ESTIMATES OF ANTIPODAL SETS IN ORIENTED REAL GRASSMANN MANIFOLDS

HIROYUKI TASAKI
Dedicated to the memory of Professor Shoshichi Kobayashi

Abstract

We estimate the cardinalities of antipodal sets in oriented real Grassmann manifolds of low ranks. The author reduced the classification of antipodal sets in oriented real Grassmann manifolds to a certain combinatorial problem in a previous paper. So we can reduce estimates of the antipodal sets to those of certain combinatorial objects. The sequences of antipodal sets we obtained in previous papers show that the estimates we obtained in this paper are the best

1. Introduction

An antipodal set in a Riemannian symmetric space was introduced by Chen-Nagano [1]. A subset S of a Riemannian symmetric space is an antipodal set, if $s_{x}(y)=y$ holds for any x and y in S, where s_{x} is the geodesic symmetry at x. We denote by $\tilde{G}_{k}\left(\mathbb{R}^{n}\right)$ the oriented real Grassmann manifold consisting of oriented subspaces of dimension k in \mathbb{R}^{n}, which is a compact Riemannian symmetric space. The main theorem of this paper is the following:

Theorem 1.1. If $n \geq 87$, then antipodal sets of maximal cardinality in $\tilde{G}_{5}\left(\mathbb{R}^{n}\right)$ are unique up to isometries of $\tilde{G}_{5}\left(\mathbb{R}^{n}\right)$.

The author [2] defined an antipodal subset of

$$
P_{k}(n)=\{\alpha|\alpha \subset\{1, \ldots, n\},|\alpha|=k\} .
$$

Two elements α and β in $P_{k}(n)$ are antipodal, if the cardinality $|\beta-\alpha|$ is even, where $\beta-\alpha=\{i \in \beta \mid i \notin \alpha\}$. A subset A of $P_{k}(n)$ is antipodal, if any α and β in A are antipodal. The author reduced the classification of antipodal sets in $\tilde{G}_{k}\left(\mathbb{R}^{n}\right)$ to that of antipodal subsets in $P_{k}(n)$ in [2] and showed the classification of antipodal subsets of $P_{k}(n)$ for $k \leq 4$. This is the reason why we consider $\tilde{G}_{5}\left(\mathbb{R}^{n}\right)$. Theorem 1.1 is equivalent to the following:

[^0]Theorem 1.2. If $n \geq 87$, then antipodal sets of maximal cardinality in $P_{5}(n)$ are unique up to permutations of $\{1, \ldots, n\}$.

More detailed statement of this theorem is described in Theorem 3.1, which we prove by the use of sequences of antipodal subsets investigated in [2] and [3].

The author would like to thank Takashi Sakuma for useful discussion on the subject of this paper. He is also indebted to the referee, whose comments improved the manuscript, especially the proof of the main theorem.

2. Antipodal subsets

We denote by $\operatorname{Sym}(n)$ the symmetric group on $\{1, \ldots, n\}$. Two subsets X and Y in $P_{k}(n)$ are congruent, if X is transformed to Y by an element of $\operatorname{Sym}(n)$. If X in $P_{k}(n)$ is antipodal, then a subset congruent with X is also antipodal.

In order to describe antipodal subsets we prepare some notation. For a set I we denote by $P_{k}(I)$ the set consisting of all subsets of cardinality k in I. We simply write $P_{k}(n)$ instead of $P_{k}(\{1, \ldots, n\})$. When $I=I_{1} \cup \cdots \cup I_{m}$ is a disjoint union, we put

$$
A_{1} \times \cdots \times A_{m}=\left\{\alpha_{1} \cup \cdots \cup \alpha_{m} \mid \alpha_{i} \in A_{i}\right\}
$$

for subsets A_{i} of $P_{k_{i}}\left(I_{i}\right)$. We get

$$
A_{1} \times \cdots \times A_{m} \subset P_{k_{1}+\cdots+k_{m}}(I) .
$$

If each A_{i} is an antipodal subset of $P_{k_{i}}\left(I_{i}\right)$, then $A_{1} \times \cdots \times A_{m}$ is an antipodal subset of $P_{k_{1}+\cdots+k_{m}}(I)$.

We define some sequences of antipodal subsets according to [2] and [3]. We put

$$
\begin{aligned}
A(2,2 l)= & \{\{1,2\}, \ldots,\{2 l-1,2 l\}\} \\
A(2 k, 2 l)= & \left\{\alpha_{1} \cup \cdots \cup \alpha_{k} \in P_{2 k}(2 l) \mid\right. \\
& \left.\alpha_{1}, \ldots, \alpha_{k} \text { are distinct elements of } A(2,2 l)\right\},
\end{aligned}
$$

which is an antipodal subset of $P_{2 k}(2 l)$ and

$$
A(2 k+1,2 l+1)=A(2 k, 2 l) \times\{\{2 l+1\}\},
$$

which is an antipodal subset of $P_{2 k+1}(2 l+1)$. By the definition

$$
A(2 k+1,2 l+1)=\{\alpha \cup\{2 l+1\} \mid \alpha \in A(2 k, 2 l)\} .
$$

Their cardinalities are

$$
|A(2 k, 2 l)|=|A(2 k+1,2 l+1)|=\binom{l}{k} .
$$

We define

$$
a(k, n)=\max \left\{|A| \mid A \text { is antipodal in } P_{k}(n) .\right\}
$$

and estimate it in the next section for $k=5$.

