA and sialic acid moieties of glycocon-

jugates on host cells [16].
Several synthetic drugs such as amantadine and riman-

tadine (M2 ion channel inhibitors) and oseltamivir and
zanamivir (NA inhibitors) have been available for decades,

but all have side effects and thus somewhat limited use-

fulness [6, 11]. Therefore, novel substances and approaches
are needed to control and prevent this viral disease. Vari-

ous natural products have distinct anti-influenza virus

activities [14]. We have demonstrated that a high-molec-
ular-weight lignin-related fraction extracted from cones of

Pinus parviflora Siebold et Zucc. suppresses the multipli-

cation of influenza viruses by preventing viral RNA syn-
thesis [9, 15]. We also reported that Sanicula europaea L.

leaf extract contains an anti-influenza virus sub-

stance(s) that selectively inhibits influenza A viruses, but
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not influenza B viruses [13]. Studies on the anti-influenza

virus activity of natural products have dramatically
increased over the past several years [14].

Ginkgo biloba leaf extract (EGb) is a potential phyto-

medicine with various pharmacologic effects: in particular,
anticoagulant, vasodilator, and anti-inflammatory effects

[17]. In many countries, EGb and similar products are

prescribed as therapeutic agents for cerebral or peripheral
vascular inefficiency and for cognitive impairments asso-

ciated with aging [2, 3]. Unlike other herbal drugs, how-
ever, EGb has hardly been tested for its anti-influenza virus

activity. In the present study, we examined the inhibitory

effect of EGb on influenza viruses.

Materials and methods

Reagents

The powder of Ginkgo biloba leaf extract was prepared by

Mitsubishi Paper Mills Co., Ltd., Japan. In brief, the dried

Ginkgo biloba leaves were finely ground and then extracted
with water containing alcohol. After removing the residue,

the extracts were concentrated under reduced pressure. The

concentrate was then filtered and treated with adsorption
resin to eliminate the impurities. Finally, the extracts were

concentrated under reduced pressure again and then dried

to use as powder. The powder of Ginkgo biloba leaf extract
was dissolved in DMSO at a concentration of 100 mg/ml

and stored at -30 !C until use.

As main active ingredients, it is known that the extract
contains not only flavonoids such as kaempferol, quercetin

and isorhamnetin but also terpene lactones such as

bilobalide, ginkgolide A, B, C and J as specific components
derived from Ginkgo biloba leaves [1, 4, 5].

Cells and viruses

Madin–Darby canine kidney (MDCK) cells were main-

tained in Eagle’s minimum essential medium (MEM) at
37 !C, in a 5 % CO2 atmosphere, supplemented with 10 %

fetal bovine serum, 0.03 % L-glutamine, 100 U/ml peni-

cillin and 100 lg/ml streptomycin.
Influenza A/PR/8/34 (H1N1), A/Udorn/72 (H3N2), and

B/Lee/40 viruses were grown at 35.5 !C for 48 h in

allantoic sacs of 11-day-old embryonated eggs (Miyake
Hatchery), and then the infected allantoic fluid was col-

lected and stored at -80 !C until use.

Neutral red assay

The neutral red assay is based on incorporation of neutral
red into lysosomes in living cells. To determine the effect

of EGb on cell viability, MDCK cells (3.5 9 104 cells/

well) were seeded into 24-well tissue culture plates and
kept at 37 !C overnight. After removal of the culture

medium, 0.4 ml of MEM containing various concentrations

of EGb or DMSO was added to each well of the plates.
After incubation for 24 h at 37 !C, 0.2 ml of neutral red

solution (0.15 mg/ml) was added to each well. After

incubation at 37 !C for 3 h, wells were washed with 0.2 ml
of a fixative (1 % formalin and 1 % CaCl2). To extract the

dye, 0.2 ml of 1 % acetic acid in 50 % ethanol was added
to each well. After incubation at room temperature for

20 min, the amount of neutral red in each well was

determined by measuring absorbance at 550 nm using a
spectrometer. Results were represented as the cell number

that was calculated from the standard curve of cell num-

bers. Furthermore, to determine the effect of EGb on the
cell growth, MDCK cells (2.0 9 104 cells/well) were see-

ded into 24-well tissue culture plates and kept at 37 !C

overnight. After removal of the medium, 0.4 ml of MEM
containing 0, 10 and 100 lg/ml of EGb were added to each

well. As control groups, DMSO was added to each well at

final concentrations of 0.01 or 0.1 %. After incubation at
37 !C for 0, 24, 48 and 72 h, viable cells were determined

with the neutral red assay as described above.

