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Abstract: An efficient one-pot procedure for the synthesis of 
propargyl alcohol derivatives from allyl alcohol derivatives has 
been developed. The key to this transformation from the C−C 
double bond to the C−C triple bond is the fact that the HBr-
elimination of the 1,2-dibromoalkanes having a neighboring O-
functional group was promoted by the inductive electron-
withdrawing effects of the O-functional group. In the one-pot 
reaction, TBAOH was the best base, and the addition of 
molecular sieves 13X was also effective. 
Key words: elimination, one-pot synthesis, propargyl alcohol 
derivative, allyl alcohol derivative, neighboring-group effects. 

Propargyl alcohols are key synthetic intermediates for 
many biologically natural products, their effective 
analogues, and agricultural and pharmaceutical 
chemicals because of the transformation versatility of 
both the C‒C triple bond and the O-functional group.1 
The general synthetic method for both chiral and achiral 
propargyl alcohols is the addition of acetylenes to 
carbonyl compounds.2 
We recently reported one-pot synthetic procedures for 
vinyl bromides and di- or trisubstituted alkenes from 
terminal or internal disubstituted alkenes having an O-
functional group at the adjacent position (Scheme 1, 
equation 1).3 The noteworthy point of these methods is 
that those sequential reactions proceed with high yields 
and selectivity in the same vessel, and the key factor is 
DBU-promoted HBr-elimination utilizing the inductive 
electron-withdrawing effects of the neighboring O-
functional group in the second reaction. Aside from the 
one-pot synthesis, we also reported a novel 
tetrabutylammonium fluoride (TBAF)-mediated 
transformation from 1,2-dibromoalkanes having a 
neighboring O-functional group to alkynes (Scheme 1, 
equation 2).4 This elimination made it possible to 
produce the alkynes or their intermediates, the vinyl 
bromides under milder conditions than previously 
reported.5 Against this research background, that is, 
unique HBr-elimination effected by the 
electronegativity of the neighboring oxygen atom, we 
initiated the development of a novel one-pot 
transformation from allyl alcohol derivatives to the 
corresponding propargyl alcohol derivatives (Scheme 1, 
equation 3). In this paper, we disclose the intriguing 
results and full details. 
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Scheme 1 

Based on our previous research results,3,4 the study 
started with the benzyl (Bn)-protected allyl alcohol 1a 
as a substrate, which was treated with pyridinium 
bromide perbromide (Pyr.-HBr3) and the following 
TBAF (5.0 equiv)-promoted HBr-eliminations in one 
pot. Screening of the solvents is shown in Table 1. After 
the bromine addition in 1,2-dichloroethane or 
acetonitrile at room temperature, 5.0 equiv of TBAF 
(1.0 M THF sol.) were added to the same pot and then 
the reaction system was stirred at 60 °C for 6 h (Entries 
1 and 2). However, elimination did not provide the 
desired Bn-protected propargyl alcohol 4a, and the 
dibromoalkane 2a or the vinyl bromide 3a still 
remained. On the other hand, when aprotic polar solvent 
DMF or DMSO was used, the bromine addition was not 
completed, and thus the subsequent elimination was not 
carried out (Entries 3 and 4). Therefore, after the 
bromine addition in acetonitrile, TBAF and DMF or 
DMSO of seven times the volume of acetonitrile were 
added (Entries 5 and 6). As a result, the mixed solvent 
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system (acetonitrile/DMSO = 1/7) was the most 
effective for the second TBAF-promoted elimination 
process (Entry 6). 

Table 1 Screening of Solvents 

BnO

i) Pyr.-HBr3
 
(1.1 equiv)   

Solv. 1, rt, 12 h

ii) TBAF (5.0 equiv)   
Solv. 2, 60 °C, 6 h

BnO BnO

BnO

Br

Br

Br

1a
2a 3a

4a  

Entry Solv. 1 Solv. 2a Yield (%) 
1a 2a 3a 4a 

1 (CH2Cl)2 − 0 12 73 0 
2 CH3CN − 0 0 98 0 
3b DMF − 11 74 − − 
4b DMSO − 28 61 − − 
5 CH3CN DMF 0 0 80 16 
6 CH3CN DMSO 0 0 38 50 

a Before the addition of TBAF, Solv. 2 of seven times the volume 
of Solv. 1 was added at the second elimination step. 
b The elimination process was not carried out because the first 
bromine addition was not finished completely. 

Next, we examined a variety of counter anions (chloride, 
bromide, acetate,6 and hydroxide) of the quaternary 
ammonium salt as a base for the HBr-elimination, 
instead of TBAF (Table 2). However, most of the bases 
did not give the desired compound 4a (Entries 2‒4). 
Significantly, a solution of 40% TBAOH in water gave 
4a in 83% yield (Entry 5). 

Table 2 Screening of Counter Anions of Quaternary Ammonium 
Bases 

BnO

i) Pyr.-HBr3
 
(1.1 equiv)   

CH3CN, rt, 12 h

ii) Base (5.0 equiv)    
DMSO, 60 °C, 6 h

BnO BnO

BnO

Br

Br

Br

1a
2a 3a

4a  

Entry Base Yield (%) 
1a 2a 3a 4a 

1 TBAF 0 0 38 50 
2 TBACa 0 97 0 0 
3 TBABb 0 92 0 0 
4 TBAOAcc 0 91 0 0 
5 TBAOHd 0 0 0 83 

a Tetrabutylammonium chloride 
b Tetrabutylammonium bromide 
c Tetrabutylammonium acetate6 
d Tetrabutylammonium hydroxide (40% in water) 

To accelerate effectively the reaction under milder 
conditions, the consecutive bromine addition/TBAOH-
promoted HBr-elimination was further examined in the 
presence of an additive (Table 3). Initially, 4.0 equiv of 
TBAOH were used without any additive; however, the 
elimination was not complete and the intermediate, 
vinyl bromide 3a still remained (Entry 2). Based on 
previous studies of one-pot methods,3 when 1.1 equiv of 
potassium carbonate was added as a HBr scavenger at 

the first reaction stage, the elimination successfully 
proceeded despite 4.0 equiv of TBAOH (Entry 3). A 
variety of molecular sieves (MS) were also examined 
instead of potassium carbonate based on reports in 
which the appropriate molecular sieve can be an 
effective HBr trapping agent (Entries 4‒7).7 Although 
the activated molecular sieves 3A and 4A did not affect 
the efficacy, the 5A and 13X, whose pore diameters are 
larger, acted in a manner similar to potassium carbonate 
(Entries 6 and 7). As for the most effective additive, MS 
13X, the requisite amounts of TBAOH were 
successfully reduced to 3.5 equiv (Entry 8, for reference 
Entries 9 and 10). In addition, use of 1.1 equiv of 
triethylamine and 3.1 equiv of TBAOH for the HBr-
elimination also afforded the desired Bn-protected 
propargyl alcohol 4a in quantitative yield (Entry 11). 

Table 3 Screening of Additives 

BnO

i) Pyr.-HBr3
 
(1.1 equiv)   

Additive (X equiv)   
CH3CN, rt, 12 h

ii) TBAOH (Y equiv)    
DMSO, 60 °C, 6 h

BnO BnO
Br

1a 3a 4a
 

Entry Additive (X equiv) Y (equiv) Yield (%) 
3a 4a 

1 − 5.0 0 83 
2 − 4.0 16 70 
3 K2CO3 (1.1) 4.0 0 82 
4a MS 3A 4.0 10 72 
5a MS 4A 4.0 11 76 
6a MS 5A 4.0 0 83 
7a,b MS 13X 4.0 0 93 
8a MS 13X 3.5 0 96 
9c − 3.5 50 27 

10a MS 13X 3.1 11 75 
11a,b,d MS 13X, Et3N (1.1) 3.1 0 95 

a All molecular sieves (MS) were powdered (< 10 µm) and activated. 
MS of 10 times the amount of 1a was used. 
b The second HBr-elimination reaction time was 2 h. 
c The second HBr-elimination reaction time was 9 h. 
d Et3N (1.1 equiv) was added together with DMSO and TBAOH. 