Lemma 2.1.

$$
\begin{aligned}
& a(k, n+1) \geq a(k, n), \quad a(k+1, n+1) \geq a(k, n), \\
& a(2 k, n) \geq\binom{\left\lfloor\frac{n}{2}\right\rfloor}{ k}, \quad a(2 k+1, n) \geq\binom{\left.\frac{n-1}{2}\right\rfloor}{ k} .
\end{aligned}
$$

Proof. If A is an antipodal subset of $P_{k}(n)$, then A is also an antipodal subset of $P_{k}(n+1)$. Thus we have $a(k, n+1) \geq a(k, n) . A \times\{\{n+1\}\}$ is also an antipodal subset of $P_{k+1}(n+1)$. Thus we have $a(k+1, n+1) \geq$ $a(k, n)$.
$A\left(2 k, 2\left\lfloor\frac{n}{2}\right\rfloor\right)$ is an antipodal subset of $P_{2 k}(n)$, hence $a(2 k, n) \geq\binom{\left\lfloor\frac{n}{2}\right\rfloor}{ k}$. $A\left(2 k+1,2\left\lfloor\frac{n-1}{2}\right\rfloor+1\right)$ is an antipodal subset of $P_{2 k+1}(n)$, hence $a(2 k+$ $1, n) \geq\binom{\left\lfloor\frac{n-1}{2}\right\rfloor}{ k}$.

We can get the values of $a(k, n)$ for $k \leq 4$ from the classifications of maximal antipodal subsets of $P_{k}(n)$ obtained in [2] as follows. We have $a(1, n)=1$ and any nonempty antipodal subset of $P_{1}(n)$ is congruent with $\{\{1\}\}$ by Proposition 4.1 and Corollary 4.1 in [2]. We have $a(2, n)=\left\lfloor\frac{n}{2}\right\rfloor$ and any antipodal subset of $P_{2}(n)$ which attains $a(2, n)$ is congruent with $A\left(2,2\left\lfloor\frac{n}{2}\right\rfloor\right)$ by Proposition 4.2 and Corollary 4.2 in [2]. We have

n	4	5	6	$7, \ldots, 16$	more than 16
$a(3, n)$	1	2	4	7	$\left\lfloor\frac{n-1}{2}\right\rfloor$

and any antipodal subset of $P_{3}(n)$ which attains $a(3, n)$ for $n>16$ is congruent with $A\left(3,2\left\lfloor\frac{n-1}{2}\right\rfloor+1\right)$ by Theorem 5.1 and Corollary 5.1 in [2]. We have

n	5	6	7	$8, \ldots, 11$	more than 11
$a(4, n)$	1	3	7	14	$\binom{\left[\frac{n}{2}\right\rfloor}{ 2}$

and any antipodal subset of $P_{4}(n)$ which attains $a(4, n)$ for $n>11$ is congruent with $A\left(4,2\left\lfloor\frac{n}{2}\right\rfloor\right)$ by Theorem 6.1 and Corollary 6.2 in [2]. These phenomena stimulate us to formulate Theorem 3.1 in the next section.

3. Estimates of the cardinalities of antipodal subsets

In this section we show the following main theorem.
Theorem 3.1. If $n \geq 87$, then

$$
a(5, n)=\left|A\left(5,2\left\lfloor\frac{n-1}{2}\right\rfloor+1\right)\right|=\binom{\left\lfloor\frac{n-1}{2}\right\rfloor}{ 2} .
$$

If an antipodal subset A of $P_{5}(n)$ for $n \geq 87$ attains $a(5, n)$, then A is congruent with $A\left(5,2\left\lfloor\frac{n-1}{2}\right\rfloor+1\right)$.

Proof. We estimate $|A|$ for an antipodal subset A of $P_{5}(n)$. We can suppose A contains $\alpha_{0}=\{1,2,3,4,5\}$ without loss of generality. For an element α in $P_{k}(n)$ and a subset B in $P_{k}(n)$ we write

$$
A_{\alpha}(B)=\{\beta \in B \mid \alpha, \beta \text { are antipodal }\}-\{\alpha\} .
$$

We have

$$
\begin{aligned}
A_{\alpha_{0}}\left(P_{5}(n)\right) & =P_{3}(\{1,2,3,4,5\}) \times P_{2}(\{6, \ldots, n\}) \\
& \cup P_{1}(\{1,2,3,4,5\}) \times P_{4}(\{6, \ldots, n\}),
\end{aligned}
$$

which is a disjoint union. We put

$$
M_{j}=P_{5-j}(\{1,2,3,4,5\}) \times P_{j}(\{6, \ldots, n\}) \quad(j=2,4) .
$$

So $A_{\alpha_{0}}\left(P_{5}(n)\right)=M_{2} \cup M_{4}$. Since $A \subset\left\{\alpha_{0}\right\} \cup A_{\alpha_{0}}\left(P_{5}(n)\right)$, we get

$$
A=\left\{\alpha_{0}\right\} \cup\left(A \cap M_{2}\right) \cup\left(A \cap M_{4}\right),
$$

which is also a disjoint union. We estimate the cardinalities of $A \cap M_{2}$ and $A \cap M_{4}$ in the following propositions.

