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Abstract 1 

Purpose 2 

To noninvasively investigate the vascular architecture of polypoidal lesions in polypoidal choroidal 3 

vasculopathy (PCV) using Doppler optical coherence tomography (OCT), and to evaluate the clinical 4 

usefulness of Doppler OCT for the assessment of therapeutic effects in PCV. 5 

Methods 6 

Fifteen eyes of 15 patients with treatment-naïve PCV were prospectively studied. Vascular imaging was 7 

obtained using 1,060-nm swept-source Doppler OCT, and compared with indocyanine green 8 

angiography (ICGA) images. The therapeutic effect of three consecutive intravitreal aflibercept 9 

injections was evaluated with ICGA and Doppler OCT. 10 

Results 11 

In Doppler OCT images, polypoidal lesions were clearly detected at the corresponding locations of 12 

lesions in the ICGA images. By being insensitive to dye leakage, Doppler OCT identified the 13 

complicated vascular structure in the polypoidal lesions. The identified mean area of the polypoidal 14 

lesions in the Doppler OCT images (0.04 mm2) was significantly smaller than that of the ICGA images 15 

(0.13 mm2). Polypoidal lesions were located in the retinal pigment epithelial detachment in 13 eyes, in 16 

the choroid in one eye, and in both the retinal pigment epithelial detachment and choroid in one eye. 17 

After intravitreal aflibercept treatment, areas of polypoidal lesions in the ICGA images were decreased 18 

in 14 of 15 eyes. This therapeutic effect was clearly confirmed in the Doppler OCT images. 19 

Conclusions 20 

Doppler OCT imaging clearly detected fine vascular structures at the polypoidal lesions in PCV. Doppler 21 

OCT might be useful for the diagnosis and evaluation of therapeutic effects in PCV.  22 
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Polypoidal choroidal vasculopathy (PCV) is a variation of age-related macular degeneration and is 1 

characterized by numerous recurrent, bilateral, asymmetric, serosanguinous detachments in the retinal 2 

pigment epithelium.1 In indocyanine green angiography (ICGA) imaging, polypoidal vascular lesions 3 

and a branching vascular network were described as characteristic findings in PCV.2,3 Despite a number 4 

of clinical studies, the origin and location of these vascular lesions are still controversial.3 Some studies 5 

speculated vascular lesions were located in the subretinal pigment epithelium (sub-RPE) and represented 6 

a type of choroidal neovascularization.4,5 Other studies, however, speculated that they were located in the 7 

inner choroid and represented pathological changes of the choroidal vessels.6,7 8 

 To clarify these speculations, evaluation of the three-dimensional (3-D) structure of PCV 9 

vascular lesions is crucial. In current clinical practice, the most reliable method to detect PCV vascular 10 

lesions is ICGA.3 However, ICGA cannot evaluate the 3-D structure of PCV vascular lesions because of 11 

its poor axial resolution.8 Optical coherence tomography (OCT) has achieved micrometer-level axial 12 

resolution in cross-sectional retinal imaging,9 and provided important information about the 3-D retinal 13 

structure in PCV.10-12 However, standard OCT is only sensitive to backscattered light intensity and 14 

cannot provide information about blood flow. Because of this limitation, standard OCT has a limited 15 

ability to evaluate PCV vascular lesions. 16 

 Recently, a functional extension of OCT technology for 3-D vascular imaging was developed. 17 

This technique was first reported using Doppler OCT and was named optical coherence angiography.13 18 

