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ABSTRACT

The MSE-minimizing local variable bandwidth for the univariate local linear estimator
(the LL) is well-known. This bandwidth does not stabilize variance over the domain. More-
over, in regions where a regression function has zero curvature, the LL estimator is discontin-
uous. In this paper, we propose a variance-stabilizing (VS) local variable diagonal bandwidth
matrix for the multivariate LI estimator. Theoretically, the VS bandwidth can outperform
the multivariate extension of the MSE-minimizing local variable scalar bandwidth in terms
of asymptotic MISE and can avoid discontinuity created by the MSE-minimizing bandwidth.

We present an algorithm for estimating the VS bandwidth and simulation studies.

1 Introduction

Suppose that we are interested in exploring the association between a set of stochastic
covariates X = (Xi,..., X,) and the response Y. Nonparametric approaches to explain the
conditional expectation, such as E [Y|X] = m(x), are preferable in many cases. In this paper,
we will concentrate on the nonparametric kernel-type local linear estimator (henceforth the

LL estimator), a popular approach in curve estimation, presented, for example, by Ruppert



and Wand (1994).

Let us consider a p + l-row vector (X1,..., X;p, Y;) of random variables. We assume
that x;,, = (241,...,2), ¢ = 1,...,n, are the realizations of random explanatory vectors
X, = (X, ..., Xjp), 1. 1. d. with respect to ¢ whose joint density function fx(x) is bounded
away from zero on compact support I* € R?. The n sample realizations of (X, ..., X;,) can
be written as the covariate matrix (X.1, X9, ..., X, ), where X ; = (21, Toj, ooy Tpj) 0 J = 1, o0y p.
We assume that the jth random explanatory variable X.; may be correlated with the kth
variable X i, j # k, and that the response Y;, ¢ = 1,...,n, is influenced by the corresponding

explanatory vector X;. in the form of m(X,.) and the disturbance U; as,

where m(-) is m : R? — R function of the X;.. The U;|X,.’s, 1 = 1, ..., n, are random variables
independent with respect to ¢ and are assumed to be independent of X;., 1 # 7. We assume

the first two conditional moments of U;|X;. are
Euyx, [UiXy = x1, 00, X = X0] =0, B, [UF1X1 = x0, 00, X0 = X0 = o7 (xa). (1)
These standard assumptions are summarized as S 1-4 below :

S 1 Pairs of random variables (X;.,Y;) are i. i. d. with respect to 1;

S 2 The density of X is continuous and 0 < C; < fx(x) < €/ on compact
support [7;

S 3 Column vectors X.;,7 = 1,...,n, of the covariate matrix (X.1, X.q, ..., X.,)

are linearly independent with respect to j;

S 4 The U;|X.’s, i = 1,...,n, are random variables independent with respect
to ¢, and assumed to be independent of X,., 7 # j. The first two conditional

J

moments of U;|X;. are given in (1).

Let Kx(t) be the non-negative real-valued p-dimensional kernel function, where t =

(t1,...,1,), satisfying the standard set of assumptions K 1 below :
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K 1 Let Ax(t) be the non-negative real-valued p-dimensional kernel density
function satisfying
(i) Kx(t)is a compactly supported, bounded kernel such that [ --- [ Kx(t)t"tdt =
p2(Kx)L,, where pus(Kx) # 0 and I, is the p-dimensional identity matrix;
(i) |- fth ZPAX (t)dt = 0 for all nonnegative integers [y, ..., [, such that

their sum is odd.

We assume that H is a p-dimensional symmetric positive definite-bandwidth matrix. The
LL estimator of m(-) is given by the solution for 3, that minimizes, along with the other j;,

g =1,...,p, the sum of weighted least squares,

80,61,
=1 71=1
= min [Y - D)8’ W)Y - D(x)3] &
NCI o
where
1 T11 — X1 X112 — X2 ... T1p — Tp
D(X): %xQI‘_xl $22‘—$2...$2p‘—$p 7
I Xpp — 21 Tpa— 22 .. Tpp — 2

W (x) = diag (Kx((x;. — x)H™), ..., Kx((x,. — x)H™!)) is the matrix controlling the weight
reflecting the relevant data points in calculating the LL estimator at x, 3 = (3o, B1, -+, 85)"
is the local linear coefficient vector, Y = (Y1, ..., ¥;,)T is the vector of responses with length n
and the term 3, + E?Zl B;(x;; —x;) is the linear approximation of m(x) in the neighborhood
of x. Solving the minimization problem (2) with respect to B retaining its intercept term

3o, we obtain the LL estimator,
mi (x) = e1 [DT(x)W(x)D(x)] " [DT(x)W(x)Y],

where ey is a 1 x (p+ 1) row vector with 1 as the first entry and 0 for all other entries.



The variance and the bias of the LL estimator are well known. See Ruppert and Wand
(1994). With the standard set of assumptions on kernel K 1 and the additional assumptions

S 5-7 concerning o?(x), m(x) and a;;(x), where

d [om(x) . .
G(x) = — , fore=1,...,p, j=1,...,p: 3
aij(x) I { pr ] or 1 P, J p (3)
S 5 m(x) is twice continuously differentiable with respect to a;, ¢ = 1,...,p;

S6

(1) m(x) are not linear functions such as by + >°5_ b;a;;

(i) 7, ay(x) # 0 on some nonzero set within /7;

S 7 The conditional variance is continuous and 0 < C,2 < o%(x) < C° for

compact support I7,
and assumptions concerning H written as follows:

A 1 All the entries in H converge to 0 as n — oo;

A 2 n|H| = o0 as n — oo,

the theoretical conditional variance of the LI estimator is written as follows:

1 o*(x)

T
Vx. l{m X‘X.:X.,...,Xn.zxn. = ———=
Xy | ma ()| X = W [F] (%)

R(Kx) (140, (1)), (4)

where R(Kx) = [--- [ K)(t)dt. Similarly, the theoretical conditional bias for the LL

estimator at x is known to be

Fx, v, {@X)‘ X1 = X1y ey X = Xn} — m(x)

— W(g(x)trace [HTVZW(X)H} + 0p (trace (HTH>> ’ (5)

where the Hessian matrix is defined to be

a11(X) ... agp(X)

Vim(x) =
ap1(X) o app(X)
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Because the leading terms in (4) and (5) do not depend on X;., ..., X,,., they play the role of
unconditional variance and bias, respectively, as stated in Ruppert and Wand (1994).

