
INSTITUTE OF POLICY AND PLANNING SCIENCES

Discussion Paper Series

No. 1094

D.C. Optimization Methods for
Minimum Maximal Flow Problem

Yoshitsugu Yamamoto and Daisuke Zenke

September 2004

UNIVERSITY OF TSUKUBA

Tsukuba, Ibaraki 305-8573

JAPAN



D.C. OPTIMIZATION METHODS
FOR THE MINIMUM MAXIMAL FLOW PROBLEM

YOSHITSUGU YAMAMOTO AND DAISUKE ZENKE

Abstract. This paper is concerned with the minimum maximal flow problem,

i.e., a problem of minimizing the flow value attained by a maximal flow for a

given network. The optimal value indicates how inefficiently the network can

be utilized under restricted controllability. We discuss the extension of the gap

function defining the set of all maximal flows as well as the regularity of this

problem, and then formulate the problem as a D.C. optimization problem. Based

on this formulation, we propose two algorithms: the cut-and-split method and the

outer approximation method combined with a local search technique, and discuss

their finite convergence.

1. Introduction

We consider a network (V, s, t, E, ∂+, ∂−, c), where V is the set of m + 2 nodes

containing the source node s and the sink node t, E is the set of n arcs, ∂+ and

∂− are incidence functions, and c is the vector of dimension n whose hth element

ch is the capacity of arc h. We assume that each element of c is a positive integer

throughout this paper. A vector x of dimension n is said to be a feasible flow if it

satisfies the inequality 0 � x � c, called the capacity constraints, and the equality

Ax = 0, called the conservation constraints, where the m × n matrix A is the

incidence matrix whose (v, h) element avh is given by

avh =




+1 if ∂+h = v

−1 if ∂−h = v

0 otherwise.

(1.1)

Let X denote the set of all feasible flows, i.e.,

X = {x ∈ �n | Ax = 0, 0 � x � c },(1.2)

Date: August 28, 2004.

1991 Mathematics Subject Classification. 90B50, 90C35, 90C57, 90C59.

Key words and phrases. Minimum maximal flow, optimization over the efficient set, D.C. opti-

mization, cut and split, outer approximation, global optimization.

This research is supported in part by the Grant-in-Aid for Scientific Research (B)(2) 14380188

of the Ministry of Education, Culture, Sports, Science and Technology of Japan.



2 Y.Yamamoto and D.Zenke

and XV denote the set of all vertices of X. Note that each vertex v ∈ XV is an

integer vector by the total unimodularity of A and the integrality of the capacity

vector c. For a feasible flow x, the flow value of x, denoted by φ(x), is given by

φ(x) =
∑

∂+h=s

xh −
∑

∂−h=s

xh.(1.3)

Using the row vector d of dimension n whose element dh is

dh =




+1 if ∂+h = s

−1 if ∂−h = s

0 otherwise,

(1.4)

we can simply write φ(x) = dx. We assume that a given network has no t-s-path,

which ensures that dx � 0 for all x ∈ X. A feasible flow x is said to be a maximal

flow if there is no feasible flow y such that y � x and y �= x. We denote the set of

all maximal flows by XM , i.e.,

XM = {x ∈ X |� ∃y ∈ X : y � x, y �= x }.(1.5)

We assume that XM is nonempty. The problem of minimizing flow value among

the maximal flows, called the minimum maximal flow problem and abbreviated by

(mmF ), is written as

(mmF )

∣∣∣∣∣∣
min
x

φ(x) = dx

s.t. x ∈ XM .

The difficulty of the problem comes from the nonconvexity of XM , and hence sophis-

ticated algorithms are required. Note that (mmF ) embraces the minimum maximal

matching problem, which is an NP -hard problem (see e.g. Garay-Johnson [12]).

In the field of network flow theory such as maximum flow problem and minimum

cost flow problem, we usually take it for granted that we can control each arc flow,

namely we can freely increase and decrease each arc flow as long as the feasibility

is met. However, when we are not allowed to decrease arc flows, the solution to

be obtained depends on a given initial flow. Under the condition of such uncon-

trollability, it is meaningful to know the minimum flow value among the maximal

flows since this value indicates how inefficiently a network can be utilized. The

concept of uncontrollable flow was first raised by Iri [17, 18], which is closely re-

lated to but different from the maximal flow. Shi-Yamamoto first raised (mmF )

and proposed an algorithm in [26]. After this several algorithms for (mmF ) com-

bining local search and global optimization technique have been proposed in e.g.

Gotoh-Thoai-Yamamoto [13], Shigeno-Takahashi-Yamamoto [27]. As will be seen



D.C. Optimization Methods for Minimum Maximal Flow Problem 3

in the next section, (mmF ) is a special case of linear optimization problems over the

efficient set. The algorithms for (mmF ) mentioned above are mainly based on the

algorithms for the linear optimization problem over the efficient set. However, we

have neither theoretical evidence that these algorithms are efficient, nor comparative

study from the viewpoint of computational time.

The purpose of this paper is to propose an algorithm for the minimum maximal

flow problem within the framework of D.C. optimization. The algorithm is based on

local search and global optimization technique. In the part of the global optimization

technique, we apply either the cut-and-split method or the outer approximation

method.

In Section 2 we briefly review some fundamental theorems of the linear optimiza-

tion problem over the efficient set, and then we reformulate the problem by the gap

function. We also mention the connectedness of the efficient set. Section 3 is devoted

to review of D.C. optimization. We explain two methods: the cut-and-split method

and the outer approximation method. In Section 4 we extend the gap function and

apply D.C. optimization methods to (mmF ). The convergence of each algorithm is

discussed. Finally, some conclusion and further works will be discussed in the last

section.

Throughout this paper we use the following notations: �n denotes the set of

all real column vectors of dimension n. Let �n
+ = {x ∈ �n | x � 0 } and �n

++ =

{x ∈ �n | x > 0 }. Let �n denote the set of all real row vectors of dimension n,

�n+ and �n++ are defined in the similar way. We use e to denote the row vector

of ones, 1 to denote the column vector of ones, and ei to denote the ith unit row

or column vector of an appropriate dimension. Let I denote the identity matrix of

an appropriate size. We use a� and A� to denote the transposed vector of a and

the transposed matrix of A, respectively. For a set S, we denote the interior of S

by int S, the closure of S by cl S, and the relative boundary of S by ∂S. We use

PV to denote the set of all vertices of a polyhedron P . For two vectors v and w

of dimension n, let [v,w] denote the line segment with endpoints v and w, and let

(v,w] = [v,w]\{v}. Also [v,w) and (v,w) are defined in the similar way.

2. Linear Optimization Problem over the Efficient Set

Given a polyhedron D = {x ∈ �n | Bx � z, x � 0 } with B ∈ �m×n and z ∈
�

m, and a criterion matrix C ∈ �p×n with p � 2, the linear multicriteria problem is



4 Y.Yamamoto and D.Zenke

(MC)

∣∣∣∣∣∣
min
x

Cx

s.t. x ∈ D.

The point x ∈ D is said to be an efficient point for (MC) if there is no point y ∈ D

such that Cy � Cx and Cy �= Cx. The efficient set for (MC), denoted by DE , is

the set of all efficient points for (MC), i.e.,

DE = {x ∈ D |� ∃y ∈ D : Cy � Cx, Cy �= Cx }.(2.1)

We assume that D is bounded and DE is nonempty for simplicity. The linear

optimization problem over the efficient set is

(PE)

∣∣∣∣∣∣
min
x

px

s.t. x ∈ DE ,

where p ∈ �n. Note that (mmF ) is (PE) with D = X and C = I, hence DE = XM ,

and p = d. Figure 2.1 shows a two-dimensional example of the problem (PE), where

ci is the ith row of C for i = 1, 2. The efficient set DE is depicted by bold lines.

