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Abstract. Let v
(s)
d denote the set of coefficient vectors of contractive

polynomials of degree d with 2s non-real zeros. We prove that v
(s)
d can be

computed by a multiple integral, which is related to the Selberg integral and
its generalizations. We show that the boundary of the above set is the union
of finitely many algebraic surfaces. We investigate arithmetical properties of

v
(s)
d and prove among others that they are rational numbers. We will show

that within contractive polynomials, the ‘probability’ of picking a totally real
polynomial decreases rapidly when its degree becomes large.

1. Introduction.

Let P (X) = Xd +pd−1X
d−1 + · · ·+p0 ∈ R[X]. In this note, we often have to switch

between P (X) and the vector of its coefficients vP = (p0, . . . , pd−1) ∈ Rd. To simplify
the notation, we identify P and vP from now on.

Let d be a positive integer, B ≥ 1 a real number. Denote by Ed(B) the set of d-
dimensional vectors whose roots (by the above identification) lie within the ball of radius
B centered at the origin. In this Part I of our paper we are dealing solely with the case
B = 1 therefore we will use the abbreviation Ed instead of Ed(1). The elements of Ed are
called contractive polynomials.

This set was studied by several authors. I. Schur [12] proved a necessary and suffi-
cient condition for v ∈ Ed, which implies that the boundary of Ed is the union of finitely
many algebraic surfaces. A. T. Fam and J. S. Meditsch [6] improved this result by prov-
ing that the boundary of Ed is the union of two hyperplanes and one hypersurface. The
two hyperplanes corresponds to roots 1 and −1 respectively. You find a thorough study
of the boundary in Kirschenhofer et al. [10].

Later A. T. Fam [7] computed the volume of Ed:

vd = λd(Ed) =





22m2
m∏

j=1

(j − 1)!4

(2j − 1)!2
, if d = 2m,

22m2+2m+1

m∏

j=1

j!2(j − 1)!2

(2j − 1)!(2j + 1)!
, if d = 2m + 1,

(1)

where λd(.) denotes the d-dimensional Lebesgue measure.
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Given a polynomial P in R[x], the non-real roots of P appear in complex conjugate
pairs. Thus d = r + 2s, where r denotes the number of real and s the number of non-
real pairs of roots. The pair (r, s) is called the signature of the polynomial. However
in this paper, we derive asymptotic formulas with a fixed d, we call s the signature for
simplicity, because r = d− 2s. The set Ed splits naturally into bd/2c+ 1 disjoint subsets
according to the signature s. In the sequel E(s)

d denotes the subset of Ed whose elements
have signature s.

This paper is organized as follows. First we show in Theorem 2.1 that λd(E(s)
d )

can be computed by a certain multiple integral. It turns out that for s = 0 this is a
simple variant of Sd(1, 1, 1/2), where Sd(α, β, γ) denotes the Selberg integral, which is a
generalization of the beta integral studied from many different points of view, see e.g.
[13], [3], [8]. By using a generalization of it, due to K. Aomoto [5], we prove in Theorem
4.2 an expression for s = 1, which makes it possible to compute v

(1)
d for large values of d.

Here we turn to the investigation of the arithmetic nature of v
(s)
d . We prove in

Theorem 5.1, that they are rational numbers. We express Sd(1, 1, 1/2) as a product of
binomial coefficients, which enables us to show that they are reciprocals of integers in
Corollary 5.1. After this we summarize our observations on our computations on v

(s)
d .

We conjecture that v
(s)
d /v

(0)
d is always an integer. In the case d even and s = d/2 our

Conjecture 5.2 is completely explicit. Theorem 5.2 supports our conjectures.
The quotient p

(s)
d = v

(s)
d /vd may be viewed as the probability of picking an element

v ∈ Ed of the signature s. By Theorem 5.1 these probabilities are rational numbers. It
might be surprising to observe that totally real polynomials are very rare. If the sets E(s)

d

would have approximately the same volume then p
(s)
d ∼ 2/d. However using the explicit

formulae for v
(0)
d and vd we show p

(0)
d ∼ 2−d2/2, which is much smaller than we expected.

In the last section we prove a generalization of the results of I. Schur [12] as well as
of A. T. Fam and J. S. Meditsch [6], that the boundary of E(s)

d is the union of finitely
many algebraic surfaces in Theorem 7.1.

In Part II [1] we apply our results to estimate the distribution of polynomials with
integer coefficients with given degree and signature. We are able to complete this program
with respect to three natural parameters, which we will call ‘measures’.

2. The volume of E(s)
d .

The aim of this section is to prove that the volume of E(s)
d can be expressed by a

multiple integral. We denote by ResX(P (X), Q(X)) the resultant of the polynomials
P (X), Q(X) ∈ R[X].

Theorem 2.1. Let d ≥ 1 and r, s non-negative integers such that r+2s = d. Then
the set E(s)

d is Jordan measurable. Let Rj(X) = X2 − yjX + zj, where 0 ≤ zj ≤ 1 and
the discriminant of Rj(X) is negative, j = 1, . . . , s. Put

Dr,s = [−1, 1]r × [−2
√

z1, 2
√

z1 ]× [0, 1]× · · · × [−2
√

zs, 2
√

zs ]× [0, 1].

Then we have
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v
(s)
d = λd

(E(s)
d

)
=

1
r!s!

∫

Dr,s

|∆r|∆s∆r,s dX,

where

∆r =
∏

1≤j<k≤r

(xj − xk),

∆s =
∏

1≤j<k≤s

ResX(Rj(X), Rk(X)),

∆r,s =
r∏

j=1

s∏

k=1

Rk(xj)

and dX = dx1 . . . dxrdy1dz1 . . . dysdzs.