Following this development, various 3-D vascular imaging techniques were reported,14-22 and were 19 

collectively called OCT angiography. In the previous studies for PCV with OCT angiography, 3-D 20 

architectures of the branching vascular networks were evaluated and their presence in the sub-RPE space 21 

was reported.14,15,23 However, these studies did not evaluate the polypoidal lesions,14,15,23 despite 22 

polypoidal lesions being a representative finding of PCV.2,3 Polypoidal lesions are a crucial finding for 23 

the diagnosis and treatment of PCV,2,3 hence investigation of its 3-D structure might provide important 24 

information about the pathophysiology and treatment strategy for PCV. In this paper, we evaluate the 25 
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3-D vascular architecture of polypoidal lesions in PCV using Doppler OCT, and describe the clinical 1 

usefulness of Doppler OCT for PCV.  2 

  3 
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Methods 1 

We prospectively evaluated 15 eyes of 15 Japanese patients with treatment-naïve PCV (13 male, two 2 

female; age range, 51–83 years; mean age, 68.5 years). The clinical diagnosis of PCV was made by 3 

identification of polypoidal lesions with ICGA. Eyes with a history of treatment for PCV or age-related 4 

macular degeneration were excluded. Eyes with severe cataracts or other eye diseases that interfered 5 

with Doppler OCT image quality were excluded from this study. All eyes were treated with intravitreal 6 

injections of 2.0 mg aflibercept (Eylea; Regeneron, Tarrytown, PA, USA and Bayer Health Care, Berlin, 7 

Germany) every 4 weeks. Both ICGA imaging and Doppler OCT imaging were performed on each 8 

patient before and after three consecutive intravitreal aflibercept treatments. ICGA imaging was 9 

performed using a confocal scanning laser ophthalmoscope (F-10; Nidek, Gamagori, Japan). 10 

 The Doppler OCT system used in this study was a custom-made prototype built by the 11 

Computational Optic Group at the University of Tsukuba.16,22,23 This Doppler OCT was based on 12 

swept-source OCT technology, and operated at an axial scan speed of 100,000 A-scans/s, using a 13 

swept-source laser at a central wavelength of 1,060 nm. The probing beam power was set at 1.85 mW, 14 

which is lower than the American National Standards Institute safety limit. The axial resolution for the 15 

tissue in this study was 6.4 µm. The Doppler signal was calculated from two A-lines in two successive 16 

B-scans. Doppler signals were displayed in the form of the squared energy of the Doppler phase shift. 17 

No thresholds were applied to Doppler signals for imaging analysis. A raster scanning protocol with 256 18 

A-lines × 2,048 B-scans covering a 1.5 × 1.5-mm region on the retina was used for volumetric scans. 19 

The acquisition speed of each measurement was 6.6 s/volume. In a single volume scan, the system 20 

simultaneously provided both an intensity-based standard OCT image volume and a Doppler OCT image 21 

volume. Composite color Doppler OCT images, in which the Doppler OCT signal was overlaid on the 22 

standard OCT with purple color, were created from standard OCT and Doppler OCT images to specify 23 

the location of blood flow in the standard OCT image. For en face Doppler images, we segmented retinal 24 

surfaces and RPE layers based on the standard OCT image, and the en face projection of the Doppler 25 
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OCT was created using the depth range from the retinal surface to 1 mm below the RPE layer. To present 1 

detailed features in a print format, the en face projection images in figures were processed by 2 

convolution filtering software (ImageJ, ver. 1.47, National Institute of Health, Bethesda, MD, USA) and 3 

contrast and brightness adjustment software (Adobe Photoshop CS5, Adobe Systems, San Jose, CA, 4 

USA) (Fig. 1). However, all evaluations in the study were performed with unprocessed images, so the 5 

study result was not affected by filtering and contrast corrections. 6 

 To evaluate the therapeutic effects, the reduction rates of polypoidal lesions in the late phase of 7 

ICCA images and en face Doppler OCT images were calculated using the following formula:  8 

Reduction rate =  �1 −  
area after treatment

area before treatment
�  × 100 9 

The areas of polypoidal lesions in ICGA images were calculated using a built-in program of the scanning 10 

laser ophthalmoscope (F-10), and the area in the en face Doppler OCT image was calculated using 11 

image analysis software (ImageJ, ver. 1.47). Contours of polypoidal lesions were manually delineated 12 

for both ICGA and Doppler OCT by a retina specialist (M.M.). For en face Doppler OCT images, 13 

unprocessed images were used for the computations. 14 

 This study was performed according to the tenets of the Declaration of Helsinki, and was 15 

approved by the Institutional Review Boards of the University of Tsukuba and Tokyo Medical University. 16 