To confirm the generality of the one-pot synthesis of 
propargyl alcohol derivatives 4, we examined a variety 
of allyl alcohol derivatives 1 using optimized Method A 
(Table 3, Entry 8) and/or B (Table 3, Entry 11). 
Reaction of the allyl alcohols protected with substituted 
benzyl (1a‒c) and phenyl (1d) groups basically afforded 
the desired propargyl alcohol derivatives 4a‒d in good 
yields using both methods (Table 4, Entries 1‒8). 
However, the reaction of 1e, having a 4-nitrophenyl 
group gave 4e with unsatisfactory yield because 
overreaction gave the undesired corresponding allenes 
(Entries 9 and 10).8 Reaction of the benzoyl-protected 
1f and silyl-protected 1g also gave 4f in low yield and 
4g in moderate yield, respectively, because the bromine 
addition of 1f was not completed and the TIPS group of 
1g was partly removed (Entries 11 and 12). Next, we 
examined more complicated substrates. For secondary 
alcohol derivatives 1h, 1i, 1j, and 1k, those reaction 
yields were sufficient (Entries 13‒20), although PMB-
protected tertiary alcohol 4l was also produced in low 
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yield (Entries 21 and 22). In addition, compounds 4m‒r, 
having an internal C‒C triple bond were produced in 
good yields from the corresponding Z-allyl alcohol 
derivatives 1m‒r through double trans-HBr-
eliminations. 

Table 4 Synthesis of Propargyl Alcohol Derivatives 4 from Allyl 
Alcohol Derivatives 1 Using a One-pot Procedure 

i) Pyr.-HBr3
 
(1.1 equiv)   

MS 13X   
CH3CN, rt, 12 h

ii) TBAOH (3.5 equiv)    
DMSO, 60 °C, Time

1 4

(Method A)

i) Pyr.-HBr3
 
(1.1 equiv)   

MS 13X   
CH3CN, rt, 12 h

ii) TBAOH (3.1 equiv)    
Et3N (1.1 equiv)    
DMSO, 60 °C, Time

(Method B)

R4

R3
R2

OR1

R4
R3

R2

OR1

 

Entry Products Method Time (h) Yield (%) 
1 BnO

 (4a) A 2 95 
2 B 2 96 
3 PMBO

 (4b) A 2 82 
4 B 2 91 
5 O

Cl  
(4c) A 2 67 

6 B 2 96 

7 
O

Br

 
(4d) A 3 80 

8 B 3 74 

9 
O

O2N

 
(4e) A 1 41a 

10 B 1 42b 

11 O

O

MeO  

(4f) B 7 12c 

12 TIPSO
 (4g) Bd 8 49 

13 
PMBO

 
(4h) A 4 74 

14 B 4 70 

15 
PMBO

HO
9

 
(4i) A 6 83 

16 B 7 72 

17 
O

Br

 
(4j) A 2 83 

18 B 2 87 

19 
PMBO

BnO
9

 
(4k) 

A 6 74 
20 B 6 75 

21 
PMBO

nBunBu

 
(4l) A 4 26e 

22 B 4 31f 
23 4-NO2C6H4O

nPr  
(4m) A 1 89 

24 B 1 87 
25 4-MeOC6H4O

nPr  
(4n) A 2 77 

26 B 3 82 
27 4-ClC6H4CH2O

nPr  
(4o) A 4 85 

28 B 6 80 
29 PMBO

Ph  
(4p) A 0.3 82 

30 B 0.3 85 
31 PMBO

OBn  
(4q) A 8 76 

32 B 8 79 
33 PMBO

OH  (4r) Ag 6 72 
34 Bh 6 75 

a The corresponding allene was obtained (42%). 
b The corresponding allene was obtained (38%). 
c The starting material 1f was recovered (40%). 
d 10% TBAOH (in MeOH sol.) was used. 
e The starting material 1l was recovered (42%). 
f The starting material 1l was recovered (43%). 
g 5.5 equiv of TBAOH (40% in water) were used. 
h 5.1 equiv of TBAOH (40% in water) were used. 

In summary, we have established a novel one-pot 
synthesis of propargyl alcohol derivatives 4 from allyl 
alcohol derivatives 1 through TBAOH-promoted, 
double trans-HBr-eliminations. Both the one-pot 
methods should be applicable to the total synthesis of 
natural products and for use in modern drug-discovery 
research. In addition, method B might be more suitable 
for base-sensitive substrates than method A, because of 
the small amount of TBAOH. As reported in our 
previous research,9 neighboring O-functional-group 
participation is an important factor in this synthetic 
procedure.  

 

Infrared spectra were recorded with a Horiba FT-710 
model spectrophotometer. 1H and 13C NMR spectral 
data were obtained with a JEOL JNM-LA 500, or a 
JEOL JNM-AL 300 instrument. Chemical shifts are 
quoted in ppm using tetramethylsilane (TMS, δ = 0 
ppm) as the reference for 1H NMR spectroscopy, and 
CDCl3 (δ = 77.0 ppm) for 13C NMR spectroscopy. Mass 
spectra were measured with a Bruker Daltonics 
microTOF or a Hitachi double-focusing M-80B 
spectrometer. Column chromatography was carried out 
on silica gel (Kanto Chemical Co. or Merck Co., Ltd). 
All reactions were performed under an argon 
atmosphere. Allyl alcohol derivatives 1a‒g, 1j, 1m, 1n, 
and 1r are known and their analytical data have been 
reported.10 Propargyl alcohol derivatives 4a‒g, 4j, 4m, 
4n, and 4r are known and their analytical data have 
been reported.11 
 
General Procedure for the One-pot Synthesis of 4 
(Method A) 
A mixture of allyl alcohol derivative 1 (x g, 1.0 equiv), 
pyridinium bromide perbromide (1.1 equiv), and MS 
13X (ca. 10x g) in CH3CN (y mL, 0.1 M) was stirred at 
room temperature for 12‒14 h. Then, DMSO (7y mL) 
and TBAOH (3.5 equiv, 40% in water) were added to 
the reaction mixture at 0 °C and the system was heated 
to 60 °C. The reaction was quenched with sat. aq NH4Cl 
at 0 °C. After the removal of MS 13X through a cotton 
filter, the resulting filtrate was extracted with 
hexane/EtOAc (= 2/1, 30 mL × 3) and dried over 
MgSO4. The combined extracts were concentrated 
under reduced pressure, and the residue was purified 
using silica gel column chromatography to afford the 
propargyl alcohol derivative 4. 
 
General Procedure for the One-pot Synthesis of 4 
(Method B)  
A mixture of allyl alcohol derivative 1 (x g, 1.0 equiv), 
pyridinium bromide perbromide (1.1 equiv), and MS 
13X (ca. 10x g) in CH3CN (y mL, 0.1 M) was stirred at 
room temperature for 12‒14 h. Then, DMSO (7y mL), 
TBAOH (3.1 equiv, 40% in water), and Et3N (1.1 
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equiv) were added to the reaction mixture at 0 °C and 
the system was heated to 60 °C. The reaction was 
quenched with sat. aq NH4Cl at 0 °C. After the removal 
of MS13X through a cotton filter, the resulting filtrate 
was extracted with hexane/EtOAc (= 2/1, 30 mL × 3) 
and dried over MgSO4. The combined extracts were 
concentrated under reduced pressure, and the residue 
was purified using silica gel column chromatography to 
afford the propargyl alcohol derivative 4. 
 
1-{[(4-Ethyloct-1-en-3-yl)oxy]methyl}-4-
methoxybenzene (1h) 
Yield: 1.44 g (54%); colorless oil.12 
IR (neat): 3074, 2958, 2870 cm-1. 
1H NMR (500 MHz, CDCl3): δ = 0.83‒0.87 (m, 6H), 
1.12‒1.53 (m, 9H), 3.63 (dd, J = 13.4, 5.8 Hz, 1H), 3.80 
(s, 3H), 4.25 (d, J = 10.0 Hz, 1H), 4.52 (d, J = 10.0 Hz, 
1H), 5.18 (dd, J = 18.0, 1.8 Hz, 1H), 5.26 (dd, J = 10.5, 
1.8 Hz, 1H), 5.73 (ddd, J = 18.0, 10.5, 5.8 Hz, 1H), 6.86 
(d, J = 8.5 Hz, 2H), 7.25 (d, J = 8.5 Hz, 2H). 
13C NMR (126 MHz, CDCl3): δ = 11.1 (CH3), 14.0 
(CH3), 21.9 (CH2), 23.0 (CH2), 28.6 (CH2), 29.1 (CH2), 
43.9 (CH), 55.0 (CH3), 69.7 (CH2), 82.1 (CH), 113.6 
(CH×2), 117.4 (CH2), 129.1 (CH×2), 131.1 (C), 137.7 
(CH), 158.9 (C). 
Diastereomer: 11.4 (CH3), 14.0 (CH3), 22.2 (CH2), 23.1 
(CH2), 28.7 (CH2), 29.3 (CH2), 44.0 (CH), 55.0 (CH3), 
69.7 (CH2), 82.2 (CH), 113.6 (CH×2), 117.4, (CH2), 
129.1 (CH×2), 131.1 (C), 137.7 (CH), 158.9 (C). 
HRMS (ESI): m/z [M+Na]+ calcd for C18H28O2Na: 
299.1982; found: 299.1985. 
 
