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Abstract

We study M*/G/1 nonpreemptive and preemptive-resume priority queues with/without vaca-
tions under random order of service (ROS) discipline within each class. By considering the condi-
tional waiting times given the states of the system which an arbitrary message observes upon arrival,
we derive the Laplace-Stieltjes transforms of the waiting time distributions and explicitly obtain the
first two moments. The relationship for the second moments under ROS and first-come first-served

disciplines extends that found by Takacs and Fuhrmann for non-priority single arrival queues.

1 Introduction

An M/G/1 queue is a typical model in the fundamental queueing theory. Messages arrive at the
buffer of infinite capacity according to a Poisson process, each being served for a generally distributed
service time. A single server works continuously until the system becomes empty. So far many
variants of the M/G/1 queue have been studied (Kleinrock [18, 19], Takagi [26]).

An MX/G/1 priority queue extends the arrival process as follows; there are P classes of messages

indexed as p = 1,2,---, P. Messages arrive in groups whose sizes are generally distributed; groups
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of class p messages arrive according to a Poisson process at rate A,. Messages of class p have priority
over those of class q iff p < q. We assume that the service times for each class are independent and
identically distributed (i.i.d.).

In this paper we consider two types of priority scheduling. In a non-preemptive priority queue,
once the service to a message is started, it is not interrupted until it is complete, while in a preemptive-
resume priority queue, the service to a message of any priority is immediately preempted by the
arrival of a batch of a higher priority. The service of the preempted message is resumed from the
preempted point when there are no messages of higher priorities.

When the server finishes serving a message and finds the system empty, he waits for the first
batch to arrive at the system (non-vacation model), or he takes a vacation [5] (vacation model).
We assume that the length of a vacation is i.i.d. We consider two vacation models. If the server
returns from a vacation to find no messages waiting, in the multiple vacation case, he begins another
vacation immediately, and in the single vacation case, he waits for the first batch to arrive while
keeping the system idle.

Various (single arrival) M/G/1 priority queues under first-come first-served (FCFS) discipline
within each class have been studied so far by many authors. Cobham [1], Holley [12], Kesten
and Runnenburg [16], Miller [21], Welch [29], Takécs [25], Jaiswal [13], and Fujiki and Gambe [9]
studied models without vacations. Conway, Maxwell and Miller [2], Kella and Yechiali [15] and
Shanthikumar [23] studied models with vacations. Takagi and Takahashi [28] treated batch arrival
models with/without vacations, which are extensions of the above single arrival models. On the
other hand, Durr [6] studied an M/G/1 priority queue without vacations under last-come first-served
(LCFS) discipline.

Under random order of service (ROS) discipline, the next message for service is selected at
random from the messages of the highest priority class waiting in the queue. M/G/1 non-priority
non-vacation models under ROS were studied by Kingman [17], Takacs [24], Conolly [3], and Takagi
and Kudoh [27]. Scholl and Kleinrock [22] studied a model with multiple vacations. Kawasaki,
Takagi, Takahashi and Hasegawa [14] extended them to batch arrival models, while Durr [7] analyzed
a two-class M/M/1 (exponentially distributed service times) priority queue without vacations under
ROS. The results in this paper include all these with ROS discipline as special cases. Namely, we

study the following six models in a unified manner:

[ non-preemptive priority queue | preemptive-resume priority queue
without vacations NPNV PRNV
with multiple vacations NPMV PRMV
with single vacations NPSV PRSV

Our objective is the derivation of the first two moments for the waiting time of an arbitrary

message of class p (p = 1,2,---, P) in the above six cases. First, in Section 2 we derive the queue



size distribution for the messages of class p at the beginning of service to a message of class p.
In Section 3, we consider the waiting time distributions conditioned on the system state when an
arbitrary message of class p arrives. They are used in Section 4 to calculate the first two moments of
the waiting time for the arbitrary message of class p. The results are compared for different models
in Section 5, and numerical examples are presented in Section 6. In Section 7, we summarize the
work, and remark on further results that can be derived straightforwardly from the present results.

Throughout this paper we assume that the system for each case is unsaturated (sec. 3.1 in
Takagi [26]), namely the existence of the steady state for all classes in the system. (This assumption
is removed in a remark made in Section 7.) Furthermore, for convenience’s sake, we call the priority
classes higher than class p H-class, those lower than class p L-class, and a set of messages included

in a batch a supermessage. We define the following notation:

Ap arrival rate of batches of class p (p =1,--+, P),

A = E£=1 )\p»

Af arrival rate of batches of H-class and class p (= 3% _; M),
Ap arrival rate of batches of L-class (= Ef=p +1k)

|4 length of a vacation,

V*(s)  Laplace-Stieltjes transform (LST) of the distribution function (DF) for V,

I length of an idle period,
I*(s) LST of the DF for I,
9p;n probability that the batch size of class p is n,

