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Biodiesel is a renewable fuel that is produced from oils derived from plants, animals, or microbes. It is nontoxic

and biodegradable. Various methods such as transesterification, blending, cracking, microemulsification, and

pyrolysis have been developed to convert oils from biological sources into biodiesel that is comparable to diesel fuel.

Transesterification, by a number of consecutive reversible reactions, is the most common method: triglycerides are

converted stepwise to diglycerides, monoglycerides, and finally glycerol, with the liberation of fatty acid methyl ester

defined as biodiesel at each step. Generally, an alcohol and a catalyst are needed for transesterification of triglyc-

erides.

Microalgae are microscopic (2-200 μm), autotrophic organisms that can grow by photosynthesis. Most are

eukaryotes, but the prokaryotic cyanobacteria are often included. Some microalgae contain more than 70% (w/w, dry

basis) lipids. Microalgae grow extremely rapidly under optimal conditions and can grow 100 times faster than

terrestrial plants. The oil yield from microalgae containing 30% oil content is 58700 L ha
-1

year
-1

, which is much

higher than that from other crops (e.g., 636 L ha
-1

year
-1

for soybean and 5366L ha
-1

year
-1

for oil palm).

Importantly, microalgal cultivation need not encroach on arable land suitable for food production.

Currently, there are several areas of research on transesterification of microalgal oil. The conversion efficiency

of biodiesel production via transesterification depends on microalgal characteristics, amount and type of alcohol used,

catalyst, operating temperature, and reaction time. This study reviews the technologies that generate biodiesel from

microalgae by transesterification. The relative performances of alkaline, acidic, and enzymatic catalysts are evaluated.

New techniques used in biodiesel production, e.g., methods using microwaves and supercritical solutions, are dis-

cussed.

Key words: microalgae, biodiesel, transesterification, catalyst

───────────────────────

1. Introduction

Climate change is the most critical global

environmental problem. The potential threat of global

climate change has increased, and much of the risk has

been attributed to greenhouse gas (GHG) emissions by

fossil fuel usage (Wuebbles et al., 2001). It has

become necessary to develop techniques and to adopt

policies to minimize impacts of global warming that

result from the increase in anthropogenic GHG emis-

sions. In 1997, the Kyoto Protocol called for a 5.2%

reduction in GHG emissions from 1990 levels (Wang

et al., 2008), and various technologies have been

investigated to meet this goal. Another problem is a

future energy crisis due to depletion of fossil fuels.

The continuous use of fossil fuels as a primary source

of energy is widely recognized to be unsustainable

(Khan et al., 2009). Therefore, it is absolutely nec-

essary to ensure new energy resources before the world

is confronted with an energy crisis.
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Biodiesel is a widely known alternative fuel. It can

be produced from oils derived from plants, animals, or

microbes (Graboski and McCormick, 1998), and

currently represents 82% of total biofuel production

(Bozbas, 2008). Biodiesel is usually defined as the

monoalkyl esters of long-chain fatty acids derived

from transesterification of renewable feedstocks

(Meher et al., 2006). Transesterification consists of a

number of consecutive reversible reactions (Freedman

et al., 1986). Triglycerides (or triacylglycerols: TAGs)

are commonly reacted with methanol and are con-

verted stepwise to diglycerides, monoglycerides, and

finally glycerol, as shown in equations 1 and 2. From

1 mole of starting TAG, 1 mole of fatty acid methyl

ester (FAME) is liberated at each step.

(1)

(2)

There are several reasons why biodiesel is an

attractive renewable energy: it is biodegradable and

has low toxicity; it can be used in existing diesel

engines with little or no modification (Demirbas,

2002); and it can be blended in any ratio with tradi-

tional petroleum-based diesel fuel (Peterson, 1991).

On the other hand, there are some drawbacks in the

current biodiesel production technology: the area of

crops for biodiesel production is growing, potentially

resulting in the destruction of natural habitats and

competing with food production (Janaun and Elis,

2010). Therefore, new feedstocks are needed to meet

demand.