To prove this theorem we need some preparation. Let the signature of P (X) =
Xd+pd−1X

d−1+· · ·+p0 ∈ R[X] be 0 ≤ s ≤ bd/2c. Assume that its zeroes are x1, . . . , xd.
Assume further that they are ordered such that x1, . . . , xr ∈ R and the others belong to
C \ R. Moreover xr+2j = x̄r+2j−1, j = 1, . . . , s, where x̄ denotes the complex conjugate
of x. Denote Sj(x1, . . . , xd), j = 1, . . . , d the j-th elementary symmetric polynomial of
x1, . . . , xd, i.e., let

Sj(x1, . . . , xd) =
∑

1≤i1<···<ij≤d

xi1 . . . xij
,

where the sum is extended to all possible values of the indices i1, . . . , ij . For later use
we define S0(x1, . . . , xd) = 1. The classical Viéta’s formulae connect the roots and
coefficients of P (X). With the notation pd = 1 they are

pj = (−1)d−jSd−j , j = 0, . . . , d. (2)

The last system of equations defines a mapping Rr ×Cs 7→ Rd. To compute the volume
of E(s)

d we need a mapping Rd 7→ Rd. Write

P (X) =
d∏

j=1

(X − xj)

=
r∏

j=1

(X − xj)
s∏

j=1

((X − xr+2j−1)(X − xr+2j))

=
r∏

j=1

(X − xj)
s∏

j=1

(X2 − (xr+2j−1 + xr+2j)X + xr+2j−1xr+2j).

As the coefficients of the quadratic factors are real numbers, this form together with
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(2) gives the desired relations. Therefore we introduce the following new variables yj =
xj (j = 1, . . . , r) and yr+2j−1 = xr+2j−1 + xr+2j , yr+2j = xr+2j−1xr+2j (j = 1, . . . , s).
Under this notation, we prove a

Lemma 2.1. Let d = r + 2s, Rj(X) = X2− yr+2j−1X + yr+2j for j = 1, . . . , s and
J = (∂Si(x1, . . . , xd)/∂yj)1≤i,j≤d. Then

det(J) =
∏

1≤j<k≤r

(yj − yk)
r∏

j=1

s∏

k=1

Rk(yj)
∏

1≤j<k≤s

ResX(Rj(X), Rk(X)).

Proof. Let J1 = (∂Si(x1, . . . , xd)/∂xj)1≤i,j≤d. We easily see

det(J) =
det(J1)∏s

k=1(xr+2k−1 − xr+2k)
. (3)

by the Jacobian computation to transform variables from xj to yj .
In the second step we prove

det(J1) =
d∏

j=1

d∏

k=j+1

(xj − xk). (4)

Let H be a subset of {1, . . . , d}. If t ≤ d− |H| then denote St,H the t-th elementary
symmetric polynomial of the variables {x1, . . . , xd}\{xj : j ∈ H}, otherwise let St,H = 0.

For 1 ≤ t, k ≤ d we have

St,∅ = ykSt−1,{k} + St,{k},

which implies

∂St,∅
∂xk

= St−1,{k}.

Subtract the 1-st column of J1 from the k-th column, where 2 ≤ k ≤ d. All the entries
of the first row will be zero, except the north west entry. Let t ≥ 2. Then the t-th entry
of the k-th column is St−1,{k} − St−1,{1}, which we can rewrite as follows

St−1,{k} − St−1,{1} = x1St−2,{k,1} + St−1,{k,1} − xkSt−2,{k,1} − St−1,{k,1}

= (x1 − xk)St−2,{k,1}.

Thus all entries of the k-th column are divisible by (x1 − xk). Factoring out all these
factors from the determinant we get

det(J1) = det(J2)
d∏

k=2

(x1 − xk),
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where J2 is a (d− 1)× (d− 1) matrix, which has the same structure as J1, but without
the variable x1. With induction we get (4).

Summarizing our computation we proved so far that

det(J) =
∏

1≤j<k≤d

(xj − xk)
/ s∏

k=1

(xr+2k−1 − xr+2k).

After canceling by the denominator, split the remaining product into three factors as
follows

Π1 =
∏

1≤j<k≤r

(xj − xk),

Π2 =
∏

1≤j<k≤s

(xr+2j−1 − xr+2k−1)(xr+2j−1 − xr+2k)(xr+2j − xr+2k−1)(xr+2j − xr+2k),

Π3 =
r∏

k=1

s∏

j=1

(xk − xr+2j−1)(xk − xr+2j).

Obviously, Π1 = ∆r. We have (xk − xr+2j−1)(xk − xr+2j) = x2
k − yr+2j−1xk + yr+2j =

Rj(xk), thus Π3 = ∆r,s. Finally as the roots of Rj(X) are xr+2j−1, xr+2j we get

ResX(Rj(X), Rk(X)) = (xr+2j−1 − xr+2k−1)(xr+2j−1 − xr+2k)

× (xr+2j − xr+2k−1)(xr+2j − xr+2k),

which means Π2 = ∆s and the lemma is proved. ¤

Remark 2.1. By equation (3) Lemma 2.1 can be written in the form

det(J) =
Disc(x1, . . . , xd)∏s

j=1(2i=xr+2j)
,

where Disc(x1, . . . , xd) denotes the discriminant of P (X) =
∏d

j=1(X − xj). Thus, if
s = 0 we obtain exactly the discriminant of P (X).

Now we are in the position to prove Theorem 2.1. In the proof of Lemma 2.1 it was
convenient to use the same name for the variables. To continue this notation would make
our presentation unnecessarily complicated. Therefore in the sequel we use the notation:
xi = yi, i = 1, . . . , r, yi = yr+2i−1, zi = yr+2i, i = 1, . . . , s introduced in the theorem.

Proof of Theorem 2.1. Let v ∈ E(s)
d . The polynomial Pv(X) can be expressed

by its coefficients and by its roots, moreover we have the following relation between these
representations
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P (X) = Xd + pd−1X
d−1 + · · ·+ p0 =

r∏

j=1

(X − xj)
s∏

k=1

(X2 − ykX + zk).

It is clear that

λd

(E(s)
d

)
=

∫

E(s)
d

dp0 . . . dpd−1.