Proposition 3.2. For $A=A \cap M_{2}$, the following holds:
(1) If $A \cap M_{2}$ is contained in a product of antipodal subsets in $P_{3}(\{1,2,3,4,5\})$ and $P_{2}(\{6, \ldots, n\})$, then

$$
\left|A \cap M_{2}\right| \leq 2\left\lfloor\frac{n-1}{2}\right\rfloor-4 .
$$

The equality holds if and only if $A \cap M_{2}$ is a product of maximal antipodal subsets in $P_{3}(\{1,2,3,4,5\})$ and $P_{2}(\{6, \ldots, n\})$.
(2) If $A \cap M_{2}$ is not contained in a product of antipodal subsets in $P_{3}(\{1,2,3,4,5\})$ and $P_{2}(\{6, \ldots, n\})$, then

$$
\left|A \cap M_{2}\right| \leq\left\lfloor\frac{n}{2}\right\rfloor+11
$$

Proposition 3.3. For $A=A \cap M_{4}$, the following holds:
(1) If $A \cap M_{4}$ is contained in a product of antipodal subsets in $P_{1}(\{1,2,3,4,5\})$ and $P_{4}(\{6, \ldots, n\})$, then

$$
\left|A \cap M_{4}\right| \leq a(4, n-5)
$$

In particular, if $n \geq 17$,

$$
\left|A \cap M_{4}\right| \leq\binom{\left\lfloor\frac{n-5}{2}\right\rfloor}{ 2}
$$

The equality holds if and only if $A \cap M_{4}$ is a product of maximal antipodal subsets in $P_{1}(\{1,2,3,4,5\})$ and $P_{4}(\{6, \ldots, n\})$.
(2) If $n \geq 29$ and $A \cap M_{4}$ is not contained in a product of antipodal subsets in $P_{1}(\{1,2,3,4,5\})$ and $P_{4}(\{6, \ldots, n\})$, then

$$
\left|A \cap M_{4}\right| \leq 11\left\lfloor\frac{n}{2}\right\rfloor+9\left\lfloor\frac{n-1}{2}\right\rfloor-68 .
$$

Proof of Proposition 3.2. (1) By the assumption of this case we can estimate the cardinality as follows:

$$
\left|A \cap M_{2}\right| \leq 2\left\lfloor\frac{n-5}{2}\right\rfloor=2\left\lfloor\frac{n-1}{2}\right\rfloor-4,
$$

because $a(3,5)=2$ and $a(2, n-5)=\left\lfloor\frac{n-5}{2}\right\rfloor$. Moreover the equality holds if and only if $A \cap M_{2}$ is a product of maximal antipodal subsets in $P_{3}(\{1,2,3,4,5\})$ and $P_{2}(\{6, \ldots, n\})$.
(2) The assumption of this case means that there exist two elements $\alpha=\alpha_{1} \cup \alpha_{2}, \beta=\beta_{1} \cup \beta_{2}$ in $A \cap M_{2}$ such that $\alpha_{1}, \beta_{1} \in P_{3}(\{1,2,3,4,5\})$ are not antipodal or that $\alpha_{2}, \beta_{2} \in P_{2}(\{6, \ldots, n\})$ are not antipodal. Since

$$
\left(\alpha_{1} \cup \alpha_{2}\right)-\left(\beta_{1} \cup \beta_{2}\right)=\left(\alpha_{1}-\beta_{1}\right) \cup\left(\alpha_{2}-\beta_{2}\right),
$$

α_{1}, β_{1} are not antipodal in $P_{3}(\{1,2,3,4,5\})$ and α_{2}, β_{2} are not antipodal in $P_{2}(\{6, \ldots, n\})$. This condition is equivalent with $\left|\alpha_{1} \cap \beta_{1}\right|=2, \mid \alpha_{2} \cap$ $\beta_{2} \mid=1$. We can suppose that $\alpha=\{1,2,3,6,7\}, \beta=\{1,2,4,6,8\}$ without loss of generality. Let B be a maximal antipodal subset of M_{2} containing $A \cap M_{2}$. We estimate $|B|$. Since $\alpha, \beta \in A \cap M_{2}$, we have

$$
A \cap M_{2}-\{\alpha, \beta\} \subset B-\{\alpha, \beta\} \subset A_{\beta}\left(A_{\alpha}\left(M_{2}\right)\right) .
$$

In order to estimate $|B|$ we describe $A_{\beta}\left(A_{\alpha}\left(M_{2}\right)\right)$. We have

$$
\begin{aligned}
A_{\alpha}\left(M_{2}\right) & =P_{3}(\{1,2,3\}) \times P_{2}(\{8, \ldots, n\}) \\
& \cup P_{2}(\{1,2,3\}) \times P_{1}(\{4,5\}) \times P_{1}(\{6,7\}) \times P_{1}(\{8, \ldots, n\}) \\
& \cup P_{1}(\{1,2,3\}) \times P_{2}(\{4,5\}) \times P_{2}(\{6,7\}) \\
& \cup P_{1}(\{1,2,3\}) \times P_{2}(\{4,5\}) \times P_{2}(\{8, \ldots, n\})
\end{aligned}
$$

and

$$
\begin{aligned}
& A_{\beta}\left(A_{\alpha}\left(M_{2}\right)\right) \\
& =\{\{1,2,5,7,8\}\} \\
& \cup\{\{1,2,3,8\},\{1,2,4,7\},\{1,2,5,6\}\} \times P_{1}(\{9, \ldots, n\}) \\
& \cup P_{1}(\{1,2\}) \times\{\{3,4,7,8\},\{3,5,6,8\},\{4,5,6,7\}\} \\
& \cup P_{1}(\{1,2\}) \times\{\{3,4,6\},\{3,5,7\},\{4,5,8\}\} \times P_{1}(\{9, \ldots, n\}) \\
& \cup\{\{3,4,5\}\} \times P_{2}(\{9, \ldots, n\}) .
\end{aligned}
$$