Informed consent for the study was obtained from all participants. 17 

  18 
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Results 1 

Polypoidal lesions were detected in the late phase of ICGA in all 15 eyes, and feeder vessels to 2 

polypoidal lesions were detected in four eyes in the early phase of ICGA (Figs. 2A, 5A). En face 3 

projection images of Doppler OCT images clearly showed polypoidal lesions at the corresponding 4 

locations of lesions in the ICGA images (Figs. 2D, 3D, 4D, 5D). Topographical locations of polypoidal 5 

lesions were readily determined by Doppler OCT B-scan images (Figs. 2F, 3F, 4F, 5F). Polypoidal 6 

lesions were located in the pigment epithelial detachment in 13 eyes (Figs. 2F, 3F), in the choroid in one 7 

eye (Fig. 4F), and in both the pigment epithelial detachment and the choroid in one eye (Fig. 5F). In the 8 

eyes with feeder vessels, polypoidal lesions were located in the sub-RPE space in three eyes (Fig. 2F) 9 

and both the sub-RPE space and choroid in one eye (Fig. 5F). In the other 11 eyes without feeder vessels, 10 

polypoidal lesions were located in the sub-RPE space in 10 eyes (Fig. 3F) and the inner choroid in one 11 

eye (Fig. 4F). In standard OCT B-scan images, polypoidal lesions were displayed as high-intensity areas, 12 

and low-intensity areas in the polypoidal lesions were occasionally detected (Fig. 3E). In contrast to 13 

Doppler OCT, localization of polypoidal lesions in standard OCT B-scan images was difficult because of 14 

the poor discrimination ability from the surrounding tissues (Figs. 2E, 3E, 4E, 5E).  15 

 In the late phase of ICGA images, polypoidal lesions were delineated as homogeneous 16 

hyperfluorescent areas in all eyes, and multiple lobules in the polypoidal lesions in the early phase of 17 

ICGA images (Fig. 5A) were detected in three eyes. In contrast to the ICGA images, en face projection 18 

images of Doppler OCT showed more complicated vascular structures at the polypoidal lesions. In seven 19 

of 15 eyes, each polypoidal lesion in an ICGA image consisted of multiple polypoidal lesions in Doppler 20 

OCT images (Figs. 2D, 5D). In six of 15 eyes, Doppler OCT showed a fine vascular network in the 21 

polypoidal lesions. In these eyes, polypoidal lesions were delineated as focal aneurysmal dilations in the 22 

vascular network (Fig. 2D). Fine vascular structures at the feeder vessels were clearly detected (Fig. 2D) 23 

in the Doppler OCT images. In one eye, some polypoidal lesions in the early phase of the ICGA images 24 

were less clear in the late phase, and Doppler OCT imaging clearly detected these polypoidal lesions 25 
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(Fig. 3D). The mean of the total area of polypoidal lesions was 0.13 mm2 [standard deviation (SD): 1 

0.094] in the late phase of ICGA images and 0.04 mm2 (SD: 0.030) in the en face projection images of 2 

Doppler OCT. The mean of the total area in the ICGA images was significantly larger than the Doppler 3 

OCT images (P = 0.0007, Wilcoxon signed rank test, Fig. 6). 4 

 After intravitreal aflibercept treatment, areas of polypoidal lesions in the ICGA images were 5 

decreased in 14 of 15 eyes. En face projection images of Doppler OCT clearly detected this therapeutic 6 

effect (Figs. 3G, 4G, 5G). The mean of the total area of polypoidal lesions was decreased from 0.13 mm2 7 

(SD: 0.094) to 0.056 mm2 (SD: 0.086) in the late phase of the ICGA images, and from 0.04 mm2 (SD: 8 

0.03) to 0.017 mm2 (SD: 0.024) in the Doppler OCT images. The area of polypoidal lesions was 9 

significantly decreased in both ICGA and Doppler OCT images (P = 0.007 in both ICGA and Doppler 10 