Gp(z)  generating function (GF) for gy n,

Ggl)(z) first derivative of Gp(2),

9p mean batch size of class p,

9gp ith factorial moment of the batch size of class p,

Bj(s)  LST of the DF for the service time of a message of class p,

by mean service time of a message of class p,

bg) ith moment of the service time of a message of class p,

B; ,(s) LST of the DF for the service time of a supermessage of class p (= G,[B;(s)]),
bgp mean service time of a supermessage of class p (= gpbp),
bg}, ith moment of the service time of a supermessage of class p,
o

by = 9563+ 3g5b,b" + gybl),

Bi,(s) = ;13: =1 MBj (),

b3 = j\l;!;‘ L=t Mebg ks

SIS W)

By(s) =Bfp(s) =% X1 2B;,(5),



—_p+ _ 1P
by =byp = % 2p=12pbg,ps

Pp traffic intensity of messages of class p (= Apbgp),

p total traffic intensity (= Zf=1 Pp)s

fons =3 b1 <1,

oy = Shept1 Pk <1,

@;r,p_l length of the delay cycle generated by messages of H-class, whose initial delay

is the service time of a batch of messages of H-class,
©f _,(z) DF for ©F

9,p—1 g,p—1°
©F,_1(s) LST of ©F, (),
0;(s) = @;P(s),
E[] expected value of a random variable,

Wy (s) LST of the DF for the waiting time of an arbitrary message of class p.

We note that the LST ©, _, (s) satisfies the equation

Ofp-1(8) = By 1ls + Ny — Ay_107,_1(s)] (1)

and that the first three moments of ©] , ; are given by

b+

E[e} ] = 2L 2a
[ g,p 1] 1 "P;__1 ( )
+ 2 b;éml
E[(©;,-1)° = 57— 2b
g,p—1 (l_p;-_l)a ( )
+(3) +(2)
E[(@+ 1)3] — bg,p—l 3)‘;——1(1’94)—1)2_ (20)
oP= (1- 93—1)4 (1- P;-—1)5

2 Queue Size at Service Start Points

In this section, we derive the probability generating function (PGF) for the queue size of messages
of class p at the beginning of service to a message of class p in the steady state, denoted by ®,(z),
which will be needed in Section 3.7 when the waiting time of an arbitrary message of class p is
considered. We can apply the same approach to all our models. Since the queue size distribution is
invariant as long as the service discipline is impartial (sec. 3.4 in Kleinrock [19]), we can utilize the
results for the FCFS system given by Takagi and Takahashi [28].

In order to derive ®,(z), we consider a tagged message of class p, denoted by M, and the
supermessage, denoted by SM, which M belongs to. At the beginning of service to M, the following

three types of messages of class p may exist in the queue (Figure 1).

(a) Messages that arrive during the waiting time of SM.

(b) Messages that arrive during the waiting time of M while the SM is in service.
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Figure 1: The components of ®p(z).
(c) Messages that belong to SM but have not been served by the time of service to M.

Let Wy ,(s) be the LST of the waiting time of the SM which M belongs to. Then the PGF for the
number of (a)-messages is given by Wy [\, — A\pGp(2)] (sec. 5.5 in Kleinrock [18]). Let Dy(z) be
the PGF for the sum of the numbers of (b) and (c)-messages. Dp(z) is derived in the same way for
all our models. First we place the condition that the batch size G of SM is n. It then occurs with
probability 1/n that the number G_ of messages which belong to SM and are served before M is 4
and that the number G of messages which are served after M is j, where i + j + 1 = n. Since the
probability that G = n is given by ngp n/gp, we have

Prob[G_=i,G+=j]=Q£’l;£, itji=0,1,....
¥4

Therefore we obtain

Gx(2-,24) = ZZz‘ Z Prob[G_ =i,Gy =j i i "1gp’"
i=0j=0 i=0 n=i+ 9p
_ E Ipn?} E (z_) Z gp, ) G,,(z_) - Gp(z+). 3)
n=1 9p%+ iz a1 9p(z- — z+) gp(z— — 24)
Since (b)-messages arrive during the services for the G_ messages, we obtain
Dp(z) = Gx(By(0p_1),2) = B;:Eg;(;})_:)cipi?’ (4)
where
0;—1 = /\; — ApGp(2) — A;—lezpq[)‘p = ApGp(2)]. (5)
Therefore we have ®,(z) as
@p(2) = WyplAp — ApGp(2)]Dp(2). (6)

From the expressions for Wy ,(s) given in [26], [28] for the FCFS systems and Dy(z) in (4), the

expressions for ®,(2) in our models are derived as follows.



