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Abstract. We estimate the cardinalities of antipodal sets in ori-
ented real Grassmann manifolds of low ranks. The author reduced
the classification of antipodal sets in oriented real Grassmann man-
ifolds to a certain combinatorial problem in a previous paper. So we
can reduce estimates of the antipodal sets to those of certain com-
binatorial objects. The sequences of antipodal sets we obtained in
previous papers show that the estimates we obtained in this paper
are the best.

1. Introduction

An antipodal set in a Riemannian symmetric space was introduced
by Chen-Nagano [1]. A subset S of a Riemannian symmetric space is
an antipodal set, if sx(y) = y holds for any x and y in S, where sx is
the geodesic symmetry at x. We denote by G̃k(Rn) the oriented real
Grassmann manifold consisting of oriented subspaces of dimension k
in Rn, which is a compact Riemannian symmetric space. The main
theorem of this paper is the following:

Theorem 1.1. If n ≥ 87, then antipodal sets of maximal cardinality
in G̃5(Rn) are unique up to isometries of G̃5(Rn).

The author [2] defined an antipodal subset of

Pk(n) = {α | α ⊂ {1, . . . , n}, |α| = k}.
Two elements α and β in Pk(n) are antipodal, if the cardinality |β−α| is
even, where β−α = {i ∈ β | i /∈ α}. A subset A of Pk(n) is antipodal, if
any α and β in A are antipodal. The author reduced the classification
of antipodal sets in G̃k(Rn) to that of antipodal subsets in Pk(n) in [2]
and showed the classification of antipodal subsets of Pk(n) for k ≤ 4.
This is the reason why we consider G̃5(Rn). Theorem 1.1 is equivalent
to the following:
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Theorem 1.2. If n ≥ 87, then antipodal sets of maximal cardinality
in P5(n) are unique up to permutations of {1, . . . , n}.

More detailed statement of this theorem is described in Theorem 3.1,
which we prove by the use of sequences of antipodal subsets investigated
in [2] and [3].

The author would like to thank Takashi Sakuma for useful discussion
on the subject of this paper. He is also indebted to the referee, whose
comments improved the manuscript, especially the proof of the main
theorem.

2. Antipodal subsets

We denote by Sym(n) the symmetric group on {1, . . . , n}. Two sub-
sets X and Y in Pk(n) are congruent, if X is transformed to Y by an
element of Sym(n). If X in Pk(n) is antipodal, then a subset congruent
with X is also antipodal.

In order to describe antipodal subsets we prepare some notation.
For a set I we denote by Pk(I) the set consisting of all subsets of
cardinality k in I. We simply write Pk(n) instead of Pk({1, . . . , n}).
When I = I1 ∪ · · · ∪ Im is a disjoint union, we put

A1 × · · · × Am = {α1 ∪ · · · ∪ αm | αi ∈ Ai}
for subsets Ai of Pki(Ii). We get

A1 × · · · × Am ⊂ Pk1+···+km(I).

If each Ai is an antipodal subset of Pki(Ii), then A1 × · · · × Am is an
antipodal subset of Pk1+···+km(I).

We define some sequences of antipodal subsets according to [2] and
[3]. We put

A(2, 2l) = {{1, 2}, . . . , {2l − 1, 2l}},
A(2k, 2l) = {α1 ∪ · · · ∪ αk ∈ P2k(2l) |

α1, . . . , αk are distinct elements of A(2, 2l)},

which is an antipodal subset of P2k(2l) and

A(2k + 1, 2l + 1) = A(2k, 2l)× {{2l + 1}},
which is an antipodal subset of P2k+1(2l + 1). By the definition

A(2k + 1, 2l + 1) = {α ∪ {2l + 1} | α ∈ A(2k, 2l)}.
Their cardinalities are

|A(2k, 2l)| = |A(2k + 1, 2l + 1)| =
(
l

k

)
.
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We define

a(k, n) = max{|A| | A is antipodal in Pk(n).}

and estimate it in the next section for k = 5.

Lemma 2.1.

a(k, n+ 1) ≥ a(k, n), a(k + 1, n+ 1) ≥ a(k, n),

a(2k, n) ≥
(
⌊n
2
⌋

k

)
, a(2k + 1, n) ≥

(
⌊n−1

2
⌋

k

)
.