OCT, Wilcoxon signed rank test). The mean reduction rate was 65.8% (SD: 38.1) in the ICGA images 11 

and 66.6% (SD: 35.0) in the Doppler OCT images. The reduction rate in the Doppler OCT images was 12 

significantly correlated with the ICGA images (R2 = 0.82, P = 0.0007, Fig. 7). 13 

  14 
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Discussion 1 

In the present study, we used Doppler OCT to investigate the vascular architecture at polypoidal lesions 2 

in PCV. In ICGA images, evaluation of fine microvascular structures at the polypoidal lesions was 3 

significantly impeded by dye leakage from the vascular lesions. Doppler OCT imaging was insensitive 4 

to leakage from abnormal vessels and could provide detailed information about the microvascular 5 

structure at the polypoidal lesions. From Doppler OCT findings, polypoidal lesions consisted of a 6 

microvascular network with focal aneurysmal dilatation. This finding was in good agreement with 7 

previous histopathological studies.24,25 The area of the polypoidal lesions in the ICGA images was three 8 

times larger than in the Doppler OCT images, and this finding might represent the degree of leakage 9 

from polypoidal lesions. Some polypoidal lesions in the early phase of ICGA and Doppler OCT images 10 

became unclear in the late phase of ICGA images, which might represent low activity at these polypoidal 11 

lesions. Comparison between Doppler OCT images and ICGA images might be useful as an index 12 

parameter of the activity of the lesion.  13 

 There have been several studies of the topographical locations of polypoidal lesions using 14 

standard OCT and ICGA. Some studies speculated that the lesions were located in the sub-RPE 15 

space,4,5,11,12 whereas others speculated that they were located at the inner choroid.26 In the studies with 16 

en face swept-source OCT imaging, vascular abnormalities were located either above or below Bruch’s 17 

membrane.27,28 Standard OCT and ICGA have a limited ability to evaluate topographic locations of 18 

vascular lesions, and this limitation impedes a definitive conclusion about the topographic location of the 19 

polypoidal lesions. In this study, Doppler OCT imaging could readily determine the topographic location 20 

of polypoidal lesions. Polypoidal lesions were located in the sub-RPE space or inner choroid or both 21 

inner choroid and sub-RPE space. This result suggested diversity of the topographic locations of the 22 

polypoidal lesions. In previous studies, abnormal vessels in PCV were thought to penetrate Bruch’s 23 

membrane from the inner choroid and distribute into the sub-RPE space.5,10,14,15,23,29 This study showed 24 

that polypoidal lesions could be developed either before or after penetration of Bruch’s membrane. This 25 



10 
 

diversity might address the previous controversy over the topographic location of polypoidal lesions. 1 

 Some studies have attempted to classify PCV vascular lesions by the presence of feeder 2 

vessels, and reported their association with therapeutic effects.30,31 Kawamura et al. reported vascular 3 

lesions with feeder vessels (type 1 PCV) located in the sub-RPE space, and vascular lesions without 4 

feeder vessels (type 2 PCV) were located in the inner choroid.31 In our case series, polypoidal lesions 5 

were located in either the inner choroid or sub-RPE space despite the presence of feeder vessels. It is 6 

unreasonable to make a definitive conclusion with a small number of cases; however, in the present 7 

study, the presence of feeder vessels did not have an absolute relationship with the topographic locations 8 

of polypoidal lesions. 9 

 In our case series, a decrease in the polypoidal lesions in ICGA images after three consecutive 10 

intravitreal aflibercept treatments was detected in 14 of 15 eyes (93%). Doppler OCT clearly detected 11 

this reduction in the polypoidal lesions and could be used as a noninvasive alternative method to 12 

evaluate the therapeutic effect on polypoidal lesions. In one case of our study, polypoidal lesions in the 13 

sub-RPE space showed a better response to intravitreal aflibercept treatment than the lesions in the 14 

choroid (Fig. 4). The therapeutic effect of choroidal neovascularization after intravitreal ranibizumab 15 

treatment was influenced by their topographical location,32 and the topographic locations of polypoidal 16 

lesions in PCV might also be related to the therapeutic effects. Further study is required to evaluate the 17 

clinical significance of the topographical locations of polypoidal lesions. 18 

 The current study had several limitations. Some areas of PCV vascular lesions might have 19 

been missed even with highly sensitive Doppler measurements. With the small number of subjects in our 20 

case series, this study evaluated only some of the variations in PCV. The small measurement area of 21 