If we assume

A 3 The data X,;.’s are distributed as approximately multivariate normal so

that the p-dimensional bandwith matrix H is assumed to be diagonal, H =

diag(hy1, hags ey Ppp),

the sphering approach as presented by Wand and Jones (1993) is appropriate, and we do not
have to parametrize the off-diagonal elements of bandwidth matrix that reflect the correlation
between explanatory variables. Therefore, the bandwidth matrix is diagonal.

As most nonparametric regression estimators choose their bandwidth by balancing the
squared bias and the variance either globally or locally, they do not produce constant vari-
ance over all values of the combinations of the regressor variables, unless one is dealing
with rare occasions where the variability of the response variable does not change with the
density of the data points or where the covariate variables have a joint distribution whose
density compensates for the aforementioned variability of the response. This heteroscedas-
ticity is unsettling and should be avoided if possible. In a series of papers, Kanazawa (1992),
Kanazawa (1993a,b), and Kanazawa, Kogure, and Lee (1999) showed that in density esti-
mation the AIC, Kullback-Leibler loss (KLL), and Hellinger distance (HD) are equivalent to
the variance-stabilizing integrated squared error (VSISE) and that the histogram cell width
selection rules or window width selection rules based on AIC, KLL, or HD are asymptotically
equivalent. This means that the resulting histogram estimates or kernel density estimates
based on AIC, KLL, or HD all try to stabilize the variance of the density estimates over the
domain. Considering these developments in nonparametric density estimation, we feel that
it is essential to have in the toolbox for data analysis a nonparametric regression estimator
that stabilizes the variance when the variances in error terms vary with observation.

One of the well-known bandwidths for the univariate LL estimator is the local variable

bandwidth that minimizes the leading term of the mean squared error (asymptotic MSE or



AMSE)

AMSE <m(x), @W@)
_ 1 o?(x)
n|H| fx(x)

R(Kx) + % [trace [HTV27n()<)HH2 \

as given by Ruppert and Wand (1994) for a multivariate setting. The LL estimator with
such a bandwidth is heteroscedastic. On the other hand, Nishida and Kanazawa (2011)
propose a local variable bandwidth that stabilizes the variance of the univariate Nadaraya-
Watson estimator (Nadaraya, 1964, 1965, 1970; Watson, 1964; Watson and Leadbetter, 1963)
(henceforth variance-stabilizing bandwidth or VS bandwidth). For the LI estimator, the VS

bandwith is given by

ST

o?(x) ‘ R(Kx)

fx(x) pi(Ky) UI _wX(x)fz((z))a @) J

N
i

hvs(l‘) = 5
where a(x) is the second derivative function of m(x) and wyx(x) is a univariate weight
function defined on I. This bandwidth can be criticized on the grounds that the MSE-
minimizing local variable bandwidth in a univariate setting will always outperform the VS

bandwidth in terms of the asymptotic mean integrated squared error (henceforth AMISE)
AMISE <m(-), a}gfz» - / : / AMSE <m(x), ELF(XD wx (x)dx,
Ir

where wx (x) is a multivariate weight function defined on I?. The result is brought about by
the fact that the univariate VS bandwidth is calculated so as to minimize MISE among the
class of bandwidths that stabilize variance over all local points x. This constrained band-
width choice cannot achieve the minimum MSE at every local point and thus cannot achieve
minimum MISE over the support. We will show in Proposition 2-(i) that this bandwidth
generates a larger AMISE than the MSE-minimizing local variable bandwidth in a univariate
setting.

In a multivariate regression setting, however, this assertion is not necessarily true. In

other words, we are able to find a variance-stabilizing estimator whose MISE can outperform



the MISE of a multivariate extension of the MSE-minimizing local variable bandwidth. This
is possible because in a multivariate regression setting, we can reduce the sum of the MSE
inflated due to the constraint by distributing the inflated MSE among different directions
of coordinate axes. To do so, we employ a set of locally varying parameters that adjust the
bias obtained after the variance is stabilized, or we introduce the local variable bandwidth

matrix that negates the variable part of the “unconditional” variance in (4) given by

0’2(){) 7711(X)
ke 0 0 ... 0
0 {02(x) } 22 (x) 0 0
HVS(X) — hO . ‘ fX(X)‘ ‘ P 7 (6)
o2(x) Npp(X)
0 N e
where hq is a global parameter and n;;(x), ¢ = 1, ..., p, are the local parameters, both to be

estimated, satisfying

P
> malx) =1, (7)
i=1

—00 < 77“'(X) < 0. (8)

Both the global parameter hg and the local parameters, n;;(x), i = 1, ..., p, can be determined

so as to optimize AMISE. This optimized bandwidth matrix can outperform a multivariate

extension of the MSE-minimizing local variable bandwidth,

R(Kx)o*(x) pte R 9
P2 (Kx) fx(x) [0, au(x))? P P> (9)

which minimizes AMSE at every x among the class of local variable scalar bandwidth ma-

H,. (x) =

trices,
H,. (x) = hoo(x) - L,

(henceforth the MSE-minimizing local variable scalar bandwidth matrix or the MSE-minimizing
scalar bandwidth matrix). The proposed VS bandwidth matrix is given in Proposition 1

along with remarks.



One type of VS bandwidth matrix has a practical advantage over the MSE-minimizing
scalar bandwidth matrix in (9) in that it avoids a discontinuity often encountered by (9): the
denominator of the scalar in the MSE-minimizing scalar bandwidth matrix in (9) is zero at

the points satisfying >°7_ «a;(x.) = 0. As a result, the diagonal elements in the bandwidth

o —— e —
matrix takes infinitely large value and mf{;{ (x.) takes e18°%” | the intercept term of the OLS

/‘A—-—
estimator. Because m(x.) does not coincide with e, 3°%°

in general, this invites considerble
bias at the corresponding points. However, the VS bandwidth matrix is continuous at these
points as long as the local parameters n;;(x), ¢« = 1,...,p, are all constant and a standard
assumption such as S 2 is made. We explain this issue in Section 4.

In Section 2, we introduce the local variable VS bandwidth matrix that minimizes AMISE
and show a sufficient condition that enables the proposed VS bandwidth matrix to out-
perform (9). In Section 3, we present the outline of an algorithm for estimating the VS
bandwidth matrix and two simulation studies to evaluate the performance of our proposed
estimator. In Section 4, we give Discussion. The detailed estimation algorithm is shown in

Appendix 1. To assist the reader, we give a brief overview of all bandwidth matrices used

throughout the paper in Appendix 2.

