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Abstract: This paper proposes a method to estimate a mobile camera’s position and orientation by referring to the
corresponding points between aerial-view images from a GIS database and mobile camera images. The mobile camera
images are taken from the user’s viewpoint, and the aerial-view images include the same region. To increase the corre-
spondence accuracy, we generate a virtual top-view image that virtually captures the target region overhead of the user
by using the intrinsic parameters of the mobile camera and the inertia (gravity) information. We find corresponding
points between the virtual top-view and aerial-view images and estimate a homography matrix that transforms the
virtual top-view image into aerial-view image. Finally, the mobile camera’s position and orientation are estimated by
analyzing the matrix. In some cases, however, it is difficult to obtain a sufficient number of correct corresponding
points to estimate the correct homography matrix by capturing only a single virtual top-view image. We solve this
problem by stitching virtual top-view images to represent a larger ground region. We experimentally implemented our
method on a tablet PC and evaluated its effectiveness.
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1. Introduction

Over the last few years, mounting Global Positioning Sys-
tems (GPSs) on mobile devices, including digital cameras, smart-
phones, and tablet PCs, has become popular. Many navigation ap-
plications have been developed using measured locations. How-
ever, using ordinary GPSs is associated with measurement errors
of several meters. Since measurement errors are larger in areas
with many high-rise buildings, inaccurate information might be
presented. For car navigation systems, it is possible to correct the
positional measurements by referring to the car’s estimated ori-
entation/motion. However, when mobile cameras are handheld,
user’s walking speeds are much slower than the speed of cars,
complicating the application of similar methods used in car nav-
igations. Using an electronic compass is one solution; however,
the measurement errors might be several degrees, and the mag-
netic fields generated by other electronic devices also negatively
affect the accuracy of such measurements [1].

Over the last decade, as shown by Google Maps [2], obtaining
aerial-view images captured by aircraft has become easy. Each
pixel on the aerial-view images of a Geographic Information Sys-
tem (GIS) has global position (latitude and longitude) informa-
tion.

We propose a localization method that automatically and effi-
ciently estimates the position and orientation of a mobile camera
in an outdoor environment by using aerial-view images (Fig. 1).
First, a mobile camera image is transformed into a virtual top-
view image using the information delivered by inertia sensors.
The corresponding points between the virtual top-view and aerial-
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view images are identified by the image features. Finally, the mo-
bile camera’s position and orientation are defined by referring to
such correspondences.

2. Related Works

Mobile camera localization methods are roughly categorized
into sensor and image-based methods. Common examples of
the former are GPSs, electronic compasses, and inertia sensors.
However, all suffer from measurement errors. As an example of
the latter category, visual markers are widely used such as AR-
Toolkit [3], which can accurately localize a mobile camera as long
as a marker is well observed. Thus, unless we install many mark-
ers in the target space, the scenery might be negatively affected.
Many methods have been proposed that employ image features
rather than visual markers [4], [5]. Even though they demand less
from the environment, it is still necessary to prepare landmarks
to transform the estimated positions and orientations into a world
coordinate system.

Fig. 1 Localizing user position using correspondence between aerial-view
and mobile camera images.
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Recently, mobile camera localization methods that use cali-
brated environmental cameras have been proposed to handle these
problems. Tsuru et al. [6] used a mobile camera in combination
with calibrated environmental stereo cameras and estimated its
position and orientation by capturing the common space. Noda
et al. [7] used image sequences from a car-mounted camera and
aerial-view images captured by aircraft and extracted road regions
from a car camera image and transformed them into aerial views.
By searching for correspondences between the transformed road
region and the aerial-view image, they computed a homography
matrix to estimate the car’s position. As long as we surveyed,
there have not ever been any localization methods that automat-
ically and efficiently estimate the position and orientation of a
mobile camera in an outdoor environment by using aerial-view
images.

3. Mobile Camera Localization Using Aerial-
view Images

This paper proposes a method to estimate the position and
orientation of a mobile camera by extending the above ap-
proaches [6], [7]. As a calibrated environmental camera, we fo-
cus on aerial-view images of GIS. All the pixels of aerial-view
images contain global positional information: latitude and longi-
tude. In a sense, aerial cameras are calibrated in a world coordi-
nate system. Since aerial-view images are captured from a higher
viewpoint, the perspective’s distortion is small, and we can obtain
the visual information of a large area in just a few shots.