D

DE

c1

c2

0

p

x1

x2

Figure 2.1. A two-dimensional example of (PE)

Since Philip first considered (PE) and proposed an algorithm based on local search

and cutting plane technique in [22], a number of papers followed his work. The

overview about the efficient set and several algorithms for (PE) can be found in

Yamamoto [34]. For the details about (PE), the reader should refer to White [33],

Sawaragi-Nakayama-Tanino [24], Steuer [28]. The mathematical structure of the

efficient set is studied in Naccache [21], Benson [5] and Hu-Sun [16]. The method

enumerating the efficient vertices for (MC) can be found in Ecker-Kouada [8, 9].

For solution methods for (PE), see Benson [2–4], Bolintineanu [6], Ecker-Song [10],



D.C. Optimization Methods for Minimum Maximal Flow Problem 5

Fülöp [19], Dauer-Fosnaugh [7], Thach-Konno-Yokota [29], Sayin [25], Phong-Tuyen [23],

Thoai [30] and An-Tao-Thoai [1].

2.1. Gap Function and Some Fundamental Theorems.

We define the gap function g : �n → � ∪ {−∞} by

g(x) = max {eCy | y ∈ D, Cy � Cx } − eCx.(2.2)

If there is no point y ∈ D such that Cy � Cx then g(x) = −∞. Note that g(x) � 0

for all x ∈ D and g is a concave and piece-wise linear function (see Figure 2.2). It

is easily seen that

DE = {x ∈ D | g(x) � 0 }.(2.3)

Indeed, a point x ∈ D is in DE if and only if Cy = Cx for all y ∈ D such that

Cy � Cx, that is equivalent to g(x) � 0. Then the alternative form of (PE) is

(PE)

∣∣∣∣∣∣
min
x

px

s.t. x ∈ D, −g(x) � 0.

Since −g is a convex function, the inequality constraint −g(x) � 0 is a reverse

convex constraint, and hence (PE) is a linear reverse convex problem, which is one

of D.C. optimization problems (See Tuy [32] and Horst-Tuy [15]).

D

DE

g(x)

c1

c2

eC

�
n

Figure 2.2. An example of the gap function g



6 Y.Yamamoto and D.Zenke

We introduce some important theorems about (PE), whose proofs can be found

in e.g. Steuer [28] and White [33]. We will outline some of the proofs to make this

paper self-contained.

Theorem 2.1. The point x̄ ∈ D is an efficient point for (MC) if and only if there

exists λ ∈ �p++ such that x̄ is an optimal solution of the single criterion problem

(SC(λ))

∣∣∣∣∣∣
max
x

λCx

s.t. x ∈ D.

Furthermore, there exists M > 0 such that we can replace the above �p++ with

Λ = {λ ∈ �p++ | λ � e, λ1 = M }.(2.4)

Proof: See Appendix.

By Theorem 2.1, we have only to choose λ ∈ Λ and solve (SC(λ)) to obtain an

initial point in DE ∩ DV . It was shown in Shigeno-Takahashi-Yamamoto [27] that

n2 suffices for M of (2.4), when we consider (mmF ). The following theorem is also

well known.

Theorem 2.2. The set DE is a connected union of the several faces of D.

See Steuer [28] and Naccache [21] for the detail.

3. D.C. Optimization

A set S is said to be a D.C. set (difference of two convex sets) if S = Q\R for

two convex sets Q and R. Similarly, a function f is said to be a D.C. function if

f = q − r for two convex functions q and r. The optimization problem described

in terms of D.C. sets and/or D.C. functions is called D.C. optimization problem.

D.C. optimization problem covers many of nonlinear programming problems such

as location planning problem, engineering design problem, multilevel programming

problem, and optimization problem over the efficient set.

Let D = {x ∈ �n | f(x) � 0 }, where f : �n → � ∪ {+∞} is a convex function.

We assume that D is bounded for simplicity. Let h : �n → � ∪ {+∞} be a convex

function and assume

int {x ∈ �n | h(x) � 0 } = {x ∈ �n | h(x) < 0 }.(3.1)

In this section, we focus on a canonical form D.C. problem:



D.C. Optimization Methods for Minimum Maximal Flow Problem 7

(CDC)

∣∣∣∣∣∣
min
x

px

s.t. x ∈ D, h(x) � 0,

where p ∈ �n. Letting H = {x ∈ �n | h(x) � 0 }, (CDC) can be written as

(CDC)

∣∣∣∣∣∣
min
x

px

s.t. x ∈ D\int H.

In the case where D is a polyhedron given by D = {x ∈ �n | Bx � z, x � 0 } with

B ∈ �m×n and z ∈ �m, the above problem is called a linear reverse convex problem

(LRCP). Figure 3.1 shows two-dimensional examples of the problems (CDC) and

(LRCP), respectively. We explain two methods: the cut-and-split method and the

outer approximation method. For other algorithms on D.C. optimization, the reader

should refer to Tuy [31,32] and Horst-Tuy [15].

p

D

H

x∗

p

x∗

D
H

Figure 3.1. Two-dimensional examples of (CDC) and (LRCP )

3.1. Cut and Split Method.

To explain the cut-and-split (CS for short) method for (LRCP ) we assume that

D � �n
+ and 0 ∈ DV ∩ int H.(3.2)

In the first step of the CS method for (LRCP ), we find an initial feasible solution x̄

and set up the family S of polyhedral cones, initially S := {�n
+}. In each iteration,

we calculate a lower bound with respect to K for each cone K ∈ S, then we split

the cone whose lower bound is minimum until the optimality condition is met.

To calculate a lower bound we define a concavity cut for K\H as follows. Given

a polyhedral cone K with a vertex at 0 and exactly n edges, let ui denote the

intersection point of ∂H and the ith edge of K for i = 1, . . . , n. The concavity cut



8 Y.Yamamoto and D.Zenke

lK(x) � 0 for K\H is given by the linear function lK : �n → � such that

lK(x) = eU−1x − 1,(3.3)

where U = [u1, · · · ,un]. Note that lK(0) = −1 and lK(ui) = 0 for i = 1, . . . , n.

Figure 3.2 shows an example of the concavity cut. See Horst-Tuy [15] for the detail.

K

H

lK(x) = 0

u1

u2

K\H

0

Figure 3.2. The concavity cut lK(x) � 0 for K\H

For each K ∈ S we solve the linear programming problem

(LP (K))

∣∣∣∣∣∣
min
x

px

s.t. x ∈ D ∩ K, lK(x) � 0,

to obtain a solution ωK with the optimal value pωK , which is a lower bound with

respect to K. If h(ωK) � 0, i.e., ωK ∈ DE, and pωK < px̄ for some K then

we update the incumbent x̄ to ωK . When there remain cones after discarding the

cones K with pωK � px̄ if any, then we choose one of them and perform either the

ω-subdivision or the bisection, which are defined below, and go to the next iteration.

For a cone K generated by n extreme rays with directions r1, . . . , rn, let ω ∈ K be

a point such that ω =
∑

j∈J θjr
j for some θj > 0 for j ∈ J , where J � {1, . . . , n} is

the index set of at least two elements, i.e., |J | � 2. Let Kj denote the cone generated

by {r1, . . . , rn}\{rj} ∪ {ω} for each j ∈ J . The cone K is then split into |J | cones

Kj. This splitting is called the ω-subdivision (See Figure 3.3). When ω = (r+r′)/2

for r, r′ ∈ {r1, . . . , rn} such that ‖r−r′‖ is maximum, the subdivision is called the

bisection.

The CS method is described as follows.



D.C. Optimization Methods for Minimum Maximal Flow Problem 9

K

K1

K2

K3

ω ω

r1 r3

r2

r1 r3

r2

Figure 3.3. The ω-subdivision

/** CS method **/

〈0〉 (initialization) Find an initial feasible solution x̄ of (LRCP ). Set K0 := �
n
+,

S := {K0}, R := S, and k := 0.

〈k〉 (iteration k) For each K ∈ S, solve βK := min {px | x ∈ D ∩ K, lK(x) � 0 } to

obtain a solution ωK , where lK(x) � 0 is the concavity cut for K\H.