2 Introduction of the variance-stabilizing local variable

bandwidth matrix

Proposition 1. The theoretically variance-stabilizing local variable diagonal bandwidth ma-

triz for the multivariate LL estimator,

H () = 2 - ding ([UQ(X):|UE(X),-.-7 [@} n;p(x)> | o

Jx(x) Jx(x)
which minimizes asymplotic MISE s given by the following optimized parameters hy and

ni(x), i =1,...,p.



(i) The optimal global parameter hy is given by

. R(Kx)
ho = [M%(KX)TVS(UE(X)?""U;p(x))]

Sz e

(ii) The optimal local parameters n%(x), 1 = 1,...,p, are given by

pr TR, (1)

where

Ty s(ma (%), s 1pp (%)) = //I wx(X) [

ni(x) = (13)

ifau(x) >0, 1=1,....p, or as(x) <0,1=1,...,p.

Remark 1. If a;;(x) = 0, = 1,...,p, at some points in the domain, the criterion function
presented later in (17) takes a zero minimum value for every n;(x), i = 1,...,p. At the

points, any set of values n%(x), ¢ = 1, ..., p, satisfying (7) is available.

Y

Remark 2. In general, if a;;(x)’s, i = 1, ..., p, are not of the same sign, n%(x)’s, i = 1,...,p,
are not uniquely determined when p > 3. In a special case where the function (18), presented
later, does not have local maximum or minimum values at x, the optimal set of parameters
nE(x), 1 =1,...,p, is given by any set of values satisfying

o [ . () =
Zoz“(x) () 0, subject to Zn“(x) 1.

Remark 3. If o,,(x) is zero and the rest of the a;;(x)’s, i = 1,...,p, 7 # ¢, are non-zero, we
consider the p — 1-dimensional minimization problem of (17) with the ¢-th variable left out

of the minimization problem.

Remark 4. If fx(x) and o?(x) are of the same functional form, we do not have to employ
our proposed method because the variance (4) is already constant. If o?(x)/fx(x) = 1 at
some points in the domain, any set of values n;;(x), ¢ = 1, ..., p, satisfying (7) is available at

the corresponding points.



Remark 5. The assumption S 6-(i)(ii) is necessary to guarantee the existence of A in (11),

which requires that Ty s(n11(X), ..., npp(X)) in (12) is not equal to zero.

Proof of (i). We first choose hg, given n;;(x), i = 1, ..., p, to minimize AMISE. Integrating
the square of the leading term in (5) and (4) over the support I?, the leading term of the
MISE between @)(X) and m(x) is

e )
/ /Ip[n|H<x>|fx<x>R“’“+ i

Substituting Hyg(x) in (6) for H(x) in (14), we obtain

trace [H(x)"V*m(x)H(x)]] 2] wx (x)dx. (14)

1 i hi .
—5 R(Ax) + 23 (Kx) Tvs (1 (%), .. npp(X)). (15)
nhg 4
The optimal global parameter (11) minimizes (15) with respect to hg. O

Proof of (ii). We then optimize n;;(x), ¢ = 1,..., p, in terms of the AMISE. Substituting A}
in (11) for hg in (15), we obtain the AMISE, optimized in terms of hg, written as

Lt i ] ( s +ppi4> T, 16
[[M%(KX)]_I’L [Ty s(m1(x), ...,npp(x))]_zﬁ P 4 (16)

To minimize (16), the term Ty g(n11(%), ..., n,p(x)) defined in (12) must be minimized in

terms of n;;(x) ¢« = 1,...,p. For such n;(x), ¢ = 1,...,p, we solve the following constrained

minimization problem in terms of n;;(x), ¢ = 1, ..., p, at every point of x,

o S e |2 bt 0 3o -
min ' o(x , subject to ni(x) = 1. (17)

711(X),-11pp (%) Jx(x) i=1

Let G(-) donote the p — 1-variate function with respect to n11(x), ..., Pp—1p—1(X%),

y . p—1 . 0'2(X) 2n;i(x) 0'2(X) 2[1_25;11771‘1‘()()]
GO %) 1p-1(3) = [Zm 7] o=l

=1
Differentiating (18) with respect to n;;(x), ¢ = 1,...,p — 1, and equating the outcome to zero,

L (18)

Faplx) |

we obtain the following simultaneous equations

st o ] 2] 2
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=0, 1=1,..,p—1

Solving simultaneous equations (19) and (7) with respect to n;;(x), ¢ = 1, ..., p, we obtain

the following first-order condition,

[T7_, o5(x) 02(x)}2
In { o GOT {fx(X)

o2(x) ] *"
In {fx(x)}

ni(x) = 1=1,..,p. (20)

To check the second-order condition, we examine the principal minors of order k =1,..,p—1,

A (x) App(x) oo Apg(x)
A (x) Aga(x) ... Ag(x)

Akl(X) AkQ(X) Akk(X)

[l ST [ e

J=1 =L

_ PGEn(x), s mp—1p-1(x))
Mii(x) ;i (x)

If a;(x) > 0,0 =1,...,p, the sequence of the principal minors (21) is Ay(x) > 0, Ay(x) > 0,

M1 (X)=n11 (%) Tp—1p—1(X) =15 _1,,_1 (%)

iy Ay_1(x) > 0. This means that the function in (18) takes a positive minimum value under
the first-order condition (20). On the other hand, if o;;(x) < 0, ¢ = 1,...,p, the sequence
of the principal minors (21) is Aq(x) < 0, Ay(x) > 0, As(x) < 0,... This means that the
criterion function in (18) takes a negative maximum value under the first-order condition
(20). Because the criterion function in (17) is the square of the function in (18), the first-

order condition (20) optimizes the minimization problem (17). O

Remark 6. Interpretations of the two parameters are as follows. The parameter hg plays a
role in controlling the AMISE globally. See (15). As for n;(x), ¢ = 1, ..., p, this set of functions
is intended to cancel out the variable part o*(x)/fx(x) of the variance (4) and to reduce

the AMSE locally and therefore the AMISE globally. Furthermore, the local parameters

11

(19)



ni(x), 1 = 1,...,p, serve to stabilize the variance at the expense of bias. Particularly when
0 < niu(x) < 1,7 =1,..,p, the parameters n;(x), ¢ = 1,...,p, can be interpreted as the
fractional rate of the power of the squared bias that should be distributed to every coordinate

axis, 1, ..., ¢, from (12).