10-[(4-Methoxybenzyl)oxy]dodec-11-en-1-ol (1i) 
Yield: 299 mg (89%); colorless oil.12 
IR (neat): 3398, 3005 cm-1. 
1H NMR (300 MHz, CDCl3): δ = 1.23‒1.66 (m, 17H), 
3.63 (t, J = 6.4 Hz, 2H), 3.69 (td, J = 14.2, 7.0 Hz, 1H), 
3.80 (s, 3H), 4.28 (d, J = 11.0 Hz, 1H), 4.52 (d, J = 11.0 
Hz, 1H), 5.18 (d, J = 17.4 Hz, 1H), 5.21 (d, J = 10.1 Hz, 
1H), 5.72 (ddd, J = 17.4, 10.1, 7.0 Hz, 1H), 6.87 (d, J = 
8.8 Hz, 2H), 7.25 (d, J = 8.8 Hz, 2H). 
13C NMR (126 MHz, CDCl3): δ = 25.2 (CH2), 25.6 
(CH2), 29.3 (CH2), 29.38 (CH2×2), 29.41 (CH2), 32.6 
(CH2), 35.4 (CH2), 55.1 (CH3), 62.8 (CH2), 69.6 (CH2), 
80.2 (CH), 113.6 (CH×2), 116.7 (CH2), 129.2 (CH×2), 
130.8 (C), 139.2 (CH), 158.9 (C). 
HRMS (ESI): m/z [M+Na]+ calcd for C20H32O3Na: 
343.2244; found: 343.2246. 
 
1-({[12-(Benzyloxy)dodec-1-en-3-yl]oxy}methyl)-4-
methoxybenzene (1k) 
Yield: 1.59 g (63%); colorless oil.12 
IR (neat): 3005, 2931 cm-1. 
1H NMR (500 MHz, CDCl3): δ = 1.21‒1.69 (m, 16H), 
3.46 (t, J = 6.5 Hz, 2H), 3.68 (td, J = 14.2, 7.0 Hz, 1H), 
3.80 (s, 3H), 4.27 (d, J = 11.0 Hz, 1H), 4.50 (s, 2H), 
4.52 (d, J = 11.0 Hz, 1H), 5.18 (d, J = 16.6 Hz, 1H), 

5.21 (d, J = 10.9 Hz, 1H), 5.72 (ddd, J = 16.6, 10.9, 7.0 
Hz, 1H), 6.86 (d, J = 8.7 Hz, 2H), 7.24‒7.36 (m, 7H). 
13C NMR (126 MHz, CDCl3): δ = 25.3 (CH2), 26.1 
(CH2), 29.4 (CH2×2), 29.5 (CH2×2), 29.7 (CH2), 35.5 
(CH2), 55.1 (CH3), 69.6 (CH2), 70.4 (CH2), 72.8 (CH2), 
80.2 (CH), 113.6 (CH×2), 116.7 (CH2), 127.4 (CH2), 
127.5 (CH×2), 128.2 (CH×2), 129.2 (CH×2), 130.9 (C), 
138.7 (C), 139.3 (CH), 159.0 (C). 
HRMS (ESI): m/z [M+Na]+ calcd for C27H38O3Na: 
433.2713; found: 433.2716. 
 
1-Methoxy-4-{[(5-vinylnonan-5-
yl)oxy]methyl}benzene (1l) 
Yield: 771 mg (69%); colorless oil.12 
IR (neat): 3086, 2947 cm-1. 
1H NMR (300 MHz, CDCl3): δ = 0.91 (t, J = 6.9 Hz, 
6H), 1.30 (m, 8H), 1.50‒1.65 (m, 4H), 3.79 (s, 3H), 
4.25 (s, 2H), 5.17 (dd, J = 17.6, 1.5 Hz, 1H), 5.22 (dd, J 
= 11.1, 1.5 Hz, 1H), 5.78 (dd, J = 17.6, 11.1 Hz, 1H), 
6.86 (d, J = 8.7 Hz, 2H), 7.26 (d, J = 8.7 Hz, 2H). 
13C NMR (126 MHz, CDCl3): δ = 14.1 (CH3×2), 23.2 
(CH2×2), 25.3 (CH2×2), 35.0 (CH2×2), 55.2 (CH3), 63.3 
(CH2), 79.5 (C), 113.7 (CH×2), 114.9 (CH2), 128.7 
(CH×2), 131.9 (C), 143.0 (CH), 158.8 (C). 
HRMS (ESI): m/z [M+Na]+ calcd for C19H30O2Na: 
313.2138; found: 313.2136. 
 
(Z)-1-Chloro-4-[(hex-2-en-1-yloxy)methyl]benzene 
(1o) 
Yield: 1.00 g (88%); colorless oil.12 
IR (neat): 3016, 2962, 2861 cm-1. 
1H NMR (500 MHz, CDCl3): δ = 0.90 (t, J = 7.4 Hz, 
3H), 1.39 (tq, J = 7.4, 7.4 Hz, 2H), 2.02 (td, J = 7.4, 7.1 
Hz, 2H), 4.07 (d, J = 5.4 Hz, 2H), 4.47 (s, 2H), 5.60 (m, 
2H), 7.24‒7.33 (m, 4H). 
13C NMR (126 MHz, CDCl3): δ = 13.7 (CH3), 22.7 
(CH2), 29.6 (CH2), 65.8 (CH2), 71.2 (CH2), 125.9 (CH), 
128.5 (CH×2), 129.0 (CH×2), 133.3 (CH), 133.9 (C), 
137.0 (C). 
HRMS (ESI): m/z [M+Na]+ calcd for C13H17ClONa: 
247.0860; found: 247.0855. 
 
(Z)-1-Methoxy-4-{[(3-
phenylallyl)oxy]methyl}benzene (1p) 
Yield: 209 mg (79%); colorless oil.12 
IR (neat): 3062 cm-1. 
1H NMR (500 MHz, CDCl3): δ = 3.78 (s, 3H), 4.27 (d, J 
= 6.1 Hz, 2H), 4.45 (s, 2H), 5.89 (dt, J = 12.1, 6.1 Hz, 
1H), 6.61 (d, J = 12.1 Hz, 1H), 6.85 (d, J = 8.6 Hz, 2H), 
7.19 (d, J = 7.7 Hz, 2H), 7.22‒7.26 (m, 2H), 7.30‒7.33 
(m, 3H). 
13C NMR (126 MHz, CDCl3): δ = 55.2 (CH3), 66.6 
(CH2), 72.1 (CH2), 113.7 (CH×2), 127.1 (CH), 128.2 
(CH×2), 128.7 (CH×2), 129.0 (CH), 129.5 (CH×2), 
130.2 (C), 131.7 (CH), 136.6 (C), 159.2 (C). 
HRMS (ESI): m/z [M+Na]+ calcd for C17H18O2Na: 
277.1199; found: 277.1201. 
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(Z)-1-({[5-(Benzyloxy)pent-2-en-1-yl]oxy}methyl)-4-
methoxybenzene (1q) 
Yield: 123 mg (83%); pale yellow oil.12 
IR (neat): 3016, 2854, 1095, 818 cm-1. 
1H NMR (500 MHz, CDCl3): δ = 2.38 (td, J = 13.4, 7.0 
Hz, 2H), 3.49 (t, J = 7.0 Hz, 2H), 3.80 (s, 3H), 4.06 (d, 
J = 6.3 Hz, 2H), 4.43 (s, 2H), 4.50 (s, 2H), 5.66 (m, 2H), 
6.87 (d, J = 8.6 Hz, 2H), 7.25‒7.35 (m, 7H). 
13C NMR (126 MHz, CDCl3): δ = 28.4 (CH2), 55.3 
(CH3), 65.5 (CH2), 69.6 (CH2), 71.8 (CH2), 72.9 (CH2), 
113.8 (CH×2), 127.5 (CH), 127.6 (CH×2), 128.2 (CH), 
128.3 (CH×2), 129.4 (CH×2), 129.5 (CH), 130.4 (C), 
138.4 (C), 159.2 (C). 
HRMS (ESI): m/z [M+Na]+ calcd for C20H24O3Na: 
335.1618; found: 335.1616. 
 