〈k1〉 (update) Solve β∗ := min {βK | K ∈ S, h(ωK) � 0 } to obtain the cone

K∗. If β∗ < px̄ then set x̄ := ωK∗
.

〈k2〉 (termination) Let R′ := {K ∈ R | βK < px̄ }. If R′ = ∅ then stop, since

x̄ solves (LRCP ).

〈k3〉 (subdivision) Solve min {βK | K ∈ R′ } to obtain the cone K∗∗. Perform

on K∗∗: the ω-subdivision for some ω ∈ K∗∗ or the bisection. Let S∗∗ be

the partition of K∗∗. Set S := S∗∗, R := S∗∗∩ (R′\{K∗∗}), k := k +1 and

go to 〈k〉.

The convergence of the CS method critically depend on the subdivision rule of

K∗∗. Let ωk = ωK∗∗
for iteration k. If the subdivision is exhaustive, namely

any nested sequence of cones generated in the algorithm will shrink to a ray, there

is at least one accumulation point ω∗ of {ωk} contained in ∂H, and hence ω∗ is

feasible. Since pωk is a lower bound of (LRCP ) for all k, ω∗ is an optimal solution

of (LRCP ).

3.2. Outer Approximation Method.

We explain the outer approximation method (OA for short) for (CDC), for which

we assume that

0 ∈ D ∩ int H, and min {px | x ∈ D } = 0,(3.4)



10 Y.Yamamoto and D.Zenke

and the problem (CDC) is regular, i.e.,

D\int H = cl (D\H).(3.5)

Figure 3.4 shows an example of (CDC) that is not regular. We see in the figure

x∗ ∈ D\int H, while x∗ �∈ cl (D\H). The regularity assumption yields the optimality

p

D

H

x∗

Figure 3.4. The case where (CDC) is not regular

condition stated in the following theorem. In the followings we denote

D(x̄) = {x ∈ D | px � px̄ },(3.6)

for x̄ ∈ �n.

Theorem 3.1. (e.g. Horst-Tuy [15]) Let x∗ be a feasible solution of (CDC). Then

x∗ is an optimal solution if it satisfies

D(x∗) � H.(3.7)

Proof: See Appendix.

Let x∗ be an optimal solution of (CDC) and x̄ be the incumbent at iteration k.

In the OA method, we construct infinitely many polytopes P 0, P 1, · · · , P k, · · · such

that P 0 � P 1 � · · · � P k � · · · � D(x∗) until P k � H for some k. We check the

optimality condition P k � H by evaluating h(v) at each vertex v of P k. If there is

a vertex v of P k such that h(v) > 0, we cut off v from the current polytope P k, i.e.,

we construct P k+1 = P k ∩ {x ∈ �n | l(x) � 0 } by a function l : �n → � satisfying

l(v) > 0 and l(x) � 0 for all x ∈ D(x̄).

Here we describe the OA method.

/** OA method **/

〈0〉 (initialization) Find an initial feasible solution x̄ of (CDC) and construct an

initial polytope P 0 � D(x̄). Let P 0
V be the vertex set of P 0. Set k := 0.

〈k〉 (iteration k) Solve max {h(v) | v ∈ P k
V } to obtain a vertex vk.



D.C. Optimization Methods for Minimum Maximal Flow Problem 11

〈k1〉 (termination) If px̄ = 0 or h(vk) � 0, i.e., D(x̄) � H then stop. We see

that x̄ solves (CDC). Otherwise, obtain the point xk ∈ [0,vk] ∩ ∂H.

〈k2〉 (cutting the polytope) If xk �∈ D, set P k+1 := P k ∩ {x ∈ �n | l(x) � 0 },
where l(vk) > 0 and l(x) � 0 for all x ∈ D(x̄). Otherwise, set x̄ := xk

and P k+1 := P k ∩ {x ∈ �n | px � pxk }.
〈k3〉 Compute the vertex set P k+1

V of P k+1. Set k := k + 1 and go to 〈k〉.

Remark 3.2. Defining the set of all subgradient directions of f at a point y, de-

noted by ∂f(y), as ∂f(y) = {q ∈ �n | f(x) − f(y) � q(x − y) for all x ∈ �n }, the

function l : �n → � in Step k2 is given by l(x) = qk(x − yk) + f(yk), where

yk ∈ [0,vk] ∩ ∂D and qk ∈ ∂f(yk). When we consider (LRCP ), we choose an

index i ∈ {1, . . . ,m} such that bivk > zi, where bi is the ith row of B, and set

l(x) = bix − zi.

Remark 3.3. The subroutine computing the vertex set P k+1
V is provided in e.g.

Horst-Vries-Thoai [14], in which P k+1
V is computed from the knowledge of P k

V .

4. D.C. Optimization Methods for (mmF )

In this section we apply the cut-and-split method and the outer approximation

method to (mmF ). The problem (mmF ) is written as

(mmF )

∣∣∣∣∣∣
min
x

dx

s.t. x ∈ XM ,

where X = {x ∈ �n | Ax = 0, 0 � x � c } and XM = {x ∈ X |� ∃y ∈ X : y �
x, y �= x }. Using the gap function

g(x) = max {ey | y ∈ X, y � x } − ex,(4.1)

and the set G = {x ∈ �n | −g(x) � 0 }, (mmF ) is also written as

(mmF )

∣∣∣∣∣∣
min
x

dx

s.t. x ∈ X\int G.

We exclude the trivial case where X = {0}. This implies that 0 �∈ XM or

−g(0) < 0. We also assume that there is no t-s-path, which means dx � 0 for all

x ∈ X. Note that all vertices of X are integer vectors by the total unimodularity

of A and the integrality of c. If x ∈ X is an integer vector, then g(x) takes an



12 Y.Yamamoto and D.Zenke

integer. As stated in Subsection 2.1, g(x) � 0 for all x ∈ X. Additionally we have

the following lemma.

Lemma 4.1. g(x) > 0 for all points x in the relative interior of X.

Proof: Let x be a point in the relative interior of X, i.e., Ax = 0 and 0 < x < c.

Letting x′ = (1 + ε)x for a sufficiently small ε > 0, we see that Ax′ = 0 and

0 < x′ < c, i.e., x′ ∈ X. Therefore g(x) � e(x′ − x) = εex > 0.

The following corollary is a direct consequence of Lemma 4.1.

Corollary 4.2. XM � ∂X.

4.1. Extension of Gap Function.

The domain of g, denoted by dom g, is given by dom g = {x ∈ �n | g(x) > −∞}.
When we apply the CS method or the OA method to (mmF ), we need to evaluate

−g(v) for v not contained in X. Since g(v) = −∞ if there is no point y ∈ X such

that y � v, no information about how far the point v is from the domain of g is

available in this case. In this subsection we extend the gap function g to �n. The

gap function g(x) of (4.1) is given by the optimal value of the problem

(PG(x))

∣∣∣∣∣∣∣∣

max
y

ey − ex

s.t. Ay = 0, 0 � y � c,

y � x,

whose dual problem is

(DG(x))

∣∣∣∣∣∣∣∣∣

min
π,α,β

αc − βx − ex

s.t. πA + α − β � e,

α,β � 0.

Note that (DG(x)) is always feasible, e.g. take π = β = 0 and α � e. Therefore,

(PG(x)) is infeasible if and only if (DG(x)) is unbounded. Adding the upper bound

constraints β � β̄ to (DG(x)) yields the following problem

(DG(x))

∣∣∣∣∣∣∣∣∣

min
π,α,β

αc − βx − ex

s.t. πA + α − β � e,

α � 0, 0 � β � β̄,

where β̄ � 0 will be specified in the following theorem. The dual problem of (DG(x))

is



D.C. Optimization Methods for Minimum Maximal Flow Problem 13

(PG(x))

∣∣∣∣∣∣∣∣∣

max
y,t

ey − ex − β̄t

s.t. Ay = 0, 0 � y � c,

y + t � x, t � 0.

Then we define the extended gap function ḡ : �n → � as

ḡ(x) = max {ey − β̄t | y ∈ X, y + t � x, t � 0 } − ex.(4.2)

Theorem 4.3.