2. Microalgae as a biodiesel feedstock

2.1 Microalgal diversity

Microalgae are defined as prokaryotic or eukaryotic

thallophytes that lack a sterile covering of cells around

the reproductive cells and have chlorophyll a as a

photosynthetic pigment (Lee, 1980). Microalgae are

present in a wide range of environments, and it is

estimated that more than 50000 species exist

(Richmond, 2004). Prokaryotic microalgae (cyano-

bacteria, blue-green algae) lack membrane-bound

organelles and are more similar to bacteria than to

algae. In contrast, the cells of eukaryotic microalgae

have organelles that control the functions of the cell

(Brennan and Owende, 2010). Eukaryotic microalgae

are categorized into a variety of classes defined mainly

by their pigmentation, life cycle, and basic cellular

structure (Khan et al., 2009). The most important

classes include green algae, red algae, and diatoms.

Algae can be autotrophic or heterotrophic, and some

are mixotrophic (Lee, 1980).

2.2 TAG biosynthesis in microalgae

Microalgae synthesize and store TAGs, which are

their main lipids, under stress conditions, such as when

their nitrogen supply is exhausted, and when an excess

supply of carbon is assimilated. They store the TAGs

as a carbon energy reserve within cells that can no

longer divide (Meng et al., 2009). The route of TAG

biosynthesiss consists of three steps: (a) the conversion

of acetyl-CoA to malonyl-CoA; (b) the elongation and

desaturation of the carbon chain of fatty acids; and (c)

the biosynthesis of TAG (Huang et al., 2010).

The conversion of acetyl-CoA and CO2 into

malonyl-CoA occurs has two steps and is catalyzed by

an enzyme complex (Hu et al., 2008). First, CO2 is

transferred to nitrogen by the biotin carboxylase

prosthetic group of acetyl-CoA carboxylase. In the

next step, the activated CO2 is transferred from biotin

to acetyl-CoA to form malonyl-CoA, which is

catalyzed by carboxyltransferase (Ohlrogge and

Browse, 1995). The fatty acid elongation condenses

malonyl-CoA molecules and acetyl-CoA; after several

repeated reaction steps, the ACP-thioesterase cleaves

the acyl chain and liberates the fatty acid (Courchesne

et al., 2009). The biosynthesis of TAG is performed

by the condensation of glycerol-3-phosphate with acyl-

CoA to form lysophosphatidic acid, which is catalyzed

by glycerol-3-phosphate acyltransferase. After this

reaction, phosphatidic acid, diacylglycerol and TAG

are synthesized by a series of catalytic reactions.
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Thalassiosira pseudonana

Chlorella sp.

24.0-31.0Ankistrodesmus sp.

2.0

8.5-23.0

Chlorella pyrenoidosa

Chlorella sorokiniana

12.6-14.7

Tetraselmis suecica

Marine and freshwater microalgae species

Tetraselmis sp.

Table 1. Lipid contents and productivities of different microalgae species (Mata et al.,

2010).

13.3-31.8

14.6-57.8

Skeletonema sp.

Chlorella protothecoides

Lipid content (% dry weight biomass)

13.5-51.3Skeletonema costatum

4.0-16.6

5.0-58.0

Spirulina platensis

Chlorella vulgaris

10.0-48.0

4.0-9.0Spirulina maxima

19.0-22.0

20.6

Chaetoceros muelleri

Oocystis pusilla

30.9Pavlova salina

35.5Pavlova lutheri

18.0-57.0

25.0-63.0

Phaeodactylum tricornutum

Chlorella emersonii

11.0-55.0Scenedesmus obliquus

1.9-18.4Scenedesmus quadricauda

19.6-21.1Scenedesmus sp.

20.0-22.0Monallanthus salina

20.0-56.0Nannochloris sp.

25.0-75.0

22.7-29.7

Botryococcus braunii

Nannochloropsis oculata.

12.0-53.0Nannochloropsis sp.

29.0-65.0Neochloris oleoabundans

16.0-47.0

33.6

Nitzschia sp.

10.5

16.7-71.0Dunaliella tertiolecta

17.5-67.0Dunaliella sp.

27.4Ellipsoidion sp.

14.0-20.0Euglena gracilis

25.0Haematococcus pluvialis

7.0-40.0Isochrysis galbana

7.1-33Isochrysis sp.