Now we change the variables p0, . . . , pd−1 to x1, . . . , xr, y1, z1, . . . , ys, zs. This gives rise
to one to r!s! correspondence, up to measure zero exceptions. It is clear that xj ∈ [−1, 1],
j = 1 . . . , r. The variable zk is the absolute value of a complex number lying in the closed
unit circle, thus zk ∈ [0, 1], k = 1, . . . , s. The polynomial Rk(X) has two non-real roots,
thus its discriminant y2

k− 4zk ≤ 0, hence yk ∈ [−2
√

zk, 2
√

zk ]. Moreover the Jacobian of
the variable change was computed in Lemma 2.1. Thus we obtain

λd

(E(s)
d

)
=

1
r!s!

∫

Dr,s

|det(J)| dX.

As the polynomials Rk(X) are positive definite, Rk(xj) ≥ 0 and we also have
ResX(Rj(X), Rk(X)) ≥ 0, thus we may omit the absolute value sign around ∆s and
∆r,s. ¤

3. On the Selberg integral and its generalization by Aomoto.

After expressing v
(s)
d in Theorem 2.1 by a multiple integral, the main question is how

to compute it. We will show in the next section, that it can be expressed by Selberg’s
integral, if s = 0 and by a generalization of Selberg’s integral due to K. Aomoto, if s = 1.
To prepare our results we summarize the necessary knowledge about these integrals in
this section.

Let n be a positive integer, Cn = [0, 1]n and

∆ = ∆(t1, . . . , tn) =
∏

1≤j<k≤n

(tj − tk).

In 1944 A. Selberg [13] proved the beautiful formula

Sn(α, β, γ) =
∫

Cn

n∏

j=1

tα−1
j (1− tj)β−1|∆|2γdt1 . . . dtn

=
n−1∏

j=0

Γ(α + jγ)Γ(β + jγ)Γ(1 + (j + 1)γ)
Γ(α + β + (n + j − 1)γ)Γ(1 + γ)

,

which is valid for complex parameters α, β, γ such that <(α) > 0, <(β) > 0, <(γ) >

−min{1/n,<(α)/(n− 1),<(β)/(n− 1)}.
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Besides the original proof of Selberg, there are at least two more essentially different
proofs of this formula, due to G. W. Anderson [2] and K. Aomoto [5]. You find a good
overview of the history, the generalizations and applications of the Selberg integral in the
book of G. E. Andrews and R. Askey and R. Roy [3] as well as in the survey paper [8].
We formulate here one generalization of the Selberg integral, which we will need later.

Let w(t) = w(t1, . . . , tn) =
∏n

j=1 tα−1
j (1− tj)β−1|∆|2γ and

Bn(j, k, `) =
∫

Cn

j∏

i=1

ti

j+k−`∏

i=j+1−`

(1− ti)w(t) dt1 . . . dtn.

Thus j represents the number of extra ti factors, k the number of extra 1 − ti factors,
and ` the number of variables that overlap among the extra factors. Assuming ` ≤ j,
k ≤ n and j + k − ` ≤ n then by Theorem 8.3.1 of [3] we have

Bn(j, k, `) =
∏̀

i=1

α + β + (n− i− 1)γ
α + β + 1 + (2n− i− 1)γ

×
∏j

i=1(α + (n− i)γ)
∏k

i=1(α + (n− i)γ)∏j+k
i=1 (α + β + (2n− i− 1)γ)

Sn(α, β, γ)

for all complex numbers α, β, γ satisfying the former conditions. We need only the special
case k = `, α = β = 1, γ = 1/2. Then, as is pointed out on p. 408 of [3], the integral
defining Bn(j, k, k) can be written in the form

Bn(j, k, k) =
∫

Cn

j∏

i=1

ti

k∏

i=1

(1− ti)w(t) dt1 . . . dtn.

Setting (α, β, γ) = (1, 1, 1/2) and Bn(j, k) = Bn(j, k, k) we obtain

Bn(j, k) =
k∏

i=1

2 + (n− i− 1)/2
3 + (2n− i− 1)/2

×
∏j

i=1(1 + (n− i)/2)
∏k

i=1(1 + (n− i)/2)∏j+k
i=1 (2 + (2n− i− 1)/2)

Sn(1, 1, 1/2)

for n ≥ j ≥ k.

4. Computation of v
(0)
d and v

(1)
d .

In this section we prove expressions for v
(s)
d for s = 0, 1.

In Remark 2.1 an explicit formula for det(J) is given in the case s = 0. Then our
multiple integral simplifies to a transformed Selberg integral [13], [8] and we obtain
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Theorem 4.1. Let d be a positive integer. Then

v
(0)
d =

2d(d+1)/2

d!
Sd(1, 1, 1/2)

=
2d(d+1)/2

d!

d−1∏

j=0

(Γ(1 + j/2))2Γ(1 + (j + 1)/2)
Γ(2 + (d + j − 1)/2)Γ(3/2)

.

Proof. Using the notations of Theorem 2.1 we have r = d, s = 0, hence

v
(0)
d =

1
d!

∫

[−1,1]d

∣∣∣∣
∏

1≤j<k≤d

(xj − xk)
∣∣∣∣dx1 . . . dxd.

Rearranging x1, . . . , xd in decreasing order all factors are non-negative and we may omit
the absolute value. Taking in account that x1, . . . , xd have d! different orderings we
obtain

v
(0)
d =

∫ 1

−1

∫ 1

x1

. . .

∫ 1

xd−1

∏

1≤j<k≤d

(xj − xk) dx1 . . . dxd.

Now we change the variables by xi = 2Xi − 1, i = 1, . . . , d and get

v
(0)
d = 2d(d+1)/2

∫ 1

0

∫ 1

X1

. . .

∫ 1

Xd−1

∏

1≤j<k≤d

(Xj −Xk) dX1 . . . dXd.

Finally we perform the first step backwards and obtain

v
(0)
d =

2d(d+1)/2

d!

∫ 1

0

. . .