Proof. If A is an antipodal subset of Pk(n), then A is also an antipodal
subset of Pk(n+1). Thus we have a(k, n+1) ≥ a(k, n). A×{{n+1}} is
also an antipodal subset of Pk+1(n+1). Thus we have a(k+1, n+1) ≥
a(k, n).

A
(
2k, 2

⌊
n
2

⌋)
is an antipodal subset of P2k(n), hence a(2k, n) ≥

(⌊n
2
⌋

k

)
.

A
(
2k + 1, 2

⌊
n−1
2

⌋
+ 1

)
is an antipodal subset of P2k+1(n), hence a(2k+

1, n) ≥
(⌊n−1

2
⌋

k

)
. �

We can get the values of a(k, n) for k ≤ 4 from the classifications
of maximal antipodal subsets of Pk(n) obtained in [2] as follows. We
have a(1, n) = 1 and any nonempty antipodal subset of P1(n) is con-
gruent with {{1}} by Proposition 4.1 and Corollary 4.1 in [2]. We have
a(2, n) = ⌊n

2
⌋ and any antipodal subset of P2(n) which attains a(2, n)

is congruent with A(2, 2⌊n
2
⌋) by Proposition 4.2 and Corollary 4.2 in

[2]. We have

n 4 5 6 7, . . . , 16 more than 16
a(3, n) 1 2 4 7 ⌊n−1

2
⌋

and any antipodal subset of P3(n) which attains a(3, n) for n > 16 is
congruent with A(3, 2⌊n−1

2
⌋ + 1) by Theorem 5.1 and Corollary 5.1 in

[2]. We have

n 5 6 7 8, . . . , 11 more than 11

a(4, n) 1 3 7 14

(
⌊n
2
⌋

2

)
and any antipodal subset of P4(n) which attains a(4, n) for n > 11
is congruent with A(4, 2⌊n

2
⌋) by Theorem 6.1 and Corollary 6.2 in [2].

These phenomena stimulate us to formulate Theorem 3.1 in the next
section.
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3. Estimates of the cardinalities of antipodal subsets

In this section we show the following main theorem.

Theorem 3.1. If n ≥ 87, then

a(5, n) =

∣∣∣∣A(
5, 2

⌊
n− 1

2

⌋
+ 1

)∣∣∣∣ = (
⌊n−1

2
⌋

2

)
.

If an antipodal subset A of P5(n) for n ≥ 87 attains a(5, n), then A is

congruent with A

(
5, 2

⌊
n− 1

2

⌋
+ 1

)
.

Proof. We estimate |A| for an antipodal subset A of P5(n). We can
suppose A contains α0 = {1, 2, 3, 4, 5} without loss of generality. For
an element α in Pk(n) and a subset B in Pk(n) we write

Aα(B) = {β ∈ B | α, β are antipodal} − {α}.

We have

Aα0(P5(n)) = P3({1, 2, 3, 4, 5})× P2({6, . . . , n})
∪ P1({1, 2, 3, 4, 5})× P4({6, . . . , n}),

which is a disjoint union. We put

Mj = P5−j({1, 2, 3, 4, 5})× Pj({6, . . . , n}) (j = 2, 4).

So Aα0(P5(n)) = M2 ∪M4. Since A ⊂ {α0} ∪ Aα0(P5(n)), we get

A = {α0} ∪ (A ∩M2) ∪ (A ∩M4),

which is also a disjoint union. We estimate the cardinalities of A∩M2

and A ∩M4 in the following propositions.

Proposition 3.2. For A = A ∩M2, the following holds:

(1) If A ∩ M2 is contained in a product of antipodal subsets in
P3({1, 2, 3, 4, 5}) and P2({6, . . . , n}), then

|A ∩M2| ≤ 2

⌊
n− 1

2

⌋
− 4.

The equality holds if and only if A∩M2 is a product of maximal
antipodal subsets in P3({1, 2, 3, 4, 5}) and P2({6, . . . , n}).

(2) If A ∩M2 is not contained in a product of antipodal subsets in
P3({1, 2, 3, 4, 5}) and P2({6, . . . , n}), then

|A ∩M2| ≤
⌊n
2

⌋
+ 11.

Proposition 3.3. For A = A ∩M4, the following holds:
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(1) If A ∩ M4 is contained in a product of antipodal subsets in
P1({1, 2, 3, 4, 5}) and P4({6, . . . , n}), then

|A ∩M4| ≤ a(4, n− 5).