Treatment of viruses and cells by EGb

For pre-treatment of viruses by EGb, influenza A/PR/8/34
virus (500 pfu/ml) was mixed with EGb at several con-

centrations, incubated at room temperature for 10 min, and

then subjected to the plaque formation assay. For post-
treatment by EGb, MDCK cells infected with influenza

viruses were overlaid with 0.8 % agarose containing EGb

at several concentrations in the plaque formation assay. To
investigate the direct effect of EGb on host cells, MDCK

cells were exposed to EGb at several concentrations and

incubated at 37 !C for 1 h. After removing the medium
containing EGb, MDCK cells were infected with influenza

viruses followed by the plaque formation assay.

Plaque formation assay

A confluent monolayer culture of MDCK cells in a 6-well
tissue culture plates was washed with serum-free MEM

and then infected with 0.5 ml of influenza virus solu-

tion [500 pfu/ml = multiplicity of infection (MOI) of
2.5 9 10-4] in serum-free MEM. After allowing 1 h at

37 !C for virus adsorption, the cells were washed with

serum-free MEM and then overlaid with MEM containing
0.8 % agarose, 0.2 % BSA and 1 lg/ml L-1-tosylamide-2-

phenylethyl chloromethyl ketone (TPCK)-treated trypsin

(Sigma). After incubation at 37 !C for 2–3 days, plaques
were visualized by staining cells with 0.5 % amido black.
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Results were represented as a ratio of the plaque number

formed in the presence of EGb to that in the absence of
EGb.

Hemagglutination assay

Influenza A/PR/8/34 virus (2 9 108 pfu/ml) was diluted

nine times with phosphate buffered saline (PBS) (-) by
twofold dilution each time, while 200 lg/ml of EGb was

also diluted ten times with PBS (-) containing 0.2 %
DMSO by twofold dilution each time. Fifty microliters of

each diluted virus was mixed with 50 ll of each diluted

EGb. These mixtures were then maintained at room tem-
perature for 5 min. One hundred microliters of 0.5 %

chicken erythrocyte suspension (Nippon Bio-Test Labora-

tories Inc., Japan) was added to each of these mixtures in
96-well round-bottom plates, and then the plate was incu-

bated at room temperature for 30 min for hemagglutina-

tion. Results were represented as a plot where the x-axis
and y-axis indicate concentrations of EGb and HA titer,

respectively.

Statistical analysis

All of the data were represented as mean ± standard error
of the mean (SEM). Comparisons for all pairs were per-

formed by Student’s t test. A p value[0.05 was considered

to be not significant. The calculations of 50 % cytotoxicity
concentration (CC50) and inhibitory concentrations with

50 % plaque reduction (IC50) were performed by nonlinear

regression using GraphPad Prism’s ‘‘log (inhibitor) versus
response - variable slope’’ function (GraphPad Prism

Version 5.01 for Windows, GraphPad Software Inc.).

Results

Effect of EGb on the viability and growth

of MDCK cells

Before examining the anti-influenza virus activity of EGb,

we investigated whether EGb affects the viability and

growth of MDCK cells, which are routinely used as host
cells for influenza viruses. We evaluated the cell viability

and growth by counting the number of living cells as

a function of time using the neutral red assay as described
in ‘‘Materials and methods’’. Cytotoxic effects of

EGb were not observed at concentrations of \10 lg/ml

(CC50 = 180 lg/ml) (Fig. 1a). Neither the growth rate nor
the final cell density was affected by the presence of 10 lg/ml

of EGb, whereas a marked decrease in the cell growth rate

was observed at 100 lg/ml (Fig. 1b). Thus, EGb at a
concentration of\10 lg/ml could be considered essentially

nontoxic to MDCK cells. We confirmed that the solvent

DMSO had no effect on the viability and growth of MDCK

cells in the range of concentrations used in this study (data
not shown).