1-{[(4-Ethyloct-1-yn-3-yl)oxy]methyl}-4-
methoxybenzene (4h) 
Yield: 36.7 mg (74%); yellow oil (Method A). 
IR (neat): 3302, 2962, 2866, 1612 cm-1. 
1H NMR (500 MHz, CDCl3): δ = 0.84‒0.89 (m, 6H), 
1.21‒1.65 (m, 9H), 2.43 (d, J = 2.4 Hz, 1H), 3.80 (s, 
3H), 4.03‒4.05 (m, 1H), 4.42 (d, J = 11.8 Hz, 1H), 4.74 
(d, J = 11.8 Hz, 1H), 6.88 (d, J = 8.7 Hz, 2H), 7.28 (d, J 
= 8.7 Hz, 2H). 
13C NMR (126 MHz, CDCl3): δ = 11.4 (CH3), 14.0 
(CH3), 22.5 (CH2), 23.0 (CH2), 29.0 (CH2), 29.3 (CH2), 
44.2 (CH), 55.3 (CH3), 70.2 (CH2), 70.6 (CH), 74.3 
(CH), 82.3 (C), 113.7 (CH×2), 129.5 (CH×2), 130.2 (C), 
159.2 (C). 
Diastereomer: 11.6 (CH3), 14.1 (CH3), 22.6 (CH2), 23.0 
(CH2), 29.2 (CH2), 29.3 (CH2), 44.3 (CH), 55.3 (CH3), 
70.3 (CH2), 70.8 (CH), 74.3 (CH), 82.3 (C), 113.7 
(CH×2), 129.5 (CH×2), 130.2 (C), 159.2 (C). 
HRMS (ESI): m/z [M+Na]+ calcd for C18H26O2Na: 
297.1825; found: 297.1821. 
 
10-[(4-Methoxybenzyl)oxy]dodec-11-yn-1-ol (4i) 
Yield: 40.1 mg (83%); colorless oil (Method A). 
IR (neat): 3433, 3290 cm-1. 
1H NMR (300 MHz, CDCl3): δ = 1.25‒1.77 (m, 17H), 
2.46 (d, J = 2.0 Hz, 1H), 3.63 (t, J = 6.6 Hz, 2H), 3.80 
(s, 3H), 4.03 (td, J = 6.6, 2.0 Hz, 1H), 4.44 (d, J = 11.3 
Hz, 1H), 4.73 (d, J = 11.3 Hz, 1H), 6.87 (d, J = 8.7 Hz, 
2H), 7.28 (d, J = 8.7 Hz, 2H). 
13C NMR (75 MHz, CDCl3): δ = 25.2 (CH2), 25.7 (CH2), 
29.2 (CH2), 29.35 (CH2), 29.38 (CH2), 29.5 (CH2), 32.8 
(CH2), 35.6 (CH2), 55.3 (CH3), 63.1 (CH2), 68.0 (CH), 
70.1 (CH2), 73.6 (CH), 83.1 (C), 113.7 (CH×2), 129.7 
(CH×2), 129.9 (C), 159.2 (C). 
HRMS (ESI): m/z [M+Na]+ calcd for C20H30O3Na: 
341.2087; found: 341.2088. 
 
1-({[12-(Benzyloxy)dodec-1-yn-3-yl]oxy}methyl)-4-
methoxybenzene (4k) 
Yield: 35.9 mg (74%); pale yellow oil (Method A). 
IR (neat): 3294 cm-1. 

1H NMR (500 MHz, CDCl3): δ = 1.21‒1.77 (m, 16H), 
2.45 (d, J = 2.1 Hz, 1H), 3.46 (t, J = 6.6 Hz, 2H), 3.80 
(s, 3H), 4.03 (td, J = 6.3, 2.1 Hz, 1H), 4.44 (d, J = 11.0 
Hz, 1H), 4.50 (s, 2H), 4.73 (d, J = 11.0 Hz, 1H), 6.88 (d, 
J = 8.3 Hz, 2H), 7.23‒7.37 (m, 7H). 
13C NMR (126 MHz, CDCl3): δ = 25.2 (CH2), 26.2 
(CH2), 29.2 (CH2), 29.4 (CH2×2), 29.5 (CH2), 29.8 
(CH2), 35.6 (CH2), 55.3 (CH3), 68.1 (CH), 70.1 (CH2), 
70.5 (CH2), 72.9 (CH2), 73.6 (CH), 83.2 (C), 113.8 
(CH×2), 127.4 (CH), 127.6 (CH×2), 128.3 (CH×2), 
129.6 (CH×2), 131.5 (C), 138.7 (C), 159.3 (C). 
HRMS (ESI): m/z [M+Na]+ calcd for C27H36O3Na: 
431.2557; found: 431.2554. 
 
1-{[(5-Ethynylnonan-5-yl)oxy]methyl}-4-
methoxybenzene (4l) 
Yield: 14.7 mg (26%); pale yellow oil (Method A). 
IR (neat): 3302, 2946 cm-1. 
1H NMR (300 MHz, CDCl3): δ = 0.92 (t, J = 7.2 Hz, 
6H), 1.25‒1.76 (m, 12H), 2.49 (s, 1H), 3.80 (s, 3H), 
4.53 (s, 2H), 6.87 (d, J = 8.7 Hz, 2H), 7.26 (d, J = 8.7 
Hz, 2H). 
13C NMR (126 MHz, CDCl3): δ = 14.1 (CH3×2), 22.9 
(CH2×2), 26.0 (CH2×2), 38.2 (CH2×2), 55.3 (CH3), 65.7 
(CH2), 73.9 (C), 76.5 (CH), 79.6 (C), 113.8 (CH×2), 
129.1 (CH×2), 131.9 (C), 159.0 (C). 
HRMS (ESI): m/z [M+Na]+ calcd for C19H28O2Na: 
311.1982; found: 311.1980. 
 
1-Chloro-4-[(hex-2-yn-1-yloxy)methyl]benzene (4o) 
Yield: 38.7 mg (85%); colorless oil (Method A). 
IR (neat): 2962, 2854, 2283, 2225 cm-1. 
1H NMR (300 MHz, CDCl3): δ = 1.00 (t, J = 7.3 Hz, 
3H), 1.51‒1.59 (m, 2H), 2.21 (tt, J = 7.0, 2.2 Hz, 2H), 
4.16 (t, J = 2.2 Hz, 2H), 4.55 (s, 2H), 7.16‒7.31 (m, 4H). 
13C NMR (126 MHz, CDCl3): δ = 13.5 (CH3), 20.8 
(CH2), 22.1 (CH2), 57.9 (CH2), 70.5 (CH2), 75.7 (C), 
87.4 (C), 128.5 (CH×2), 129.3 (CH×2), 133.5 (C), 
136.3 (C). 
HRMS (ESI): m/z [M+Na]+ calcd for C13H15ClONa: 
245.0704; found: 245.0705. 
 
1-Methoxy-4-{[(3-phenylprop-2-yn-1-
yl)oxy]methyl}benzene (4p) 
Yield: 40.6 mg (82%); colorless oil (Method A). 
IR (neat): 2839, 2237 cm-1. 
1H NMR (500 MHz, CDCl3): δ = 3.81 (s, 3H), 4.36 (s, 
2H), 4.61 (s, 2H), 6.89 (d, J = 8.5 Hz, 2H), 7.30‒7.33 
(m, 5H), 7.46 (dd, J = 6.6, 2.6 Hz, 2H). 
13C NMR (126 MHz, CDCl3): δ = 55.3 (CH3), 57.5 
(CH2), 71.3 (CH2), 85.2 (C), 86.4 (C), 113.9 (CH×2), 
122.7 (C), 128.3 (CH×2), 128.4 (CH), 129.6 (C), 129.8 
(CH×2), 131.8 (CH×2), 159.4 (C). 
HRMS (ESI): m/z [M+Na]+ calcd for C17H16O2Na: 
275.1043; found: 275.1042. 
 