(i) The domain of ḡ is �n.

(ii) If β̄ � ne then ḡ = g on the domain of g.

Proof: (i) For any x ∈ �n, (DG(x)) has a feasible solution and the objective function

is bounded. By the duality theorem of linear programming there is an optimal value

of (PG(x)), and hence ḡ(x) > −∞ for any x ∈ �n.

(ii) Let Ω and Ω̄ denote the feasible sets of (DG(x)) and (DG(x)), respectively, i.e.,

Ω = { (π,α,β) ∈ �m+2n | πA + α − β � e, α,β � 0 }, and

Ω̄ = { (π,α,β) ∈ �m+2n | πA + α − β � e, α � 0, 0 � β � β̄ }.

By the theory of linear programming, if every vertex v of Ω satisfies v � β̄ then

we have ḡ(x) = g(x) for all x in the domain of g. Replacing π by π1 − π2 with

π1,π2 � 0 and introducing a slack variable vector γ � 0, Ω is rewritten as

Ω =







(π1)�

(π2)�

α�

β�

γ�




(
A� −A� I −I −I

)




(π1)�

(π2)�

α�

β�

γ�




= 1,




(π1)�

(π2)�

α�

β�

γ�




� 0




.

Let v be a vertex of Ω. Then it is a basic solution of the system defining Ω, i.e., v =

(wB ,wN ) = (B−11,0) for some nonsingular n×n submatrix B of (A� −A� I −I −I).

Since the incidence matrix A is totally unimodular, i.e., each subdeterminant of A

is −1, 0, or +1, so is (A� −A� I −I −I). Therefore the matrix B−1 is composed

of −1, 0 and +1, and hence B−11 � n1. This completes the proof.

Theorem 4.3 yields an equivalent form of (mmF ). Namely, fixing β̄ = ne we can

reformulate the problem (mmF ) as

(mmF )

∣∣∣∣∣∣
min
x

dx

s.t. x ∈ X\int Ḡ,



14 Y.Yamamoto and D.Zenke

where Ḡ = {x ∈ �n | −ḡ(x) � 0 }.

4.2. Local Search.

For v ∈ XM ∩ XV , we define the set of all efficient vertices linked to v by

NM (v) = {v′ ∈ XM ∩ XV | [v,v′] is an edge of X }(4.3)

= {v′ ∈ XV | [v,v′] is an edge of X and − ḡ(v′) � 0 }.

When we find a feasible solution w ∈ XM , we apply the Local Search procedure

starting with w (LS(w) for short) for further improvement.

The procedure is described as follows.

/** LS(w) procedure **/

〈0〉 (initialization) If w �∈ XV then solve min {dx | x ∈ F }, where F is the face

of X containing w in its relative interior, to obtain a vertex v0 ∈ XM ∩ XV ,

otherwise set v0 := w. Set k := 0.

〈k〉 (iteration k) Solve min {dv | v ∈ NM (vk) } to obtain a solution v∗. If dv∗ � dvk

then stop, vk is the local optimal vertex of (mmF ). Otherwise set vk+1 := v∗,
k := k + 1 and go to 〈k〉.

Remark 4.4. If w ∈ XM , the face F of X containing w in its relative interior is

contained in XM by Theorem 2.2.

4.3. Cut and Split Method for (mmF ).

We can directly apply the CS method to (mmF ) since it satisfies the assumptions

of (3.2), i.e.,

X � �n
+ and 0 ∈ XV ∩ int Ḡ.(4.4)

To make the algorithm more efficient we combine the LS(w) procedure with the CS

method, namely we apply the LS(w) procedure to obtain tighter upper bound every

time we find a feasible solution w ∈ XM .

The CS method for (mmF ) is described as follows.

/** CS method for (mmF ) **/

〈0〉 (initialization) Find an initial feasible vertex w0 ∈ XM ∩ XV of (mmF ). If

NM (w0) = ∅ then stop. We see that w0 is the unique optimal solution of

(mmF ). Otherwise, apply the LS(w0) procedure to obtain a local optimal

vertex x̄ ∈ XM ∩ XV . Set K0 := �n
+, S := {K0}, R := S, γ := 0 and k := 0.



D.C. Optimization Methods for Minimum Maximal Flow Problem 15

〈k〉 (iteration k) For each K ∈ S, solve βK := min {dx | x ∈ X ∩ K, lK(x) � 0 } to

obtain a solution ωK , where lK(x) � 0 is the concavity cut for K\Ḡ.

〈k1〉 (update) Set L := {K ∈ S | ωK ∈ XM }. If L �= ∅ then apply the LS(ωK)

procedure to obtain a local optimal vertex vK for each K ∈ L. Solve

min {dvK | K ∈ L} to obtain the cone K∗. If dvK∗
< dx̄, set x̄ := vK∗

.

〈k2〉 (termination) Set R′ := {K ∈ R | βK < dx̄ }. If R′ = ∅ or dx̄ − γ < 1

then stop, since x̄ solves (mmF ).

〈k3〉 (subdivision) Solve min {βK | K ∈ R′ } to obtain the cone K∗∗. If βK∗∗ > γ

then set γ := βK∗∗ . Let S∗∗ be the partition of K∗∗ obtained by the ω-

subdivision on K∗∗ for some direction ω ∈ K∗∗. Set S := S∗∗, R :=

S∗∗ ∩ (R′\{K∗∗}), k := k + 1 and go to 〈k〉.

Remark 4.5. In Step k3 the direction ω ∈ K∗∗ is obtained as follows. Suppose

that K∗∗ is generated by the directions u1, . . . ,un such that ui ∈ ∂Ḡ, initially

ui = α∗ei with α∗ = max {α | −ḡ(αei) � 0 } for each i = 1, . . . , n. The function

lK∗∗ : �n → � defining the concavity cut lK∗∗(x) � 0 for K∗∗\Ḡ is given by

lK∗∗(x) = eU−1x − 1, where U = [u1, . . . ,un]. Here we solve

η = max { lK∗∗(y) | y ∈ X ∩ K∗∗ },(4.5)

to obtain a solution y∗. Since K∗∗ is in R′, i.e., βK∗∗ < dx̄, we see that η � 0. If

η > 0 then we perform ω-subdivision on K∗∗ with ω = y∗. If η = 0 then we discard

K∗∗ from R′ and go back to Step k2. In this case there is no point v ∈ XV ∩ K∗∗

such that v �= ui for each i = 1, . . . , n. Then we can discard K∗∗ from further

consideration, because at least one vertex of X solves (mmF ).

Every time we obtain an optimal solution y∗ of (4.5) with η > 0, we can perform

y∗-subdivision on K∗∗. This assertion follows from the following theorem.

Theorem 4.6. Let K∗∗ be a cone generated by the directions u1, . . . ,un such that

ui ∈ ∂Ḡ for each i = 1, . . . , n, and y∗ be an optimal solution of (4.5) with η > 0.

Then y∗ �= αui for any i = 1, . . . , n and for any α > 0.

Proof: Assume that y∗ lies on an extreme ray of K∗∗, i.e., y∗ = αuj for some

α > 0 and uj . Since 0 < η = lK∗∗(y∗) = eU−1(αuj) − 1 = α − 1, we have α > 1.

By the choice of uj, we have ḡ((1 + ε)uj) < 0 for any ε > 0. Therefore we have

ḡ(y∗) < 0. On the other hand, y∗ ∈ X ∩ K∗∗ � K, which implies ḡ(y∗) � 0. This

is a contradiction.

Furthermore the following assertion is also available in this subdivision rule.



16 Y.Yamamoto and D.Zenke

Theorem 4.7. Let K be the cone generated by the directions u1, . . . ,un and U =

[u1, . . . ,un]. If ui ∈ XM for each i = 1, . . . , n then there is an optimal solution

ωK of min{dx | x ∈ X ∩ K, lK(x) � 0 } in XM .