Inhibition of influenza virus infectivity by EGb

To examine whether EGb inhibits multiplication of influ-

enza viruses, plaque assays were carried out as described in
‘‘Materials and methods’’. Cells were infected with influ-

enza A/PR/8/34 virus at 37 !C for 1 h. The cells were

Fig. 1 Effect of EGb on the viability and the growth of MDCK cells.
a MDCK cells (3.5 9 104) were seeded in 24-well tissue culture
plates and incubated at 37 !C in the presence of various concentra-
tions of EGb (closed circles) or solvent DMSO alone (open circles).
After incubation for 24 h, the viable cell number was determined by
the neutral red assay. b MDCK cells (2 9 104) were seeded in
24-well tissue culture plates and incubated at 37 !C in the absence
(open circles) or presence of 10 lg/ml (closed square) and 100 lg/ml
(closed triangles) of EGb, and 0.01 % (v/v) and 0.1 % (v/v) of DMSO
alone (open square and open triangle, respectively). After incubation
for the indicated periods, the viable cell number was determined by
the neutral red assay
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washed extensively with serum-free MEM and then over-

laid with 0.8 % agarose in MEM containing EGb at various
concentrations. The number of plaques and their sizes in

the presence of EGb did not differ from those in the

absence of EGb (Fig. 2a), indicating that EGb does not
inhibit plaque formation by influenza virus infection. We

further examined whether EGb is effective when mixed

with viruses before exposure to cells. Influenza viruses
were mixed with EGb at various concentrations at room

temperature for 10 min and then exposed to MDCK cells.
Under these conditions, EGb markedly inhibited viral

infectivity in a dose-dependent manner (Fig. 2b). EGb at a

concentration of 5 lg/ml almost completely inhibited the
plaque-forming activity. These findings suggest that EGb

inhibits the initial step of influenza virus infection before

the virus enters the cytoplasm. Next, we examined whether
the inhibitory effect of EGb against influenza virus was

direct or indirect. Plaque assays were performed using

MDCK cells treated with EGb at various concentrations for
1 h before infection with the influenza viruses. The number

and sizes of the plaques of the tested groups in the presence

of EGb did not differ significantly from those of the control
group in the absence of EGb (Fig. 3), suggesting that EGb

directly interacted with the influenza viruses and markedly

reduced their infectivity.

Inhibition of hemagglutination by EGb

Influenza virus infection is initiated by the interaction of

hemagglutinin (HA) on the virion with sialic acids on the

host cell surface. To understand how EGb prevents virus
adsorption to cells, we examined whether EGb competi-

tively inhibits influenza virus-mediated hemagglutination.
As shown in Fig. 4, EGb inhibited hemagglutination in a

dose-dependent manner, suggesting that EGb interferes

with the interaction between HA and sialic acids.

Susceptibility of other influenza virus strains to EGb

Our results suggest that EGb binds to HA and prevents virus

adsorption to cells. We further examined whether the

inhibitory effect of EGb is dependent on the type of influenza
virus. EGb inhibited the infectivity of both influenza

A/Udorn/72 (H3N2) and influenza B/Lee/40 viruses as well

as of influenza A/PR/8/34 (H1N1) virus in an adsorption
inhibition-dependent manner (compare Fig. 5a and b), albeit

Fig. 2 Effect of EGb on plaque formation. Plaque assays were
carried out as described in ‘‘Materials and methods’’. a MDCK cells
were infected with virus suspension (500 pfu/ml) and then overlaid
with the overlay medium containing various concentrations of EGb.
The profile of plaques is shown in the right panels. Panels 1, 2, 3, 4, 5
and 6 represent assays carried out in the presence of 0, 0.625, 1.25,
2.5, 5 and 10 lg/ml of EGb, respectively. b Influenza A virus