1-({[5-(Benzyloxy)pent-2-yn-1-yl]oxy}methyl)-4-
methoxybenzene (4q) 
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Yield: 32.8 mg (76%); pale yellow oil (Method A). 
IR (neat): 3433, 1097 cm-1. 
1H NMR (500 MHz, CDCl3): δ = 2.57 (tt, J = 7.3, 2.4 
Hz, 2H), 3.61 (t, J = 7.3 Hz, 2H), 3.79 (s, 3H), 4.12 (t, J 
= 2.4 Hz, 2H), 4.51 (s, 2H), 4.56 (s, 2H), 6.87 (d, J = 
8.6 Hz, 2H), 7.24‒7.36 (m, 7H). 
13C NMR (126 MHz, CDCl3): δ = 20.2 (CH2), 55.2 
(CH3), 57.3 (CH2), 68.4 (CH2), 71.0 (CH2), 72.9 (CH2), 
77.1 (C), 83.7 (C), 113.8 (CH×2), 127.7 (CH×2), 128.3 
(CH), 128.4 (CH×2), 129.6 (C), 129.7 (CH×2), 138.0 
(C), 159.3 (C). 
HRMS (ESI): m/z [M+Na]+ calcd for C20H22O3Na: 
333.1461; found: 333.1461. 
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	Abstract: An efficient one-pot procedure for the synthesis of propargyl alcohol derivatives from allyl alcohol derivatives has been developed. The key to this transformation from the C(C double bond to the C(C triple bond is the fact that the HBr-elimination of the 1,2-dibromoalkanes having a neighboring O-functional group was promoted by the inductive electron-withdrawing effects of the O-functional group. In the one-pot reaction, TBAOH was the best base, and the addition of molecular sieves 13X was also effective.
	Key words: elimination, one-pot synthesis, propargyl alcohol derivative, allyl alcohol derivative, neighboring-group effects.
	Propargyl alcohols are key synthetic intermediates for many biologically natural products, their effective analogues, and agricultural and pharmaceutical chemicals because of the transformation versatility of both the C‒C triple bond and the O-functional group.1 The general synthetic method for both chiral and achiral propargyl alcohols is the addition of acetylenes to carbonyl compounds.2
	We recently reported one-pot synthetic procedures for vinyl bromides and di- or trisubstituted alkenes from terminal or internal disubstituted alkenes having an O-functional group at the adjacent position (Scheme 1, equation 1).3 The noteworthy point of these methods is that those sequential reactions proceed with high yields and selectivity in the same vessel, and the key factor is DBU-promoted HBr-elimination utilizing the inductive electron-withdrawing effects of the neighboring O-functional group in the second reaction. Aside from the one-pot synthesis, we also reported a novel tetrabutylammonium fluoride (TBAF)-mediated transformation from 1,2-dibromoalkanes having a neighboring O-functional group to alkynes (Scheme 1, equation 2).4 This elimination made it possible to produce the alkynes or their intermediates, the vinyl bromides under milder conditions than previously reported.5 Against this research background, that is, unique HBr-elimination effected by the electronegativity of the neighboring oxygen atom, we initiated the development of a novel one-pot transformation from allyl alcohol derivatives to the corresponding propargyl alcohol derivatives (Scheme 1, equation 3). In this paper, we disclose the intriguing results and full details.
	Scheme 1
	Based on our previous research results,3,4 the study started with the benzyl (Bn)-protected allyl alcohol 1a as a substrate, which was treated with pyridinium bromide perbromide (Pyr.-HBr3) and the following TBAF (5.0 equiv)-promoted HBr-eliminations in one pot. Screening of the solvents is shown in Table 1. After the bromine addition in 1,2-dichloroethane or acetonitrile at room temperature, 5.0 equiv of TBAF (1.0 M THF sol.) were added to the same pot and then the reaction system was stirred at 60 (C for 6 h (Entries 1 and 2). However, elimination did not provide the desired Bn-protected propargyl alcohol 4a, and the dibromoalkane 2a or the vinyl bromide 3a still remained. On the other hand, when aprotic polar solvent DMF or DMSO was used, the bromine addition was not completed, and thus the subsequent elimination was not carried out (Entries 3 and 4). Therefore, after the bromine addition in acetonitrile, TBAF and DMF or DMSO of seven times the volume of acetonitrile were added (Entries 5 and 6). As a result, the mixed solvent system (acetonitrile/DMSO = 1/7) was the most effective for the second TBAF-promoted elimination process (Entry 6).
	Table 1 Screening of Solvents
	Yield (%)
	Solv. 2a
	Solv. 1
	Entry
	4a
	3a
	2a
	1a
	0
	73
	12
	0
	(
	(CH2Cl)2
	1
	0
	98
	0
	0
	CH3CN
	2
	(
	(
	(
	74
	11
	(
	DMF
	3b
	Table 3 Screening of Additives
	61
	28
	DMSO
	4b
	(
	(
	(
	16
	80
	0
	0
	DMF
	CH3CN
	5
	50
	38
	0
	0
	DMSO
	CH3CN
	6
	a Before the addition of TBAF, Solv. 2 of seven times the volume of Solv. 1 was added at the second elimination step.
	b The elimination process was not carried out because the first bromine addition was not finished completely.
	Next, we examined a variety of counter anions (chloride, bromide, acetate,6 and hydroxide) of the quaternary ammonium salt as a base for the HBr-elimination, instead of TBAF (Table 2). However, most of the bases did not give the desired compound 4a (Entries 2‒4). Significantly, a solution of 40% TBAOH in water gave 4a in 83% yield (Entry 5).
	Yield (%)
	Y (equiv)
	Additive (X equiv)
	Entry
	4a
	3a
	83
	0
	5.0
	1
	(
	70
	16
	4.0
	2
	(
	82
	0
	4.0
	K2CO3 (1.1)
	3
	72
	10
	4.0
	MS 3A
	4a
	76
	11
	4.0
	MS 4A
	5a
	83
	0
	4.0
	MS 5A
	6a
	93
	0
	4.0
	MS 13X
	7a,b
	Table 2 Screening of Counter Anions of Quaternary Ammonium Bases
	8a
	96
	0
	3.5
	MS 13X
	27
	50
	3.5
	9c
	(
	75
	11
	3.1
	MS 13X
	10a
	95
	0
	3.1
	MS 13X, Et3N (1.1)
	11a,b,d
	a All molecular sieves (MS) were powdered (< 10 (m) and activated. MS of 10 times the amount of 1a was used.
	b The second HBr-elimination reaction time was 2 h.
	c The second HBr-elimination reaction time was 9 h.
	d Et3N (1.1 equiv) was added together with DMSO and TBAOH.