Remark 7.  Suppose that n;(x), ¢ = 1,...,p, do not depend on x such as nyy, ..., pp,
and > 7_ n; = 1 at all points x. These globally determined parameters can also achieve
the purpose of canceling out the term o?(x)/fx(x) in the leading term of (4). However,
these globally determined 7;;’s cannot reduce the AMISE as much as the locally determined

’s. Furthermore, optimizing 7y, ..., n,, requires numerical calculation. One easy way

7ii(X)
to obtain 711, ...,1,, is to set ny; = ... = n,, = 1/p. This choice of local parameters avoids

the discontinuity created by (9) as explained in Section 4.

We illustrate the theoretical strength of our proposed VS bandwidth matrix over the
MSE-minimizing scalar bandwidth matrix through a proposition and an example. Let v(x)
denote the ratio of the following two “density” functions,

V(X) — 0.2(X) fX(X) )
f"'fIPO'Z(X)dX f"'f[pr(X)dX

When the VS bandwidth matrix and the MSE-minimizing scalar bandwidth matrix are

(22)

employed, the respective AMISE’s are written as

b
pt4

AMISE <m(-), @()) — //I wx ()77 (x) [pf[m(x)ﬁ] dx| .(23)

pt4

AMISE <m(-), Z@;(-)) - Cln_+//I wx(x) |77 (x) [Zp:%(x)] dx, (24)

where Cy = (p=?/®+4) 4 p/ 09 14) [R(Kx )Y+ [u2(Kx) O [ [ - [, o2 ()dx] 7Y > 0.
e obtain the lollowing proposition as to the magnitude relationship in terms of the

We obtain the following it h gnitude relationship i f the AMISE

between (23) and (24).
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Proposition 2. Suppose that o;;(x) > 0, 1 = 1,...,p, or a(x) < 0, ¢ = 1,...,p, holds at
every xX. The magnitude relationship of the AMISE between the VS bandwidth matriz in (10)
and the MSE-minimizing scalar bandwidth matriz in (9) is then determined as follows.

(i) Whenp =1, the AMISE <m(), m()> is always larger than the AMISE <m(), Tn‘%:i;(»

(ii) When p > 1, a sufficient condition for which the AMISE <m(), @;()) is smaller
than the AMISE <m(), @()) is

2

=C, at every x, where C >0 is any positive constant. (25)

7 (%) [Z 0ii(x)

Proof of (i). When p = 1, by Holder’s inequality, we obtain

AMISE (m(), w7 () = AMISE (m(). mil ()

{ /I 02(;1;)614 5

Tl

_ Z 075 [RIK )] [13(Kx)]

Proof of (ii). When p > 1, if we employ (25), we obtain the following relation

er——_

AMISE"S (m(), mi () = AMISE'S (m(), mHy ()

I / /Ipwx(x) (S0 ) = [pTT, las (x)17 | e o)

[>F, eu(x)]

Because [37_, a;(x)]* — (pIT, |oz“'(x)|1/p]2 > 0 always holds at every x, equation (26) is

=1 k23

always greater than or equal to zero under the sufficient condition (25). O

Example 1. Let a twice differentiable bivariate regression curve be m(xy, x,) = cos(3xy) +
cos(3xy), with covariates distributed as 7(xy,23), the bivariate normal density having its

mean (0,0) and the variance-covariance matrix diag(0.35%,0.35%) truncated on the domain

[—0.5,0.5] x [=0.5,0.5]. In this setting, 71.71% of the data points distributed as

13



N((0,0)T, diag(0.35%,0.35%)) are included in the domain [—0.5,0.5] x [~0.5,0.5]. The con-
ditional variance o?(zy, ) is determined by (25) and is 7(xy,x3)/(9 cos(3zy) + 9 cos(3xq)).
See Figure 1. For this example, the AMISFE <m(), @:()) is 3.2982 % smaller than the
AMISE <m(-), mﬁgw(-))

m(Xy, X2)=C0s(3x1)+C0s(3%y) 6%(X1, X2)=T(X1,X2)/(9C0S(3x1)+9c0S(3Xy))

Figure 1: The true regression function m(xy,x) = cos(3x;) + cos(3x,) on the left and the
conditional variance function o*(xy,xy) = 7(xy,25)/(9 cos(3z1) + 9cos(3z;)) on the right
in Example 1, where 7(zy, ) is the bivariate normal density N((0,0),diag(0.35%,0.35%))
truncated on [—0.5,0.5] x [—0.5,0.5].

Remark 8. Proposition 2-(ii) results from the fact that the VS bandwidth matrix has more
flexibility in its matrix form than the MSE-minimizing scalar bandwidth matrix in (9). The
p-variate VS bandwidth matrix has p — 1 local parameters at a given point x and one global
parameter, while the MSE-minimizing scalar bandwidth matrix has one local parameter at
the same given point x. However, in a univariate setting, the VS bandwidth matrix is reduced
to having one global parameter, while the MSE-minimizing scalar bandwidth matrix remains
to have one local parameter at a given point x. As a result, the VS bandwidth matrix will
not be able to outperform the MSE-minimizing scalar bandwidth matrix by definition as in

Proposition 2-(i).
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3 Estimating the variance-stabilizing bandwidth ma-
trix

To estimate the VS bandwidth matrix, the global parameter A in (11), the local parameters
ni(x), i = 1,...,pin (13), 0*(x) and fx(x) must be estimated. The basic idea is to indi-
vidually estimate components in (11) and (13), ]/C)\((X), ag(x), 1 =1,...,p, 0/'\2(X) and plug
these estimators into (11) and (13). In the course of sequentially estimating necessary com-

” W

ponents, we also employ well-established ideas such as “pilot estimator,” “cross-validation.”

This idea guarantees weak consistency of the LL estimator with the VS bandwidth matrix,
while simultaneously achieving homoscedasticity of @:(X), as long as the components
]/C)\((X) and 0/'\2(X) in (10) are respectively weakly consistent estimators.

We present an illustrative example of the plug-in algorithm in Appendix 1 for bivariate
fx, x, (1, 29). First, we estimate fx, x,(x1,23). Second, we estimate the second derivative
of m(xy,xy), ayy(x1,23), ag(xy,xy). Third, we estimate o?(zy, x5). Fourth, we estimate hq.
Fifth, we estimate Hys(x).