∫ 1

0

∣∣∣∣
∏

1≤j<k≤d

(Xj −Xk)
∣∣∣∣dX1 . . . dXd

=
2d(d+1)/2

d!
Sd(1, 1, 1/2). ¤

This relation implicitly appears in G. W. Anderson [2].
For s > 0 we were not able to find a similar simple relation between the Selberg inte-

gral or its generalizations and our expressions for v
(s)
d , although their form and numerical

investigations suggest strong connections. For s = 1, using Aomoto’s generalization [5],
more precisely its variant in the book [3], we were able to derive a bit more complicated
formula, which we present now.
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Theorem 4.2. Let d ≥ be an integer. Then

v
(1)
d = 2(d−1)(d−2)/2

d−2∑

j=0

d−2−j∑

k=0

(−1)d−k22d−2−2k−j

j!k!(d− 2− j − k)!

×Bd−2(d− 2− k, d− 2− k − j)
∫ 1

0

∫ 2
√

z

−2
√

z

yj(y + z + 1)k dy dz.

Proof. As in the proof d − 2 appears often and this makes the formulae more
complicated, we use the abbreviation δ = d− 2. By Theorem 2.1 we have

v
(1)
d =

1
δ!

∫

Dδ,1

∆|∆δ(x)| dXdy dz,

where

∆ = ∆δ,1 =
δ∏

i=1

(x2
i − yxi + z), ∆δ(x) =

∏

1≤j<k≤δ

(xj − xk)

and

dX = dx1 . . . dxδ.

Remark that for simplicity we replaced y1, z1 by y, z. We transform the range of
integration for x1, . . . , xδ to the range used by Selberg and Aomoto by performing the
substitutions xi = 2Xi − 1, i = 1, . . . , δ. (These early substitutions results much simpler
final formulae, than we would do them later.) After some simple calculations we obtain

v
(1)
d =

2(δ+1)δ/2

δ!

∫

[0,1]δ
|∆δ(X)|

∫ 1

0

∫ 2
√

z

−2
√

z

P (X, y, z) dy dz dX, (5)

with

P (X, y, z) =
δ∏

i=1

((2Xi − 1)2 − (2Xi − 1)y + z)

=
δ∏

i=1

(−4Xi(1−Xi)− 2Xiy + (y + z + 1)).

By performing the multiplications we can separate the variables as follows

P (X, y, z) =
δ∑

j=0

(−2)j

δ−j∑

k=0

(−4)δ−k−jyj(y + z + 1)kΣ1Σ2,

where
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Σ1 =
∑

(i1,...,ij)∈I1

Xi1 · · ·Xij
,

Σ2 =
∑

(ij+1,...,iδ−k)∈I2

Xij+1(1−Xij+1) · · ·Xiδ−k
(1−Xiδ−k

)

and I1, I2 run through all ordered disjoint subsets of {1, . . . , δ} with size j and δ − j − k

respectively.
Inserting these expressions into (5) we can separate the variables. Moreover it is

obvious that
∫

[0,1]δ
|∆δ(X)|Xi1 · · ·Xij

Xij+1(1−Xij+1) · · ·Xiδ−k
(1−Xiδ−k

) dX

does not depend on the actual values of (i1, . . . , ij), (ij+1, . . . , iδ−k) but only on the size
of the (ordered) sets I1, I2 to which they belong. It is also clear that this integral is equal
to Bδ(δ−k, δ−j−k). With these observations we can considerably simplify our integral,
and obtain

v
(1)
d =

2(δ+1)δ/2

δ!

δ∑

j=0

(−2)j

(
δ

j

) δ−j∑

k=0

(−4)δ−k−j

(
δ − j

k

)
Bδ(δ − k, δ − j − k)

×
∫ 1

0

∫ 2
√

z

−2
√

z

yj(y + z + 1)k dy dz.

After some obvious simplification we obtain the final formula

v
(1)
d = 2(δ+1)δ/2

δ∑

j=0

δ−j∑

k=0

(−1)δ−k22δ−2k−j

j!k!((δ − j − k)!
Bδ(δ − k, δ − j − k)

×
∫ 1

0

∫ 2
√

z

−2
√

z

yj(y + z + 1)k dy dz. ¤

5. Arithmetical properties of v
(s)
d .

After expressing v
(s)
d in Theorem 2.1 by a multiple integral, which was simplified

in the cases s = 0, 1 in the last section, we investigate arithmetical properties of these
numbers. We start with a general fact.

Theorem 5.1. The numbers vd and v
(s)
d are rational. Moreover

vd =
bd/2c∑
s=0

v
(s)
d . (6)
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Proof. The first and the last statements are obvious by the formula (1) and by
the definitions of the volumes respectively. We included them only for completeness.

The second assertion is true for s = 0, 1 by Theorems 4.1 and 4.2 respectively. Thus
we may assume s ≥ 2. By Theorem 2.1 we have

v
(s)
d =

1
r!s!

∫

Dr,s

|∆r|∆s∆r,s dX

with the notations explained there. In the first step we prove

v
(s)
d =

1
r!s!

∫

Dr,0

W (x1, . . . , xr)|∆r| dx, (7)

where dx = dx1 . . . dxr and W (x1, . . . , xr) ∈ Q[x1, . . . , xr] is symmetric. As ∆r does not
depend on y1, z1, . . . , ys, zs we may take

W (x1, . . . , xr) =
∫

Fs

∆s∆r,s dY,

where Fs = [−2
√

z1, 2
√

z1 ] × [0, 1] × · · · × [−2
√

zs, 2
√

zs ] × [0, 1] and dY = dy1dz1 . . .

dysdzs. Remark that

∆s∆r,s =
∏

1≤j<k≤s

ResX(Rj(X), Rk(X))
s∏

j=1

r∏

k=1

Rj(xk)

is obviously a symmetric polynomial with rational coefficients in x1, . . . , xr. Further we
have

∆s∆r,s = ∆s−1∆r,s−1W1(y1, z1),

where

W1(y1, z1) =
s∏

j=2

ResX(Rj(X), R1(X))
r∏

k=1

R1(xk)

is a polynomial with coefficients in Q = Q[x1, . . . , xr, y2, . . . ys, z2, . . . , zs], which is again
symmetric in x1, . . . , xr. Now we can rewrite the formula for W as follows

W =
∫

Fs−1

∆s−1∆r,s−1

∫ 1

0

∫ 2
√

z1

−2
√

z1

W1(y1, z1)dy1dz1dY1

with dY1 = dy2dz2 . . . dysdzs. It is clear that

∫ 2
√

z1

−2
√

z1

W1(y1, z1) dy1



938 S. Akiyama and A. Pethő

is a polynomial in
√

z1 with coefficients from Q. Thus the same is true for

∫ 1

0

∫ 2
√

z1

−2
√

z1

W1(y1, z1) dy1dz1.