In particular, if n ≥ 17,

|A ∩M4| ≤
(⌊

n−5
2

⌋
2

)
.

The equality holds if and only if A∩M4 is a product of maximal
antipodal subsets in P1({1, 2, 3, 4, 5}) and P4({6, . . . , n}).

(2) If n ≥ 29 and A∩M4 is not contained in a product of antipodal
subsets in P1({1, 2, 3, 4, 5}) and P4({6, . . . , n}), then

|A ∩M4| ≤ 11
⌊n
2

⌋
+ 9

⌊
n− 1

2

⌋
− 68.

Proof of Proposition 3.2. (1) By the assumption of this case we can
estimate the cardinality as follows:

|A ∩M2| ≤ 2

⌊
n− 5

2

⌋
= 2

⌊
n− 1

2

⌋
− 4,

because a(3, 5) = 2 and a(2, n − 5) =
⌊
n−5
2

⌋
. Moreover the equality

holds if and only if A ∩M2 is a product of maximal antipodal subsets
in P3({1, 2, 3, 4, 5}) and P2({6, . . . , n}).

(2) The assumption of this case means that there exist two elements
α = α1 ∪α2, β = β1 ∪ β2 in A∩M2 such that α1, β1 ∈ P3({1, 2, 3, 4, 5})
are not antipodal or that α2, β2 ∈ P2({6, . . . , n}) are not antipodal.
Since

(α1 ∪ α2)− (β1 ∪ β2) = (α1 − β1) ∪ (α2 − β2),

α1, β1 are not antipodal in P3({1, 2, 3, 4, 5}) and α2, β2 are not antipodal
in P2({6, . . . , n}). This condition is equivalent with |α1 ∩β1| = 2, |α2 ∩
β2| = 1. We can suppose that α = {1, 2, 3, 6, 7}, β = {1, 2, 4, 6, 8}
without loss of generality. Let B be a maximal antipodal subset of M2

containing A ∩M2. We estimate |B|. Since α, β ∈ A ∩M2, we have

A ∩M2 − {α, β} ⊂ B − {α, β} ⊂ Aβ(Aα(M2)).

In order to estimate |B| we describe Aβ(Aα(M2)). We have

Aα(M2) = P3({1, 2, 3})× P2({8, ..., n})
∪ P2({1, 2, 3})× P1({4, 5})× P1({6, 7})× P1({8, ..., n})
∪ P1({1, 2, 3})× P2({4, 5})× P2({6, 7})
∪ P1({1, 2, 3})× P2({4, 5})× P2({8, ..., n})
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and

Aβ(Aα(M2))

= {{1, 2, 5, 7, 8}}
∪ {{1, 2, 3, 8}, {1, 2, 4, 7}, {1, 2, 5, 6}} × P1({9, ..., n})
∪ P1({1, 2})× {{3, 4, 7, 8}, {3, 5, 6, 8}, {4, 5, 6, 7}}
∪ P1({1, 2})× {{3, 4, 6}, {3, 5, 7}, {4, 5, 8}} × P1({9, ..., n})
∪ {{3, 4, 5}} × P2({9, ..., n}).

The element {1, 2, 5, 7, 8} is antipodal with all elements in Aβ(Aα(M2)),
hence {1, 2, 5, 7, 8} is contained in B because of the maximal property
of B. We put γ = {1, 2, 5, 7, 8}. We get

B − {α, β, γ} ⊂ Aγ(Aβ(Aα(M2)))

and

Aγ(Aβ(Aα(M2)))

= {{1, 2, 3, 8}, {1, 2, 4, 7}, {1, 2, 5, 6}} × P1({9, ..., n})
∪ P1({1, 2})× {{3, 4, 7, 8}, {3, 5, 6, 8}, {4, 5, 6, 7}}
∪ P1({1, 2})× {{3, 4, 6}, {3, 5, 7}, {4, 5, 8}} × P1({9, ..., n})
∪ {{3, 4, 5}} × P2({9, ..., n}).