In estimating ayq (21, x2) and agg(a1,23), we use the quartic polynomial “pilot” estimator
of m(xq,x2), proposed by Fan and Gijbels (1995) to allow for flexibility in estimating the
second derivative of m(x) in (3). To estimate o?(xy,x,), we employ the “residual-based”
estimator in Fan and Yao (1998). This estimator smoothes squared residuals (Y; — mi(x))?
by the Nadaraya-Watson regression estimator. To calculate the squared residuals, we esti-
mate m(xy,x;) by the LL estimator with its bandwidth estimated so as to minimize cross-
validation statistics among the class of global scalar bandwidth matrices that appear later
in (33). The bivariate extension of the residual-based estimator appears in (34), and we
compute the bandwidth of the residual-based estimator so as to minimize cross-validation

statistics among the class of global scalar bandwidth matrices in (35).

Simulation studies
We present two simulation studies. The first simulation does not satisfy condition (25),

whereas the second does. In both simulation cases, we repeat the process M = 200 times

15



at points from —0.495 to 0.495 at 0.01 increments in both directions for n = 500, 1,000,
5,000, 10,000 and 15,000. In the simulations, we would first like to see if the proposed
algorithm obtains f;\g close to hy in (11) and if the estimator converges to the true regression
function. We would also like to see if the proposed estimator of the VS bandwidth matrix
in (36) actually stabilizes the variances of the LL estimator. We also evaluate our proposed
estimator of the VS bandwidth matrix relative to the theoretically MSE-minimizing scalar
bandwidth matrix in (9). We choose two simulation settings that guarantee that no points
of x satisfy Y 7, a;i(x) = 0 in their respective domains and that the MSE-minimizing scalar
bandwidth matrix in (9) does not produce discontinuous points as mentioned in Section 1.

As a kernel, we employ a bivariate Gaussian. As a weighting function wx(x), we employ

Fx(x).

Simulation 1. The first simulation setting is as follows. Let I x I denote [—0.5,0.5] x
[—0.5,0.5]. The density function fx, x,(x1,23) is a bivariate normal N((0,0)T, diag(0.25%, 0.25%))
truncated on the compact domain [—0.5,0.5] x [—=0.5,0.5]. In this setting, 91.1% of the data
points distributed as N((0,0)7, diag(0.25%,0.25%)) are included in the domain [—0.5,0.5] x
[—0.5,0.5]. The true regression function and the conditional variance function, respectively,
are set to m(xy,xy) = 1 — af — 23, as in the left panel of Figure 2, and o%(xy,x2) =
0.25 4 0.527 4+ 0.523, as in the right panel. In this setup, the variance measured in terms of
(4) becomes large near the boundaries. We intend that the curvatures of the true regression
function are constant and can be easily estimated in this setup.

Table 1 shows the results of Simulation 1. In the table, we present means and standard
deviations and the ratios h/hs of M = 200 simulated /i for n = 500, 1,000, 5,000, 10,000

and 15,000. These numbers show that the estimator f;\g converges to A and is stable.

For the two bandwidth matrices, we also present the estimates of the MISE defined by

WTST; =

=

i o)

[SE< (xlva)v LﬁL(xlva)

= i [/ Fxrx, (@1, @) [m(xl,xz) mﬁ{ ( 1, :I;Q)deld@] , (27)
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m(xq, X2)=1— xi - xg 62(X1, X2)=0.25 + 0.5xf+0.5x§

Figure 2: The true regression function on the left and the true conditional variance function

on the right in Simulation 1.

where mLﬁL (1,22) is the LL estimator calculated (T)-th generated sample of size n, and

the two ratios ]\—mﬁ;‘%/ma

T —

and M1SEw, ./ MISExy
by Ratio 1 and Ratio 2. From these numbers for the m L We see that the A—m;s’s

v

T

respectively, are denoted

var?

. R e .
approach to zero as n increases and thus, M .S FEgz= ’s approach zero as n increases, except for

———
the countable number of points (&, x3). Therefore, pointwise convergence of mili (1,22)

vs
to m(xy,x3) in the sense of the mean square and thus weak consistency of @;(ajl, xq) to
m(xy, x9) are supported by the simulation results. In addition, the Ratio 1’s in Table 1 show
that the price of homoscedasticity of the estimate decreases considerably as the sample size
n increases.

To see if the variance is stabilized by the proposed VS bandwidth matrix, we present in
Figure 3 boxplots of sample variances of @;(T?I;l,xg) and @(??ﬁ,@), T=1,...M,
at 0.05 intervals on the x; axis for sample sizes n = 500, 1,000, 5,000, 10,000 and 15, 000.
The two horizontally aligned panels for the same sample size in Figure 3 share the same
scale in terms of the y axis, but the scale of the y axis is shrunk from top to bottom.
Because m(xy,73) = 1 — ] — 23 is exchangeable with x; and x, and so are o?(zy,22) =

0.25 + 0.527 + 0.523, we only plot how the variance is stabilized along the z; axis. From

Figure 3, we see that comparatively smaller variances are achieved by the estimator of the VS
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bandwidth matrix near the boundaries with sample sizes greater than 1,000, which suggests
that the estimator of the VS bandwidth matrix stabilizes the variance of the LL estimator
when the sample size is large. Table 3 summarizes Figure 3.

We see from Table 3 that both the sample means and the standard deviations of the
sample variances under both the VS and MSE bandwidth matrices diminish as the sample
size increases. We also see that the estimator of the VS bandwidth matrix achieves smaller
standard deviations of the sample variance relative to the theoretically MSE-minimizing
scalar bandwidth matrix when the sample size is 1,000. When the sample size is greater than
5,000, smaller sample means and standard deviations of the sample variance are achieved
by the estimator of the VS bandwidth matrix relative to the theoretically MSE-minimizing

scalar bandwidth matrix.

Simulation 2. For the second simulation study, we employ the setting in Example 1. In
this setup, the curvature of the true regression function varies across the domain. We expect
that estimation for Simulation 2 is more “difficult” than for Simulation 1 for this reason. We
also expect that the estimator of the VS bandwidth matrix can outperform the theoretically
MSE-minimizing scalar bandwidth matrix in terms of (27).

In running simulation 2, we observe that the estimator for o?(x) is severely affected by
boundary effects. To reduce the effects in 0/'\2(X), we employ a weight function w,2(x) for
o?(x) and replace 0/'\2(X) with 0/'\2(X)w02 (x) in the estimation of hj. As a weight function
w,2(x), we employ the bivariate normal density N((0,0), diag(0.15,0.15)).