The element $\{1,2,5,7,8\}$ is antipodal with all elements in $A_{\beta}\left(A_{\alpha}\left(M_{2}\right)\right)$, hence $\{1,2,5,7,8\}$ is contained in B because of the maximal property of B. We put $\gamma=\{1,2,5,7,8\}$. We get

$$
B-\{\alpha, \beta, \gamma\} \subset A_{\gamma}\left(A_{\beta}\left(A_{\alpha}\left(M_{2}\right)\right)\right)
$$

and

$$
\begin{aligned}
& A_{\gamma}\left(A_{\beta}\left(A_{\alpha}\left(M_{2}\right)\right)\right) \\
& =\{\{1,2,3,8\},\{1,2,4,7\},\{1,2,5,6\}\} \times P_{1}(\{9, \ldots, n\}) \\
& \cup P_{1}(\{1,2\}) \times\{\{3,4,7,8\},\{3,5,6,8\},\{4,5,6,7\}\} \\
& \cup P_{1}(\{1,2\}) \times\{\{3,4,6\},\{3,5,7\},\{4,5,8\}\} \times P_{1}(\{9, \ldots, n\}) \\
& \cup\{\{3,4,5\}\} \times P_{2}(\{9, \ldots, n\}) .
\end{aligned}
$$

For simplicity, we set $B^{\prime}=B \cap A_{\gamma}\left(A_{\beta}\left(A_{\alpha}\left(M_{2}\right)\right)\right)$ and

$$
\begin{aligned}
& C_{1}=\{\{1,2,3,8\},\{1,2,4,7\},\{1,2,5,6\}\} \times P_{1}(\{9, \ldots, n\}), \\
& C_{2}=P_{1}(\{1,2\}) \times\{\{3,4,7,8\},\{3,5,6,8\},\{4,5,6,7\}\}, \\
& C_{3}=P_{1}(\{1,2\}) \times\{\{3,4,6\},\{3,5,7\},\{4,5,8\}\} \times P_{1}(\{9, \ldots, n\}) \\
& C_{4}=\{\{3,4,5\}\} \times P_{2}(\{9, \ldots, n\}) .
\end{aligned}
$$

Then $B=B^{\prime} \cup\{\alpha, \beta, \gamma\}$ and $B^{\prime} \subset A_{\gamma}\left(A_{\beta}\left(A_{\alpha}\left(M_{2}\right)\right)\right)=C_{1} \cup C_{2} \cup C_{3} \cup C_{4}$. We have a disjoint union

$$
B^{\prime}=\left(B^{\prime} \cap C_{1}\right) \cup\left(B^{\prime} \cap C_{2}\right) \cup\left(B^{\prime} \cap C_{3}\right) \cup\left(B^{\prime} \cap C_{4}\right) .
$$

In order to estimate $|B|$ we estimate each $\left|B^{\prime} \cap C_{i}\right|$. For $i=1, \ldots, 4$ each $B^{\prime} \cap C_{i}$ is an antipodal subset of C_{i}.

Any maximal antipodal subset of C_{1} is congruent with

$$
\{\{1,2,3,8,9\},\{1,2,4,7,9\},\{1,2,5,6,9\}\}
$$

thus we have $\left|B^{\prime} \cap C_{1}\right| \leq 3$. Any maximal antipodal subset of C_{2} is congruent with

$$
\{\{1,3,4,7,8\},\{1,3,5,6,8\},\{1,4,5,6,7\}\}
$$

thus we have $\left|B^{\prime} \cap C_{2}\right| \leq 3$. Any maximal antipodal subset of C_{3} is congruent with

$$
\begin{aligned}
& \{\{1,3,4,6,9\},\{1,3,5,7,9\},\{1,4,5,8,9\} \\
& \{2,3,4,6,10\},\{2,3,5,7,10\},\{2,4,5,8,10\}\}
\end{aligned}
$$

thus we have $\left|B^{\prime} \cap C_{3}\right| \leq 6$. Any maximal antipodal subset of C_{4} is congruent with

$$
\{\{3,4,5\}\} \times\left\{\{9,10\}, \ldots,\left\{2\left\lfloor\frac{n}{2}\right\rfloor-1,2\left\lfloor\frac{n}{2}\right\rfloor\right\}\right\}
$$

thus we have $\left|B^{\prime} \cap C_{4}\right| \leq\left\lfloor\frac{n-8}{2}\right\rfloor$. Therefore we have

$$
\left|A \cap M_{2}\right| \leq|B| \leq\left|B^{\prime}\right|+3 \leq 3+3+6+\left\lfloor\frac{n-8}{2}\right\rfloor+3=\left\lfloor\frac{n}{2}\right\rfloor+11
$$

Proof of Proposition 3.3. (1) By the assumption of this case we can estimate its cardinality as follows:

$$
\left|A \cap M_{4}\right| \leq a(4, n-5)
$$

If $n \geq 17$, then

$$
\left|A \cap M_{4}\right| \leq\binom{\left\lfloor\frac{n-5}{2}\right\rfloor}{ 2}
$$