(500 pfu/ml) was incubated with various concentrations of EGb prior
to exposure to MDCK cells. The profile of plaques is shown in the
right panels. Panels 1, 2, 3, 4, 5 and 6 represent assays in the presence
of 0, 0.625, 1.25, 2.5, 5 and 10 lg/ml of EGb, respectively. Results
are represented as the percentage of the plaque number formed in the
absence of EGb
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with slightly different sensitivities. To confirm the difference

in infectivity inhibition, the 50 % inhibitory concentration
(IC50) value of EGb was calculated for these three different

strains of influenza viruses. Furthermore, the selectivity

index (SI) was also calculated as the ratio of CC50 to IC50

(Table 1). The influenza A/PR/8/34 virus showed most

sensitivity to EGb (Table 1). These findings suggest that the

antiviral activity of EGb is not dependent on the type of

influenza virus.

Discussion

In this study, we revealed the anti-influenza virus activity

of Ginkgo biloba leaf extract (EGb). EGb acted directly on
the influenza viruses and prevented their adsorption to the

host cell surface, suggesting that EGb interfered with the

interaction between the HA on the influenza virion and
sialic acids on the host cell surface, although we could not

Fig. 3 Effect of pre-treatment of host cells with EGb on influenza
virus infection. MDCK cells were exposed to EGb at various
concentrations and incubated at 37 !C for 1 h prior to virus infections.
After removing EGb, MDCK cells were inoculated with influenza
A/PR/8/34 viruses (500 pfu/ml), and plaque formation assays were
carried out as described in ‘‘Materials and methods’’. Results are
represented as the percentage of the plaque number formed in the
absence of EGb. All data are represented as mean ± SD, and the
statistical analysis was performed using the t test to compare two
groups

Fig. 4 HA titers of influenza A virus treated with various concen-
trations of EGb. Influenza A/PR/8/34 virus and EGb were diluted by
twofold dilution each time and then mixed. After incubation at room
temperature for 5 min, 0.5 % chicken erythrocyte suspension was
added to each of these mixtures in a 96-well assay plate, and the plate
was incubated at room temperature for 30 min for hemagglutination.
Results are represented as a plot where the x-axis and y-axis indicate
concentrations of EGb and HA titer, respectively. The result is
representative of three independent experiments

Fig. 5 Effect of EGb on plaque formation by two different subtypes
of influenza virus. Plaque assays were carried out as described in
‘‘Materials and methods’’. a MDCK cells were infected with 0.5 ml of
500 pfu/ml of influenza A/Udorn/72 (H3N2) and B/Lee/40 viruses
and then overlaid with the overlay medium containing various
concentrations of EGb. b Each influenza virus strain was diluted to
500 pfu/ml and incubated with various concentrations of EGb prior to
exposure to MDCK cells. One hour after virus inoculation, MDCK
cells were washed with serum-free MEM and subsequently overlaid
with the overlay medium without EGb. Results are represented as the
percentage of the plaque number formed in the absence of EGb.
a, b Results of A/Udorn/72 (H3N2) and B/Lee/40 are represented
by gray bars and black bars, respectively
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exclude the possibility that EGb had a viricidal activity and

directly inactivated the influenza virus.
The active constituents of EGb are standardized around

the world; i.e., they contain 24 % flavonol glycosides

(quercetin, kaempferol and isorhamnetin) and 6 % terpene
lactones (ginkgolides and bilobalide). EGb also contains a

class of condensed tannins, which are polymers composed

primarily of flavan-3-ols (catechin and epicatechin) with a
covalent bond between the individual flavonol units.

Nakayama et al. [10] previously reported that two con-
densed tannins present in teas, (-)-epigallocatechin gallate

(EGCG) and theaflavin digallate, bind to the HA of the

influenza virus and inhibit its adsorption to MDCK cells.
Furthermore, Song et al. [12] showed that catechin deriv-

atives, including EGCG from green tea, inhibit not only the

hemagglutination but also the NA activity of the influenza
virus. The neuraminidase activity is thought to play a key

role in the release of progeny virions from infected cells by

cleavage of the sialic acid moieties of host cell receptors
and in the prevention of self-aggregation of virions by

cleavage of sialic acid still bound to the virus surface.