16.0Monodus subterraneus

18.0-57.0Chlorella

19.3Chlorococcum sp.

20.0-51.1Crypthecodinium cohnii

6.0-25.0Dunaliella salina

23.1Dunaliella primolecta



2.3 Microalgal advantages

Microalgae offer many advantages as a biodiesel

feedstock. The most important one is their higher

growth rates and oil productivity than conventional

crops (Minowa et al., 1995). Generally, microalgae

have oil levels in the range of 20% to 50% (w/w, dry

basis) (Table 1), but higher levels can be reached

(Mata et al., 2010). Microalgae commonly double

their biomass within 24 h, and cells divide as fre-

quently as every 3.5 h during the exponential growth

phase (Chisti, 2007). Oil yield is 58700L ha
−1

year
−1

for microalgae containing 30% oil, compared

with 636 L ha
−1

year
−1

for soybean and 5366L ha
−1

year
−1

for oil palm (Table 2; Mata et al., 2010). If

microalgae contain 70%, 136 900L oil ha
−1

year
−1

can be produced (Mata et al., 2010). In terms of

cultivation area, microalgae are clearly advantageous

over land plants because of their higher biomass

productivity and oil yield, and they do not compete for

land with crops used for food, fodder, and other

products (Huang et al., 2010). Microalgae can be

grown in a number of environments that are unsuitable

for growing other crops, such as fresh, brackish, or salt

water or non-arable lands (Patil et al., 2008). CO2,

which is essential to autotrophic cultivation of

microalgae, can be provided by industrial facilities

such as power plants and boilers, where the CO2

concentration in emitted gases may reach 15% (v/v)

(Salih, 2011; Zhao et al., 2011). Microalgae can also

be used to treat wastewater, removing nitrogen and

phosphorus efficiently (Mallick, 2002) and generating

an environmental benefit. Furthermore, microalgae

produce valuable co-products or by-products such as

biopolymers, proteins, carbohydrates, and residual

biomass. They can be used as energy sources through

the generation of ethanol and methane by fermentation,

and can be supplied as livestock feed and fertilizer

owing to their high N:P ratio. They can also produce a

variety of chemical products such as pharmaceuticals

and platform chemicals; highly unsaturated fatty acids

such as docosahexaenoic acid (Molina Grima et al.,

2003); proteins and carbohydrates, which can be used

as gross nutrients (Knuckey et al., 2006); specific

compounds such as pigments (Lorenz and Cysewski,

2000); and silica derived from diatom cell walls

(Gordon et al., 2009).

3. Biodiesel production from microalgae

3.1 Traditional biodiesel production from micro-

algae

Biodiesel production from microalgae requires

several steps (Fig. 1). In the cultivation step, it is

important to consider different factors that influence

algal growth: light, temperature, nutrient concent-

ration, CO2 supply, pH, salinity, contamination, and so

on. Harvested microalgae are concentrated by sedi-

mentation, centrifugation, flocculation, or membrane

filtration. Although centrifugation is often used, en-

ergy consumption is high. The developments of more

cost-viable and energy-efficient methods are needed.

After the harvested biomass is dried, cells are disrupted

and the oil is extracted. Three common methods are
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Land use

(m
2
year/kg biodiesel)

Castor

172Corn

536636Palm oil

Canola/Rapeseed

58,70030

Plant source

Microalgae (low oil content)

Table 2. Comparison of microalgae with other biodiesel feedstocks (Mata et al., 2010).

1291542Camelina

Oil yield

(L oil/ha year)

15

18

31

107040Sunflower

1307

66

48

974

Oil content

(% dry weight biomass)

Soybean

97,80050Microalgae (medium oil content)

0.1136,90070

74128Jatropha

Microalgae (high oil content)

0.2

2

9

11

12

36333Hemp

63618

0.1

44

41



used to extract oil from microalgae: expeller/press,

solvent extraction, and supercritical fluid extraction.

Currently, the most popular extraction method is

Soxhlet extraction using hexanes as a solvent. The

extracted oil is converted to biodiesel through trans-

esterification, and the crude biodiesel is purified into

the final biodiesel product.