Proof: Let ω be an optimal solution of min{dx | x ∈ X ∩ K, lK(x) � 0 }. Since

ω ∈ K, there are nonnegative numbers µ1, . . . , µn such that ω =
∑n

i=1 µiu
i. Also

we see that 0 � lK(ω) = eU−1(
∑n

i=1 µiu
i)−1 =

∑n
i=1 µi−1, and hence

∑n
i=1 µi � 1.

Note that dx � 0 for all x ∈ X by the assumption that a given network has no

t-s-path. Let uj attain min{dui | i = 1, . . . , n }. Then duj �
∑n

i=1 µidui = dω,

in other words, uj ∈ XM solves min {dx | x ∈ X ∩ K, lK(x) � 0 }.

We see that the set {x ∈ K∗∗ | lK∗∗(x) > 0 } does not contain a vertex of X

when η of (4.5) is zero. Suppose that an oracle is available that provides a vertex

of X in {x ∈ K∗∗ | lK∗∗(x) > 0 } whenever there are some, and take the vertex as

the direction ω in Step k3. Then, owing to the finiteness of XV , the ω-subdivision

is repeated at most |XV | times, and hence the CS method terminates after finitely

many iterations. However, the oracle is costly and the authors estimate it NP -

complete to check if XV ∩ {x ∈ K∗∗ | lK∗∗(x) > 0 } is not empty. See Freund-

Orlin [11].

We illustrate the CS method for (mmF ) in Figure 4.1. We first obtain a local

optimal vertex x̄ ∈ XM ∩ XV and set K0 := �
n
+ (See (a)). We determine the

concavity cut lK0(x) � 0 for K0\Ḡ and obtain a point ωK0 (See (b)). The value

dωK0 is a lower bound with respect to K0. Since ωK0 �∈ XM and dωK0 < dx̄, we

split the cone K0 into K1 and K2 (See (c)). In the next iteration, points ωK1 and

ωK2 are obtained (See (d)). We see that ωK2 ∈ XM , and hence apply the LS(ωK2)

procedure to obtain a better point vK2 and update the incumbent x̄ to vK2. The

cone K2 is discarded, since dωK2 � dx̄. Meanwhile K1 is split into K3 and K4 since

ωK1 �∈ XM and dωK1 < dx̄ (See (e)). We obtain points ωK3 and ωK4 in the next

iteration (See (f)) and continue the algorithm.

4.4. Outer Approximation Method for (mmF ).

Unfortunately, the problem (mmF ) is not regular, hence we introduce a positive

tolerance ε, define Ḡε = {x ∈ �n | −ḡ(x) + ε � 0 } and consider

(mmFε)

∣∣∣∣∣∣
min
x

dx

s.t. x ∈ X\int Ḡε,

We call an optimal solution of (mmFε) an ε-optimal solution of (mmF ). Before

describing the OA method for (mmF ), we discuss the range of ε together with



D.C. Optimization Methods for Minimum Maximal Flow Problem 17

X

XM
Ḡ

dx̄

K0

(a) initialization

X

Ḡ

dx̄

K0

lK0(x) = 0

ωK0

(b) obtaining ωK0

X

Ḡ

dx̄

K1

K2

ω

(c) splitting K0 into K1 and K2

X

Ḡ

dx̄

K1

lK2(x) = 0

ωK1

K2

lK1(x) = 0

ωK2

Local Search
vK2

(d) obtaining ωK1 and ωK2

X

Ḡ

d

x̄

K3

K4

ω

(e) splitting K1 into K3 and K4

X

Ḡ

d

x̄

K3

lK4(x) = 0

ωK3

lK3(x) = 0 K4

ωK4

(f) obtaining ωK3 and ωK4

Figure 4.1. An example of the CS method for (mmF )



18 Y.Yamamoto and D.Zenke

relation between (mmF ) and (mmFε). First we assure the regularity of (mmFε)

by the following theorem.

Theorem 4.8. The problem (mmFε) is regular for any ε > 0.

Proof: We show that for any ε > 0,

X\int Ḡε = cl(X\Ḡε).(4.6)

(�) Since X\int Ḡε is closed and X\int Ḡε � X\Ḡε, we have

X\int Ḡε = cl(X\int Ḡε) � cl(X\Ḡε).

(�) Let x be an arbitrary point of X\int Ḡε and let Nδ(x) denote its δ-neighborhood,

i.e., Nδ(x) = {x′ ∈ �n | ‖x′ − x‖ < δ }. We show that there is always a point, say

x′, in Nδ(x)∩ (X\Ḡε). If −ḡ(x)+ ε < 0 then by the continuity of ḡ, −g(x′)+ ε < 0

for any point x′ of some neighbourhood Nγ(x) of x. This implies Nγ(x) � Ḡε, and

hence x ∈ int Ḡε. Therefore the assumption x ∈ X\int Ḡε implies that x ∈ X and

−ḡ(x) + ε � 0. By Theorem 4.3, we have ḡ(x) = g(x). When −ḡ(x) + ε > 0,

take x as x′. Clearly x′ = x �∈ Ḡε and x′ = x ∈ Nδ(x), and we have done.

When −ḡ(x) + ε = 0, i.e., g(x) = ḡ(x) = ε, there is an optimal solution y∗ of

max {ey | y ∈ X, y � x } such that e(y∗ − x) = ε, and hence y∗ �= x. Take λ

such that 0 < λ < min{ 1, δ/‖y∗ − x‖ } and let x′ = λy∗ + (1 − λ)x. Since

‖x′ − x‖ = λ‖y∗ − x‖ < δ, we see x′ ∈ Nδ(x). Also we see that x′ ∈ X by the

convexity of X, and hence g(x′) = ḡ(x′) by applying Theorem 4.3 again. Since

x′ � x and x′ �= x, we have

ḡ(x′) = g(x′)

= max {ey | y ∈ X, y � x′ } − ex′

< max {ey | y ∈ X, y � x } − ex

= e(y∗ − x) = ε.

Therefore we see that x′ �∈ Ḡε. This completes the proof.

In the second place, we discuss an upper bound of ε, which will be useful for the

convergence of the algorithms.

Lemma 4.9. If ε ∈ (0, 1) then (0,v)∩∂Ḡε �= ∅ for any point v such that −ḡ(v) � 0.

Proof: We have −ḡ(0) < 0 by the assumption that 0 �∈ XM . Note that −ḡ(0) is

integer by the integrality property of X, and hence −ḡ(0) + 1 � 0. Then we have

−ḡ(0) + ε < 0, i.e., 0 ∈ int Ḡε for any ε ∈ (0, 1). The continuity of ḡ assures the



D.C. Optimization Methods for Minimum Maximal Flow Problem 19

assertion.

For the following lemma, we use δs to denote the number of arcs going out of source

node s, i.e.,

δs = |{ i | di = +1 }|.(4.7)

Lemma 4.10. Let x∗ and x∗
ε be an optimal solution and an ε-optimal solution of

(mmF ). Then |dx∗ − dx∗
ε| � εδs.

Proof: Since x∗ ∈ X and −ḡ(x∗) � 0, x∗ is a feasible solution of (mmFε), and hence

dx∗
ε � dx∗. Let y∗

ε be an optimal solution of max {ey | y ∈ X, y � x∗
ε }. Clearly

y∗
ε ∈ XM , i.e., y∗

ε is a feasible solution of (mmF ), and hence dx∗ � dy∗
ε. We see

that y∗εi −x∗
εi � ε for each i = 1, . . . , n, since y∗

ε −x∗
ε � 0 and e(y∗

ε −x∗
ε) � ε. That

implies d(y∗
ε − x∗

ε) � ε|{ i | di = +1 }| = εδs, hence dx∗
ε � dx∗ � dy∗

ε � dx∗
ε + εδs.

Corollary 4.11. If ε ∈ (0, 1/δs) then �dx∗
ε
 coincides with the optimal value of

(mmF ).

In the sequel we choose ε from the open interval (0, 1/δs). Note that ḡ(x∗
ε) � ε

holds for an ε-optimal solution of (mmF ). Therefore ḡ(x) � 0 for any accumulation

point x of {x∗
ε}ε>0. This observation leads to the following corollary.