These findings provide important insights into the molec-
ular mechanisms of action of EGb.

Ginkgetin, a biflavone originally isolated from Ginkgo
biloba leaves, has been found to inhibit the influenza virus
sialidase [7]. However, our results showed that EGb pre-

vented adsorption in the initial step of influenza virus

infection. Therefore, in our study, a substance(s) in EGb
other than ginkgetin may have been effective against

influenza virus infection.

EGb was effective against the three different types of
influenza viruses tested here, viz., the influenza A/PR/8/34

(H1N1), A/Udorn/72 (H3N2), and B/Lee/40 viruses,

although the sensitivity towards EGb was slightly different
among the three viruses. This finding suggests that EGb

may be a potential wide-range inhibitor against influenza

virus infection.
When plaque assays were performed with overlay

medium containing EGb, neither the number of plaques nor

their sizes were affected (Fig. 2a). Since our results suggest
that EGb acts directly on the influenza virus and prevents

the initial step in viral infection, we expected that the

infectivity of the progenitor virions would be decreased
owing to interaction with EGb present in the overlay

medium and, consequently, that the size of individual
plaques would be reduced in the plaque assay. This dis-

crepancy between the predicted and the experimental

results may be explained by our recent findings: we dis-
closed a novel transmission mode for influenza viruses, the

so-called cell-to-cell transmission mode [8]. Influenza

viruses have generally been believed to be capable of
spreading via cell-free virions released from infected cells

depending on the activity of NA. However, in cell-to-cell

transmission, progeny virions are retained on the infected
cell surface even after budding and transmitted from

infected cells to adjacent uninfected cells without being

released into the outer environment. The cell-to-cell
transmission of the influenza virus is dependent on func-

tional HA but independent of NA activity. The present

study may demonstrate that EGb cannot inhibit the cell-to-
cell transmission of influenza viruses but is highly effective

in decreasing the infectivity of cell-free virions. This sug-

gestion is in line with the findings of a previous study in
which higher concentrations of anti-HA antibody were

needed for inhibition of infection through cell-to-cell

transmission than for that through cell-free viruses [8].
The plaque assay using drug-containing agarose gels is

one of the most reliable methods for detecting anti-influ-

enza virus activity and is frequently used as a screening
method. However, our findings raise concerns that a par-

ticular anti-influenza virus activity, such as the inhibitory

effect found here in EGb, may have been largely over-
looked in past studies.

In conclusion, we have shown that EGb interacts

directly with influenza viruses and markedly reduces the
infectivity of the viruses by preventing their adsorption to

host cells. Furthermore, the inhibitory effect of EGb

seemed not to be restricted to a certain subtype of influenza
virus. Taken together, these findings indicate the usefulness

of EGb as an antiviral agent for influenza, although further

studies are necessary to confirm its anti-influenza virus
activity in vivo.

In addition to the finding of the anti-influenza virus

activity of EGb, we demonstrated an interesting and
important insight(s) into the screening system for anti-

influenza virus activity. As was the case for the anti-

influenza virus activity of EGb found in this study, some
candidates for antiviral agents may have been overlooked

Table 1 Selectivity indices of EGb in three different influenza virus
strains

Virus strain IC50 (lg/ml)a SIb

A/PR/8/34 (H1N1) 1.86 96.8

A/Udorn/72 (H3N2) 4.41 40.8

B/Lee/40 6.79 26.5

a IC50: 50 % inhibitory concentration of EGb was calculated from the
results of the plaque formation assay performed as shown in Figs. 2b
and 5b
b SI: selectivity index was evaluated as the ratio of CC50 to IC50, i.e.,
SI = CC50/IC50

CC50: 50 % cytotoxic concentration of EGb was calculated from the
dose–response curve shown in Fig. 1a and its value (=180 lg/ml) was
used for the calculation of each SI

All calculation was performed by using GraphPad Prism software as
described in ‘‘Materials and methods’’
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in past studies because of the existence of the cell-to-cell

transmission mode of influenza viruses. Therefore, our
results signal a need for caution on the part of investigators

trying to find anti-influenza virus compounds.
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