Figures 2 and 3 show the processing flow of our proposed
method. With a mobile camera, a user takes a landscape picture
that partially observes the ground region. Then, we have an as-
sumption that the captured ground area is flat and horizontal (i.e.,
the surface should be perpendicular to the gravity direction). To
reduce the difference in the appearances between the mobile cam-
era and aerial-view images, we generate a virtual top-view image
whose viewpoint is virtually transformed to a high viewpoint us-
ing the gravity information from an embedded inertia sensor. Us-
ing such image features as SIFT (Scale Invariant Feature Trans-
form) [8] keypoint matching allows to identify the corresponding

Fig. 2 Processing flow of our proposed method.

points between the virtual top-views and the aerial-views and to
calculate the homography matrix. Finally, we analyze the matrix
to localize the mobile camera.

4. Generating Virtual Top-view Images

In this section, we describe the process of transforming a mo-
bile camera image to a virtual top-view image (Fig. 4). The pro-
jection matrices of a mobile camera and a virtual top-view camera
is described as follows:

P = K[R|t] (1)

P′ = K[R′|t′] (2)

with intrinsic camera parameter matrix K, rotation matrices R and
R′, and translation vectors t and t′. R and R′ are estimated us-
ing the gravity information. When we define ΔR as a coordinate
transformation matrix from R to R′, homography matrix HΔR,
which projects any points by ΔR, is described as follows:

HΔR = K(ΔR)K−1 (3)

HΔR is computed using accelerometer data. Translation matrix
Δt from t to t′ is

Δt = t′ − t (4)

where Δt affects the spatial resolution of the generated virtual
top-view image (i.e., the higher that viewpoint t is, the lower the
spatial resolution). To make the subsequent image-matching pro-
cess more efficient, we define HΔt to set the spatial resolution of
the virtual top-view image almost equal to that of the aerial-view
image. Homography matrix H1, which projects the image of the
user viewpoint to a virtual top-viewpoint image, is described as:

H1 = HΔt HΔR (5)

Fig. 3 Mobile camera localization using aerial-view images.

Fig. 4 Generating virtual top-view image.

c© 2014 Information Processing Society of Japan 112



IPSJ Transactions on Computer Vision and Applications Vol.6 111–119 (Oct. 2014)

Fig. 5 Mobile camera image (left) and generated virtual top-view image
(right).

Figure 5 shows the result of generating a virtual top-view im-
age.

5. Finding Keypoint Correspondence

In this section, we explain how to determine the correspon-
dence between virtual top-view and aerial-view images to com-
pute homography matrix H2, which projects the virtual top-view
image to the aerial-view image. We increase the accuracy of the
estimated homography matrix by reducing the false matches and
scaling the virtual top-view image.

5.1 Keypoint Matching by SIFT
For the image matching, we use SIFT [8], a keypoint detec-

tion and description algorithm. By transforming a mobile camera
image to a virtual top-view image, the factors that cause differ-
ences in the appearance between the two images are reduced to
just scale and illumination. The keypoint features described by
SIFT have the advantage of being robust for changes of rotation,
illumination, and scale. Therefore, we believe that SIFT is a good
choice for image matching (Fig. 6).

5.2 Removing False Matches
We identified the corresponding points using SIFT including

false matches. As they increase, it becomes difficult to accu-
rately estimate a homography matrix, even if a robust estimation
method is employed, such as RANSAC [9]. Therefore, we must
reduce the number of false matches on the keypoint orientation
and scale.
5.2.1 Keypoint Orientation

The SIFT keypoints include information on the orientation of
the gradients. We reduce the false matches using the orientation.
First, we generate a histogram of the orientation differences be-
tween pairs of corresponding points. We assume that correctly
matched pairs have similar orientation differences (i.e., they con-
verge to a few bins of the histogram). As Fig. 7 shows, when a
matching pair lies a certain distance from the highest frequency
bin, it is filtered out.
5.2.2 Keypoint Scale

False matches are also reduced using a keypoint scale. SIFT
constructs image pyramids that are robust to scale changes. Key-
points have information about the number of image pyramids in

Fig. 6 SIFT matching result.

Fig. 7 Removing false matches using histogram of brightness gradient
differences.

Fig. 8 Removing false matches using histogram of layer number
differences.

which a particular keypoint is detected. Here, we generate a his-
togram that shows the differences in the pyramid numbers be-
tween pairs of the corresponding points as well as the histogram
of the keypoint orientation described in the previous section. We
assume that correctly matching pairs have similar differences.
When a matching pair lies a certain distance from the highest
frequency bin, it is filtered out (Fig. 8).