Corollary 4.12. Let {x∗
ε} be a sequence of ε-optimal solutions of (mmF ) for ε

converging to 0. Then the accumulation point of {x∗
ε} is an optimal solution of

(mmF ).

As seen in Subsection 3.2, the termination condition of the OA method is S(x̄) �
Ḡε, where

S(x̄) = {x ∈ X | px � px̄ }.(4.8)

We relax this condition for (mmF ) as shown in the following theorem.

Theorem 4.13. Let x̄ ∈ X\int Ḡε for some ε ∈ (0, 1/δs). If S(x̄) � Ḡε′ for some

ε′ ∈ (0, ε] then �dx̄
 coincides with the optimal value of (mmF ).

Proof: Let x∗ and x∗
ε be an optimal solution and an ε-optimal solution of (mmF ),

respectively. Since x̄ is a feasible solution of (mmFε), we have dx∗
ε � dx̄. It is

also clear that dx∗
ε � dx∗. If dx∗ < dx̄ then we have x∗ ∈ S(x̄) � Ḡε′ , and

hence ḡ(x∗) � ε′ > 0. This contradicts that ḡ(x∗) = 0. Then we have dx̄ � dx∗.



20 Y.Yamamoto and D.Zenke

Lemma 4.10 and the fact that dx∗
ε � dx̄ � dx∗ � dx∗

ε + εδs < dx∗
ε + 1 complete

the proof.

Let P be a polytope such that S(x̄) � P for some x̄ ∈ X\int Ḡε and v∗ be an

optimal solution of max {−ḡ(v) | v ∈ PV }. Since x̄ ∈ P and x̄ �∈ int Ḡε, we see

that ḡ(v∗) � ḡ(x̄) � ε. Then the value ε′ = ḡ(v∗) is smaller than or equal to ε.

It is also clear that P � Ḡε′ because for all x ∈ P we have −ḡ(x) � −ḡ(v∗), i.e.,

−ḡ(x)+ ḡ(v∗) = −ḡ(x)+ε′ � 0. Namely we have ε′ � ε and S(x̄) � Ḡε′ . Therefore

if ε′ > 0 then the optimal value of (mmF ) is obtained by Theorem 4.13.

We describe the OA method for (mmF ) as follows.

/** OA method for (mmF ) **/

〈0〉 (initialization) Find an initial feasible vertex w0 ∈ XM ∩ XV of (mmF ). If

NM (w0) = ∅ then stop. We see that w0 is the unique optimal solution of

(mmF ). Otherwise, apply the LS(w0) procedure to obtain a local optimal vertex

x̄ ∈ XM ∩ XV . Solve cmax := max {ex | x ∈ X } and construct an initial poly-

tope P 0 � S(x̄) by setting P 0 := {x ∈ �n | ex � cmax, dx � dx̄, x � 0 }.
Let P 0

V be the vertex set of P 0. Set k := 0.

〈k〉 (iteration k) Solve max{−ḡ(v) | v ∈ P k
V } to obtain a vertex vk.

〈k1〉 (termination) If either dx̄ = 0 or ḡ(vk) > 0 then stop. The optimal value

of (mmF ) is �dx̄
. Otherwise, obtain the point xk ∈ (0,vk) ∩ ∂Ḡε.

〈k2〉 (update) If xk ∈ X then solve λ∗ := max{λ | (1 − λ)xk + λvk ∈ ∂X, λ ∈
[0, 1] } and set yk := (1 − λ∗)xk + λ∗vk.

〈k2.1〉 If yk ∈ XM then apply the LS(yk) procedure to obtain the local

optimal vertex zk. We obtain the point ȳk ∈ (0,zk) ∩ ∂Ḡε.

〈k2.1.1〉 If dȳk � dxk then set x̄ := ȳk,

P k+1 := P k ∩ {x ∈ �n | dx � dx̄ }.
〈k2.1.2〉 Otherwise set x̄ := xk and

P k+1 := P k ∩ {x ∈ �n | dx � dx̄ }.
〈k2.2〉 If yk �∈ XM then set x̄ := xk and

P k+1 := P k ∩ {x ∈ �n | dx � dx̄, l(x) � 0 }.
〈k3〉 If xk �∈ X then set P k+1 := P k ∩ {x ∈ �n | l(x) � 0 }.
〈k4〉 Compute the vertex set P k+1

V of P k+1. Set k := k + 1 and go to 〈k〉.

Remark 4.14. The function l : �n → � in Step k2.2 and Step k3 is given by one of

the inequalities ±Ax � 0 and x � c not satisfied by the point vk, i.e.,



D.C. Optimization Methods for Minimum Maximal Flow Problem 21

(i) l(x) = ejx − cj for some j ∈ {1, . . . , n} such that vk
j > cj , or

(ii) l(x) = aix or −aix for some i ∈ {1, . . . ,m} such that aivk > 0 or aivk < 0,

respectively, where ai is the ith row of A.

Lemma 4.15. Let zk be the local optimal vertex obtained by applying the LS(yk)

procedure in Step k2.1 at iteration k, and suppose dzk > 0. Then dzk′
< dzk for

iteration k′ such that k′ > k.

Proof: Let x̄k be the incumbent and ȳk be the point contained in (0,zk) ∩ ∂Ḡε at

iteration k. In the OA method for (mmF ), we have D(x̄k) � P k � {x | dx � dx̄k }
for each iteration k. Since yk ∈ D(x̄k) and dzk > 0, we see that 0 < dȳk < dzk �
dyk � dx̄k. Then we have dx̄k+1 = min{dxk, dȳk } < dzk � dx̄k in Step k2.1.

This implies that dzk′
< dzk for iteration k′ with k′ > k.

Theorem 4.16. The OA method for (mmF ) works correctly and terminates after

finitely many iterations.

Proof: (correctness) If NM (w0) = ∅ at iteration 0 then w0 solves (mmF ) by the

connectedness of XM . When the algorithm terminates in Step k1, the optimal value

of (mmF ) is equal either to zero by the assumption that dx � 0 for all x ∈ X, or

to �dx̄
 by Theorem 4.13. So the optimal value is obtained when the algorithm

terminates either in Step 0 or in Step k1.

We suppose that the algorithm has not yet terminated and show that each step of

the algorithm can be done. Let x̄k be the incumbent and vk be an optimal solution

of max{−ḡ(v) | v ∈ P k
V } at iteration k, and suppose that dx̄k > 0 and ḡ(vk) � 0.

By Lemma 4.9, there is a point xk ∈ (0,vk)∩∂Ḡε. Similarly, for all zk ∈ XM ∩XV

there is a point ȳk ∈ (0,zk) ∩ ∂Ḡε because ḡ(zk) = 0. Since vk does not lie in the

relative interior of X by Lemma 4.1 and the assumption that ḡ(vk) � 0, we have

[xk,vk] ∩ ∂X �= ∅ when xk ∈ X. Therefore λ∗ in Step k1 is calculated and yk is

defined. When xk �∈ X, clearly vk �∈ X, and hence the function l : �n → � can be

defined in Step k3. To show that the function l : �n → � is defined in Step k2.2 we

have only to show that vk �∈ X. Suppose the contrary, i.e., vk ∈ X. Then ḡ(vk) = 0

by the assumption that ḡ(vk) � 0 and the fact that ḡ(x) � 0 for all x ∈ X. This

means vk ∈ XM , which is a subset of ∂X by Corollary 4.2, and hence yk = vk by

the choice of yk. Then yk ∈ XM , which contradicts that we are at iteration k2.2.

Therefore we have seen that vk �∈ X in Step k2.2.