Doppler OCT impeded evaluation of the entire structure of PCV vascular lesions. In the present study, 22 

6.6 seconds were required for a single measurement, despite using high-speed 100 kHz OCT. Longer 23 

measurement times are required for wide measurement areas, and might cause motion artifacts in 24 

vascular imaging. A motion correction algorithm using orthogonal scan patterns might be a possible 25 
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solution.33 Another possible solution would be using ultra-high-speed OCT to shorten the measurement 1 

times. Vascular imaging with ultra-high-speed OCT has already been reported,34,35 indicating the 2 

influence of motion artifacts could be compensated by shortened measurement times. 3 

 In conclusion, this study demonstrated the clinical utility of Doppler OCT to evaluate PCV 4 

vascular lesions. Doppler OCT could detect only some parts of the choroidal vasculature; hence, ICGA 5 

is still required to more thoroughly evaluate the entire structure of vascular lesions. Doppler OCT cannot 6 

detect dye leakage in fluorescein angiography, and dye leakage is an important indicator of the activity 7 

of polypoidal lesions. However, the clinical applications of ICGA and fluorescein angiography have 8 

been limited because of patient discomfort and relatively long measurement times. Doppler OCT 9 

imaging is noninvasive, has a short measurement time, and may potentially function as a noninvasive 10 

alternative to fluorescein angiography and ICGA for the assessment of PCV. 11 

  12 



12 
 

References 1 

1. Yannuzzi LA, Sorenson J, Spaide RF, Lipson B. Idiopathic polypoidal choroidal vasculopathy 2 

(IPCV). Retina. 1990;10:1-8. 3 

2. Spaide RF, Yannuzzi LA, Slakter JS, Sorenson J, Orlach DA. Indocyanine green 4 

videoangiography of idiopathic polypoidal choroidal vasculopathy. Retina. 1995;15:100-110. 5 

3. Lim TH, Laude A, Tan CS. Polypoidal choroidal vasculopathy: an angiographic discussion. 6 

Eye. 2010;24:483-490. 7 

4. Costa RA, Navajas EV, Farah ME, Calucci D, Cardillo JA, Scott IU. Polypoidal choroidal 8 

vasculopathy: angiographic characterization of the network vascular elements and a new treatment 9 

paradigm. Prog Retin Eye Res. 2005;24:560-586. 10 

5. Tsujikawa A, Sasahara M, Otani A, et al. Pigment epithelial detachment in polypoidal 11 

choroidal vasculopathy. Am J Ophthalmol. 2007;143:102-111. 12 

6. Nakashizuka H, Mitsumata M, Okisaka S, et al. Clinicopathologic findings in polypoidal 13 

choroidal vasculopathy. Invest Ophthalmol Vis Sci. 2008;49:4729-4737. 14 

7. Yuzawa M, Mori R, Kawamura A. The origins of polypoidal choroidal vasculopathy. Br J 15 

Ophthalmol. 2005;89:602-607. 16 

8. Bartsch DU, Freeman WR. Axial intensity distribution analysis of the human retina with a 17 

confocal scanning laser tomograph. Exp Eye Res. 1994;58:161-173. 18 

9. Huang D, Swanson E, Lin C, et al. Optical coherence tomography. Science. 19 

1991;254:1178-1181. 20 

10. Ojima Y, Hangai M, Sakamoto A, et al. Improved visualization of polypoidal choroidal 21 

vasculopathy lesions using spectral-domain optical coherence tomography. Retina. 2009;29:52-59. 22 