As W1 is symmetric in x1, . . . , xr, this property remains unaffected after the two inte-
grations.

Now we can continue the above described process with the pairs of variables
(y2, z2), . . . , (ys, zs), which finally leads to the proof of (7).

Performing in (7) the variable change xi = 2Xi − 1, i = 1, . . . , r we obtain

v
(s)
d =

2r(r+1)/2

r!s!

∫

Cr

W ′(X1, . . . , Xr)|∆r(X1, . . . , Xr)| dX

with Cr = [0, 1]r and dX = dX1 . . . dXr. Moreover we have W ′(X1, . . . , Xr) = W (2X1−1,

. . . , 2Xr − 1). As W is a symmetric polynomial with rational coefficients, the same is
true for W ′.

It follows from a very general result of K. Aomoto [4, p. 177] (see also [5, p. 545]),
that the last integral divided by Sr(1, 1, 1/2) is a rational number, which implies the
assertion immediately.

In our simple situation the proof of rationality can be completed directly. Indeed, as
in the proof of Theorem 4.1 we can rearrange the variables x1, . . . , xr in (7) in decreasing
order. Then ∆r > 0 and we may omit the absolute value. Thus we obtain

v
(s)
d =

1
s!

∫ 1

−1

∫ 1

x1

. . .

∫ 1

xr−1

W (x1, . . . , xr)∆(x1, . . . , xr) dxr . . . dx1.

As the integrand is a polynomial with rational coefficients, this property is not affected
during the successive integration by xr, . . . , x1. In the last step we obtain a polynomial
with rational coefficients without variables, i.e., a rational number. The theorem is
proved. ¤

In the sequel we concentrate mainly on the case r = 0. First we prove a much
simpler formula for Sd(1, 1, 1/2) as given in Theorem 4.1.

Lemma 5.1. If d is a positive integer then

Sd(1, 1, 1/2) = d!
d∏

i=1

(i− 1)!2

(2i− 1)!
. (8)

Proof. In this proof we use the abbreviation Sd = Sd(1, 1, 1/2). By Theorem 4.1
we have
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Sd+1

Sd
=

Γ(1 + d/2)2Γ(1 + (d + 1)/2)
Γ(d + 1)Γ(3/2)

d−1∏

j=0

Γ(2 + (d + j − 1)/2)
Γ(2 + (d + j)/2)

=
Γ(1 + d/2)2Γ(3/2 + d/2)2

Γ(d + 2)Γ(d + 3/2)Γ(3/2)
.

Using the functional equation Γ(x + 1) = xΓ(x) we can considerably simplify the last
formula

Sd+1

Sd
=

Γ(1 + d/2)2Γ(1/2 + d/2)2

Γ(d + 1)Γ(d + 1/2)Γ(3/2)
(1/2 + d/2)2

(d + 1)(d + 1/2)

=
Sd

Sd−1

d + 1
2(2d + 1)

.

This implies

Sd+1

Sd
=

(
2d + 1

d

)−1

after a short computation. The quotient of consecutive values of the sequence
d!

∏d
i=1(i − 1)! · (i − 1)!/(2i − 1)! satisfy the same relation. As the starting values of

both sequences coincide we proved the statement. ¤

Corollary 5.1. For d ≥ 1 we have

1
Sd(1, 1, 1/2)

=
d−1∏

j=0

(
2j + 1

j

)
,

i.e. the number Sd(1, 1, 1/2) is the reciprocal of an integer.

Proof. The statement is true for d = 1. Further

1
Sd+1(1, 1, 1/2)

=
1

Sd(1, 1, 1/2)
Sd(1, 1, 1/2)

Sd+1(1, 1, 1/2)
=

(
2d + 1

d

)
1

Sd(1, 1, 1/2)
,

which proves the assertion. ¤

Theorem 2.1 allows the numerical computation of v
(s)
d . We did it by using the

computer algebra software Mathematica. It was able to compute v
(s)
d for all possible

signatures for d ≤ 8 and check the formula (6). For d = 9 we failed for s = 2 by time
constraint. We computed v

(2)
9 indirectly by formula (6), which is actually

v
(2)
9 = v9 −

(
v
(0)
9 + v

(1)
9 + v

(3)
9 + v

(4)
9

)
.

In Table 1, you find these computed values for d ≤ 9.
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d
v
(0

)
d

v
(1

)
d

v
(2

)
d

v
(3

)
d

v
(4

)
d

2
4 3

8 3

3
16 45

22
4

45

4
64 15
75

16
64

52
5

20
48

52
5

5
10

24
49

61
25

42
80

32
49

61
25

33
34

14
4

49
61

25

6
16

38
4

34
38

14
62

5
11

14
11

2
10

41
86

25
93

51
98

72
22

92
09

75
26

84
35

45
6

68
76

29
25

7
52

42
88

10
32

47
53

18
87

5
21

24
41

49
76

34
41

58
43

96
25

37
97

92
13

00
48

34
41

58
43

96
25

64
91

84
30

67
90

4
10

32
47

53
18

87
5

8
16

77
72

16
66

43
97

86
76

96
06

25
11

14
47

69
04

44
8

66
43

97
86

76
96

06
25

31
39

47
81

51
49

56
8

22
14

65
95

58
98

68
75

69
39

72
22

57
53

08
8

18
98

27
96

21
98

87
5

56
29

49
95

34
21

31
2

18
98

27
96

21
98

87
5

9
42

94
96

72
96

72
68

18
04

73
66

10
75

71
87

5
92

37
61

56
60

23
68

42
75

40
02

78
62

41
62

18
75

12
62

61
55

87
82

19
77

6
14

33
56

61
68

37
49

65
62

5
70

81
77

69
01

71
75

33
65

50
4

72
68

18
04

73
66

10
75

71
87

5
32

80
39

26
95

17
90

91
37

81
76

72
68

18
04

73
66

10
75

71
87

5

T
a
b
le

1
.
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We also computed the value v
(5)
10 = 4835703278458516698824704

2664364983316916082328125 . Unfortunately our
method is not generalizable, therefore we do not present it here.

