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Abstract We propose a new, robust boosting method by using a zero-one step function as a loss function.
In deriving the method, the MarginBoost technique is blended with the stochastic gradient approximation
algorithm, called Stochastic Noise Reaction (SNR). Based on intensive numerical experiments, we show that
the proposed method is actually better than AdaBoost on test error rates in the case of noisy, mislabeled
situation.
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1. Introduction—AdaBoost

Suppose a situation in which a management must solve a decision problem depending on a
number of people whose opinions differ slightly, and their experiences and personal abilities
to solve the problem seem to be almost equal and, as a result, cannot draw a decisive
conclusion. To resolve this situation in order to make a reasonably better decision, is it
more efficient to ignore opinions of these people and relying solely on manager’s decision,
or to restart the discussion by changing the team and forming a new ensemble through
addition of capable people?

Obviously, the first behavior is faster but it may not lead to a better decision. On the
other hand, the second one may lead to a better decision since it will provide an iterative
improvement to the solution but it certainly is a slow process and takes much longer time.
This is what we often encounter during decision analysis dealing with data mining. However,
we can make a better decision even in the original situation by resorting to the iterative
improvement method considering that a possible better solution is still the outcome of a
combination of a set of slightly different opinions converging toward the genuine better one.

The situation described above is essentially a problem associated with a committee-based
decision making. The aim of this paper is to develop a new robust algorithm for pattern
classification problem by using an analogy to the committee-based decision making, where
each individual member of the committee corresponds to a classifier. The decision here is
to correctly classify data to its true class label, and we would like to develop a new robust
classification method through iterative improvement of classifiers or committee members.

In view of the above objective in mind, the starting point for the present study would
be an iterative improvement procedure called boosting, which is a way of combining the
performance of many weak classifiers to produce a powerful committee. The procedure
allows the designer to continue adding weak classifiers until some desired low training error
has been achieved. Boosting techniques have mostly been studied in the computational
learning theory literature (e.g., see [3], [4], [16]) and received increasing attention in many
areas including data mining and knowledge discovery.
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While boosting has evolved over the recent years, we focus on the most commonly used
version of the adaptive boosting procedure, i.ef, AdaBoost.M1.” [4]. A concise description of
AdaBoost is given here for the two-category classification setting. We have a set of n training
data pairs, (x1,41), .-, (i, ¥i), - -, (Tn, Yn), Where z; denotes a vector valued feature with
y; = —1 or 1, as its class label or teacher signal. The total number of component classifiers
is assumed to be T. Then, the output of classification model (i.e., committee) is given by
a scalar function, F(z) = Y., 8,f,(x), in which each f,(x) denotes a classifier producing
values +1, and (; are prescribed constants; the corresponding prediction (i.e., decision) is
sign(F(x)).

The AdaBoost procedure trains the classifiers f;(z) on weighted versions of the training
sample, by giving higher weight to cases that are currently misclassified. This is done
for a sequence of weighted samples, and then the final classifier is defined to be a linear
superposition of the classifiers from each stage. A detailed description of AdaBoost.M1. is
summarized and given in the next box, where I(y; # fi(x;)) denotes the indicator function
with respect to the event such that y; # fi(x;), i.e., misclassification event.

At the ¢-th iteration stage, given the observation weight w,;_;(¢), AdaBoost fits a classifier
fi(z) to the training data z; (i = 1,2,...,n) that is weighted by w; ;(i). Then, it evaluates
the weighted error err; by computing a weighted count of misclassification events as err, =
Sor we (i) (y; # fi(w;)). Using erry, §; is obtained as 3, = log((1 — err;)/err;). Finally,
the observation weight is updated through the computation of wy (i) = w;_1 (i) exp|GeI (y; #
fi(z;))] and normalized so that Y " , w;(i) = 1. This results in giving a higher weight to the
training data that is currently misclassified. A concise derivation of AdaBoost algorithm is
given in Appendix A.

Much has been written about the success of AdaBoost in producing accurate classifiers.
Many authors have explored the use of a tree-based classifier for f;(x) and demonstrated
that it consistently produces significantly lower error rates than a single decision tree. In
fact, Breiman called AdaBoost with trees as“ the best off-the-shelf classifier in the world

[1].”

AdaBoost.M1. (Freund and Schapire [4])
1. Initialize the observation weights wi(i) =1/n, i =1,2,...,n.
2. Fort=1,2,...,T do:
(a) Fit a classifier f;(z) to the training data using weights w(7).

(b) Compute err; = z?ﬂ%@[%ﬁ)ﬁ(“)).

)
(c) Compute oy = log((1 — err;)/erry).
(d) Update weights
w1 (1) = wy(7) - exploy - I(y; # fi(x;))], i=1,2,...,n.
end For
3. Output F(z) = sign[>_, a; fi()].