(finiteness) Suppose that the polytope P ν at iteration ν meets the condition

P ν � X and P ν ∩ XM = ∅,(4.9)



22 Y.Yamamoto and D.Zenke

after updated either in Step k2 or in Step k3, and consider the next iteration. Since

vν is chosen from P ν , we have vν ∈ X\XM and consequently ḡ(vν) > 0. Then

the algorithm stops at Step k1. Therefore we have only to prove that (4.9) holds

within a finite number of iterations. Note first that both Step k2.2 and Step k3 are

done at most a finite number of times. Indeed, the polytope, say P k′
, with 2m + n

cuts l(x) � 0 added to the initial polytope P 0 is contained in X. Therefore vk′
as

well as xk′
lies in X, and hence we obtain that yk′

= vk′ ∈ XM in the same way

as in the former part of this proof. Therefore we come to neither Step k2.2 nor

Step k3 after iteration k′. Namely, Step k2.1 followed by Step k4 repeats itself after

iteration k′. For iteration k with k � k′+1, we have yk ∈ XM . We then locate zk ∈
XM ∩XV by applying the LS(yk) procedure and obtain a point ȳk ∈ (0,zk)∩ ∂Ḡε.

If dzk = 0 for some k then we set x̄k+1 := ȳk since dȳk = d(λ0 + (1 − λ)zk) =

λd0+(1−λ)dzk = 0 � dxk. The incumbent value dx̄k+1 becomes zero, and hence

the algorithm stops in Step k1 at the next iteration. If dzk > 0 for all k with

k � k′ + 1. We see that dzk+1 < dzk for all k by Lemma 4.15. Since |XM ∩ XV |
is finite, we eventually obtain a point zν−1 ∈ XM ∩ XV such that dzν−1 � dz

for all z ∈ XM ∩ XV . Also we have dȳν−1 < dzν−1 by the choice of ȳν−1. The

polytope P ν is then defined as P ν := P ν−1 ∩ {x | dx � dx̄ν }, where x̄ν satisfies

that dx̄ν = min{dxν−1, dȳν−1 } < dzν−1. This means that P ν ∩ (XM ∩ XV ) = ∅.
By Theorem 2.2, we see that dzν−1 � dx for all x ∈ XM . Therefore we conclude

that P ν ∩ XM = ∅.

We illustrate the OA method for (mmF ) in Figure 4.2. We obtain a local optimal

vertex x̄ ∈ XM ∩ XV and set up an initial polytope P 0 (See (a)). It is easy to

enumerate all vertices of P 0 because this polytope is simply given by P 0 := {x ∈
�

n | ex � cmax, dx � dx̄, x � 0 }. We obtain a point v0 which solves max{−ḡ(v) |
v ∈ P 0

V }, and a point x0 ∈ (0,v0)∩ ∂Ḡε (See (b)). We see that x0 �∈ X, and hence

cut off v0 from P 0 (See (c)). Using P 0
V , we compute P 1

V . In the next iteration,

we obtain points v1,x1 and y1. Since y1 ∈ XM , we apply the LS(y1) procedure

to obtain a point z1, and obtain a point ȳ1 ∈ (0,z1) ∩ ∂Ḡε (See (d)). We have

ȳ1 ∈ X\Ḡε such that dȳ1 < min{dx1, dx̄ }. We then update the incumbent x̄ to

ȳ1 and construct P 2 by adding the cut dx � dx̄ to P 1 (See (e)). We terminate at

the next iteration because ḡ(v) > 0 for all vertices v of P 2 (See (f)). The optimal

value �dx̄
 is obtained



D.C. Optimization Methods for Minimum Maximal Flow Problem 23

X

Ḡε

x̄
d

P 0

(a) polytope P 0

X

Ḡε

x̄
d

P 0

v0

x0

0

(b) obtaining v0 and x0

X

Ḡε

x̄
d

P 0

v0

x0

0

l(x) = 0

(c) cutting off v0 from P 0

x1

X

Ḡε

x̄
d

P 1

0

v1

y1z1

Local Search

ȳ1

(d) obtaining v1, x1, y1 and ȳ1

X

Ḡε

d

P 1

0

v1

x̄

{x | dx = dx̄ }

(e) cutting off v1 from P 1

X

Ḡε

d

P 2

0

x̄

(f) termination

Figure 4.2. An example of the OA method for (mmF )



24 Y.Yamamoto and D.Zenke

5. Conclusion and Further Works

Computational experiment should be carried out to verify the efficiency of the

algorithms we proposed in this paper. In many problems formulated as (PE) the

criterion matrix C has quite a small number p of rows. Some sophisticated algo-

rithms for (PE) take advantage of this property. The number p is however equal

to the number of arcs, i.e., p = n in (mmF ). Therefore it is likely that a primi-

tive method surpasses some sophisticated algorithms. The comparative studies of

several algorithms for (mmF ) are significant and required for further works.

The OA method for (mmF ) provides the optimal value but not an optimal solu-

tion. The knowledge of the optimal value is not helpful to find an optimal solution,

however, the following lemma is a clue to the way of finding an optimal solution.

Lemma 5.1. Let x∗
ε be an ε-optimal solution of (mmF ), and

∆ε = { ξ ∈ �n | Aξ = 0, ξ � 0, eξ � ε }.(5.1)

For ε ∈ (0, 1), if there is an integer vector x∗ of dimension n such that x∗ = x∗
ε + ξ̄

for some ξ̄ ∈ ∆ε then x∗ is an optimal solution of (mmF ).

Proof: (feasibility) We show that x∗ = x∗
ε + ξ̄ is a feasible solution of (mmF ), i.e.,

x∗ ∈ XM . Let y∗ be an optimal solution of max {ey | y ∈ X, y � x∗ }. If the

following assertion

both ex∗ and ey∗ are integer, and ex∗
ε � ex∗ � ey∗ < ex∗

ε + 1(5.2)

is true then we have ex∗ = ey∗, and hence ḡ(x∗) = g(x∗) = 0, i.e., x∗ ∈ XM .

Now we show the assertion (5.2). Since x∗ is an integer vector, clearly ex∗ is

integer. By the integrality property of X, ey∗ is also integer. It is also clear that

ex∗
ε � ex∗ � ey∗. Then the condition ey∗ < ex∗

ε + 1 remains to prove. Let y∗
ε be

an optimal solution of max {ey | y ∈ X, y � x∗
ε }, and let ξ∗ = y∗

ε − x∗
ε. We see

that Aξ∗ = Ay∗
ε − Ax∗

ε = 0, ξ∗ � 0 and eξ∗ = e(y∗
ε − x∗

ε) = ḡ(x∗
ε) � ε, and hence

ξ∗ ∈ ∆ε. Then ey∗
ε = e(x∗

ε + ξ∗) � ex∗
ε + ε < ex∗

ε + 1. The point y∗ is a feasible

solution of max {ey | y ∈ X, y � x∗
ε }, since y∗ ∈ X and y∗ � x∗ = x∗

ε + ξ̄ � x∗
ε.

Then we see that e(y∗
ε − y∗) � 0, and hence ey∗ � ey∗

ε < ex∗
ε + 1.

(optimality) We show that x∗ solves (mmF ). Clearly, dξ̄ � eξ̄ since d � e and

ξ̄ � 0. For any v ∈ XM ∩ XV , we see that ḡ(v) � ε, and v is an integer vector by

the integrality property of X. Since x∗
ε = x∗ − ξ̄ is an optimal solution of (mmFε),

we have dx∗
ε � dx for all x ∈ X such that ḡ(x) � ε, and hence dx∗

ε � dv for all

v ∈ XM ∩XV . Then we see that dx∗ = dx∗
ε + dξ̄ � dv + eξ̄ < dv + 1. Since both

x∗ and v are integer vectors, we have dx∗ � dv for all v ∈ XM ∩ XV .