Moreover the equality holds if and only if $A \cap M_{4}$ is a product of maximal antipodal subsets in $P_{1}(\{1,2,3,4,5\})$ and $P_{4}(\{6, \ldots, n\})$.
(2) The assumption of this case means that there exist two elements $\alpha=\alpha_{1} \cup \alpha_{2}, \beta=\beta_{1} \cup \beta_{2}$ in $A \cap M_{4}$ such that $\alpha_{1}, \beta_{1} \in P_{1}(\{1,2,3,4,5\})$ are not antipodal and that $\alpha_{2}, \beta_{2} \in P_{4}(\{6, \ldots, n\})$ are not antipodal. This condition is equivalent with $\left|\alpha_{1} \cap \beta_{1}\right|=0,\left|\alpha_{2} \cap \beta_{2}\right|=1,3$. We divide the argument to two cases of $\left|\alpha_{2} \cap \beta_{2}\right|=1$ and $\left|\alpha_{2} \cap \beta_{2}\right|=3$.
(i) In the case of $\left|\alpha_{2} \cap \beta_{2}\right|=3$, we can suppose $\alpha=\{1,6,7,8,9\}, \beta=$ $\{2,6,7,8,10\}$ without loss of generality. Let B be a maximal antipodal subset of M_{4} containing $A \cap M_{4}$. We estimate $|B|$. Since $\alpha, \beta \in A \cap M_{4}$, we have

$$
A \cap M_{4}-\{\alpha, \beta\} \subset B-\{\alpha, \beta\} \subset A_{\beta}\left(A_{\alpha}\left(M_{4}\right)\right)
$$

In order to estimate $|B|$ we describe $A_{\beta}\left(A_{\alpha}\left(M_{4}\right)\right)$. We have

$$
\begin{aligned}
A_{\alpha}\left(M_{4}\right) & =\{\{1\}\} \times P_{2}(\{6,7,8,9\}) \times P_{2}(\{10, \ldots, n\}) \\
& \cup\{\{1\}\} \times P_{4}(\{10, \ldots, n\}) \\
& \cup P_{1}(\{2,3,4,5\}) \times P_{3}(\{6,7,8,9\}) \times P_{1}(\{10, \ldots, n\}) \\
& \cup P_{1}(\{2,3,4,5\}) \times P_{1}(\{6,7,8,9\}) \times P_{3}(\{10, \ldots, n\})
\end{aligned}
$$

and

$$
\begin{aligned}
A_{\beta}\left(A_{\alpha}\left(M_{4}\right)\right) & =\{\{1\}\} \times P_{2}(\{6,7,8\}) \times\{\{10\}\} \times P_{1}(\{11, \ldots, n\}) \\
& \cup\{\{1\}\} \times P_{1}(\{6,7,8\}) \times\{\{9\}\} \times P_{2}(\{11, \ldots, n\}) \\
& \cup\{\{1\}\} \times\{\{10\}\} \times P_{3}(\{11, \ldots, n\}) \\
& \cup\{\{2\}\} \times P_{2}(\{6,7,8\}) \times\{\{9\}\} \times P_{1}(\{11, \ldots, n\}) \\
& \cup\{\{2\}\} \times P_{1}(\{6,7,8\}) \times\{\{10\}\} \times P_{2}(\{11, \ldots, n\}) \\
& \cup\{\{2\}\} \times\{\{9\}\} \times P_{3}(\{11, \ldots, n\}) \\
& \cup P_{1}(\{3,4,5\}) \times\{\{6,7,8\}\} \times P_{1}(\{11, \ldots, n\}) \\
& \cup P_{1}(\{3,4,5\}) \times P_{2}(\{6,7,8\}) \times\{\{9\}\} \times\{\{10\}\} \\
& \cup P_{1}(\{3,4,5\}) \times P_{1}(\{6,7,8\}) \times P_{3}(\{11, \ldots, n\}) \\
& \cup P_{1}(\{3,4,5\}) \times\{\{9\}\} \times\{\{10\}\} \times P_{2}(\{11, \ldots, n\}) .
\end{aligned}
$$

Any maximal antipodal subset of $P_{2}(\{6,7,8\}) \times P_{1}(\{11, \ldots, n\})$ is congruent with $\{\{6,7,11\},\{6,8,12\},\{7,8,13\}\}$ and the maximum cardinality of antipodal subsets of $P_{2}(\{6,7,8\}) \times P_{1}(\{11, \ldots, n\})$ is equal to 3. According to the classification of maximal antipodal subsets of $P_{3}(n)$ obtained in Theorem 5.1 of [2], if $n \geq 14$, any maximal antipodal subset of $P_{1}(\{6,7,8\}) \times P_{2}(\{11, \ldots, n\}) \subset P_{3}(\{6,7,8,11, \ldots, n\})$ is congruent with

$$
\{\{6\}\} \times\left\{\{11,12\},\{13,14\}, \ldots,\left\{2\left\lfloor\frac{n}{2}\right\rfloor-1,2\left\lfloor\frac{n}{2}\right\rfloor\right\}\right\}
$$

or

$$
\{\{6,11,12\},\{6,13,14\},\{7,11,13\},\{7,12,14\},\{8,11,14\},\{8,12,13\}\}
$$

and the maximum cardinality of antipodal subsets of $P_{1}(\{6,7,8\}) \times$ $P_{2}(\{11, \ldots, n\})$ is equal to $\max \left\{6,\left\lfloor\frac{n-10}{2}\right\rfloor\right\}$. Any maximal antipodal subset of $P_{1}(\{3,4,5\}) \times P_{1}(\{11, \ldots, n\})$ is congruent with $\{\{3,11\},\{4,12\},\{5,13\}\}$ and the maximum cardinality of antipodal subsets of $P_{1}(\{3,4,5\}) \times$ $P_{1}(\{11, \ldots, n\})$ is equal to 3 . The maximum cardinality of antipodal subset of

$$
P_{1}(\{3,4,5\}) \times P_{1}(\{6,7,8\}) \times P_{3}(\{11, \ldots, n\})
$$

is less than or equal to $9 a(3, n-10)$, because

$$
\left|P_{1}(\{3,4,5\}) \times P_{1}(\{6,7,8\})\right|=9
$$

We obtain the following estimate.