11. Yasuno Y, Miura M, Kawana K, et al. Visualization of sub-retinal pigment epithelium 23 

morphologies of exudative macular diseases by high-penetration optical coherence tomography. Invest 24 

Ophthalmol Vis Sci. 2009;50:405-413. 25 



13 
 

12. Nagase S, Miura M, Makita S, Iwasaki T, Goto H, Yasuno Y. High-penetration optical 1 

coherence tomography with enhanced depth imaging of polypoidal choroidal vasculopathy. Ophthalmic 2 

Surg Lasers Imaging. 2012;43: e5-9. 3 

13. Makita S, Hong Y, Yamanari M, Yatagai T, Yasuno Y. Optical coherence angiography. Opt 4 

Express. 2006;14:7821-7840. 5 

14. Miura M, Makita S, Iwasaki T, Yasuno Y. Three-dimensional visualization of ocular vascular 6 

pathology by optical coherence angiography in vivo. Invest Ophthalmol Vis Sci. 2011;52:2689-2695. 7 

15. Makita S, Jaillon F, Yamanari M, Miura M, Yasuno Y. Comprehensive in vivo micro-vascular 8 

imaging of the human eye by dual-beam-scan Doppler optical coherence angiography. Opt Express. 9 

2011;19:1271-1283. 10 

16. Hong YJ, Makita S, Jaillon F, et al. High-penetration swept source Doppler optical coherence 11 

angiography by fully numerical phase stabilization. Opt Express. 2012;20:2740-2760. 12 

17. Szkulmowska A, Szkulmowski M, Szlag D, Kowalczyk A, Wojtkowski M. Three-dimensional 13 

quantitative imaging of retinal and choroidal blood flow velocity using joint Spectral and Time domain 14 

Optical Coherence Tomography. Opt Express. 2009;17:10584-10598. 15 

18. An L, Wang RK. In vivo volumetric imaging of vascular perfusion within human retina and 16 

choroids with optical micro-angiography. Opt Express. 2008;16:11438-11452. 17 

19. Schwartz DM, Fingler J, Kim DY, et al. Phase-variance optical coherence tomography: a 18 

technique for noninvasive angiography. Ophthalmology. 2014;121:180-187. 19 

20. Mariampillai A, Leung MK, Jarvi M, et al. Optimized speckle variance OCT imaging of 20 

microvasculature. Opt Lett. 2010;35:1257-1259. 21 

21. Jia Y, Tan O, Tokayer J, et al. Split-spectrum amplitude-decorrelation angiography with optical 22 

coherence tomography. Opt Express. 2012;20:4710-4725. 23 

22. Miura M, Hong Y, Yasuno Y, Muramatsu D, Iwasaki T, Goto H. Three-dimensional Vascular 24 

Imaging of Proliferative Diabetic Retinopathy by Doppler Optical Coherence Tomography. Am J 25 



14 
 

Ophthalmol. 2015;159:528-538. 1 

23. Hong YJ, Miura M, Makita S, et al. Noninvasive investigation of deep vascular pathologies of 2 

exudative macular diseases by high-penetration optical coherence angiography. Invest Ophthalmol Vis 3 

Sci. 2013;54:3621-3631. 4 

24. Lafaut BA, Aisenbrey S, Van den Broecke C, Bartz-Schmidt KU, Heimann K. Polypoidal 5 

choroidal vasculopathy pattern in age-related macular degeneration: a clinicopathologic correlation. 6 

Retina. 2000;20:650-654. 7 

25. Okubo A, Sameshima M, Uemura A, Kanda S, Ohba N. Clinicopathological correlation of 8 

polypoidal choroidal vasculopathy revealed by ultrastructural study. Br J Ophthalmol. 9 

2002;86:1093-1098. 10 

26. Iijima H, Imai M, Gohdo T, Tsukahara S. Optical coherence tomography of idiopathic 11 

polypoidal choroidal vasculopathy. Am J Ophthalmol. 1999;127:301-305. 12 

27. Alasil T, Ferrara D, Adhi M, et al. En Face Imaging of the Choroid in Polypoidal Choroidal 13 

Vasculopathy Using Swept-Source Optical Coherence Tomography. Am J Ophthalmol., in press. doi 14 