Table 2 shows the results of Simulation 2. In the table, means and standard deviations
of f;\g, the ratios f;\(*)/hg, the estimates of the MISE for the two bandwidth matrices, and
the Ratio 1’s and the Ratio 2’s are presented as in Simulation 1. The diminishing size of

standard deviation of f;\g shows that f;\g converges to b5 and is stable as well. From the

diminishing size of m

o+ pointwise convergence in the sense of mean square and thus

————

weak consistency of mﬁi (x1,22) to m(xy,x2) are confirmed as well. As for the Ratio 1’s
Vs

as well as the Ratio 2’s in Table 2, they reach values less than unity, as we expected in

Proposition 2-(ii).

18



e (T)
To check if the variance is stabilized, we present boxplots of sample variances of mﬁk (21, 22)
Vs

= (T)
and m%{;w (x1,22), T=1,..., M, in Figure 4 and their summary in Table 4. From the two
horizontally aligned panels in Figure 4, we see that comparatively smaller variances are
achieved by the estimator of the VS bandwidth matrix near the center of the domain when
the sample size is greater than 1,000. The numbers in Table 4 show that comparatively

smaller sample means and standard deviations of the sample variances are achieved by the

estimator of the VS bandwidth matrix when the sample size is greater than 1, 000.

n hi hy/hi  MISEg- ~ MISFm,,  Ratiol Ratio?2

mean std.dev. mean

500 0.2233 0.0441 11100 2.3752-10=2  6.5010-1073 3.6535  1.1312
1,000 0.1980 0.0254 1.1045  5.8148 -1073 3.9022-1073 1.4901  1.1482
5,000 0.1494 0.0059 1.0901  1.4316-1073 1.2244-1073 1.1692  1.1321

10,000 0.1327 0.0036 1.0873  8.4876-10=* 7.5256-10"% 1.1278  1.1672
15,000 0.1239 0.0024 1.0863  6.1867 -10=* 5.5025-10=% 1.1243  1.1668

Table 1: Results of Simulation 1: Estimation of Ag, Z\—m;s and mar. We also
calculate the Ratio 1 = A—m;s/mw and the Ratio 2 = m‘,s/mw.

n ﬁ% ﬁg/ha ]\77@;%5 MISEw,. Ratio 1  Ratio 2

var

mean  std.dev. mean
500 0.2797 0.0092 1.0670  5.0603 - 1072 4.8577-1073 1.0417  0.9975
1,000 0.2477 0.0051 1.0607  2.9405-1073 2.9934-103 0.9823  0.9979
5,000 0.1888 0.0015 1.0573  8.8754-10=% 9.2046-10=* 0.9642  0.9985
10,000 0.1682 0.0009 1.0570  5.3203 -10=* 55444 -10=% 0.9595  0.9986
15,000 0.1571  0.0006 1.0566  4.0719-10=% 4.2249-10=%* 0.9637  0.9987

Table 2: Results of Simulation 2 : Estimation of A, Z\—T])STE_I;;;S and mw. We also
calculate the Ratio 1 = ]\—mﬁ;‘?s/mw and the Ratio 2 = mvs/mw.
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Mean and std.dev. of sample variances of the LL at 100 x 100 points (M = 200)

n  Estimator of the VS bandwidth (36) The MSE-minimizing bandwidth (9)
mean std.dev. coef.var. mean std.dev. coef.var.
500  4.7300-1072 1.4231-10=% 3.0087 1.2400 - 1072 1.1266-10=2  0.9085
1,000 8.6363-1072 5.9634- 1072 0.6905 7.3632-1073  6.7093-107% 0.9111
5,000 1.9783-1072 1.1709-1073 0.5918 2.4565- 1073  2.8193-1073 1.1476
10,000 1.1826-1073  7.4524-10=* 0.6301 1.5716-1072  2.0150-1072  1.2820
15,000 8.3596-10=* 5.0301-10=* 0.6017 1.2015- 1073  1.6795-1073 1.3978

Table 3: Results of Simulation

posed estimator is stabilized as

1: Summary of Figure 3 results. The variance of the pro-

n increases. In addition, it performs better than the MSE-

minimizing scalar bandwidth matrix when n > 1,000.

Mean and std.dev. of sample variances of the LL at 100 x 100 points (M = 200)

n  Estimator of the VS bandwidth (36) The MSE-minimizing bandwidth (9)
mean std.dev. coef.var. mean std.dev. coef.var.
500  5.0099 -1073 4.7212-1073 0.9423 4.9717-1073  3.6874-1073  0.7416
1,000 2.7006-1072 2.1761-1073 0.8057 2.9425 1073  2.1800-107% 0.7408
5,000 7.3644-10=* 4.7057-10=%* 0.6389 8.6432-10=*% 6.6812-10=* 0.7730
10,000 4.2390-10=* 2.3318-10=* 0.5500 5.0773-10=%  3.8363-10~* 0.7555
15,000 3.1847-10~* 1.8108-10=* 0.5686 3.8035-10=% 2.9317-10=* 0.7707

Table 4: Results of Simulation 2: Summary of Figure 4 results. The variance of the pro-

posed estimator is stabilized as n increases. In addition, it performs better than the MSE-

minimizing scalar bandwidth matrix when n > 1,000.
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4 Discussion

In this paper, we propose an optimal multivariate variance-stabilizing (VS) bandwidth in
Proposition 1 by combining two components, the globally determined A in (11) and a
variable component that can be determined in principle for every x in the domain from
(13), in a manner described in (6). Fan and Gijbels call this class of variable bandwidth
a local variable bandwidth (See Fan and Gijbels 1992, p.2024). In Proposition 2, we give
a sufficient condition in (25) under which our proposed VS bandwidth matrix theoretically
outperforms the MSE-minimizing scalar bandwidth matrix. This proposition reveals that
our VS bandwidth matrix can outperform the MSE-minimizing scalar bandwidth matrix (9)
in terms of the AMISE.

In Section 3 and Appendix 1, respectively, we present the concept and the corresponding
algorithm for estimating the VS bandwidth matrix. In Tables 1 and 2, we present simula-
tion studies to show that the global parameter A} is successfully estimated. The results in
Figures 3 and 4 and in Tables 3 and 4 also show that, under the proposed VS bandwidth
matrix selection algorithm, the variance of the LL estimator is stabilized as the sample size
increases in comparison with the theoretically MSE-minimizing scalar bandwidth matrix.