NPNV B
(1 - p)op—1 + Tk=pt1 Mege[l — Bi(op_,)]

2p(2) = )‘pgp[B;(U;q) — 2 ()
PRNV
B, (2) = (1-p})oy_ g
) = S aByoy ) - 4 ®
NPMV
. (=) =g + SF 0 Mkl - Bi(03,)] .
p(2) = )\pgp[B;(U;—l) — 2] )
PRMV " p)l—V‘(a*_l) 4ot
- EV] p Op—1
Qp(z) = )‘pgp[B;(U;_l) ___ Z] (10)
NPSV
1—p){V*(N)o?_ + \[1 — V*(o*_ P
@p(Z) — (( p){ (V)*o(-;;\)l_:_)‘EE[V] (Up 1)]} + kZ*-l Akgk[l - B;(U;_l)])
=p
1
8 Apgp[B;(U;—ﬁ — 2] ()
PRSV 8, (z) = 1—-pAL - V*(a;‘,_l)] + {(1 - p;)V*()\) + p;)\E[V]}a;_l (12)
P (V*(A) + AE[V])Apgp[By (07-1) — 2]

3 Conditional Waiting Times

In this section we show preliminary results for the analysis of the waiting time W) of a tagged
message M of class p, which is defined as the time interval from its arrival to the service start.
We first divide the time axis into several periods of system states for the non-preemptive models
in Section 3.1, and for the preemptive-resume models in Section 3.2. Then we derive the LST and
the first two moments of the DF for the conditional waiting time when the tagged message arrives

during each of these periods in Sections 3.3 through 3.7.

3.1 Classification of the system states for non-preemptive models

In non-preemptive models we call the duration in which the server is neither busy nor taking a
vacation an idle period. If M arrives as a member of a batch during an idle period, it has a chance
to be selected for service (called eligible hereafter) immediately. Because the length I of an idle
period is exponentially distributed with mean 1/X, I*(s) and E[I] are given by

A

=733

. Bll=5. (13)
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Figure 2: The service periods for the non-preemptive models.

If M arrives when the server is busy (or taking a vacation), it must wait at least until the server
finishes the current service (or the vacation) and all messages of H-class leave the system. Such a
period is called a delay cycle [26]. Consider a delay cycle of length T, called a T-period, with its
initial delay denoted by Tp. If T*(s) and T (s) denote the LSTs of the DF's for T" and Ty, respectively,
we have [26]

T*(s) = Tols+XM_1—A\_10F, 1(s)], (14a)
E[Ty)
ET] = ———, 14b
[T] T=pf s (14b)
2 EIT I\t b+(2)
pry = 2] oy 10pp (14c)

(1- P;—1)2 (1- P;—1)3 ,
BIT3] . SE[T3IN b7

T3 Q,P—l
BT = G T (e
3 2
BN 0% | 3BT bgy™)" (14d)
(1-pp_)? (1= pp1)®

A non-idle period is divided into the following disjoint sets of T periods (Figure 2).
U-period which begins with a vacation and ends when the server has exhaustively served messages
of H-class after the vacation.

H-period which begins when a batch of messages of H-class arrives to find the server idle, and

ends when the server has exhaustively served messages of H-class.

Li-period  which is initiated by the service to a message of class k (k = p+ 1,---,P), and

terminated when the server has exhaustively served messages of H-class.

C-period which begins with the service to a message of class p, and ends when the server has

exhaustively served messages of H-class.
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Figure 3: The service periods for the preemptive-resume models.

The LSTs of the DFs for the initial delays for the above periods are respectively given by

U-period V*(s),

H-period BJ, (s),

Li-period Bj(s) (k=p+1,---,P),
C-period  Bj(s).

We denote the LSTs of the DFs for the above periods by U*(s), H*(s), Li(s) (k =p+1,---,P),
and Cj(s), respectively. Note that H*(s) equals @g+,p~1(3) and that Cp(s) represents the LST of the
DF for a completion time C, (Gaver [10]) of a message of class p. These are obtained by substituting

the LSTs for the corresponding initial delays into Tg(s) in (14a).

3.2 Classification of the system states for preemptive-resume models

In preemptive-resume models, the service to a message is preempted upon the arrival of a batch of a
higher priority. Since a message M of a given class is never delayed by the service to any lower-class

message, we can neglect lower-class messages in the analysis for M. Thus there are no Lj-periods

in the system.
We define the following periods for the preemptive-resume models (Figure 3).

Idle period which begins when there are no messages of class p and H and continues while the

server is neither busy nor taking a vacation, or serving a message of L-class.

U-period which begins with a vacation and ends when the server has exhaustively served messages

of H-class after the vacation.

H-period which begins when a batch of messages of H-class arrives in an idle period, and ends

when the server has exhaustively served messages of H-class.
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Figure 4: The conditional waiting time when M is not selected with prob. m/(m + 1).

C-period which begins with the service to a message of class p, and ends when the server has

exhaustively served messages of H-class.

Note that each of a U-period, an H-period and a C-period has the same distribution as each of those
in the non-preemptive models. For the idle period in this case, I*(s) and E[I] are given by

Af 1

I*(s) = E|l| = —.

(15)

3.3 Conditional waiting time when M arrives during an idle period

When M arrives during an idle period, M gets eligible for service upon arrival. Let Wp ,, be the
waiting time of M from the epoch when M gets eligible for service, on the condition that there are
m messages of class p, excluding M, in the system at that epoch. M is selected for next service
immediately with probability 1/(m+1), or is delayed with probability m/(m+1) until a later chance,
which occurs after a completion time of class p (Figure 4). By conditioning that j messages of class
p arrive during the completion time, we have the following recurrence relation for the LST Wy, (s)
of the DF for Wp p:

1 m &
Wpml(s) = m+1 + m+1 Z(;C;’j(s)W;’m+J'—l(s)’ (16a)
]:
where
w .
Y Cri(8)2 = Chls + Xp — XpGo(2)]- (16b)
i=0

which is an extension of Kingman’s result [17] for the non-priority model. By following Takécs [24],

we obtain the first two moments of Wy, as follows.