$$
\begin{aligned}
|B| \leq & 2+3+\max \left\{6,\left\lfloor\frac{n-10}{2}\right\rfloor\right\}+a(3, n-10)+3 \\
& +\max \left\{6,\left\lfloor\frac{n-10}{2}\right\rfloor\right\}+a(3, n-10)+3+3+9 a(3, n-10) \\
& +\max \left\{6,\left\lfloor\frac{n-10}{2}\right\rfloor\right\} \\
= & 3 \max \left\{6,\left\lfloor\frac{n-10}{2}\right\rfloor\right\}+11 a(3, n-10)+14 .
\end{aligned}
$$

Hence, if $n \geq 27$, we have

$$
|B| \leq 3\left\lfloor\frac{n-10}{2}\right\rfloor+11\left\lfloor\frac{n-11}{2}\right\rfloor+14=3\left\lfloor\frac{n}{2}\right\rfloor+11\left\lfloor\frac{n-1}{2}\right\rfloor-56
$$

(ii) In the case of $\left|\alpha_{2} \cap \beta_{2}\right|=1$, we can suppose $\alpha=\{1,6,7,8,9\}, \beta=$ $\{2,6,10,11,12\}$ without loss of generality. α is the same in the case (i). There exists a maximal antipodal subset B of M_{4} containing $A \cap M_{4}$. We estimate $|B|$. Since $\alpha, \beta \in A \cap M_{4}$, we have

$$
A \cap M_{4}-\{\alpha, \beta\} \subset B-\{\alpha, \beta\} \subset A_{\beta}\left(A_{\alpha}\left(M_{4}\right)\right)
$$

In order to estimate $|B|$ we describe $A_{\beta}\left(A_{\alpha}\left(M_{4}\right)\right)$. We have

$$
\begin{aligned}
A_{\alpha}\left(M_{4}\right) & =\{\{1\}\} \times P_{2}(\{6,7,8,9\}) \times P_{2}(\{10, \ldots, n\}) \\
& \cup\{\{1\}\} \times P_{4}(\{10, \ldots, n\}) \\
& \cup P_{1}(\{2,3,4,5\}) \times P_{3}(\{6,7,8,9\}) \times P_{1}(\{10, \ldots, n\}) \\
& \cup P_{1}(\{2,3,4,5\}) \times P_{1}(\{6,7,8,9\}) \times P_{3}(\{10, \ldots, n\})
\end{aligned}
$$

and

$$
\begin{aligned}
& A_{\beta}\left(A_{\alpha}\left(M_{4}\right)\right) \\
& =\{\{1,6\}\} \times P_{1}(\{7,8,9\}) \times P_{2}(\{10,11,12\}) \\
& \cup\{\{1,6\}\} \times P_{1}(\{7,8,9\}) \times P_{2}(\{13, \ldots, n\}) \\
& \cup\{\{1\}\} \times P_{2}(\{7,8,9\}) \times P_{1}(\{10,11,12\}) \times P_{1}(\{13, \ldots, n\}) \\
& \cup\{\{1\}\} \times\{\{10,11,12\}\} \times P_{1}(\{13, \ldots, n\}) \\
& \cup\{\{1\}\} \times P_{1}(\{10,11,12\}) \times P_{3}(\{13, \ldots, n\}) \\
& \cup\{\{2\}\} \times\{\{6\}\} \times P_{2}(\{7,8,9\}) \times P_{1}(\{10,11,12\}) \\
& \cup\{\{2\}\} \times\{\{7,8,9\}\} \times P_{1}(\{13, \ldots, n\}) \\
& \cup P_{1}(\{3,4,5\}) \times\{\{6\}\} \times P_{2}(\{7,8,9\}) \times P_{1}(\{13, \ldots, n\})
\end{aligned}
$$

$\cup P_{1}(\{3,4,5\}) \times\{\{7,8,9\}\} \times P_{1}(\{10,11,12\})$
$\cup\{\{2\}\} \times\{\{6\}\} \times P_{1}(\{10,11,12\}) \times P_{2}(\{13, \ldots, n\})$
$\cup\{\{2\}\} \times P_{1}(\{7,8,9\}) \times P_{2}(\{10,11,12\}) \times P_{1}(\{13, \ldots, n\})$
$\cup\{\{2\}\} \times P_{1}(\{7,8,9\}) \times P_{3}(\{13, \ldots, n\})$
$\cup P_{1}(\{3,4,5\}) \times\{\{6\}\} \times P_{2}(\{10,11,12\}) \times P_{1}(\{13, \ldots, n\})$
$\cup P_{1}(\{3,4,5\}) \times\{\{6\}\} \times P_{3}(\{13, \ldots, n\})$
$\cup P_{1}(\{3,4,5\}) \times P_{1}(\{7,8,9\}) \times\{\{10,11,12\}\}$
$\cup P_{1}(\{3,4,5\}) \times P_{1}(\{7,8,9\}) \times P_{1}(\{10,11,12\}) \times P_{2}(\{13, \ldots, n\})$.
The maximum cardinality of antipodal subsets of