Another way of introducing the idea of variable bandwidth is to combine two components,
the globally determined h,, ope in (2.10) and a variable component defined only at the data
points X;, as in (2.9) in Fan and Gijbels (1992, p. 2013). They call this bandwidth a
global variable bandwidth. Although their final recommended choice for the variable part
is different from ours, they nonetheless briefly entertain the possibility of employing the
variance-stabilized expression in the form of 0?(X;)/fx(X;) (Fan and Gijbels, 1992, p.2014)
in a univariate setting. These two ways of defining variable bandwidth, one as a local variable
bandwidth and the other as a global variable bandwidth, seem different in concept but are
not different in the context of asymptotic variance stabilization. This is because, if the
variance of the estimated regression function is asymptotically stabilized at every x, it is
also asymptotically stabilized at the data points X;. Conversely, if the variance is stabilized

at the data points X; where these data points are not restricted, it is also asymptotically
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stabilized everywhere in the domain. These similar but subtly different ways of defining
variable bandwidth give rise to two regression function estimates that are essentially the
same, although the local variable bandwidth offers somewhat more accuracy but increased
computational burden, while the global variable bandwidth offers somewhat less accuracy
but reduced computational burden.

It can be argued that another type of MSE-minimizing local variable bandwidth matrix

that minimizes the AMSE among the class of diagonal bandwidth matrices,
H,, +(x) = diag (h11(x), ..., hpp(x)), (28)

should be compared with (10). This bandwidth matrix is a local counterpart to the class
of bandwidth matrices proposed by Yang and Tschernig (1999) for the multivariate LL
estimator. However, we feel that the class of VS bandwidth matrices that ought to be
compared with (28) is the one that minimizes the AMISE among the class of

Hygr (x) = ding (hu fas] " e ””(x)) (29)

fx(x) fx(x)

because the number of parameters hy;(x), ..., h,,(x) employed in (28) and the number of
parameters hqy, ..., by, in (29) are the same. Although the class of VS bandwidth matrices as
defined in (29) is more suitable for estimation using a more complex data-generating process,
optimizing (29) in terms of the AMISE is computationally complex in general.

It is also possible to propose the variance-stabilizing local variable full-bandwidth matrix
Hyg++(x) that minimizes the AMISE. Because Hyg++(x) is more flexible than Hyg(x) and
Hyg+(x) in its matrix form, it is advantageous in the situations where sphering is inadvisable,

such as in multimodal density settings of X or asymmetric data-generating processes. In a

bivariate setting, one simple form of the VS full-bandwidth matrix is written as

o2 (x) ] M1 (X) w2(x) ]2
hn{ <>} h12{ <>}

Ix(x)

HVS++ (X) - s2(x) |2 a2 (x)
b {fx(x)} has {fx(x)

(30)

}7722(X)
where
h11h22 — h%z > 0, h117 h22 > 0,
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—o00 < m1(x) < oo,  Mi(X) + n22(x) = 1.

It is far more involved in terms of computation even in bivariate setting.

When we estimate the second derivative of m(x) that appears in (12) and (13) in the
estimation procedure, we employ a quartic polynomial estimator, as proposed by Fan and
Gijbels (1995). The rule of thumb helps us estimate a;;(x), ¢ = 1, ..., p, with a comparatively
smaller computational burden. However, it fails if the true regression curve shows a large
degree of fluctuation over the domain. In this case, a more refined approach, such as employ-
ing a local cubic estimator, as proposed by Yang and Tschernig (1999), is needed. In this
paper, we focus mainly on the performance of the estimator of the VS bandwidth matrix,
so we employ a true regression function receptive to the quartic polynomial estimator in
simulation studies.

To illustrate the issue of discontinuous MSE-minimizing LL estimators that we alluded
to in the Introduction and Remark 7, we plot bivariate LL estimators based on the VS
bandwidth matrix with its local parameters all set to be constant, and based on the theo-
retically MSE-minimizing scalar bandwidth matrix. We employ a true regression function,
m(xy, ) = x] + x3. For the regression function, the denominator of the MSE-minimizing

scalar bandwidth matrix takes a value of zero at (2., 22.) = (0,0). In other words,

*m(zy, x2)

Ox?

¢ TI=T 1,02 =T2x

aii(xl*axQ*):(), i:1,2, or :07 @':1727

occurs at (14, ¥9.) = (0,0), where the curvature |?m(xy, x5)/d23|/ [1 + [Om (21, :1;2)/8:1;2']2]3/2,
i = 1,2, of m(xq,x2) is zero at this (1., x2.).

To illustrate the problem numerically, we calculate the VS bandwidth matrix Hyg(x)
with its local parameters set to 1/2 and the theoretically MSE-minimizing scalar bandwidth
matrix H,.(x), respectively, with o?(xy,25) = 0.2 + 0.127 + 0.123, fx, x,(x1,22), a nor-
mal distribution with a mean of (0,0), a variance-covariance matrix diag(1, 1) truncated on
[—1.0,1.0] x [-1.0,1.0], and a bivariate Gaussian kernel. The result is shown in the two bot-
tom panels in Figure 5. To illustrate what effects these choices of bandwidth matrices have on

the actual estimation of m(xy,x3), we generate a data set ((X;1, X;2),Y;), ¢ = 1,...,10,000,
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from the true functions and calculate the bivariate LL estimators using these bandwidth
matrices. The result is shown in the two upper panels in Figure 5. To highlight the area
around (0,0), we show the results limited to [—0.5,0.5] x [—0.5,0.5] for all of the panels.
The upper left panel is a plot of the LL estimator with the VS bandwidth matrix, while
the upper right panel is a plot of the LL estimator with the theoretically MSE-minimizing
scalar bandwidth matrix. The bottom two panels of the figure are plots of the size of the
first diagonal element in the corresponding bandwidth matrices at every point (1, 2;). As
expected, we find a discontinuous point at (xy., x2.) = (0,0) in the upper right panel, which
we do not see in the upper left panel. Although the MSE-minimizing scalar bandwidth
matrix generates small vertical fluctuations in the LL estimator over most of the range,
one discontinuous point at (x.,x2.) = (0,0) in the upper right panel shows that the LL
estimator is considerbly in error in the vicinity of this point. On the other hand, while the
VS bandwidth matrix with constant local parameters generates larger fluctuations in the LL

estimator over most of the range, it does not have a discontinuous point.

Appendix 1

We present an algorithm to compute the multivariate LL estimator with the VS bandwidth

matrix. For illustrative purposes, we consider a bivariate situation.