	To confirm the generality of the one-pot synthesis of propargyl alcohol derivatives 4, we examined a variety of allyl alcohol derivatives 1 using optimized Method A (Table 3, Entry 8) and/or B (Table 3, Entry 11). Reaction of the allyl alcohols protected with substituted benzyl (1a‒c) and phenyl (1d) groups basically afforded the desired propargyl alcohol derivatives 4a‒d in good yields using both methods (Table 4, Entries 1‒8). However, the reaction of 1e, having a 4-nitrophenyl group gave 4e with unsatisfactory yield because overreaction gave the undesired corresponding allenes (Entries 9 and 10).8 Reaction of the benzoyl-protected 1f and silyl-protected 1g also gave 4f in low yield and 4g in moderate yield, respectively, because the bromine addition of 1f was not completed and the TIPS group of 1g was partly removed (Entries 11 and 12). Next, we examined more complicated substrates. For secondary alcohol derivatives 1h, 1i, 1j, and 1k, those reaction yields were sufficient (Entries 13‒20), although PMB-protected tertiary alcohol 4l was also produced in low yield (Entries 21 and 22). In addition, compounds 4m‒r, having an internal C‒C triple bond were produced in good yields from the corresponding Z-allyl alcohol derivatives 1m‒r through double trans-HBr-eliminations.
	Yield (%)
	Base
	Entry
	4a
	3a
	2a
	1a
	50
	38
	0
	0
	TBAF
	1
	0
	0
	97
	0
	TBACa
	2
	0
	0
	92
	0
	TBABb
	3
	0
	0
	91
	0
	TBAOAcc
	4
	83
	0
	0
	0
	TBAOHd
	5
	a Tetrabutylammonium chloride
	b Tetrabutylammonium bromide
	c Tetrabutylammonium acetate6
	d Tetrabutylammonium hydroxide (40% in water)
	To accelerate effectively the reaction under milder conditions, the consecutive bromine addition/TBAOH-promoted HBr-elimination was further examined in the presence of an additive (Table 3). Initially, 4.0 equiv of TBAOH were used without any additive; however, the elimination was not complete and the intermediate, vinyl bromide 3a still remained (Entry 2). Based on previous studies of one-pot methods,3 when 1.1 equiv of potassium carbonate was added as a HBr scavenger at the first reaction stage, the elimination successfully proceeded despite 4.0 equiv of TBAOH (Entry 3). A variety of molecular sieves (MS) were also examined instead of potassium carbonate based on reports in which the appropriate molecular sieve can be an effective HBr trapping agent (Entries 4‒7).7 Although the activated molecular sieves 3A and 4A did not affect the efficacy, the 5A and 13X, whose pore diameters are larger, acted in a manner similar to potassium carbonate (Entries 6 and 7). As for the most effective additive, MS 13X, the requisite amounts of TBAOH were successfully reduced to 3.5 equiv (Entry 8, for reference Entries 9 and 10). In addition, use of 1.1 equiv of triethylamine and 3.1 equiv of TBAOH for the HBr-elimination also afforded the desired Bn-protected propargyl alcohol 4a in quantitative yield (Entry 11).
	In summary, we have established a novel one-pot synthesis of propargyl alcohol derivatives 4 from allyl alcohol derivatives 1 through TBAOH-promoted, double trans-HBr-eliminations. Both the one-pot methods should be applicable to the total synthesis of natural products and for use in modern drug-discovery research. In addition, method B might be more suitable for base-sensitive substrates than method A, because of the small amount of TBAOH. As reported in our previous research,9 neighboring O-functional-group participation is an important factor in this synthetic procedure. 
	Table 4 Synthesis of Propargyl Alcohol Derivatives 4 from Allyl Alcohol Derivatives 1 Using a One-pot Procedure
	Yield (%)
	Time (h)
	Method
	Products
	Entry
	Infrared spectra were recorded with a Horiba FT-710 model spectrophotometer. 1H and 13C NMR spectral data were obtained with a JEOL JNM-LA 500, or a JEOL JNM-AL 300 instrument. Chemical shifts are quoted in ppm using tetramethylsilane (TMS, δ = 0 ppm) as the reference for 1H NMR spectroscopy, and CDCl3 (δ = 77.0 ppm) for 13C NMR spectroscopy. Mass spectra were measured with a Bruker Daltonics microTOF or a Hitachi double-focusing M-80B spectrometer. Column chromatography was carried out on silica gel (Kanto Chemical Co. or Merck Co., Ltd). All reactions were performed under an argon atmosphere. Allyl alcohol derivatives 1a‒g, 1j, 1m, 1n, and 1r are known and their analytical data have been reported.10 Propargyl alcohol derivatives 4a‒g, 4j, 4m, 4n, and 4r are known and their analytical data have been reported.11
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	A mixture of allyl alcohol derivative 1 (x g, 1.0 equiv), pyridinium bromide perbromide (1.1 equiv), and MS 13X (ca. 10x g) in CH3CN (y mL, 0.1 M) was stirred at room temperature for 12‒14 h. Then, DMSO (7y mL) and TBAOH (3.5 equiv, 40% in water) were added to the reaction mixture at 0 (C and the system was heated to 60 (C. The reaction was quenched with sat. aq NH4Cl at 0 (C. After the removal of MS 13X through a cotton filter, the resulting filtrate was extracted with hexane/EtOAc (= 2/1, 30 mL ( 3) and dried over MgSO4. The combined extracts were concentrated under reduced pressure, and the residue was purified using silica gel column chromatography to afford the propargyl alcohol derivative 4.
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	a The corresponding allene was obtained (42%).
	General Procedure for the One-pot Synthesis of 4 (Method B) 
	b The corresponding allene was obtained (38%).
	c The starting material 1f was recovered (40%).
	d 10% TBAOH (in MeOH sol.) was used.
	A mixture of allyl alcohol derivative 1 (x g, 1.0 equiv), pyridinium bromide perbromide (1.1 equiv), and MS 13X (ca. 10x g) in CH3CN (y mL, 0.1 M) was stirred at room temperature for 12‒14 h. Then, DMSO (7y mL), TBAOH (3.1 equiv, 40% in water), and Et3N (1.1 equiv) were added to the reaction mixture at 0 (C and the system was heated to 60 (C. The reaction was quenched with sat. aq NH4Cl at 0 (C. After the removal of MS13X through a cotton filter, the resulting filtrate was extracted with hexane/EtOAc (= 2/1, 30 mL ( 3) and dried over MgSO4. The combined extracts were concentrated under reduced pressure, and the residue was purified using silica gel column chromatography to afford the propargyl alcohol derivative 4.