For simplicity, we set B′ = B ∩ Aγ(Aβ(Aα(M2))) and

C1 = {{1, 2, 3, 8}, {1, 2, 4, 7}, {1, 2, 5, 6}} × P1({9, ..., n}),
C2 = P1({1, 2})× {{3, 4, 7, 8}, {3, 5, 6, 8}, {4, 5, 6, 7}},
C3 = P1({1, 2})× {{3, 4, 6}, {3, 5, 7}, {4, 5, 8}} × P1({9, ..., n})
C4 = {{3, 4, 5}} × P2({9, ..., n}).

Then B = B′∪{α, β, γ} and B′ ⊂ Aγ(Aβ(Aα(M2))) = C1∪C2∪C3∪C4.
We have a disjoint union

B′ = (B′ ∩ C1) ∪ (B′ ∩ C2) ∪ (B′ ∩ C3) ∪ (B′ ∩ C4).

In order to estimate |B| we estimate each |B′ ∩ Ci|. For i = 1, . . . , 4
each B′ ∩ Ci is an antipodal subset of Ci.

Any maximal antipodal subset of C1 is congruent with

{{1, 2, 3, 8, 9}, {1, 2, 4, 7, 9}, {1, 2, 5, 6, 9}},

thus we have |B′ ∩ C1| ≤ 3. Any maximal antipodal subset of C2 is
congruent with

{{1, 3, 4, 7, 8}, {1, 3, 5, 6, 8}, {1, 4, 5, 6, 7}},
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thus we have |B′ ∩ C2| ≤ 3. Any maximal antipodal subset of C3 is
congruent with

{{1, 3, 4, 6, 9}, {1, 3, 5, 7, 9}, {1, 4, 5, 8, 9},
{2, 3, 4, 6, 10}, {2, 3, 5, 7, 10}, {2, 4, 5, 8, 10}},

thus we have |B′ ∩ C3| ≤ 6. Any maximal antipodal subset of C4 is
congruent with

{{3, 4, 5}} ×
{
{9, 10}, . . . ,

{
2
⌊n
2

⌋
− 1, 2

⌊n
2

⌋}}
,

thus we have |B′ ∩ C4| ≤
⌊
n−8
2

⌋
. Therefore we have

|A ∩M2| ≤ |B| ≤ |B′|+ 3 ≤ 3 + 3 + 6 +

⌊
n− 8

2

⌋
+ 3 =

⌊n
2

⌋
+ 11.

�
Proof of Proposition 3.3. (1) By the assumption of this case we can
estimate its cardinality as follows:

|A ∩M4| ≤ a(4, n− 5).

If n ≥ 17, then

|A ∩M4| ≤
(⌊

n−5
2

⌋
2

)
.

Moreover the equality holds if and only if A ∩ M4 is a product of
maximal antipodal subsets in P1({1, 2, 3, 4, 5}) and P4({6, . . . , n}).

(2) The assumption of this case means that there exist two elements
α = α1 ∪α2, β = β1 ∪ β2 in A∩M4 such that α1, β1 ∈ P1({1, 2, 3, 4, 5})
are not antipodal and that α2, β2 ∈ P4({6, . . . , n}) are not antipodal.
This condition is equivalent with |α1 ∩ β1| = 0, |α2 ∩ β2| = 1, 3. We
divide the argument to two cases of |α2 ∩ β2| = 1 and |α2 ∩ β2| = 3.

(i) In the case of |α2∩β2| = 3, we can suppose α = {1, 6, 7, 8, 9}, β =
{2, 6, 7, 8, 10} without loss of generality. Let B be a maximal antipodal
subset of M4 containing A∩M4. We estimate |B|. Since α, β ∈ A∩M4,
we have

A ∩M4 − {α, β} ⊂ B − {α, β} ⊂ Aβ(Aα(M4)).

In order to estimate |B| we describe Aβ(Aα(M4)). We have

Aα(M4) = {{1}} × P2({6, 7, 8, 9})× P2({10, . . . , n})
∪ {{1}} × P4({10, . . . , n})
∪ P1({2, 3, 4, 5})× P3({6, 7, 8, 9})× P1({10, . . . , n})
∪ P1({2, 3, 4, 5})× P1({6, 7, 8, 9})× P3({10, . . . , n})
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and