_ mE[Cy] mb
E[Wp,m] - 9 _ /\pgp-Ep[Cp] - 2 _ p;._lp_ p;.v (16C)
2 _ 2E[Cp)?m(m — 1) m {(6 = MpgpE[Co)EICT] + 2>‘pgz(02)(E[Cp])3}
EWoml = @R aBIC)B -G BGD) T @ = MarBIC ) 6 — 25, BIC,)



2b2m(m — 1) m(6 — 5p;_, — pF)bpAt_ b;-’gz_)
2—pp1 = p3)B =25 —pi_y)  (1—pi_))2-pi, - )2(3 208 — pp_1)
m[(6 — 5p5_1 — pF)bs + 2Apg5 B3]

2-p, - ) (3 208 —p}_y)

(16d)

Next we derive the PGF H;,(z) for the number H}, of messages of class p, other than M, that

arrive in the same batch as M. Since

1 I (m + 1)gpm+1 (m +1)gpm+1
Tpm := Prob[Il, =m] = 7P = mtl
P L, = m} Y7200 + Dgp,j+1 p
we have
1 ! (1)(Z)
() = B = 3 7l e = (172)
m=0 9p
which yields
00 (2)
Y mmy, = Ell) =+ (17b)
m=1
0 9(3)
> m(m-1n,,, = E[IL)*]-E[L]= ;’ . (17¢c)
m=2 )4

We thus obtain the LST of the DF for the conditional waiting time of M when it arrives during

an idle period:
o0

Ele™™|I] = > mp Wprn(s)- (18)

m=0
3.4 Conditional waiting time when M arrives during a U-period

The tagged message M must wait until the end of the U-period during which it arrives. Let z be
the length of the U-period. First, we derive the waiting time for given z. It consists of the time until
the end of the U-period whose LST of the DF is denoted by Wpl(s|U,a:), and the time thereafter
until the start of service to M whose LST of the DF is denoted by W2(s|U, z) (Figure 5). They are
independent of each other being conditioned on z. Note that W, (s|U,z) is the LST of the DF for
the remaining time of a U-period of length z (sec. 5.7 in Cooper [4] and sec. 5.2 in Kleinrock [18]).

Thus it is given by
z d 1—e™%
1 = -y _ 7€ "
W(s|U, ) /O eovt - (19)

When the U-period ends, M gets eligible for service. Messages of class p in the system at this
epoch consist of those messages that have arrived together with M in a batch and those arriving
during z. Let I'Ig(m) be the number of messages of class p, excluding M, in the system when the

U-period of length = ends. Then the GF Hg(z[x) for 7r m(2) := Prob[II}{(z) = m] is given by

I i =~ 1 Ap[1-G G(2)
Hp (z'x) = E[z p(w)] = Z T ’m(m)zm —=e" p[1-Gp(2)]z pg—, (203‘)
m=0 P

10
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Figure 5: The conditional waiting time when M arrives during a U-period of length z.

which gives

(2)

Z mrhn(z) = E[L)(z)] = Apgpz + ; (20b)
00 3
Y mm-)mia(e) = E(I} ()% - E[L ()] = Mgz + 3hegy )z + g;f’—- (20c)
m=2 14

From (16) and (20), we obtain
o0
Wi (slU,2) = Y g (2) Wy m(s)- (21)
m=0

The product of (19) and (21) yields E[e~*"?|U, z]. Since the probability that a message arrives
during the U-period of length z is proportional to z as well as to the relative frequency of such a

length given by dU(z) (sec. 5.2 in Kleinrock [18]), after normalizing properly, we obtain

e

m=0

E[e=*"?|U] =

3.5 Conditional waiting time when M arrives during an H-period

By an argument similar to the one that led to (22), we can derive E[e~*"»|H] as

xd@gp 1( ) 1——6_3"” 0

E[GQP 1] ST mzz:oﬂjl},m( ) p,m('s)a (23)

Ele*"»|H] =
where WII,I’m(a:) is given in (20a).

3.6 Conditional waiting time when M arrives during an Li-period

We can also derive E[e~*W7|Ly] as

© zdLg(z) 1-—e%% X .
E[}ik] 2 Mm@ Wyim(s). (24)

m=0

Ele™*Wr|Ly] =

where 7., (z) is given in (20a).

11



3.7 Conditional waiting time when M arrives during a C-period
We can apply the same argument to derive E[e~*"?|C] as

—sWy o [ 2dCp(z) 1-€e7" X ¢ .
Ele™*"?|C] = ) EC,] pom m2=:07r m(T)Wp m(8), (25)

where ng(z) denotes the probability that there are m messages of class p, excluding M, in the

system when the C-period of length z ends. Let Hg(zla:) be its GF. Hg(zla:) is given by the product
of the following three PGFs. The first is ®,(z), the PGF for the number of messages of class p in
the system when the C-period starts, namely, when the service to a message of class p is started;
it is given in Section 2 for the individual models. The second is e~ 2[1=Go(le which is the PGF
for the number of messages of class p arriving during the C-period of length z, excluding the batch
which M belongs to. The third is G;,l)(z) /9p, which is the PGF for the number of messages arriving
with M in a batch, excluding M. Thus we have

Hg(zla:) = Z wgm(m)zm = <I>p(z)1'1;,1(z|x), (26)
m=0

where H%,I(zkz:) is given in (20a).