After the SIFT matching and filtering out of the false matches,
the homography matrix is estimated by a robust estimation
method called RANSAC by referring to the corresponding points.
When use RANSAC, four matches are used at each iteration. Fig-
ure 9 shows a result obtained after removing the false matches.
5.2.3 Fitting Scales

Although SIFT is robust to scale changes, if they are too large,
it is difficult to correctly define the correspondence [10]. There-
fore, we control the spatial resolution of the virtual top-view im-
age, when its resolution is much higher than that of the aerial-
view image. The spatial resolution of the aerial-view image is
obtained from the GIS database, and that of the virtual top-view
image is computed from the information on the mobile camera’s
tilt angle, height, and intrinsic parameters. About height parame-
ter, it is difficult to get the parameter automatically, so we should
have users input the height parameter. If the spatial resolutions
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Fig. 9 Before removing (left) and after removing (right).

of a virtual top-view and an aerial-view images are defined as
resvirtual topview and resaerialview, a scaling matrix can be described
as

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s 0 0
0 s 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6)

where scaling parameter s is defined as

s =
resvirtual topview

resaerialview
. (7)

6. Mobile Camera Localization

In Sections 4 and 5, we explained how to compute homogra-
phy matrix H1, which transforms a mobile camera image to a vir-
tual top-view image, and matrix H2, which transforms the virtual
top-view image to an aerial-view image. Therefore the following
product of these matrices

H = H2H1 (8)

is a homography matrix that transforms mobile camera images to
aerial-view images. If a homography matrix from one plane to
another is available and mobile camera’s intrinsic parameter ma-
trix K is known, we can estimate the mobile camera’s 3D position
and orientation [3], [11] in the former plane coordinate system.

H in Eq. (8) is a homography matrix from a mobile camera im-
age to an aerial-view image. The homography matrix from an
aerial-view image to a mobile camera image is H−1. H−1 is de-
fined as:

H−1 def
= [h1 h2 h3] . (9)

And the rotation matrices and the translation matrix are

r1 =
K−1h1
∥∥∥K−1h1

∥∥∥
(10)

r2 =
K−1h2
∥∥∥K−1h2

∥∥∥
(11)

r3 = r1 × r2 (12)

t =
K−1h3
∥∥∥K−1h1

∥∥∥
=

K−1h3
∥∥∥K−1h2

∥∥∥
. (13)

Then mobile camera’s rotation matrix R and position c in the co-
ordinate system of an aerial-view image are described as:

R = [r1 r2 r3] (14)

c = −RT t. (15)

Fig. 10 SIFT matching results between virtual top-view and aerial-view
images.

Fig. 11 Stitching virtual top-view images.

7. Generating a Stitched Virtual Top-view Im-
age

Users take pictures while standing on the ground. Sometimes
too few ground features are observed in mobile camera images.
This complicates obtaining a sufficient amount of keypoint corre-
spondence to localize the mobile camera (Fig. 10). To resolve this
problem, we generated a virtual top-view image that observes a
much larger ground region by stitching multiple virtual top-view
images together.

Next we identify the corresponding points between two virtual
top-view images, which include a common ground area (Fig. 11).
Then a homography matrix is computed by referring to these cor-
responding points, and the latter virtual top-view image of the
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Fig. 12 SIFT matching results between stitched virtual top-view and aerial-
view images.

Fig. 13 Computing H2 for image stitching.

multiple images is superimposed on the first image. By repeat-
ing this process, a stitched virtual top-view image containing that
contains much more visual information on the ground region is
generated (Fig. 12).

As shown in Fig. 13, suppose that H2.1 is a homography matrix
from a virtual top-view image to a stitched virtual top-view image
and H2.2 is a homography matrix from a scaled-and-stitched vir-
tual top-view image to an aerial-view image. Then a homography
matrix from a virtual top-view image to an aerial-view image is
described as follows with S defined in Eq. (6):

H2 = H2.2 S H2.1. (16)

8. Experiments

In this section, we introduce two experiments that we con-
ducted to confirm the effectiveness of our proposed mobile cam-
era localization method.