3.2 Direct transesterification of microalgal lipids

Currently, the most common method for the pro-

duction of biodiesel from microalgae involves the

extraction of lipids using organic solvents (e.g.,

hexanes, chloroform, methanol), followed by trans-

esterification to generate FAME. This is the tradi-

tional method used with terrestrial feedstock such as

soybean or rapeseed. However, the rigid cell walls of

microalgae prevent the efficient extraction of oil:

mechanical crushing of algal biomass to extract oil is

not easily performed using existing crushing equip-

ment. Also, life cycle analysis showed that 90% of the

process energy is consumed by oil extraction, indi-

cating that any improvement in lipid extraction will

have a significant impact on the economics of the

process (Lardon et al., 2009). Therefore, the extrac-

tion of lipids from microalgae and their conversion to

biodiesel in a single step would be highly valuable, as

it would bypass the use (and cost) of large quantities of

organic solvents and the distillation cost of solvent

recovery (Fig. 1).

Alcohol can be used simultaneously for the ex-

traction of oil and as an acyl acceptor for trans-

esterification. Such direct transesterification can sim-

plify the conversion process, potentially reducing the

overall cost and hence the final fuel product cost.

Direct transesterification has been used to determine

the fatty acid composition of lipid-containing tissues

(Lepage and Roy, 1984; Park and Goins, 1994;

Rodríguez-Ruiz et al., 1998), and it can result in

greater FAME yield than extraction followed by

transesterification (Lepage and Roy, 1984; Siler-

Marinkovic and Tomasevic, 1998; Lewis et al., 2000).

The direct approach has been shown to be effective in

making biodiesel from both pure (Johnson and Wen,

2009; Vicente et al., 2009) and mixed cultures of

microorganisms (Dufreche et al., 2007; Mondala et al.,

2009). This method confirmed that TAGs, free fatty

acids (FFAs), and phospholipids all contributed to the

formation of FAME (Wahlen et al., 2011). Further-

more, it could reduce process wastes and pollution

(Haas et al., 2007).

4. Direct transesterification methods

4.1 Alkaline catalysis

There are few studies of direct transesterification

using homogeneous alkaline catalysts (Xu and Mi,

2011; Velasquez-Orta et al., 2012; Velasquez-Orta et

al., 2013). Many microalgae have a high FFA content.

FFA reacts with an alkaline catalyst to form soap,

which consumes the catalyst and results in a low

transesterification yield, as shown in equation 3 (Al-

Zuhair, 2007):

(3)

Therefore, alkaline catalysts are usually not rec-

ommended for direct transesterification from micro-

algae. However, if the microalgae have a low FFA

content, alkaline catalysis is more suitable than acidic

catalysis because it proceeds faster. Alkaline catalysts

are also less corrosive to equipment than acidic

catalysts (Freedman et al., 1986). Furthermore, alka-
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KOH+R−COOH

(Water)(Soap)(Potassium

hydroxide)

(FFA)

H2O+R−COOK

Fig. 1. Steps for biodiesel production from micro-

algae. In some procedures, the oil extraction step

before transesterification is bypassed (hatched arrow).



line catalysis has a higher tolerance for water than

acidic catalysis (Kusdiana and Saka, 2004).

Moreover, the sole study of direct transesterification

using a heterogeneous catalyst reported a maximum

conversion of 28% for transesterification of dried

Nannochloropsis sp. by reacting the microalgae with

10% (w/w) alkaline heterogeneous catalyst (Mg-Zr) in

methanol: dichloromethane (2:1, v/v) at 65℃ for 4 h

(Li et al., 2011).

4.2 Acidic catalysis

Because of the often high FFA content of micro-

algae, direct transesterification has been conducted

mainly via homogeneous acidic catalysis. Acidic

catalysts can convert FFAs into FAME, as opposed to

soap formation by alkaline catalysts, as shown in

equation 4 (Ehimen et al., 2010):

(4)

In fact, when Nagle and Lemke (1990) compared the

efficacies of acidic catalyst and alkaline catalyst, acidic

catalysis resulted in a higher FAME yield than alkaline

catalysis under the same reaction conditions. How-

ever, direct transesterification with acidic catalysts is

weakened by the presence of water: the FAME yield

from the direct transesterification of Chlorella biomass

was reduced from 81.7% at a 0.7% (w/w, wet basis)

water content to only 19.5% at a 73% water content

(Ehimen et al., 2010).