Stage 1. Estimation of fx(x1,...,z,).
When p = 2, to estimate fx, x,(x1,22), we employ the bivariate kernel density estimator,

n

— 1 R 1
fﬁ;(l'lal'z) = — [XXl,XQ <($1 —Xﬂ,l’z—Xiz)HF > ,
n|HF| =1
where Kx, x, (-, - ) is a bivariate Gaussian and the global diagonal bandwidth matrix IfI\F
is denoted as
ITI\F = diag(hfll,hfzg). (31)
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0.5 -0.5 0.5 -0.5

Figure 5: The upper left panel is a plot of the LL estimator with the VS bandwidth matrix
with its local parameters set to be 1/2, while the upper right panel is a plot of the LL
estimator with the MSE-minimizing scalar bandwidth matrix for m(z,zy) = 2] + 235. The
lower left and right panels are plots of the corresponding sizes of the first diagonal element in
the VS bandwidth matrix and the MSE-minimizing scalar bandwidth matrix, respectively,
at every point (xy,x;). To highlight the area around (0,0), we show the results limited to
[—0.5,0.5] x [—0.5,0.5] for all of the panels.
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Assuming A 3, we employ Scott’s rule (Scott 1992, p.152) written as

Stage 2. Estimation of ay;(xy,...,2,), 1 = 1,....p.
This stage consists of three steps.
Step 1. Following Fan and Gijbels (1995), we estimate the quartic polynomial pilot estimator

m(xy,x,) of the form,

(e, 25) = lo + Ly + bl + haf + Ll + g + lead + {ra + )

Flox122 + Liow1 25 + tiix1 2y + Ligvi e + Lizxjay + tiax Ty,

by OLS.

Step 2. We select the best model that minimizes AIC by removing insignificant terms. We

OLS

denote the predicted value at (&1, x3) as "~ (xq, x2).

Step 3. We calculate point estimates of 9*m%L%(zy, x4)/022, 1 =1,2.

Stage 3. Estimation of o*(zy, ..., z,).

We employ m}_lz(xl, x3) to calculate the squared residuals,
M

2
P(Xi, X) = (Y= mEE (X, Xn)) s i= 1, (32)

where ITI;[ is the global scalar bandwidth matrix defined to be

~

Hy = diag(h, o). (33)

The estimator Hyg is selected so as to minimize the cross-validation statistics,

2

CV(hAm) = lz {Yi — m/th(XmXiz) )

_Z7HM
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where @(Xil,XiQ) 1s the leave-one-out LL estimator with its ¢-th element left out.
—t,aM

Then, we construct a residual-based variance estimator,

n e X 1—X‘1 XQ—X‘Q ~9
>im Kxyx, < —, >7" (Xi1, Xiz)

5 hy 7 hy
0-%; (Xih Xﬂ) - n - Xji—=Xi Xjp—Xio ’ (34)
Ei:l Kx, x, < e e >
where ﬁ; is the global scalar bandwidth matrix, defined to be
Hy = diag(h,, ). (35)

As an estimator of the bandwidth in (35), we employ the following bandwidth that minimizes
the cross-validation statistics with respect to f;\v,

n 2

~ 1 = e
CV(R) = — 37 [P (X Xaa) = 07, (X, Xaa)]|
=1

where o2 q (X1, X;2) is the leave-one-out residual-based estimator with the i-th residual

_27/;
element left out. The bandwidth minimized in terms of cross-validation statistics is equiva-
lent to the one that minimizes average squared error on average. The average squared error

in mean is asymptotically equivalent to the MISE as presented in Marron and Hardle (1986).

This is the reason for employing cross-validation statistics.

Remark 9. At the end of Stage 3, we are able to estimate ﬁg(:ﬁl,wz), = 1,2, If
an(zy,x2) = axn(xr,r2) = 0 occurs at the point (z1,23) as indicated in Remark 1, we
set @(:1;1,:1;2) =1/2,1=1,2. Similarly, if a11(x1,22) # 0, agz(z1,22) = 0, or a1 (21, 22) = 0,
a1, 25) # 0, occurs at the point (21, 25) as pointed out in Remark 3, we set ﬁf\l(:pl,xz) =

1,7;5\2(:1;1,:1;2) =0, or 7;5(:1;1,:1;2) =0, @(ml,xg) = 1, respectively.

Stage 4. Compute hAg.

e oy

Once we have obtained fﬁ;(:pl,xz), 0'%;(1’1,1}2), ag(xy, ), ni(xy, xp),i = 1,2, in Stages

1-3, we can obtain the global

R(Kx, x,) ol -

by = — —
13 (Kx, x,)Tvs (07 (21, 22), 05y (21, 22))
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by numerically integrating the function of the form

= 2n};(#1,22)
oZ (a1, 1)

2
Tvs <77f1($17$2)777§2($17$2)>:// wy, x, (01, 22) | Y @il ) = drydzs.
r i=1

fﬁ;(xlva)

The weight function wy, x,(x1,22) is generally set to be fﬁ\;(:pl, T3).

Stage 5. So far, one global f;\g and, at every point (xy, z,),
U/%\;(:z;l,xg)/]f/l/{\;(xl,xg) and @(:1:1,:1;2), i = 1,2, are obtained. With the estimated VS

bandwidth matrix,

0/2\(:1; Ty) ) 0/2\(:1; Tq) el e

e ~ FT 1 2 T 1 2

Hys (1, 72) = by - diag | | 22— T £ 26 076, (36)
iy (71, 72) fap(x1, 72)

we calculate the bivariate LL estimator at every point (2, 22) in the domain.

Appendix 2

A brief overview of all diagonal bandwidth matrices used in this paper.

a) global scalar bandwidth matrix H = hl, : ITI;[ in (33) and ITI; in (35).

b) local variable scalar bandwidth matrix H(x) = h(x)I, : Hy.,(x) in (9).

) global diagonal bandwidth matrix H = diag(hyy, ..., hy,) : Hy in (31).

d) local variable diagonal bandwidth matrix H(x) = diag(hy1(x), ..., hpp(x)) : Hyppt (X) in
(28).

(
(
(c
(

(e) local variable diagonal bandwidth matrices with restrictions :

(i) local variable diagonal VS bandwidth with scalar global parameter hg : Hyg(x) in

(6).

(ii) local variable diagonal VS bandwidth with diagonal global parameters hyq, ..., hpp
: Hyg+(x) in (29).

(f) local variable full-bandwidth matrix with restrictions: Hyg++(x) in (30).
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