8.1 Experiment 1: Relevance to Spatial Resolution of
Aerial-view Images

In this experiment, our aim is to acquire knowledge about spa-
tial resolution to realize accurate mobile camera localization. To
quantitatively control the spatial resolution, we captured aerial-
view images using an unmanned aerial vehicle (UAV) and gener-
ated an aerial-view image dataset by decreasing the resolution.
8.1.1 Experimental Environment, Equipment, and Dataset

We captured original aerial-view images with a UAV (Cinestar
6 by FREEFLY SYSTEMS [12]) at an open space at the Uni-
versity of Tsukuba (Fig. 14). A single-lens reflex (SLR) camera
(Canon EOS 6D with an EF4028STM Canon lens) was embedded
on the UAV, and aerial-view images were captured at 20 meters

Fig. 14 UAV used for experiment 1.

Fig. 15 Aerial-view image captured in experiment 1.

Fig. 16 Capturing mobile camera images.

height. An example of a captured aerial-view image is shown in
Fig. 15. The image size is 5,472 × 3,648 pixels, and the spatial
resolution is about 0.74 cm/pixel. We generated an aerial-view
image dataset with 14 levels of spatial resolution: 0.74, 1.0, 2.0,
3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0 cm/pixel. For
reference, the aerial-view images generally obtained from Google
Map [2] have about 12.5 cm/pixel spatial resolution around the
center of a large city.

For capturing mobile images, we used an ASUS Pad TF700T
tablet PC (OS: Android ver4.2.1) that included both GPS and an
accelerometer. The tablet PC (mobile camera) was mounted on a
tripod at 150 cm (Fig. 16). The angle of depression was 5 degrees.
34 pictures were captured at four positions. Figure 17 shows the
dataset, and Fig. 18 shows the capturing position and orientation.
Based on the acceleration value, we generated virtual top-view
images. The spatial resolution of the virtual top-view images was
set as the same spatial resolution as the aerial-view images.
8.1.2 Experimental Results

Figure 19 shows the number of mobile images in which the ho-
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Fig. 20 Estimation errors of camera position (top left); camera height (top right); camera orientation
(bottom).

Fig. 17 Captured mobile camera images for experiment 1.

Fig. 18 Captured position and orientation.

Fig. 19 Number of mobile images in which homography matrix was
successfully estimated.

mography matrix was successfully estimated; if we can estimate
the homography matrices for all captured mobile camera images,
the number is 34. The horizontal axis represents the spatial res-
olution of the aerial-view images. Computing the homography
matrix tends to fail when the spatial resolution of aerial-view im-
ages is lower than 8.0 cm/pixel.

Figure 20 shows the estimation error, which was calculated as
the average value given by the mobile camera images in which
the homography matrix was successfully calculated. Our experi-
mental results confirm that we can realize less than 1.0-meter po-
sitional estimation error and less than 1.0-degree orientation error
when the spatial resolution exceeds 6.0 cm/pixel. Also, consider-
ing Fig. 19, we conclude that our proposed method enables accu-
rate and stable mobile camera localization when the aerial-view
image’s spatial resolution exceeds 6.0 cm/pixel.

The required spatial resolution of the aerial-view image de-
pends on two items. One is the complexity of the appearance
of the captured ground region, and the other is the spatial res-
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Fig. 21 Differences in appearance caused by spatial resolution: 12 cm/pixel
(left), 6 cm/pixel (center), 1 cm/pixel (right).

Fig. 22 Aerial-view image for experiment 2.

Fig. 23 Captured positions and their orientations.

olution of the mobile camera image. Since the mobile camera
image’s spatial resolution is usually much higher than the aerial-
view image, we only need to consider the relationship between
the required spatial resolution of the aerial-view image and the
complexity of the appearance of the captured ground region.

Figure 21 shows the appearance of the ground region with
three spatial resolutions; 12 cm/pixel, 6 cm/pixel, and 1 cm/pixel.
In this experimental environment, the ground region was covered
with 30 × 60 cm stone tiles. If the spatial resolution of the aerial-
view image is less than 6 cm/pixel, the smaller side of the tiles
is observed with a smaller than the minimum SIFT keypoint. As
a result, it is difficult to accurately estimate the correspondence
between the images. The accuracy of the mobile camera localiza-
tion was also degraded.

Fig. 24 Stitched virtual top-view image.

Fig. 25 Mobile camera images for experiment 2.