$$
P_{2}(\{7,8,9\}) \times P_{1}(\{10,11,12\}) \times P_{1}(\{13, \ldots, n\})
$$

is less than or equal to

$$
\left|P_{2}(\{7,8,9\})\right| \times 3=9
$$

The maximum cardinality of antipodal subsets of

$$
P_{1}(\{3,4,5\}) \times P_{1}(\{7,8,9\}) \times P_{1}(\{10,11,12\}) \times P_{2}(\{13, \ldots, n\})
$$

is less than or equal to

$$
\left|P_{1}(\{3,4,5\}) \times P_{1}(\{7,8,9\})\right| \max \left\{6,\left\lfloor\frac{n-12}{2}\right\rfloor\right\}=9 \max \left\{6,\left\lfloor\frac{n-12}{2}\right\rfloor\right\} .
$$

We obtain the following estimate for $n \geq 29$.

$$
\begin{aligned}
|B| \leq & 2+3+\max \left\{6,\left\lfloor\frac{n-12}{2}\right\rfloor\right\}+9+1+3 a(3, n-12)+3+1+9+3 \\
& +\max \left\{6,\left\lfloor\frac{n-12}{2}\right\rfloor\right\}+9+3 a(3, n-12)+9+3 a(3, n-12)+3 \\
& +9 \max \left\{6,\left\lfloor\frac{n-12}{2}\right\rfloor\right\} \\
& =11 \max \left\{6,\left\lfloor\frac{n-12}{2}\right\rfloor\right\}+9 a(3, n-12)+52 \\
& =11\left\lfloor\frac{n-12}{2}\right\rfloor+9\left\lfloor\frac{n-13}{2}\right\rfloor+52 \\
& =11\left\lfloor\frac{n}{2}\right\rfloor+9\left\lfloor\frac{n-1}{2}\right\rfloor-68 .
\end{aligned}
$$

We can see

$$
3\left\lfloor\frac{n}{2}\right\rfloor+11\left\lfloor\frac{n-1}{2}\right\rfloor-56 \leq 11\left\lfloor\frac{n}{2}\right\rfloor+9\left\lfloor\frac{n-1}{2}\right\rfloor-68
$$

in the case $n \geq 4$. Therefore in the case $n \geq 29$ we have

$$
\left|A \cap M_{4}\right| \leq 11\left\lfloor\frac{n}{2}\right\rfloor+9\left\lfloor\frac{n-1}{2}\right\rfloor-68 .
$$

Now using Propositions 3.2 and 3.3, we prove Theorem 3.1. By the disjoint union

$$
A=\{\{1,2,3,4,5\}\} \cup\left(A \cap M_{2}\right) \cup\left(A \cap M_{4}\right)
$$

we estimate $|A|$. We divide the argument to four cases whether $A \cap M_{2}$ is contained in the product of two antipodal subsets in $P_{3}(\{1,2,3,4,5\})$ and $P_{2}(\{6, \ldots, n\})$ or not, and whether $A \cap M_{4}$ is contained in the product of two antipodal subsets in $P_{1}(\{1,2,3,4,5\})$ and $P_{4}(\{6, \ldots, n\})$ or not. We suppose that $n \geq 29$ to use the result on $A \cap M_{4}$ obtained above.

If $A \cap M_{2}$ is not contained in the product and if $A \cap M_{4}$ is not contained in the product, then we have

$$
\begin{aligned}
|A| & =1+\left|A \cap M_{2}\right|+\left|A \cap M_{4}\right| \\
& \leq 1+\left\lfloor\frac{n}{2}\right\rfloor+11+11\left\lfloor\frac{n}{2}\right\rfloor+9\left\lfloor\frac{n-1}{2}\right\rfloor-68 \\
& =12\left\lfloor\frac{n}{2}\right\rfloor+9\left\lfloor\frac{n-1}{2}\right\rfloor-56 .
\end{aligned}
$$

The last term is less than $\left|A\left(5,2\left\lfloor\frac{n-1}{2}\right\rfloor+1\right)\right|$ if $n \geq 83$. Hence A can not attain $a(5, n)$.

If $A \cap M_{2}$ is not contained in the product and if $A \cap M_{4}$ is contained in the product, then we have

$$
\begin{aligned}
|A| & =1+\left|A \cap M_{2}\right|+\left|A \cap M_{4}\right| \\
& \leq 1+\left\lfloor\frac{n}{2}\right\rfloor+11+a(4, n-5) .
\end{aligned}
$$

The last term is less than $\left|A\left(5,2\left\lfloor\frac{n-1}{2}\right\rfloor+1\right)\right|$ if $n \geq 35$. Hence A can not attain $a(5, n)$.