In Table 2 we display the quotients vd/v
(0)
d and v

(s)
d /v

(0)
d for 2 ≤ d ≤ 8, 1 ≤ s ≤

bd/2c.

d vd/v
(0)
d v

(1)
d /v

(0)
d v

(2)
d /v

(0)
d v

(3)
d /v

(0)
d v

(4)
d /v

(0)
d

2 3 2

3 15 14

4 175 78 96

5 3675 418 3256

6 169785 2244 85620 81920

7 14567553 12156 2173188 12382208

8 2678348673 66428 56138244 1447738880 1174405120

9 930152232009 365636 1490456292 164885467424 763775942656

Table 2.

Our numerical investigations lead to a

Conjecture 5.1. The quotient v
(s)
d /v

(0)
d is an integer.

The conjecture is true for the computed values, i.e. for any signatures for d ≤ 9. It
is also true for d = 10, s = 5. The formula of Theorem 4.2 makes the computation of
v
(1)
d much more efficient. Using it we computed v

(1)
d for d ≤ 100. This range could easily

be extended, but we could not expect new information, hence we stopped there. Our
computation confirmed Conjecture 5.1.1

Conjecture 5.1 together with relation (6) implies that vd/v
(0)
d is an integer for d ≥ 1.

In this case the formulae (1) and (8) imply

vd

v
(0)
d

=





2−m

m∏

j=1

(j − 1)!4

(2j − 1)!2

2m∏

j=1

(2j − 1)!
(j − 1)!2

, if d = 2m,

2−m

m∏

j=1

j!2(j − 1)!2

(2j − 1)!(2j + 1)!

2m+1∏

j=1

(2j − 1)!
(j − 1)!2

, if d = 2m + 1,

which can easily be transformed to a simpler form

1Recently P. Kirschenhofer and M. Weitzer, A number theoretic problem on the distribution of poly-

nomials with bounded roots, manuscript, 2014, confirmed Conjecture 5.1 in case s = 1. They proved

that v
(1)
d /v

(0)
d = (Pd(3)− 2d− 1)/4, where Pd(x) are the Legendre polynomials. As a consequence they

get log p
(1)
d = −(log 2/2)d2 + d log(3 + 2

√
2) + O(log d), c.f. Section 6.
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vd

v
(0)
d

=





2−m

2m∏

j=m+1

(
2j

j

) m−1∏

j=1

(
2j

j

)−1

, if d = 2m,

2−m−1

2m+1∏

j=m+1

(
2j

j

) m∏

j=1

(
2j

j

)−1

, if d = 2m + 1.

(9)

We are able to prove that these numbers are indeed integers.

Theorem 5.2. The numbers vd/v
(0)
d are odd integers.

To prove this theorem we need a simple but important lemma.

Lemma 5.2. Let an, n = 0, 1, . . . be a purely periodic sequence of real numbers with
period length `. Assume that ai ≤ ai+1, 0 ≤ i ≤ ` − 2. Let c, d be integers such that
d ≥ 0, c > 0, gcd(c, `) = 1. If R is a non-negative integer then

R∑

i=0

ai ≤
R∑

i=0

aci+d.

Proof. There exist integers q, t such that R = q` + t, 0 ≤ t < `. Then

R∑

i=0

ai =
t−1∑

i=0

ai +
R∑

i=t

ai

=
t−1∑

i=0

ai +
q−1∑

j=0

`−1∑

i=0

aj`+i

=
t−1∑

i=0

ai + q
`−1∑

i=0

ai.

Similarly

R∑

i=0

aci+d =
t−1∑

i=0

aci+d +
q−1∑

j=0

`−1∑

i=0

acj`+ci+d

=
t−1∑

i=0

aci+d + q
`−1∑

i=0

aci+d.

However, as c and ` are coprime, if i runs through a complete residue system modulo
`, then ci + d do the same. Hence

∑`−1
i=0 aci+d =

∑`−1
i=0 ai and we only have to compare∑t−1

i=0 ai and
∑t−1

i=0 aci+d. Since (c, `) = 1 the mapping i mod ` 7→ ci+d mod ` is injective
for 0 ≤ i < `. Thus the monotonicity assumption implies that

∑t−1
i=0 ai attains the

minimum of all the sums of the shape
∑

i∈K ai for any subsets K ⊂ Z/`Z of cardinality
t. ¤
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Proof of Theorem 5.2. Let f(x) = b2xc − 2bxc. It is a periodic function with
period one. Moreover f(x) = 0 if x ∈ [0, 1/2) and f(x) = 1 if x ∈ [1/2, 1) thus f(x) is
increasing in the interval [0, 1).

Let p be an odd prime and denote νp(x) the largest exponent e such that pe divides
x. Let R be a positive integer. Then by Legendre’s formula

νp

( R∏
n=0

(
2n

n

))
=

R∑
n=0

∞∑

j=1

(⌊
2n

pj

⌋
− 2

⌊
n

pj

⌋)

=
∞∑

j=1

R∑
n=0

f

(
n

pj

)
.

For j ≥ 1 set aj,n = f(n/pj). The sequence aj,n is purely periodic with period length
pj . The increasing property of f in [0, 1) implies that aj,n is increasing for 0 ≤ n < pj .
Using this notation (9) implies

νp

(
vd

v
(0)
d

)
=

∞∑

j=1

( m−1∑

k=0

aj,m+k+1 −
m−1∑

k=0

aj,k

)

for d = 2m. To get the same number of factors in numerator and denominator we
extended the product in the denominator with the trivial factor

(
0
0

)
= 1. With the

choice c = 1, d = m + 1 the assumptions of Lemma 5.2 hold, thus all differences in the
brackets are non-negative. Hence the denominator of vd/v

(0)
d has no odd divisors.