4.3 Enzyme catalysis

To our knowledge, the only report of a direct

method using enzyme catalysis is that of Tran et al.

(2013). After Chlorella vulgaris ESP-31 biomass

(water content 86%-91% [w/w, wet basis], oil content

14%-63% [w/w, dry basis]) was sonicated to disrupt

the cell walls, the lipids were directly converted into

FAME by using immobilized Burkholderia sp. C20

lipase as the catalyst. The lipase was immobilized on a

hybrid nanomaterial (Fe3O4-SiO2) grafted to a long-

chain alkyl group as a supporter (Liu et al., 2012; Tran

et al., 2012). The immobilized lipase worked well

with wet microalgal biomass. With this method, it is

important that the microalgal biomass have a high lipid

content to achieve ＞90% biodiesel conversion with a

low biocatalyst loading and high lipase recycling

efficiency.

4.4 Supercritical solvent method

A catalyst-free method has recently been developed

using supercritical methanol (Demirbas, 2009). This

process is conducted at a high reaction temperature and

pressure (Kusdiana and Saka, 2004). Supercritical

methanol can form a single phase with lipids, in

contrast to two phases under ambient pressures and

temperatures. This can be achieved because the

dielectric constant of methanol is decreased in the

supercritical state. In the supercritical method, the

reaction is achieved within very short times of 2-4

min, and FFA and TAG can be simultaneously es-

terified and transesterified. This method also has the

possibility of reducing costs associated with drying

microalgae because the reaction is not inhibited by

high water content. When this method was used with

wet algal biomass containing about 90% water content

(w/w, wet basis), 90% FAME yield was reached (Patil

et al., 2011b). A two-step process was also reported

(Levine et al., 2010): in the first step, wet microalgal

biomass was reacted to hydrolyze intracellular lipids to

FFA under subcritical conditions, and in the second

step, the wet FFA-rich solids were subjected to

supercritical direct transesterification. However, as it

now stands, supercritical solvent methods may be

unsuitable owing to poor process economics and safety

concerns (Marchetti and Errazu, 2008).

4.5 Microwave- and ultrasound-assisted methods

Microwave radiation influences the motions of

molecules with a dipole moment. In microwave-

assisted transesterification, methanol absorbs micro-

wave radiation, rapidly reorienting its dipole. This

enables the destruction of the methanol‒lipid interface

(Patil et al., 2011a). The oscillating microwave field

tends to move continuously toward the polar ends of

molecules or ions (Azcan and Danisman, 2008).

Consequently, collisions between moving molecules

produce heat (Marra et al., 2010) that can shorten the

reaction time (Lidström et al., 2001). Ultrasonic

technology is also an effective method to enhance mass

transfer between immiscible phases (Pan et al., 2002).

The ultra-high-frequency sound waves compress and

stretch the molecular spacing of the medium through

which they pass, and the molecules remain conti-

nuously vibrating with the formation of fine micro-

bubbles or micro-cavities (Ji et al., 2006; Lam et al.,

2010). Generally, homogeneous alkaline catalysts

have been used in these approaches.
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CH3OH+R−COOH

(Water)(FAME)(Methanol)(FFA)

H2O+CH3−COOR



5. Conclusions

Biodiesel production from microalgal lipids holds

great potential for a new energy industry because some

microalgae have high productivity of biomass and oil.

Two main approaches have been used to produce

FAME from lipids: organic solvent extraction of lipids

from microalgae followed by transesterification of the

lipid extracts, and direct transesterification from mi-

croalgal biomass. The former has the disadvantage of

the increased cost caused by the use of organic solvent.

In contrast, the latter can reduce the process energy

considerably, because it produces biodiesel without the

need for organic solvent. In addition, other research

has shown that direct transesterification can convert

phospholipids, as well as TAGs and FFAs, into FAME.

Therefore, direct transesterification, via many ap-

proaches, offers promise for biodiesel production from

microalgae. The key considerations to commer-

cialization are the process energy and the effect of

water. Further research is required to develop a cost-

effective technology that is less affected by the

presence of water.
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