4 Waiting Times

In the following subsections, we derive the unconditional LST W (s) of the DF for the waiting time
W) of an arbitrary message of class p and its first two moments for each model. To do so, we first
obtain the probabilities that the system is at a random point in time during each period of the
state defined in Section 3. Because of PASTA (Poisson arrivals see time averages, see sec. 11.2 of
Heyman and Sobel [11]), we can then derive the unconditional waiting time from the conditional

waiting times for each model.

4.1 NPNV

In the NPNV model, the system is in an idle period, an H-period, an Lg-periods or a C-period. Note
that a whole busy period consists of H-periods, Lg-periods and C-periods. Those epochs when the
system becomes empty are regenerative points (sec. 6.4 in Heyman and Sobel [11]), and a pair of an
idle period and a busy period appears exactly once between any two successive regenerative points.

Hence, from the ratio of the mean lengths of the both periods, we have

Probfidle] = —2— =1—p. (27a)

12



An H-period appears once per busy period if a batch of H-class arrives with probability )\ _1/A when

the system is idle. Thus
bN b

p—1 . Pgp-1 +
_ l1=py_1 _ pp—l(1 —p)
Prob[H] = " = T (27b)
X T 1-p p—1

From (27a) and (27b), the remaining probabilities should sum to

+ 1— —
PI‘Ob[C E Prob[Lk] =1-p-— pp_l( — p) _ Pp_-il_ .
k 1—p, 4 1—pt
=p+1 M X

Noting that each group of messages of class p or L-class starts a C-period or an Li-period, we have

the ratio
Prob[C] : Prob[Lp41] : --- : Prob[Lp] = Apgp - bp: Apsr19p+1-bps1:-+-: Apgp - bp
= Pp:Pp+1:-" PP
Thus we obtain
Pk
Prob[Lg] = ——, k=p+1,.---,P, (27¢)
1-— Pp—1
Pp
Prob[C] = ——F——. (27d)
1-pp 4

From (18), (23), (24), (25) and (27), we can compute W (s) and the first two moments as follows.

- o (l=p) - _
Wi(s) = (1= p)Ele™"|I] + 2 Ele~*"*|H]
pp—l
P
+ Y P Bl 4 B e (28)
k=p+1 -~ Pp-1 ~ Pt
() P 5 b( ) + )\+ pT @
EW,] = gp bp - Zk—p k9k+ 1 gp—l’ (28D)
2gp(1 — pp) 21— pp)(1 - pp—l)
3) (2) +(2)
EW? = 299 by + by S s
» 3(1—p)2—pp1—p3)or  (1— )2(2 Pp-1 = P5)9p
2),(2
(1 _p;’i- 1) ( )b( ) A ( (2))21’2
(1—p)22— 01— P5)g - 0322 =01 —p3)9p
2 (3) + +(3)
+ Akgrby’ + )\ b
3(1—pg)(1—p_1)2— P — (:;;
1 (2) + p+ (2
—_— Akgrb )\
A= (ki; R Aty
2 + +(2) 2
% gz(z )bp + Ap—1b g,p L Apgpb() . (28c)
C—p_i—m)o (—pi )2 A—-pi)2-p1—pf)

13



4.2 PRNV

In the PRNV model, the system is in an idle period, an H-period, or a C-period. The probability
that the server is not busy at an arbitrary epoch is 1 — p, and the probability that a message of

L-class is in service at an arbitrary epoch is p;;. Hence we have
Problidle] = (1 - p) +p, =1—p;. (29a)
The probability that the system is in a C-period equals that in the NPNV model, thus

Prob[C] = ﬁ. (29b)
p—1

It follows that N
_ pp—l(l - P;-)

Prob[H] =1— (1 —p}) - —22 = 29¢
a Pl 1-py 1-p, (299
From (18), (23), (25) and (29), we get
1 +
W3(0) = (- )l o + L ) e B prewie), (ana)
pp—l pp—l
(2) +3+(2)
9p bp >‘p bg.p
E[W,] = , (30b)
W5l = 2l —pi0) T 2= )= )
. R /% )
P31 —-ph)2 -0 —pg)e  (1—p8)22—pi_1 — 08 )
2),(2
et 17 S ol0r”)
1—p)22-pi 1 —p)g  (L—p3)2(2—pp_y — 03 )gp
2
+ A6T® 4 g,
3(1—p3)(1 = pp_1)(2 = pp_1 — P3) (8552 + 205t
1 2 2
+ s (M6 + Apgph?)
(1—pf )2( 1+ Xty
2 +(2) 2
X ()b + /\p 10951 + )\pgpb() . (30c)
C-pf1—p)gp A—pf )2 Q-pf))2-p1—0F)
4.3 NPMV