	e The starting material 1l was recovered (42%).
	f The starting material 1l was recovered (43%).
	g 5.5 equiv of TBAOH (40% in water) were used.
	h 5.1 equiv of TBAOH (40% in water) were used.
	13C NMR (126 MHz, CDCl3): δ = 25.3 (CH2), 26.1 (CH2), 29.4 (CH2×2), 29.5 (CH2×2), 29.7 (CH2), 35.5 (CH2), 55.1 (CH3), 69.6 (CH2), 70.4 (CH2), 72.8 (CH2), 80.2 (CH), 113.6 (CH×2), 116.7 (CH2), 127.4 (CH2), 127.5 (CH×2), 128.2 (CH×2), 129.2 (CH×2), 130.9 (C), 138.7 (C), 139.3 (CH), 159.0 (C).
	HRMS (ESI): m/z [M+Na]+ calcd for C27H38O3Na: 433.2713; found: 433.2716.
	1-{[(4-Ethyloct-1-en-3-yl)oxy]methyl}-4-methoxybenzene (1h)
	1-Methoxy-4-{[(5-vinylnonan-5-yl)oxy]methyl}benzene (1l)
	Yield: 1.44 g (54%); colorless oil.12IR (neat): 3074, 2958, 2870 cm-1.
	Yield: 771 mg (69%); colorless oil.12IR (neat): 3086, 2947 cm-1.
	1H NMR (500 MHz, CDCl3): δ = 0.83‒0.87 (m, 6H), 1.12‒1.53 (m, 9H), 3.63 (dd, J = 13.4, 5.8 Hz, 1H), 3.80 (s, 3H), 4.25 (d, J = 10.0 Hz, 1H), 4.52 (d, J = 10.0 Hz, 1H), 5.18 (dd, J = 18.0, 1.8 Hz, 1H), 5.26 (dd, J = 10.5, 1.8 Hz, 1H), 5.73 (ddd, J = 18.0, 10.5, 5.8 Hz, 1H), 6.86 (d, J = 8.5 Hz, 2H), 7.25 (d, J = 8.5 Hz, 2H).
	1H NMR (300 MHz, CDCl3): δ = 0.91 (t, J = 6.9 Hz, 6H), 1.30 (m, 8H), 1.50‒1.65 (m, 4H), 3.79 (s, 3H), 4.25 (s, 2H), 5.17 (dd, J = 17.6, 1.5 Hz, 1H), 5.22 (dd, J = 11.1, 1.5 Hz, 1H), 5.78 (dd, J = 17.6, 11.1 Hz, 1H), 6.86 (d, J = 8.7 Hz, 2H), 7.26 (d, J = 8.7 Hz, 2H).
	13C NMR (126 MHz, CDCl3): δ = 14.1 (CH3×2), 23.2 (CH2×2), 25.3 (CH2×2), 35.0 (CH2×2), 55.2 (CH3), 63.3 (CH2), 79.5 (C), 113.7 (CH×2), 114.9 (CH2), 128.7 (CH×2), 131.9 (C), 143.0 (CH), 158.8 (C).
	13C NMR (126 MHz, CDCl3): δ = 11.1 (CH3), 14.0 (CH3), 21.9 (CH2), 23.0 (CH2), 28.6 (CH2), 29.1 (CH2), 43.9 (CH), 55.0 (CH3), 69.7 (CH2), 82.1 (CH), 113.6 (CH×2), 117.4 (CH2), 129.1 (CH×2), 131.1 (C), 137.7 (CH), 158.9 (C).
	HRMS (ESI): m/z [M+Na]+ calcd for C19H30O2Na: 313.2138; found: 313.2136.
	Diastereomer: 11.4 (CH3), 14.0 (CH3), 22.2 (CH2), 23.1 (CH2), 28.7 (CH2), 29.3 (CH2), 44.0 (CH), 55.0 (CH3), 69.7 (CH2), 82.2 (CH), 113.6 (CH×2), 117.4, (CH2), 129.1 (CH×2), 131.1 (C), 137.7 (CH), 158.9 (C).
	(Z)-1-Chloro-4-[(hex-2-en-1-yloxy)methyl]benzene (1o)
	HRMS (ESI): m/z [M+Na]+ calcd for C18H28O2Na: 299.1982; found: 299.1985.
	Yield: 1.00 g (88%); colorless oil.12IR (neat): 3016, 2962, 2861 cm-1.
	1H NMR (500 MHz, CDCl3): δ = 0.90 (t, J = 7.4 Hz, 3H), 1.39 (tq, J = 7.4, 7.4 Hz, 2H), 2.02 (td, J = 7.4, 7.1 Hz, 2H), 4.07 (d, J = 5.4 Hz, 2H), 4.47 (s, 2H), 5.60 (m, 2H), 7.24‒7.33 (m, 4H).
	10-[(4-Methoxybenzyl)oxy]dodec-11-en-1-ol (1i)
	Yield: 299 mg (89%); colorless oil.12IR (neat): 3398, 3005 cm-1.
	13C NMR (126 MHz, CDCl3): δ = 13.7 (CH3), 22.7 (CH2), 29.6 (CH2), 65.8 (CH2), 71.2 (CH2), 125.9 (CH), 128.5 (CH×2), 129.0 (CH×2), 133.3 (CH), 133.9 (C), 137.0 (C).
	1H NMR (300 MHz, CDCl3): δ = 1.23‒1.66 (m, 17H), 3.63 (t, J = 6.4 Hz, 2H), 3.69 (td, J = 14.2, 7.0 Hz, 1H), 3.80 (s, 3H), 4.28 (d, J = 11.0 Hz, 1H), 4.52 (d, J = 11.0 Hz, 1H), 5.18 (d, J = 17.4 Hz, 1H), 5.21 (d, J = 10.1 Hz, 1H), 5.72 (ddd, J = 17.4, 10.1, 7.0 Hz, 1H), 6.87 (d, J = 8.8 Hz, 2H), 7.25 (d, J = 8.8 Hz, 2H).
	HRMS (ESI): m/z [M+Na]+ calcd for C13H17ClONa: 247.0860; found: 247.0855.
	13C NMR (126 MHz, CDCl3): δ = 25.2 (CH2), 25.6 (CH2), 29.3 (CH2), 29.38 (CH2×2), 29.41 (CH2), 32.6 (CH2), 35.4 (CH2), 55.1 (CH3), 62.8 (CH2), 69.6 (CH2), 80.2 (CH), 113.6 (CH×2), 116.7 (CH2), 129.2 (CH×2), 130.8 (C), 139.2 (CH), 158.9 (C).
	(Z)-1-Methoxy-4-{[(3-phenylallyl)oxy]methyl}benzene (1p)
	Yield: 209 mg (79%); colorless oil.12IR (neat): 3062 cm-1.
	HRMS (ESI): m/z [M+Na]+ calcd for C20H32O3Na: 343.2244; found: 343.2246.
	1H NMR (500 MHz, CDCl3): δ = 3.78 (s, 3H), 4.27 (d, J = 6.1 Hz, 2H), 4.45 (s, 2H), 5.89 (dt, J = 12.1, 6.1 Hz, 1H), 6.61 (d, J = 12.1 Hz, 1H), 6.85 (d, J = 8.6 Hz, 2H), 7.19 (d, J = 7.7 Hz, 2H), 7.22‒7.26 (m, 2H), 7.30‒7.33 (m, 3H).
	1-({[12-(Benzyloxy)dodec-1-en-3-yl]oxy}methyl)-4-methoxybenzene (1k)
	13C NMR (126 MHz, CDCl3): δ = 55.2 (CH3), 66.6 (CH2), 72.1 (CH2), 113.7 (CH×2), 127.1 (CH), 128.2 (CH×2), 128.7 (CH×2), 129.0 (CH), 129.5 (CH×2), 130.2 (C), 131.7 (CH), 136.6 (C), 159.2 (C).
	Yield: 1.59 g (63%); colorless oil.12IR (neat): 3005, 2931 cm-1.
	1H NMR (500 MHz, CDCl3): δ = 1.21‒1.69 (m, 16H), 3.46 (t, J = 6.5 Hz, 2H), 3.68 (td, J = 14.2, 7.0 Hz, 1H), 3.80 (s, 3H), 4.27 (d, J = 11.0 Hz, 1H), 4.50 (s, 2H), 4.52 (d, J = 11.0 Hz, 1H), 5.18 (d, J = 16.6 Hz, 1H), 5.21 (d, J = 10.9 Hz, 1H), 5.72 (ddd, J = 16.6, 10.9, 7.0 Hz, 1H), 6.86 (d, J = 8.7 Hz, 2H), 7.24‒7.36 (m, 7H).
	HRMS (ESI): m/z [M+Na]+ calcd for C17H18O2Na: 277.1199; found: 277.1201.
	1H NMR (500 MHz, CDCl3): δ = 1.21‒1.77 (m, 16H), 2.45 (d, J = 2.1 Hz, 1H), 3.46 (t, J = 6.6 Hz, 2H), 3.80 (s, 3H), 4.03 (td, J = 6.3, 2.1 Hz, 1H), 4.44 (d, J = 11.0 Hz, 1H), 4.50 (s, 2H), 4.73 (d, J = 11.0 Hz, 1H), 6.88 (d, J = 8.3 Hz, 2H), 7.23‒7.37 (m, 7H).
	(Z)-1-({[5-(Benzyloxy)pent-2-en-1-yl]oxy}methyl)-4-methoxybenzene (1q)
	Yield: 123 mg (83%); pale yellow oil.12IR (neat): 3016, 2854, 1095, 818 cm-1.
	1H NMR (500 MHz, CDCl3): δ = 2.38 (td, J = 13.4, 7.0 Hz, 2H), 3.49 (t, J = 7.0 Hz, 2H), 3.80 (s, 3H), 4.06 (d, J = 6.3 Hz, 2H), 4.43 (s, 2H), 4.50 (s, 2H), 5.66 (m, 2H), 6.87 (d, J = 8.6 Hz, 2H), 7.25‒7.35 (m, 7H).
	13C NMR (126 MHz, CDCl3): δ = 25.2 (CH2), 26.2 (CH2), 29.2 (CH2), 29.4 (CH2×2), 29.5 (CH2), 29.8 (CH2), 35.6 (CH2), 55.3 (CH3), 68.1 (CH), 70.1 (CH2), 70.5 (CH2), 72.9 (CH2), 73.6 (CH), 83.2 (C), 113.8 (CH×2), 127.4 (CH), 127.6 (CH×2), 128.3 (CH×2), 129.6 (CH×2), 131.5 (C), 138.7 (C), 159.3 (C).
	13C NMR (126 MHz, CDCl3): δ = 28.4 (CH2), 55.3 (CH3), 65.5 (CH2), 69.6 (CH2), 71.8 (CH2), 72.9 (CH2), 113.8 (CH×2), 127.5 (CH), 127.6 (CH×2), 128.2 (CH), 128.3 (CH×2), 129.4 (CH×2), 129.5 (CH), 130.4 (C), 138.4 (C), 159.2 (C).