10.1016/j.ajo.2014.12.012. 15 

28. Sayanagi K, Gomi F, Akiba M, Sawa M, Hara C, Nishida K. En-face high-penetration optical 16 

coherence tomography imaging in polypoidal choroidal vasculopathy. Br J Ophthalmol. 2015;99:29-35. 17 

29. Kim JH, Kang SW, Kim TH, Kim SJ, Ahn J. Structure of polypoidal choroidal vasculopathy 18 

studied by colocalization between tomographic and angiographic lesions. Am J Ophthalmol. 19 

2013;156:974-980. 20 

30. Tan C, Ngo WK, Lim LW, Lim TH. A novel classification of the vascular patterns of 21 

polypoidal choroidal vasculopathy and its relation to clinical outcomes. Br J Ophthalmol. 22 

2014;98:1528-1533. 23 

31. Kawamura A, Yuzawa M, Mori R, Haruyama M, Tanaka K. Indocyanine green angiographic 24 

and optical coherence tomographic findings support classification of polypoidal choroidal vasculopathy 25 



15 
 

into two types. Acta Ophthalmol. 2013;91:e474-481. 1 

32. Framme C, Panagakis G, Birngruber R. Effects on choroidal neovascularization after 2 

anti-VEGF upload using intravitreal ranibizumab, as determined by spectral domain-optical coherence 3 

tomography. Invest Ophthalmol Vis Sci. 2010;51:1671-1676. 4 

33. Kraus MF, Potsaid B, Mayer MA, et al. Motion correction in optical coherence tomography 5 

volumes on a per A-scan basis using orthogonal scan patterns. Biomed Opt Express. 2012;3:1182-1199. 6 

34. Blatter C, Klein T, Grajciar B, et al. Ultrahigh-speed non-invasive widefield angiography. J 7 

Biomed Opt. 2012;17:070505. 8 

35. Choi W, Mohler KJ, Potsaid B, et al. Choriocapillaris and choroidal microvasculature imaging 9 

with ultrahigh speed OCT angiography. PLoS One. 2013;8:e81499. 10 

  11 



16 
 

Figure Legends 1 

Figure 1.  Image processing for en face projection of Doppler OCT images for better visualization in 2 

the print format. (A) Original image. (B) Image after application of convolution filter and adjustment of 3 

brightness and contrast. 4 

 5 

Figure 2.  ICGA and Doppler OCT images of PCV obtained from the left eye of a 70-year-old male. 6 

The late phase of the ICGA image (B) shows polypoidal lesions on the macula. The early phase of the 7 

ICGA image (A) shows feeder vessels of polypoidal lesions (yellow arrow). The late phase of the ICGA 8 

image after treatment shows no clear therapeutic effects for polypoidal lesions (C). Yellow lines in the 9 

en face Doppler OCT images before (D) and after (G) treatment indicate the scanning line of B-scan 10 

OCT images before (E, F) and after (H, I) treatment, respectively. En face Doppler OCT image before 11 

treatment (D) clearly shows the vascular network with focal aneurysmal dilatation at polypoidal lesions. 12 

Standard OCT B-scan image before treatment (E) shows a high-intensity mass in the pigment epithelial 13 

detachment, and the composite Doppler OCT B-scan image (F) shows the presence of blood flow at 14 

polypoidal lesions (yellow arrow). After treatment, the en face Doppler OCT image (G), standard OCT 15 

B-scan image (H), and composite Doppler OCT B-scan image (I) show no clear therapeutic effects for 16 

polypoidal lesions. 17 

 18 

Figure 3.  ICGA and Doppler OCT images of PCV obtained from the left eye of a 72-year-old male. 19 

Early (A) and late phases (B) of the ICGA image before treatment show polypoidal lesions on the 20 

macula. The late phase of the ICGA image after treatment (C) shows disappearance of polypoidal 21 

lesions. Yellow lines in the en face Doppler OCT image before (D) and after (G) treatment indicate the 22 

scanning line of B-scan OCT images before (E, F) and after (H, I) treatment, respectively. En face 23 