In multiple vacation models, if the server returns from a vacation to find no messages waiting, it
begins another vacation immediately. A regenerative point in such systems is the epoch at which the
system is empty and a vacation begins. The time interval between two such successive regenerative
points is called a regeneration cycle (sec. 2.2 in Takagi [26]), whose length is denoted by V.. The
LST V}(s) of the DF and the mean for V, are given by

Va(s) = V*[s+ A= 20y(s)], (31a)
ElV,] = —?[_K%, (31b)
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where ©3(s) = @; p(s) is the LST of the DF for the length ©4 of a busy period generated by all

messages, and it satisfies the equation

8(s) = Blls+A—26%(s)),
bg

Ble)) = .

In the NPMV model the system is in a U-period, an Lg-period or a C-period. Since a U-period

appears exactly once in a regeneration cycle, we get

EV)/(l-pp1)  1-p

Prob[U] = = ) 32a
AR e (322)
which leaves
P Pp—1
Prob[C] + ) Prob[L] = I—_—”——_—;—
k=p+1 Pp—1
By the similar argument as in Section 4.1, we obtain
Pk
Prob[Ly] = — k=p+1,---,P (32b)
1- pp——l
Pp
Prob[C] = . (32¢)
1-pp s

The results in (22), (24), (25) and (32) yield W;(s) and the first two moments as follows.

1-— ] —S
Wi(s) = r——Ele ™[]+ Z T Ble™ |y + 72— Ble="(C], (338)
~ Pp-1 kep1 L p,,_1 ~ Pp-1
E[W,] = 9" Shop Megrby) + X 1ba i (1-p)EV?] (33b)
P 2g,(1 - pf) 2(1—pg)(1 - pp-l) 2(1 - pf)(1 = pf_)E[V]
(3) o +2)
E[W2) = 2050 + bpAy- 1bgp 1
P 3(1—pp )2 - P; 1 Pp) (1- Pp) (2- Pp- ~ Pp )gp
(1 _p;-_ ) (2)b(2) Y ( (2))2b3
1—p)2@Q—-p 1 —0)g (1 —p)22— 01— p5)p
2 ) +@3) , (1-p)E[V?
+ PYPRAQIID L 3 R St L
3(1-p3)(1 = p_1)(2 = ppr = p5) (Z,, priiert B[V]
1 (1-pE[V?] | ) +(2)
Ta-my ( BVl kzzp*kgk”k + Apo1bgpmn
2
2- pp ) pp) (1 - o 1) 1-pi)2- pp_1 - )
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4.4 PRMV

In the PRMYV model, the system is in an idle period, a U-period, an H-period or a C-period. The
probabilities that the system is in each of a U-period and a C-period equal those in the NPMV

model given in Section 4.3:

1-p
Prob[U] = ————, 34a
1- P;-—l e
Prob[C] = —P2—. (34b)
1- pp—l

Since an idle period corresponds to the time for service to messages of L-class, we have

Problidle] = p,, (34¢)
which yields .\
Prob[H] = f’f—l’f’. (34d)
pp—l

From (18), (22), (23), (25) and (34), we can obtain W (s) and the first two moments as follows.

Wi(s) = pyBle=Wo|l] + L2252 gle=sWo|y)
1- pp—l
+ —1——_—-p—E e Ve U] + —Pr__ Ele=Wr|C , 35a,
¥ +
1- pp—l 1- pp—l
2
P 21—ty 20 —p)A—pf)) 21— pf)(1 - pi_))EV]
2
E[Wg] _ 291(13) b?; 4 9; )bp)‘;qb;rg—)l
P31 —p)2—pt ) (L—p8)22—pi_1 — 05 )9
2),(2
(1 -} 1)as b Aplgs) 263
(1—-pf)2@-p_1—p8)9p  (L—p3)*2—Pp_1—P5)9p
2 +(3) @, (1= P)E[Va])

+ D DU S VP X C) T Sl A |

31— )1 - pf)2 - pi_1 — P3) ( poiTop=l TP E[V]

1 + L+ 2, 1—-pE[V?
g (i et +
2 +(2) 2
% gz(’ )bp + )‘;—lbg,p—l )‘pgpbz(i ) . (35¢)
C—p1-pg (—p1)? (1—p1)2—-0p_1—pp)
4.5 NPSV

In single vacation models, if the server returns from a vacation to find no messages waiting, the
system becomes idle. A regenerative point in this system is again the epoch at which the system

is empty and a vacation begins. The LST V(s) of the DF and the mean for the length V, of a
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regeneration cycle are given by

VAS) = V*(s+NI(s)04(s) + Vs + A — AG%(S)] = V(s + N, (362)
EV) = Y (;\()1+_Aj Vi, (36b)

In the NPSV model, the system is in an idle period, a U-period, an H-period, an Lg-period or a

C-period. Since a U-period appears exactly once in a regeneration cycle, we have

EV]/(1 - pp) _ (1 p)AE[V]
E[V,] (1= ) (V*(N) + AE[V])

Prob[U] = (37a)

The system enters an idle period whose mean length is 1/X if no messages arrive during a vacation,
which occurs with probability V*(A). Thus we have

VA _ 1=V ()
BV~ VF) +AEV]

Prob[idle] = (37b)

An H-period appears once in a regeneration cycle if a batch of H-class arrives during an idle period.