D.C. Optimization Methods for Minimum Maximal Flow Problem 25

Appendix

The Proof of Theorem 2.1

Proof: (⇐) Assume that x̄ ∈ D is not an efficient point for (MC). There exists

y ∈ D such that Cy � Cx and Cy �= Cx. Then, x̄ is not an optimal solution of

(SC(λ)) for any λ ∈ �p++. (⇒) Suppose x̄ ∈ D is an efficient point for (MC). Let

Lx̄ = diag{l1, . . . , ln}, where

li =




1 if x̄i = 0

0 otherwise
(i = 1, . . . n).(5.3)

If there exists a vector u ∈ �n satisfies the system

Cu � 0, Cu �= 0, Lx̄u � 0, Bu = 0,(5.4)

setting x = x̄ + θu for a sufficiently small θ > 0, we see x ∈ D satisfies Cx � Cx̄

and Cx �= Cx̄. This contradicts that x̄ is an efficient point for (MC). Then, there

is no vector u ∈ �n satisfies the system (5.4). Applying the Tucker’s alternative

theorem (See Mangasarian [20]), there are vectors λ ∈ �p, µ ∈ �n and ν ∈ �m

such that

λC + µLx̄ + νB = 0, λ > 0, µ � 0.(5.5)

For any x ∈ �n, we see that

λC(x̄ − x) + µLx̄(x̄ − x) + νB(x̄ − x) = 0.(5.6)

Therefore for any x ∈ D, we have µLx̄(x̄ − x) � 0 and νB(x̄ − x) = 0, and hence

λCx̄ � λCx. It remains to proof the assertion that there exists M > 0 such that we

can replace �p++ with Λ of (2.4). By the theory of the parametric linear program,

DE is the union of finitely many faces F1, · · · , FK of D such that Fk is the optimal

face of (SC(λk)) for some λk ∈ �p++. Let αk = 1/min{λk
i | i = 1, . . . , p } for

k = 1, . . . ,K and M = max{αk(λk1) | k = 1, . . . ,K }. Then λ̄
k = (M/λk1)λk ∈ Λ

and F k remains the optimal face of (SC(λ̄k)) for each k = 1, . . . ,K.

Proof of Theorem 3.1

Proof: Suppose that x∗ ∈ D\intH is not an optimal solution of (CDC), i.e., there

exists y ∈ D\intH such that py < px∗. Clearly, y ∈ D(x∗) and h(y) � 0. If

h(y) > 0 then y is not contained in H, and hence y ∈ D(x∗)\H. By the regularity

assumption, if h(y) = 0, i.e., y ∈ ∂H then we can take y′ ∈ Nδ(y) ∩ D such

that py′ < px∗ and h(y′) > 0 for a sufficiently small δ > 0, where Nδ(y) =

{y′ ∈ �n | ‖y′ − y‖ < δ }, and hence we see that y′ ∈ D(x∗)\H.



26 Y.Yamamoto and D.Zenke

References

[1] L. T. H. An, P. D. Tao, and N. V. Thoai. Combination between global and local methods for

solving an optimization problem over the efficient set. European J. Oper. Res., 142:258–270,

2002.

[2] H. P. Benson. Optimization over the efficient set. J. Math. Anal. Appl., 98:562–580, 1984.

[3] H. P. Benson. An all-linear programming relaxation algorithm for optimizing over the efficient

set. J. Global Optim., 1:83–104, 1991.

[4] H. P. Benson. A finite, nonadjacent extreme-point search algorithm for optimization over the

efficient set. J. Optim. Theory Appl., 73(1):47–64, 1992.

[5] H. P. Benson. A geometric analysis of the efficient outcome set in multiple objective convex

program with linear criteria functions. J. Global Optim., 6:231–251, 1995.

[6] S. Bolintineanu. Minimization of a quasi-concave function over an efficient set. Math. Program.,

61:89–110, 1993.

[7] J. P. Dauer and T. A. Fosnaugh. Optimization over the efficient set. J. Global Optim., 7:261–

277, 1995.

[8] J. G. Ecker and I. A. Kouada. Finding efficient points for linear multiple objective programs.

Math. Program., 8:375–377, 1975.

[9] J. G. Ecker and I. A. Kouada. Finding all efficient extreme points for multiple objective linear

programs. Math. Program., 14:249–261, 1978.

[10] J. G. Ecker and J. H. Song. Optimization a linear function over an efficient set. J. Optim.

Theory Appl., 83(3):541–563, 1994.

[11] R. M. Freund and J. B. Orlin. On the complexity of four polyhedral set containment problems.

Math. Program., (33):139–145, 1985.

[12] M. R. Garay and D. S. Johnson. Computers and Intractability: A Guide to the Theory of

NP-Completeness. Freeman, San Francisco, 1979.

[13] J. Gotoh, N. V. Thoai, and Y. Yamamoto. Global optimization method for solving the minimum

maximal flow problem. Optim. Methods Softw., 18:395–415, 2003.

[14] R. Horst, J. de Vries, and N. V. Thoai. On finding new vertices and redundant constraints in

cutting plane algorithms for global optimization. Oper. Res. Lett., 7(2):85–90, 1988.

[15] R. Horst and H. Tuy. Global Optimization. Springer-Verlag, Berlin, third and revised and

enlarged edition, 1995.

[16] Y. D. Hu and E. J. Sun. Connectedness of the efficient set in strictly quasiconcave vector

maximization. J. Optim. Theory Appl., 78(3):613–622, 1993.

[17] M. Iri. An essay in the theory of uncontrollable flows and congestion. Technical Report 94-03,

Department of Information and System Engineering, Chuo University, TRISE, 1994.

[18] M. Iri. Theory of uncontrollable flows - a new type of network-flow theory as a model for the

21th century of multiple values. Comput. Math. Appl., 35:107–123, 1998.

[19] J Fülöp. A cutting plane algorithm for linear optimization over the efficient set. Lecture Notes

405, Economics and Mathematical Systems, 1994.

[20] O. L. Mangasarian. Nonlinear Programming. MacGraw-Hill, New York, 1969.

[21] P. H. Naccache. Connectedness of the set of nondominated outcomes in multicriteria optimiza-

tion. J. Optim. Theory Appl., 25(3):459–467, 1978.

[22] J. Philip. Algorithms for the vector maximization problem. Math. Program., 2:207–229, 1972.



D.C. Optimization Methods for Minimum Maximal Flow Problem 27

[23] T. Q. Phong and H. Q. Tuyen. Bisection search algorithm for optimizing over the efficient set.

Vietnam J. Math., 28:217–226, 2000.

[24] Y. Sawaragi, H. Nakayama, and T. Tanino. Theory of Multiobjective Optimization, volume 176

of Monographs and Textbooks. Academic Press, Orlando, 1985.

[25] S. Sayin. Optimizing over the efficient set using a top-down search of faces. Oper. Res., 48(1):65–

72, 2000.

[26] J. Shi and Y. Yamamoto. A global optimization method for minimum maximal flow problem.

Acta Math. Vietnam., 22:271–287, 1997.

[27] M. Shigeno, I. Takahashi, and Y. Yamamoto. Minimum maximal flow problem - an optimization

over the efficient set -. J. Global Optim., 25:425–443, 2003.

[28] R. E. Steuer. Multiple Criteria Optimization: Theory, Computation, and Application. John

Wiley & Sons, Ner York, 1986.

[29] P. T. Thach, H. Konno, and D. Yokota. Dual approach to minimization on the set of pareto-

optimal solutions. J. Optim. Theory Appl., 88(3):689–707, 1996.

[30] N. V. Thoai. Conical algorithm in global optimization for optimizing over efficient sets. J.

Global Optim., 18:321–336, 2000.

[31] H. Tuy. D.C. Optimization: Theory, Methods and Algorithms. in Handbook of Global Opti-

mization edited by R. Horst and P. M. Pardalos, Kluwer Academic Publishers, Netherlands,

1995.

[32] H. Tuy. Convex Analysis and Global Optimization. Kluwer, Dordrecht, 1998.

[33] D. J. White. Optimality and Efficiency. John Wiley & Sons, Chichester, 1982.

[34] Y. Yamamoto. Optimizing over the efficient set: Overview. J. Global Optim., 22(1-4):285–317,

2002.

Yoshitsugu Yamamoto and Daisuke Zenke, Graduate School of Systems and Infor-

mation Engineering, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan.

E-mail address: {yamamoto, dzenke}@sk.tsukuba.ac.jp