If $A \cap M_{2}$ is contained in the product and if $A \cap M_{4}$ is not contained in the product, then for $n \geq 29$ we have

$$
\begin{aligned}
|A| & =1+\left|A \cap M_{2}\right|+\left|A \cap M_{4}\right| \\
& \leq 1+2\left\lfloor\frac{n-1}{2}\right\rfloor-4+11\left\lfloor\frac{n}{2}\right\rfloor+9\left\lfloor\frac{n-1}{2}\right\rfloor-68 \\
& =11\left\lfloor\frac{n}{2}\right\rfloor+11\left\lfloor\frac{n-1}{2}\right\rfloor-71 .
\end{aligned}
$$

The last term is less than $\left|A\left(5,2\left\lfloor\frac{n-1}{2}\right\rfloor+1\right)\right|$ if $n \geq 87$. Hence A can not attain $a(5, n)$.

If $A \cap M_{2}$ is contained in the product and if $A \cap M_{4}$ is contained in the product, then we have

$$
\begin{aligned}
|A| & =1+\left|A \cap M_{2}\right|+\left|A \cap M_{4}\right| \\
& \leq 1+2\left\lfloor\frac{n-1}{2}\right\rfloor-4+a(4, n-5) \\
& =\left|A\left(5,2\left\lfloor\frac{n-1}{2}\right\rfloor+1\right)\right| .
\end{aligned}
$$

Therefore if $n \geq 87$ then $A\left(5,2\left\lfloor\frac{n-1}{2}\right\rfloor+1\right)$ attains $a(5, n)$ and

$$
a(5, n)=\left|A\left(5,2\left\lfloor\frac{n-1}{2}\right\rfloor+1\right)\right|=\binom{\left\lfloor\frac{n-1}{2}\right\rfloor}{ 2} .
$$

Finally we show that an antipodal subset A of $P_{5}(n)$ which attains $a(5, n)$ is congruent with $A\left(5,2\left\lfloor\frac{n-1}{2}\right\rfloor+1\right)$ if $n \geq 87$. Since $A \cap M_{2}$ is the product of a maximal antipodal subset of $P_{3}(\{1,2,3,4,5\})$ and a maximal antipodal subset of $P_{2}(\{6, \ldots, n\})$, by transforming A under the action of $\operatorname{Sym}(n)$ we can suppose

$$
A \cap M_{2}=\{\{1,2,3\},\{1,4,5\}\} \times\{\{6,7\},\{8,9\}, \ldots,\{2 l, 2 l+1\}\},
$$

where $l=\left\lfloor\frac{n-1}{2}\right\rfloor$. Moreover $A \cap M_{4}$ is the product of a maximal antipodal subset A_{1} of $P_{1}(\{1,2,3,4,5\})$ and a maximal antipodal subset A_{2} of $P_{4}(\{6, \ldots, n\})$. There exists i in $\{1,2,3,4,5\}$ such that $A_{1}=\{i\}$. We show that i is equal to 1 . We suppose that i is not equal to 1 . Without loss of generality we can suppose that i is equal to 2. Fix $\{a, b, c, d\} \in A_{2} \subset P_{4}(\{6, \ldots, n\})$. Then the element $\{1,4,5,6,7\} \in A \cap M_{2}$ and $\{2, a, b, c, d\} \in A_{1} \times A_{2}$ are antipodal, hence one of a, b, c, d is equal to 6 or 7 . The element $\{1,4,5,8,9\} \in A \cap M_{2}$ and $\{2, a, b, c, d\} \in A_{1} \times A_{2}$ are antipodal, hence one of a, b, c, d is equal to 8 or 9. Iterating this we obtain

$$
\{a, b, c, d\} \in P_{1}(\{6,7\}) \times P_{1}(\{8,9\}) \times P_{1}(\{10,11\}) \times P_{1}(\{12,13\}) .
$$

Hence $\{1,4,5,14,15\}$ and $\{2, a, b, c, d\}$ are not antipodal, which is a contradiction. Therefore i is equal to 1 and we have

$$
A \cap M_{4}=\{\{1\}\} \times A_{2} .
$$

All elements of

$$
A \cap M_{2}=\{\{1,2,3\},\{1,4,5\}\} \times\{\{6,7\},\{8,9\}, \ldots,\{2 l, 2 l+1\}\}
$$

and $\{\{1\}\} \times A_{2}$ are antipodal, so the intersection of each element of $\{\{6,7\},\{8,9\}, \ldots,\{2 l, 2 l+1\}\}$ and each element of A_{2} has an even cardinality. Hence we have
$A_{2}=\left\{\alpha_{1} \cup \alpha_{2} \in P_{4}(\{6, \ldots, n\}) \mid \alpha_{i} \in\{\{6,7\},\{8,9\}, \ldots,\{2 l, 2 l+1\}\}\right\}$
and A is congruent with $A\left(5,2\left\lfloor\frac{n-1}{2}\right\rfloor+1\right)$.

References

[1] B.-Y. Chen and T. Nagano, A Riemannian geometric invariant and its applications to a problem of Borel and Serre, Trans. Amer. Math. Soc. 308 (1988), 273-297.
[2] H. Tasaki, Antipodal sets in oriented real Grassmann manifolds, Internat. J. Math. 24 no. 8 (2013), 1350061-1-28.
[3] H. Tasaki, Sequences of maximal antipodal sets of oriented real Grassmann manifolds, Springer Proceedings in Mathematics \& Statistics 106, Y.J. Suh et al. (eds.), ICM Satellite Conference on "Real and Complex Submanifolds", (2014), 515-524.

Division of Mathematics, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8571 Japan

E-mail address: tasaki@math.tsukuba.ac.jp

[^0]: Partly supported by the Grant-in-Aid for Science Research (C) 2013 (No. 24540064), Japan Society for the Promotion of Science.