Therefore A+ o+
*(A)=B=L . —wepl *
ProblH] = VIO 2 - (1= p)py_ V*(N) (370)
E[Ve] (1= pp_)(V*(N) + AE[V])’
which leaves P i
Prob[C] + Y Prob[Ly] = Pr ’i
k=p+1 1- Pp—1
By the similar argument as in Section 4.1, we obtain
Prob[Ly] = 1_”’“+ , k=p+1,.-,P (37d)
pp—l
Pp
Prob[C] = : (37e)
1—pyy
From (18), (22), (23), (24), (25) and (37), we get
1-pV*N) . —ow (1 - p)py_ V*(N) oW
w> = Efle™*"?|1] + Ele~*"?H
7@ = vemaE™ N T v e T
(1 - p)AE[V] W L _sW,
+ Ele™®"?|U] + Ele™*"?|Lg
=)V () + 2BV 2 T ]
+ —FP2 e |C], (382)
1- pp—l
P (2) +(2) 1-p)AE[V?
EW,] = 91(12)”1) + Lk=p Mekb;” + A;—lbg,p—l + V"(§§+A"E' r']]V (38b)
P 2g,(1 — pj) 2(1 - p3)(1 - pj_y) ’
2g") b2 91(J2)bp>‘;—1b;§,2_)1

EW?] = +
T 3 T s s PR s = T s g P
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(L= p3-1)0p"85" 01"t
(1_Pp)(2 Pp1 Pp) (L-p )(2 Pp— Pir)gp

2 — 3
(Z Alcgkb( )+>‘+ 1b+(3)1 + (1 p))\E[V ])

T3 TRy o s gy V(N + AE[V]

1 (1-p)AE[V?] (2) (
ETiE (v*( N+ AEV] T Dw b+ X5 lb;*i-’l)

2 +(2) 2
% gz(> )bp + ’\p 1bgp-1 + Apgpbz(o : ' (38¢)
C-pi1—e) (—p_1)* Q=p_1)(2=py1—rp)

4.6 PRSV

In the PRSV model, the system is in an idle period, a U-period, an H-period or a C-period. The
probabilities that the system is in a U-period and a C-period equal those in the NPSV model, thus

we have ( ))\E[V]
ProblUl = T ) 1 2B W)’ (3%a)
_ Pp
Prob[C] = - p;__l . (39b)

Since an idle period consists of the time when the server is idle and the time for service to messages
of L-class, we have

g (1=pV*N) - Q1 =pH)V*(N) + p, AE[V]
Problidle] = oo SEV T = T Vo) 1 AE]

(39c¢)

which yields
ppi[(L = pFIV*(N) + p, AE[V]]
- p_ ) (V) +AE[V])
From (18), (22), (23), (25) and (39), we get |
. Q=pf)V*(N) +pp ABIV] o,
Wpls) = Oy
pp_1[(1 = pF)V*(N) + oy AE[V]]
(1= pp_)(V*(X) + AE[V])
(1 — P)AE[V]
- Pa-1)(V*(X) + AE[V])

Prob[H] =

(39d)

Ele=*"r|H]

Ele=*"?|U] +

IT:L—-E[e"’WﬂC], (40a)
p—1

— 2
EW,] = 95 by + A5 bg, oD+ 7 Zﬁ-}l\-fEV[VJI (40b)
P 2g(0-piy)  20-p)1-py)

(3) 2 oDt 5O
B = S e * T
31-pp)2—py_1—pp)gp (L—0p ) 2-pf_1—0d)gp

Ao’ 2o(65")°%,
(L=p)2@—ppr—pp)op  (L=pp)*(2—pp1— 05

+
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2 (1 - p)AE[V?3]
+ M6 4 apgph® 4+ P
30— )L~ )@~ i1~ 7) ( P opt TSI T VR ) + B V]

1 (1-p)AE[V?]
= @ (2 L LT pALVT]
Ta=ay ( e S I TV Yo7

2 +(2) 2
% ( 91(7 )bp + X;—lbg,p—l )‘pgpbg) ) _

40c¢
@i -ma Q- U= —p) (40c)

5 Comparison of the Moments

In this section we compare the results obtained for the individual models in Section 4.

5.1 Comparison between ROS and FCF'S systems

For each model, the mean waiting time under ROS equals that under FCFS; this is obvious from
Little’s formula (Little [20]) and the fact that the queue size distribution is invariant.
We can also derive the following relationship on the second moments between ROS and FCFS
disciplines for each priority class common to all models:
2(1 - p_y)
2= E[W2lrcrs = E[W2]rcrs. (41)

2—/0;-1 — Pp

E[W]ros =

This relation extends the result for the non-priority, single arrival model, which was originally derived
by Takécs [24] and later interpreted by Fuhrmann [8]. We note that Fuhrmann’s argument does not
apply to batch arrival models. Therefore, the relation in (41) is established for batch arrival priority

models for the first time in this paper.