Aβ(Aα(M4)) = {{1}} × P2({6, 7, 8})× {{10}} × P1({11, ..., n})
∪ {{1}} × P1({6, 7, 8})× {{9}} × P2({11, ..., n})
∪ {{1}} × {{10}} × P3({11, . . . , n})
∪ {{2}} × P2({6, 7, 8})× {{9}} × P1({11, ..., n})
∪ {{2}} × P1({6, 7, 8})× {{10}} × P2({11, ..., n})
∪ {{2}} × {{9}} × P3({11, ..., n})
∪ P1({3, 4, 5})× {{6, 7, 8}} × P1({11, . . . , n})
∪ P1({3, 4, 5})× P2({6, 7, 8})× {{9}} × {{10}}
∪ P1({3, 4, 5})× P1({6, 7, 8})× P3({11, . . . , n})
∪ P1({3, 4, 5})× {{9}} × {{10}} × P2({11, ..., n}).

Any maximal antipodal subset of P2({6, 7, 8})×P1({11, . . . , n}) is con-
gruent with {{6, 7, 11}, {6, 8, 12}, {7, 8, 13}} and the maximum cardi-
nality of antipodal subsets of P2({6, 7, 8}) × P1({11, . . . , n}) is equal
to 3. According to the classification of maximal antipodal subsets of
P3(n) obtained in Theorem 5.1 of [2], if n ≥ 14, any maximal antipo-
dal subset of P1({6, 7, 8})×P2({11, . . . , n}) ⊂ P3({6, 7, 8, 11, . . . , n}) is
congruent with

{{6}} ×
{
{11, 12}, {13, 14}, . . . ,

{
2
⌊n
2

⌋
− 1, 2

⌊n
2

⌋}}
or

{{6, 11, 12}, {6, 13, 14}, {7, 11, 13}, {7, 12, 14}, {8, 11, 14}, {8, 12, 13}}

and the maximum cardinality of antipodal subsets of P1({6, 7, 8}) ×
P2({11, . . . , n}) is equal to max

{
6, ⌊n−10

2
⌋
}
. Any maximal antipodal

subset of P1({3, 4, 5})×P1({11, . . . , n}) is congruent with {{3, 11}, {4, 12}, {5, 13}}
and the maximum cardinality of antipodal subsets of P1({3, 4, 5}) ×
P1({11, . . . , n}) is equal to 3. The maximum cardinality of antipodal
subset of

P1({3, 4, 5})× P1({6, 7, 8})× P3({11, . . . , n})

is less than or equal to 9a(3, n− 10), because

|P1({3, 4, 5})× P1({6, 7, 8})| = 9.
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We obtain the following estimate.

|B| ≤ 2 + 3 + max

{
6,

⌊
n− 10

2

⌋}
+ a(3, n− 10) + 3

+ max

{
6,

⌊
n− 10

2

⌋}
+ a(3, n− 10) + 3 + 3 + 9a(3, n− 10)

+ max

{
6,

⌊
n− 10

2

⌋}
= 3max

{
6,

⌊
n− 10

2

⌋}
+ 11a(3, n− 10) + 14.

Hence, if n ≥ 27, we have

|B| ≤ 3

⌊
n− 10

2

⌋
+ 11

⌊
n− 11

2

⌋
+ 14 = 3

⌊n
2

⌋
+ 11

⌊
n− 1

2

⌋
− 56.

(ii) In the case of |α2∩β2| = 1, we can suppose α = {1, 6, 7, 8, 9}, β =
{2, 6, 10, 11, 12} without loss of generality. α is the same in the case (i).
There exists a maximal antipodal subset B of M4 containing A ∩M4.
We estimate |B|. Since α, β ∈ A ∩M4, we have

A ∩M4 − {α, β} ⊂ B − {α, β} ⊂ Aβ(Aα(M4)).

In order to estimate |B| we describe Aβ(Aα(M4)). We have

Aα(M4) = {{1}} × P2({6, 7, 8, 9})× P2({10, ..., n})
∪ {{1}} × P4({10, ..., n})
∪ P1({2, 3, 4, 5})× P3({6, 7, 8, 9})× P1({10, ..., n})
∪ P1({2, 3, 4, 5})× P1({6, 7, 8, 9})× P3({10, ..., n})

and

Aβ(Aα(M4))