8.2 Experiment 2: Evaluating Mobile Camera Localization
with General Aerial-view Images

As the experimental result in the previous section, the spatial
resolution of the aerial-view image given by a general GIS dataset
such as Google Maps is not sufficient for our method. To realize a
practical method using a general dataset, we generated a stitched
virtual top-view image by the stitching process described in Sec-
tion 7. In this section, we evaluate the usefulness of our method.
8.2.1 Experimental Environment, Equipment, and Dataset

We conducted an experiment around Tsukuba City in Ibaraki
prefecture. Figure 22 shows an aerial-view image whose spatial
resolution is 12.5 cm/pixel, and Fig. 23 shows the captured loca-
tion and orientation.

We used the same tablet PC as in Experiment 1 and captured
several pictures changing camera’s position and orientation freely
to obtain a stitched virtual top-view image (Fig. 24) because the
aerial-view images from Google Maps have low spatial resolu-
tion. The tablet PC was mounted on a tripod at 150 cm (Fig. 16).
The angle of depression was 5 degrees. We took 13 pictures
(Fig. 25).
8.2.2 Experimental Results

The experiment’s estimation error is shown in Fig. 26. Even
though the spatial resolution of the aerial-view images is low, our
proposed method realized averages of 158.8 cm positional esti-
mation error and 1.286 degrees of orientation estimation error by
applying the stitching process.

9. Implement a Pilot System

In this section, we describe how realizes the proposed method
using available datasets, devices and so on, and discuss the re-
mained difficulty and the solution.

Figure 27 shows a block diagram of our proposed method
implemented on a tablet (ASUS Pad TF700T (Android ver4.2.1
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Fig. 26 Estimation error of camera position; average error is 158.8 cm, with standard deviation 57.22 cm
(left). Estimation error of camera height; average error is 10.09 cm with standard deviation
8.85 cm (middle). Estimation error of camera orientation; average error is 1.286 degrees, with
standard deviation 0.719 degrees (right).

Fig. 27 Block diagram of our localization system.

OS)) that included both GPS and an accelerometer. In order to
scale the system to localization in a wider range of areas, we clip
out the area of interest (around a user) from the global aerial-view
images according to the GPS measurement value. This mobile
camera accesses the Internet by WiFi to download aerial-view
images around it from the GIS dataset. The development tool for
image processing is OpenCV4Android SDK ver.2.4.3 [13], and
for downloading aerial-view images we used Google Static Maps
API ver.2 [14], which sends HTTP requests including GPS mea-
surement values to get aerial-view images from the Google Maps
database. The camera height parameter is fixed at 150 cm.

Our application’s display is shown in Fig. 28. When the “Cap-
ture” button is touched, a mobile camera image is captured and
a virtual top-view image is generated. Aerial-view images are
downloaded from the GIS dataset based on the GPS measure-
ment. Then the corresponding points between the virtual top-
view and aerial-view images are estimated. If the stitching pro-
cess is required, in other words, if the number of corresponding
points is insufficient, the user touches the “pre-Capture” button
several times to change the viewpoint and a stitched virtual top-
view image is generated. He can check the generated stitched
virtual top-view image by touching the “Show Stitched VTV Im-
age” button.

When keypoint matching is successful, a homography matrix
from the mobile camera image to the aerial-view image is com-
puted. In this application, with the homography matrix, we can
overlap other images on the captured image. By touching the
“Aerial” button, an aerial-view image projected onto the mobile

Fig. 28 Display of application system.

Fig. 29 Using our implemented system.

camera viewpoint is overlapped, and when the “RoadMap” button
is touched, the same process is applied to a road map image. Fig-
ure 29 shows a scene of our implemented system in an outdoor
environment.

One of the difficulties is reducing computational time. SIFT
needs much computational cost, which is too heavy for ordinal
tablet PCs. One solution is to send the captured image and sen-
sor data to a PC that has higher-computational power, and re-
ply the commutating result to the tablet PC. Another solution
is to replace SIFT with other faster keypoint descriptors such as
ORB [15] or FREAK [16].

10. Conclusion and Future Works

In this paper, we proposed a method for estimating the posi-
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tion and orientation of a mobile camera by referring to the cor-
responding points between mobile camera and aerial-view im-
ages. We implemented our proposed method on an Android tablet
PC. In two experiments, we confirmed that our proposed method
enables more accurate localization of mobile camera than such
sensor-based localization as GPSs or electronic compasses. Fu-
ture works will be to improve the accuracy of keypoint detection
and matching by conducting more experiments in various envi-
ronments, including non-planar shaped ground surfaces.
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