Finally we prove that vd/v
(0)
d is odd. This is true for d = 2. Assume that it is true

for d = 2m. By (9) we have

ν2

(
vd+2

v
(0)
d+2

)
= ν2

(
vd

v
(0)
d

)
− 1 + ν2

((
4m + 4
2m + 2

))
+ ν2

((
4m + 2
2m + 1

))

− ν2

((
2m + 2
m + 1

))
− ν2

((
2m

m

))
.

It follows from a classical result of E. E. Kummer [11], (see also the expository paper of
Granville [9]) that ν2

((
2n
n

))
is exactly the number of ones in the binary expansion of n.

As 2m+2 = 2(m+1) the number of one’s in the binary expansions of 2m+2 and m+1
is equal, thus ν2

((
4m+4
2m+2

))
= ν2

((
2m+2
m+1

))
. Further 2m + 1 has exactly one more one’s in

its binary expansion than m, thus ν2

((
4m+2
2m+1

))
= ν2

((
2m
m

))
+ 1. Hence

ν2

(
vd+2

v
(0)
d+2

)
= ν2

(
vd

v
(0)
d

)

holds for d even. As this number is zero for d = 2, it is zero for all even d.
The proof of the case d odd is similar, therefore we left it for the reader. ¤
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We finish this part with a conjecture, which is true for d ≤ 5.

Conjecture 5.2. We have

v
(d)
2d

v
(0)
2d

= 22d(d−1)

(
2d

d

)
. (10)

Combining Theorems 2.1 and 4.1 this conjecture can be written in the form

Conjecture 5.3. Let d ≥ 1, 0 ≤ zj ≤ 1, j = 1, . . . , d,

D0,d = [−2
√

z1, 2
√

z1 ]× [0, 1]× · · · × [−2
√

zd, 2
√

zd ]× [0, 1],

Rk(X) = X2 − yjX + zj, j = 1, . . . , d and dX = dy1dz1 . . . dyddzd. Then we have

1
d!

∫

D0,d

∏

1≤j<k≤d

ResX(Rj(X), Rk(X)) dX =
24d2−d

(2d)!

(
2d

d

)
S2d(1, 1, 1/2).

All our attempts to prove this conjecture failed. It seems unlikely to have a simple
formula like (10) for other ratios v

(s)
2d /v

(0)
2d or v

(s)
2d+1/v

(0)
2d+1 with 0 < s < d, because we

find large prime factors.

6. Probability results.

It is natural to ask: what is the probability p
(0)
d that picking v ∈ Ed the corresponding

polynomial Pv is totally real, i.e. has only real roots? Let d = r +2s, where r, s are non-
negative integers. More generally we can ask the probability p

(s)
d that picking v ∈ Ed such

that the corresponding polynomial Pv has signature (r, s)? Notice that in this setting we
pick the coefficients of the polynomial!

Of course we can express these probabilities with our former notations as

p
(s)
d =

v
(s)
d

vd
.

By Theorem 5.1 these probabilities are rational numbers.
The next natural question is the behavior of these numbers. Are they of similar size

or is there significant difference between them?
We have the complicated, but exact formula (1) for vd, but not for v

(s)
d for s ≥ 0,

thus not for p
(s)
d either. However, in the case s = 0 Theorem 4.1 makes it possible

to prove an accurate estimate for the size of p
(0)
d . We extend this with a hypothetical

estimate for p
(d/2)
d , provided d is even.

Theorem 6.1. Let d ≥ 2 be an integer. Then

log
(
p
(0)
d

)
= − log 2

2
d2 +

1
8

log d + O(1).
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Moreover, if d is even and Conjecture 5.2 is true then

log
(
p
(d/2)
d

)
= −3

8
log d + O(1). (11)

Proof. We give a non-computer assisted proof 2. Using ideas of A. T. Fam [7],
we have

(
2n

n

)
=

(2n)!
n!2

=
n∏

k=1

(2k)(2k − 1)
k2

= 22n
n∏

k=1

2k − 1
2k

(12)

for all positive integers n.
First we prove (11). Let d be even, say d = 2m. As

p
(m)
2m = p

(0)
2m

v
(m)
2m

v
(0)
2m

we get

p
(m)
2m = 22m2−m

2m∏

j=m+1

(
2j

j

)−1 m∏

j=1

(
2j

j

)

by using (9) and Conjecture 5.2. Combining this with (12) we obtain

p
(m)
2m = 22m2−m

2m∏

j=m+1

2−2j

j∏

k=1

2k

2k − 1

m∏

j=1

22j

j∏

k=1

2k − 1
2k

= 2−m
m∏

j=1

(
2j

2j − 1

)m 2m∏

j=m+1

(
2j

2j − 1

)2m+1−j m∏

j=1

(
2j − 1

2j

)m+1−j

= 2−m
m∏

j=1

(
4m− 2j + 2
4m− 2j + 1

)j m∏

j=1

(
2j − 1

2j

)−j+1

.

Taking logarithms we get

log
(
p
(m)
2m

)
= −m log 2−

m∑

j=1

(j − 1) log
(

1− 1
2j

)
+

m∑

j=1

j log
(

1 +
1

4m− 2j + 1

)

= −m log 2− 1
2

m∑

j=1

(
1− 2m + 1

2m + 1− j

)
+

m

2
− 3

8

m∑

j=1

1
j

+ O(1)

= −3
8

log m + O(1).

2The computation is not easy even by symbolic computation programs like Mathematica, because we

have to fix properly the branches of complex functions.



946 S. Akiyama and A. Pethő

Here we used the three term Taylor expansion of log(1 + x).
Now we compute an asymptotic estimate for p

(0)
2m. We start with

p
(0)
2m = p

(m)
2m 2−2m(m−1)

(
2m

m

)−1

.

Using (12) we get

p
(0)
2m = p

(m)
2m 2−2m(m−1)2−2m

m∏

k=1

(
1− 1

2k

)−1

.