= {{1, 6}} × P1({7, 8, 9})× P2({10, 11, 12})
∪ {{1, 6}} × P1({7, 8, 9})× P2({13, . . . , n})
∪ {{1}} × P2({7, 8, 9})× P1({10, 11, 12})× P1({13, . . . , n})
∪ {{1}} × {{10, 11, 12}} × P1({13, . . . , n})
∪ {{1}} × P1({10, 11, 12})× P3({13, . . . , n})
∪ {{2}} × {{6}} × P2({7, 8, 9})× P1({10, 11, 12})
∪ {{2}} × {{7, 8, 9}} × P1({13, . . . , n})
∪ P1({3, 4, 5})× {{6}} × P2({7, 8, 9})× P1({13, . . . , n})
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∪ P1({3, 4, 5})× {{7, 8, 9}} × P1({10, 11, 12})
∪ {{2}} × {{6}} × P1({10, 11, 12})× P2({13, . . . , n})
∪ {{2}} × P1({7, 8, 9})× P2({10, 11, 12})× P1({13, . . . , n})
∪ {{2}} × P1({7, 8, 9})× P3({13, . . . , n})
∪ P1({3, 4, 5})× {{6}} × P2({10, 11, 12})× P1({13, . . . , n})
∪ P1({3, 4, 5})× {{6}} × P3({13, . . . , n})
∪ P1({3, 4, 5})× P1({7, 8, 9})× {{10, 11, 12}}
∪ P1({3, 4, 5})× P1({7, 8, 9})× P1({10, 11, 12})× P2({13, . . . , n}).

The maximum cardinality of antipodal subsets of

P2({7, 8, 9})× P1({10, 11, 12})× P1({13, . . . , n})
is less than or equal to

|P2({7, 8, 9})| × 3 = 9.

The maximum cardinality of antipodal subsets of

P1({3, 4, 5})× P1({7, 8, 9})× P1({10, 11, 12})× P2({13, . . . , n})
is less than or equal to

|P1({3, 4, 5})×P1({7, 8, 9})|max

{
6,

⌊
n− 12

2

⌋}
= 9max

{
6,

⌊
n− 12

2

⌋}
.

We obtain the following estimate for n ≥ 29.

|B| ≤ 2 + 3 + max

{
6,

⌊
n− 12

2

⌋}
+ 9 + 1 + 3a(3, n− 12) + 3 + 1 + 9 + 3

+max

{
6,

⌊
n− 12

2

⌋}
+ 9 + 3a(3, n− 12) + 9 + 3a(3, n− 12) + 3

+ 9max

{
6,

⌊
n− 12

2

⌋}
= 11max

{
6,

⌊
n− 12

2

⌋}
+ 9a(3, n− 12) + 52

= 11

⌊
n− 12

2

⌋
+ 9

⌊
n− 13

2

⌋
+ 52

= 11
⌊n
2

⌋
+ 9

⌊
n− 1

2

⌋
− 68.

We can see

3
⌊n
2

⌋
+ 11

⌊
n− 1

2

⌋
− 56 ≤ 11

⌊n
2

⌋
+ 9

⌊
n− 1

2

⌋
− 68,
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in the case n ≥ 4. Therefore in the case n ≥ 29 we have

|A ∩M4| ≤ 11
⌊n
2

⌋
+ 9

⌊
n− 1

2

⌋
− 68.

�
Now using Propositions 3.2 and 3.3, we prove Theorem 3.1. By the

disjoint union

A = {{1, 2, 3, 4, 5}} ∪ (A ∩M2) ∪ (A ∩M4)

we estimate |A|. We divide the argument to four cases whetherA∩M2 is
contained in the product of two antipodal subsets in P3({1, 2, 3, 4, 5})
and P2({6, . . . , n}) or not, and whether A ∩ M4 is contained in the
product of two antipodal subsets in P1({1, 2, 3, 4, 5}) and P4({6, . . . , n})
or not. We suppose that n ≥ 29 to use the result on A ∩M4 obtained
above.

If A ∩ M2 is not contained in the product and if A ∩ M4 is not
contained in the product, then we have

|A| = 1 + |A ∩M2|+ |A ∩M4|

≤ 1 +
⌊n
2

⌋
+ 11 + 11

⌊n
2

⌋
+ 9

⌊
n− 1

2

⌋
− 68

= 12
⌊n
2

⌋
+ 9

⌊
n− 1

2

⌋
− 56.

The last term is less than
∣∣A (

5, 2
⌊
n−1
2

⌋
+ 1

)∣∣ if n ≥ 83. Hence A can
not attain a(5, n).