5.2 Comparison between non-preemptive and preemptive-resume systems

Comparing (28) with (30), the results for the PRNV model can be derived by setting A\ =0 (k =
p+1,---,P) in the results for the NPNV model; this is because the existence of L-class messages
has no influence on the waiting time of a message of class p. However, the above never holds in the
vacation models, because a sequence of vacations or an idle period may be terminated by the arrival

of L-class messages. These observations are also made under FCFS [28].

5.3 Comparison between systems without vacations and with vacations

The moments of the waiting times in vacation models have some terms common to those in non-
vacation models. Although the service to a message which finds the system idle starts upon arrival
in non-vacation models, it does so after the residual time of a vacation in vacation models. This
explains the difference in the moments for the two models. Therefore as p gets closer to 1, namely as

the probability that a message arrives during a vacation gets smaller, the waiting time distribution
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gets closer to that of the model without vacations. The similar argument is given by Kella and
Yechiali [15].

6 Numerical Examples

In this section, we present some numerical examples. First, Figures 6 and 7 show the mean and
the coefficient of variation of the waiting time as a function of p for three non-preemptive models,
where the ratio of the arrival rates among different classes is fixed. These figures show the behavior
concerning class 1 and class 4 so that we can clearly see the difference among classes. We obtain the

numerical results under the following scenario.

number of classes 4

ratio of arrival rates Al A2 A3 q=1:1:1:1

service time for messages of class 1 3-stage Erlang distribution with mean 0.5
service time for messages of class 2 constant of length 0.5

service time for messages of class 3 2-stage Erlang distribution with mean 0.5

service time for messages of class 4 exponential distribution with mean 0.5

batch size for messages of class 1 geometric distribution with mean 2

batch size for messages of class 2 constant of size 2

batch size for messages of class 3 uniform distribution with mean 2

batch size for messages of class 4 constant of size 2

vacation time 2-stage Erlang distribution with mean 1.0

In Figure 6, we observe the following relationship
E[Wylnv < E[Wplsv < E[Wplmv,

while in Figure 7, we get the reverse relationship about the coeflicient of variation of the waiting
time. These relationships also hold for preemptive-resume models.

Next, Figures 8 and 9 show the mean and the coefficient of variation of the waiting time as
a function of p for the NPNV model, where we assume the same scenario as in Figures 6 and 7.
Figures 10 and 11 show the mean and the coefficient of variation of the waiting time as a function
of go for the NPNV model, where we assume that p; = p2 = p3 = ps = 0.1, that the batch size of
class 2 is constant, and that the scenario is otherwise the same as in Figures 6 and 7. From these
figures, we find the following interesting behavior. In the case where p is small and the mean batch
size of a higher class is larger than that of a lower class, the mean waiting time of the higher class
can be larger than that of the lower class. This is because the service to a tagged message may be
delayed by other messages which belong to the same supermessage. Note that this never occurs in
single arrival models. A similar phenomenon is also observed for the case where p is small and the

mean service time of a higher class is larger than that of a lower class.
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7 Concluding Remarks

In this paper we have analyzed MX/G/1 priority queues with/without vacations under ROS. By
considering the waiting times under various conditions, we have explicitly derived the first two
moments for the wa.itihg time distribution of an arbitrary message, which have revealed some note-
worthy new results, especially the one in (41). We have also noted some interesting observations
from the numerical examples for the mean waiting time and the coefficient of variation of the waiting
time.

We remark that we can further derive the response time distribution for each model from our
results. The LST R;(s) of the DF for the time that a message of class p spends in the system is

given by
Ry(s) = Wy(s)Bg(s) for the non-preemptive models, (42)
Ry(s) = W;(s)Bp(op-1) for the preemptive-resume models,
where 0,1 1= s+ At — MY ©F (s).

Although we have assumed that our systems are unsaturated (p < 1) throughout the paper, we
can easily extend our results to saturated systems (p > 1). Consider g such that p;l"_l < 1 and
p;}' > 1. The steady-state probability that the server is on a vacation is zero in a saturated system.
The steady-state probability that a message of class ¢ + 1,---, P is in service also becomes zero.
Messages of class ¢ are served partially. In a non-preemptive priority model, service times for class ¢
can be regarded as vacations when we are concerned with messages of class 1,2,---,q— 1. Therefore
Wy (s) (p=1,---,9—1) and the first two moments for the non-preemptive model are given by (33)
in which V*(s) is replaced by Bj(s) and P is replaced by ¢ — 1. The Wy (s) (p=1,---,¢ — 1) and
the first two moments for preemptive-resume model are still given by (35) (see sec. 3.3 in [26] and
[28]).
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Figure 6: The mean waiting time in non-preemptive models.
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Figure 7: The coefficient of variation of the waiting time in non-preemptive models.
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Figure 8: The mean waiting time in the NPNV model.
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Figure 9: The coefficient of variation of the waiting time in the NPNV model.
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Figure 10: The mean waiting time vs. g2 in the NPNV model.
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