Doppler OCT image before treatment (D) shows the polypoidal lesions at the corresponding locations of 24 

lesions in the ICGA images (A). Some polypoidal lesions in the early phase of the ICGA image (A) 25 
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became unclear in the late phase (yellow arrow), and the Doppler OCT image (D) clearly detects these 1 

polypoidal lesions (yellow arrow). Standard OCT B-scan image before treatment (E) shows a 2 

high-intensity mass with a low-intensity (yellow arrow) area in the pigment epithelial detachment, and 3 

the composite Doppler OCT B-scan image (F) shows the presence of blood flow by the polypoidal 4 

lesions (yellow arrow). After treatment, an en face Doppler OCT image (G) and composite Doppler 5 

OCT B-scan image (I) show the disappearance of polypoidal lesions. Standard OCT B-scan image after 6 

treatment (H) shows the reduction of pigment epithelial detachment. 7 

 8 

Figure 4.  ICGA and Doppler OCT images of PCV obtained from the left eye of an 84-year-old male. 9 

Early (A) and late (B) phases of ICGA images before treatment show polypoidal lesions on the macula. 10 

The late phase of the ICGA images after treatment shows reduction of the lower part of the polypoidal 11 

lesions (C). Yellow lines in the en face Doppler OCT image before (D) and after (G) treatment indicate 12 

the scanning line of B-scan OCT images before (E, F) and after (H, I) treatment, respectively. En face 13 

Doppler OCT image before treatment (D) shows the polypoidal lesion at the same location as in the 14 

ICGA images (yellow arrow). Standard OCT B-scan image before treatment (E) shows the pigment 15 

epithelial detachment. Composite Doppler OCT B-scan image (F) shows the presence of blood flow by 16 

the polypoidal lesion in the inner choroid (yellow arrow). After treatment, the en face Doppler OCT 17 

image (G) shows reduction of the lower part of the polypoidal lesion. Standard OCT B-scan image after 18 

treatment (H) shows reduction of the pigment epithelial detachment. Composite Doppler OCT B-scan 19 

image after treatment (I) shows the presence of a polypoidal lesion in the inner choroid (yellow arrow). 20 

 21 

Figure 5.  ICGA and Doppler OCT images of PCV obtained from the left eye of a 71-year-old female. 22 

The late phase of the ICGA image (B) before treatment shows a polypoidal lesion on the macula. The 23 

early phase of the ICGA image (A) shows multiple lobules in polypoidal lesions and feeder vessels 24 

(yellow arrow). The late phase of the ICGA image after treatment shows reduction of the polypoidal 25 
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lesions (C). Yellow lines in the en face Doppler OCT image before (D) and after (G) treatment indicate 1 

the scanning line of the B-scan OCT images before (E, F) and after (H, I) treatment, respectively. En 2 

face Doppler OCT image before treatment (D) shows multiple lobules at the polypoidal lesion. Standard 3 

OCT B-scan image before treatment (E) shows a high-intensity mass in the pigment epithelial 4 

detachment. Composite Doppler OCT B-scan image (F) showing the presence of blood flow by 5 

polypoidal lesions in the inner choroid (white arrow) and pigment epithelial detachment (yellow arrow). 6 

After treatment, en face Doppler OCT image (G) shows reduction of the right part of the polypoidal 7 

lesion. Standard OCT B-scan image after treatment (H) shows pigment epithelial detachment. 8 

Composite Doppler OCT B-scan image after treatment (I) shows preservation of the polypoidal lesions 9 

in the inner choroid (white arrow) and disappearance of the polypoidal lesion in the pigment epithelial 10 

detachment. 11 

 12 

Figure 6.  Scatter plot of the total area of polypoidal lesions in ICGA and Doppler OCT images. 13 

 14 

Figure 7.  Scatter plot of the reduction rate of polypoidal lesions in ICGA and Doppler OCT images. 15 

 16 
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