If A∩M2 is not contained in the product and if A∩M4 is contained
in the product, then we have

|A| = 1 + |A ∩M2|+ |A ∩M4|

≤ 1 +
⌊n
2

⌋
+ 11 + a(4, n− 5).

The last term is less than
∣∣A (

5, 2
⌊
n−1
2

⌋
+ 1

)∣∣ if n ≥ 35. Hence A can
not attain a(5, n).

If A∩M2 is contained in the product and if A∩M4 is not contained
in the product, then for n ≥ 29 we have

|A| = 1 + |A ∩M2|+ |A ∩M4|

≤ 1 + 2

⌊
n− 1

2

⌋
− 4 + 11

⌊n
2

⌋
+ 9

⌊
n− 1

2

⌋
− 68

= 11
⌊n
2

⌋
+ 11

⌊
n− 1

2

⌋
− 71.
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The last term is less than
∣∣A (

5, 2
⌊
n−1
2

⌋
+ 1

)∣∣ if n ≥ 87. Hence A can
not attain a(5, n).

If A ∩M2 is contained in the product and if A ∩M4 is contained in
the product, then we have

|A| = 1 + |A ∩M2|+ |A ∩M4|

≤ 1 + 2

⌊
n− 1

2

⌋
− 4 + a(4, n− 5)

=

∣∣∣∣A(
5, 2

⌊
n− 1

2

⌋
+ 1

)∣∣∣∣ .
Therefore if n ≥ 87 then A

(
5, 2

⌊
n−1
2

⌋
+ 1

)
attains a(5, n) and

a(5, n) =

∣∣∣∣A(
5, 2

⌊
n− 1

2

⌋
+ 1

)∣∣∣∣ = (⌊
n−1
2

⌋
2

)
.

Finally we show that an antipodal subset A of P5(n) which attains
a(5, n) is congruent with A

(
5, 2

⌊
n−1
2

⌋
+ 1

)
if n ≥ 87. Since A ∩M2 is

the product of a maximal antipodal subset of P3({1, 2, 3, 4, 5}) and a
maximal antipodal subset of P2({6, . . . , n}), by transforming A under
the action of Sym(n) we can suppose

A ∩M2 = {{1, 2, 3}, {1, 4, 5}} × {{6, 7}, {8, 9}, . . . , {2l, 2l + 1}},

where l =
⌊
n−1
2

⌋
. Moreover A ∩ M4 is the product of a maximal an-

tipodal subset A1 of P1({1, 2, 3, 4, 5}) and a maximal antipodal sub-
set A2 of P4({6, . . . , n}). There exists i in {1, 2, 3, 4, 5} such that
A1 = {i}. We show that i is equal to 1. We suppose that i is
not equal to 1. Without loss of generality we can suppose that i is
equal to 2. Fix {a, b, c, d} ∈ A2 ⊂ P4({6, . . . , n}). Then the element
{1, 4, 5, 6, 7} ∈ A∩M2 and {2, a, b, c, d} ∈ A1×A2 are antipodal, hence
one of a, b, c, d is equal to 6 or 7. The element {1, 4, 5, 8, 9} ∈ A ∩M2

and {2, a, b, c, d} ∈ A1×A2 are antipodal, hence one of a, b, c, d is equal
to 8 or 9. Iterating this we obtain

{a, b, c, d} ∈ P1({6, 7})× P1({8, 9})× P1({10, 11})× P1({12, 13}).

Hence {1, 4, 5, 14, 15} and {2, a, b, c, d} are not antipodal, which is a
contradiction. Therefore i is equal to 1 and we have

A ∩M4 = {{1}} × A2.

All elements of

A ∩M2 = {{1, 2, 3}, {1, 4, 5}} × {{6, 7}, {8, 9}, . . . , {2l, 2l + 1}}
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and {{1}} × A2 are antipodal, so the intersection of each element of
{{6, 7}, {8, 9}, . . . , {2l, 2l + 1}} and each element of A2 has an even
cardinality. Hence we have

A2 = {α1 ∪ α2 ∈ P4({6, . . . , n}) | αi ∈ {{6, 7}, {8, 9}, . . . , {2l, 2l + 1}}}
and A is congruent with A

(
5, 2

⌊
n−1
2

⌋
+ 1

)
. �
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