	HRMS (ESI): m/z [M+Na]+ calcd for C27H36O3Na: 431.2557; found: 431.2554.
	HRMS (ESI): m/z [M+Na]+ calcd for C20H24O3Na: 335.1618; found: 335.1616.
	1-{[(5-Ethynylnonan-5-yl)oxy]methyl}-4-methoxybenzene (4l)
	Yield: 14.7 mg (26%); pale yellow oil (Method A).IR (neat): 3302, 2946 cm-1.
	1-{[(4-Ethyloct-1-yn-3-yl)oxy]methyl}-4-methoxybenzene (4h)
	1H NMR (300 MHz, CDCl3): δ = 0.92 (t, J = 7.2 Hz, 6H), 1.25‒1.76 (m, 12H), 2.49 (s, 1H), 3.80 (s, 3H), 4.53 (s, 2H), 6.87 (d, J = 8.7 Hz, 2H), 7.26 (d, J = 8.7 Hz, 2H).
	Yield: 36.7 mg (74%); yellow oil (Method A).IR (neat): 3302, 2962, 2866, 1612 cm-1.
	1H NMR (500 MHz, CDCl3): δ = 0.84‒0.89 (m, 6H), 1.21‒1.65 (m, 9H), 2.43 (d, J = 2.4 Hz, 1H), 3.80 (s, 3H), 4.03‒4.05 (m, 1H), 4.42 (d, J = 11.8 Hz, 1H), 4.74 (d, J = 11.8 Hz, 1H), 6.88 (d, J = 8.7 Hz, 2H), 7.28 (d, J = 8.7 Hz, 2H).
	13C NMR (126 MHz, CDCl3): δ = 14.1 (CH3×2), 22.9 (CH2×2), 26.0 (CH2×2), 38.2 (CH2×2), 55.3 (CH3), 65.7 (CH2), 73.9 (C), 76.5 (CH), 79.6 (C), 113.8 (CH×2), 129.1 (CH×2), 131.9 (C), 159.0 (C).
	13C NMR (126 MHz, CDCl3): δ = 11.4 (CH3), 14.0 (CH3), 22.5 (CH2), 23.0 (CH2), 29.0 (CH2), 29.3 (CH2), 44.2 (CH), 55.3 (CH3), 70.2 (CH2), 70.6 (CH), 74.3 (CH), 82.3 (C), 113.7 (CH×2), 129.5 (CH×2), 130.2 (C), 159.2 (C).
	HRMS (ESI): m/z [M+Na]+ calcd for C19H28O2Na: 311.1982; found: 311.1980.
	1-Chloro-4-[(hex-2-yn-1-yloxy)methyl]benzene (4o)
	Diastereomer: 11.6 (CH3), 14.1 (CH3), 22.6 (CH2), 23.0 (CH2), 29.2 (CH2), 29.3 (CH2), 44.3 (CH), 55.3 (CH3), 70.3 (CH2), 70.8 (CH), 74.3 (CH), 82.3 (C), 113.7 (CH×2), 129.5 (CH×2), 130.2 (C), 159.2 (C).
	Yield: 38.7 mg (85%); colorless oil (Method A).IR (neat): 2962, 2854, 2283, 2225 cm-1.
	1H NMR (300 MHz, CDCl3): δ = 1.00 (t, J = 7.3 Hz, 3H), 1.51‒1.59 (m, 2H), 2.21 (tt, J = 7.0, 2.2 Hz, 2H), 4.16 (t, J = 2.2 Hz, 2H), 4.55 (s, 2H), 7.16‒7.31 (m, 4H).
	HRMS (ESI): m/z [M+Na]+ calcd for C18H26O2Na: 297.1825; found: 297.1821.
	13C NMR (126 MHz, CDCl3): δ = 13.5 (CH3), 20.8 (CH2), 22.1 (CH2), 57.9 (CH2), 70.5 (CH2), 75.7 (C), 87.4 (C), 128.5 (CH×2), 129.3 (CH×2), 133.5 (C), 136.3 (C).
	10-[(4-Methoxybenzyl)oxy]dodec-11-yn-1-ol (4i)
	Yield: 40.1 mg (83%); colorless oil (Method A).IR (neat): 3433, 3290 cm-1.
	HRMS (ESI): m/z [M+Na]+ calcd for C13H15ClONa: 245.0704; found: 245.0705.
	1H NMR (300 MHz, CDCl3): δ = 1.25‒1.77 (m, 17H), 2.46 (d, J = 2.0 Hz, 1H), 3.63 (t, J = 6.6 Hz, 2H), 3.80 (s, 3H), 4.03 (td, J = 6.6, 2.0 Hz, 1H), 4.44 (d, J = 11.3 Hz, 1H), 4.73 (d, J = 11.3 Hz, 1H), 6.87 (d, J = 8.7 Hz, 2H), 7.28 (d, J = 8.7 Hz, 2H).
	1-Methoxy-4-{[(3-phenylprop-2-yn-1-yl)oxy]methyl}benzene (4p)
	Yield: 40.6 mg (82%); colorless oil (Method A).IR (neat): 2839, 2237 cm-1.
	13C NMR (75 MHz, CDCl3): δ = 25.2 (CH2), 25.7 (CH2), 29.2 (CH2), 29.35 (CH2), 29.38 (CH2), 29.5 (CH2), 32.8 (CH2), 35.6 (CH2), 55.3 (CH3), 63.1 (CH2), 68.0 (CH), 70.1 (CH2), 73.6 (CH), 83.1 (C), 113.7 (CH×2), 129.7 (CH×2), 129.9 (C), 159.2 (C).
	1H NMR (500 MHz, CDCl3): δ = 3.81 (s, 3H), 4.36 (s, 2H), 4.61 (s, 2H), 6.89 (d, J = 8.5 Hz, 2H), 7.30‒7.33 (m, 5H), 7.46 (dd, J = 6.6, 2.6 Hz, 2H).
	13C NMR (126 MHz, CDCl3): δ = 55.3 (CH3), 57.5 (CH2), 71.3 (CH2), 85.2 (C), 86.4 (C), 113.9 (CH×2), 122.7 (C), 128.3 (CH×2), 128.4 (CH), 129.6 (C), 129.8 (CH×2), 131.8 (CH×2), 159.4 (C).
	HRMS (ESI): m/z [M+Na]+ calcd for C20H30O3Na: 341.2087; found: 341.2088.
	HRMS (ESI): m/z [M+Na]+ calcd for C17H16O2Na: 275.1043; found: 275.1042.
	1-({[12-(Benzyloxy)dodec-1-yn-3-yl]oxy}methyl)-4-methoxybenzene (4k)
	Yield: 35.9 mg (74%); pale yellow oil (Method A).IR (neat): 3294 cm-1.
	1-({[5-(Benzyloxy)pent-2-yn-1-yl]oxy}methyl)-4-methoxybenzene (4q)
	Yield: 32.8 mg (76%); pale yellow oil (Method A).IR (neat): 3433, 1097 cm-1.
	(10) For 1a, see: Pollex, A.; Hiersemann, M. Org. Lett. 2005, 7, 5705; for 1b, see: Fu, H.; Newcomb, M.; Wong, C.-H. J. Am. Chem. Soc. 1991, 113, 5878; for 1c, see: Bartz, Q. R.; Miller, R. F.; Adams, R. J. Am. Chem. Soc. 1935, 57, 371; for 1d, see: Anson, C. E.; Malkov, A. V.; Roe, C.; Sandoe, E. J.; Stephenson, G. R. Eur. J. Org. Chem. 2008, 196; for 1e, see: (a) White, W. N.; Gwynn, D.; Schlitt, R.; Girard, C.; Fife, W. J. Am. Chem. Soc. 1958, 80, 3271; (b) Bujok, R.; Bieniek, M.; Masnyk, M.; Michrowska, A.; Sarosiek, A.; Stepowska, H.; Arlt, D.; Grela, K. J. Org. Chem. 2004, 69, 6894; for 1f, see: Wu, X.-F.; Darcel, C. Eur. J. Org. Chem. 2009, 1144; for 1g, see: ref. 3; for 1j, see: ref. 5b; for 1m and 1n, see: Goux, C.; Massacret, M.; Lhoste, P.; Sinou, D. Organometallics 1995, 14, 4585; for 1r, see: Sreedhar, E.; Venkanna, A.; Chandramouli, N.; Babu, K. S.; Rao, J. M. Eur. J. Org. Chem. 2011, 1078.
	1H NMR (500 MHz, CDCl3): δ = 2.57 (tt, J = 7.3, 2.4 Hz, 2H), 3.61 (t, J = 7.3 Hz, 2H), 3.79 (s, 3H), 4.12 (t, J = 2.4 Hz, 2H), 4.51 (s, 2H), 4.56 (s, 2H), 6.87 (d, J = 8.6 Hz, 2H), 7.24‒7.36 (m, 7H).
	13C NMR (126 MHz, CDCl3): δ = 20.2 (CH2), 55.2 (CH3), 57.3 (CH2), 68.4 (CH2), 71.0 (CH2), 72.9 (CH2), 77.1 (C), 83.7 (C), 113.8 (CH×2), 127.7 (CH×2), 128.3 (CH), 128.4 (CH×2), 129.6 (C), 129.7 (CH×2), 138.0 (C), 159.3 (C).
	HRMS (ESI): m/z [M+Na]+ calcd for C20H22O3Na: 333.1461; found: 333.1461.
	(11) For 4a, see: Kwart, H.; Sarner, S. F.; Slutsky, J. J. Am. Chem. Soc. 1973, 95, 5234; for 4b, see: Guanti, G.; Perrozzi, S.; Riva, R. Tetrahedron: Asymmetry 2002, 13, 2703; for 4c, see: Montevecchi, P. C.; Navacchia, M. L. J. Org. Chem. 1998, 63, 537; for 4d, see: Olivero, S.; Clinet, J. C.; Duñach, E. Tetrahedron Lett. 1995, 36, 4429; for 4e, see: Ho, I.-T.; Chu, J.-H.; Chung, W.-S. Eur. J. Org. Chem. 2011, 1472; for 4f, see: Ohkubo, M.; Mochizuki, S.; Sano, T.; Kawaguchi, Y.; Okamoto, S. Org. Lett. 2007, 9, 773; for 4g, see: Magnus, P.: Matthews, K. S. J. Am. Chem. Soc. 2005, 127, 12476; for 4j, see: ref. 3; for 4m, see: ref. 5b; for 4n, see: ref. 4b; for 4r, see: Banfi, L.; Guanti, G.; Basso, A. Eur. J. Org. Chem. 2000, 939.
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