Taking logarithms, using (11) and the first term of the Taylor expansion for log(1 − x)
we obtain

log
(
p
(0)
d

)
= −2m2 log 2 +

1
2

m∑

k=1

1
k
− 3

8
log m + O(1),

which proves the first assertion for d even.
Finally we are dealing with the case d is odd, say d = 2m + 1. By (9) we have

p
(0)
2m+1 = p

(0)
2m 2

(
2m

m

)(
4m + 2
2m + 1

)−1

.

By applying (12) this implies

p
(0)
2m+1 = p

(0)
2m 2−2m−1

2m+1∏

k=m+1

(
1− 1

2k

)−1

.

Taking logarithms, using the expression for log p
(0)
2m and Taylor’s formula we obtain the

result. ¤

Theorem 6.1 means that the probability of picking a totally real polynomial of degree
d is asymptotically 2−d2/2. On the other hand there are only [d/2]+1 different signatures,
thus the polynomials are distributed among the different signatures not equally, the
totally real signature for example is a very rare one.

Using the formula in Theorem 4.2 we computed v
(1)
d for d ≤ 100. After having these

values we also computed v
(1)
d /v

(0)
d , which happen to be integers. Moreover we found that

the growth rate of this integer sequence is monotonically increasing for d ≥ 5 and lies in
the interval [5.358974359, 5.798986043]. We are not able to prove, but it seems that the
growth rate is bounded above, say by q. (We expect that q ≤ 6.) If this is true then
v
(1)
d /v

(0)
d ≤ qd. Combining this with Theorem 6.1 we get

log p
(1)
d ≤ − log 2

2
d2 + d log q,
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i.e., the signature s = 1 has a bit larger probability than the case s = 0, but it is still
very rare comparing to the uniform distribution.

On the other hand we have some information on the totally complex case, which is
the other extremum. For even d we proposed Conjecture 5.2, which is supported by our
computations. Assuming it we obtained that in this case the frequency of totally complex
polynomials is about d−3/8. This number is much bigger than 2/d, which would be the
probability if the polynomials were uniformly distributed among the different signature
classes. As already for d = 6 the most frequent signature is (4, 1) one may expect that
the peak of the frequency curve will move from the totally complex case. As we have no
theoretical and only few computational support, we do not continue the speculation.

7. On the boundary of E(s)
d .

For the sake of completeness we now turn to the boundary of E(s)
d and prove a

generalization of the result of I. Schur [12] as well as of A. T. Fam and J. S. Meditsch
[6]. Although this description is not as explicit as the cited ones, we included it, because
we need it in Part II.

Theorem 7.1. Let d ≥ 1 and r, s be non-negative integers such that r + 2s = d.
Then the boundary of the set E(s)

d is the union of finitely many algebraic surfaces.

Proof. Let v0 ∈ Rd be a boundary point of E(s)
d . If one of its coordinates is 1 or

−1 then v0 satisfies the linear equation v0(1, . . . , 1) = 0 or v0(1,−1, 1, . . . , (−1)d) = 0
respectively, where vu denotes the inner product of the vectors v and u. If the polynomial
corresponding to v0 has a non-real root lying on the unit circle then by [6] v0 lies on a
hypersurface.

Assume in the sequel that v0 is a boundary point of E(s)
d , such that the roots of

Pv0(X) lie inside the unit circle. It will be called an inner boundary point. Then for any
δ > 0 there exist v1,v2 ∈ Rd such that

‖v0 − v1‖, ‖v0 − v2‖ < δ, v1 ∈ E(s)
d and v2 ∈ E(s1)

d , s1 6= s. (13)

We may assume without loss of generality that s > s1, whence r < r1 and it is fixed.
Denote by αi, i = 0, 1, 2 the vectors of roots of Pvi

(X) ordered such that the real
roots come first, then the non-real ones such that the complex conjugates follow each
other. Then there exists a coordinate, say 1 ≤ j ≤ s, such that α1,r+2j−1 ∈ C \ R and
α2,r+2j−1 ∈ R (αij denotes the j-t coordinate of the vector αi). As v1 is a real vector and
the corresponding polynomial has a non-real root then its conjugate is a different root
of the polynomial. Thus ᾱ1,r+2j−1 is a root of Pv1(x) and because of the ordering of the
roots ᾱ1,r+2j−1 = α1,r+2j . Notice that α2,r+2j ∈ R holds too. The roots are continuous
functions of the coefficients, thus for any ε > 0 there exists δ > 0 such that if for v1,
v2 ∈ Rd the inequality (13) holds then

|α1,r+2j−1 − α2,r+2j−1|, |ᾱ1,r+2j−1 − α2,r+2j | < ε.
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This can only happen, if α0,r+2j−1 = α0,r+2j , i.e., Pv0(X) has a multiple real root. Thus
the inner boundary points of E(s)

d lie on the surface

∏

1≤j<k≤r

(xj − xk)
r∏

j=1

s∏

k=1

(x2
j − yr+2k−1xj + yr+2k) = 0,

where the y’s has to be chosen such that 0 < yr+2k < 1 and |yr+2k−1| < 2√yr+2k. These
are obviously algebraic relations.

In the opposite direction we prove that polynomials with multiple real roots lie
on the inner boundary of different signature bodies. Indeed, assume that P (X) has a
multiple real root |α| < 1 and signature (r, s). Then for any ε > 0 we can find real
numbers 0 < δ1, δ2 < ε such that

α2 + δ2
2 < 1, |α + δ1|, |α + δ2| < 1.

Consider the polynomials

P1(X) = P (X)(X − (α + δ1))(X − (α + δ1))/(X − α)2

and

P2(X) = P (X)(X − (α + iδ2))(X − (α− iδ2))/(X − α)2, i =
√−1.

Obviously P1(X), P2(X) ∈ Ed, they have different signature and are arbitrary near to
each other. This proves the claim and finishes the proof of the statement. ¤
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[10] P. Kirschenhofer, A. Pethő, P. Surer and J. Thuswaldner, Finite and periodic orbits of shift radix
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