Interestingly, in many examples, the test error seems to consistently decrease and then
level off as more classifiers are added, instead of turning into ultimate increase. It hence
seems that AdaBoost is resistant to overfitting for low noise cases. However, recent studies
with highly noisy patterns, e.g., [7], [L3], [14], depict that it is clearly a myth that AdaBoost
does not overfit since AdaBoost asymptotically concentrates on the patterns which are
hardest to learn. To cope with this problem, some regularized boosting algorithms [10], [14]
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are proposed. In this paper, we will take an iterative improvement approach to optimize
classifiers to derive a new robust boosting method that is resistant against mislabeled noisy
patterns.

In the next section, we recapitulate the principles of MarginBoost.L;. Then, in Section
3, we present the zero-one loss function and the gradient approximation technique referred
to as Stochastic Noise Reaction (SNR). In Section 4, we propose the new robust boosting
method. Results of intensive numerical experiments are presented in Section 5 where we
detail cases with noisy, mislabeled patterns. Section 6 contains some concluding remarks.

2. MarginBoost.L,

We assume that the training dataset (z,y) is randomly generated according to some un-
known probability distribution D on X x Y where X is the space of measurements (typically
X CR") and Y is the space of labels (Y is usually a discrete set {£1} or some subset of
R). The output of classification is denoted as sign(F'(z)), where F(z) is given by

F(z) = Zﬁtft(l“), (1)

and fy(x) : X — {£1} are base classifiers from some fixed class F (e.g., class of base
hypotheses), and 3; € R denotes the weights.

The margin of the training data (z,y) with respect to the classifier is defined as z =
yF(z). It is noted that if y # sign(F(x)) then yF(x) < 0, and if y = sign(F(z)) then
yF(x) > 0. The margin can be understood as a measure of difficulty of classification. As
data has a larger (positive) margin, the example is easier to classify. On the contrary, as it
has a smaller (negative) margin, the data is harder to classify.

Given a set S = {(x1,%1),...,(@n,ysn)} of n labeled data pairs generated according
to D, we wish to construct a classification model described by Equation (1) so that the
probability of incorrect classification Pp(sign(F(x)) # y) is small. Since D is unknown and
we are only given a training set S, we take the approach of finding the classification model
which minimizes the sample risk of some cost function of the margin. That is, for a training
set S we want to find F' such that the empirical average,

L(F) = = 3" CuiF () 2)

is minimized for some suitable cost function C'(z) : R — R. The interpretation of AdaBoost
as an algorithm which performs a gradient descent optimization of the sample risk has been
examined by several authors, e.g., [5], [11], [15].

Mason et al. [11] proposed MarginBoost which gives a general framework of AdaBoost in
terms of the margin. AdaBoost can be seen as a special case of MarginBoost with C'(z}) =
exp(—2z!), where z! denotes the margin, 2! = y;Fi(z;). In the next box, the normalized
version of MarginBoost, MarginBoost.L1 is summarized, in which g, are normalized such
that they sum to one.

In the box, C’(z) denotes the derivative of the cost function with respect to the margin

z. Note that C’(2) is non-positive since the margin cost function is monotonically decreasing
1t
and the normalized weight w, (i) = %
i=1 ¢\%
actually gives a gradient information, which will serve as a basis for deriving a gradient-type

> () can be interpreted as a probability, but it

3



MarginBoost.L; (Mason et al., [11])
1. Specify a suitable (monotonically decreasing) cost function C(z).
2. Initialize wy(i) = 1/n for i =1,2,...,n, and Fy(x) = 0.
3. Fort=1,2,...,T, do:
(a) Fit a classifier f;(z) to the training data weighted by w;_; (%)
fori=1,2,...,n.
(b) I Y0 wia(d)y; fi(x;) > 0, then return Fy(x), and stop.
end If.
(c) Choose f3; appropriately.
(d) Let Fy(z) = Fi—1(x) + Bifi(x).
(e) Set w,(i) = % fori=1,2,...,n.
end For
4. Output sign(Fr(z)).

search algorithm in the subsequent development. If Y~" w1 (¢)y; fi(z;) > 0, i.e., when the
total sum of the weighted margins indicates correct classification over the training data,
then the algorithm returns Fi(z) and terminates. The readers are referred to [11] for details
of MarginBoost.L;.

3. Misclassification Loss Function and Stochastic Noise Reaction
3.1. Misclassification (Zero-One) Loss Function

Friedman et al. [6] have demonstrated that the AdaBoost algorithm decreases an exponential
loss function. Figure 1 illustrates various loss functions as a function of the margin value,
z = yF(z), including the exponential loss function. When all the class labels are not
mislabeled and hence data is error-free, the result of correct classification always yields
a positive margin since y and F(z) both share the same sign while incorrect one yields
negative margin. The loss function for Support Vector Machine is also shown in Figure 1,
which is a statistical learning method to train kernel-based machines with optimal margins
by mapping training data in a higher dimension.

Shown also in Figure 1 is the misclassification loss (zero-one loss function), I(z < 0) =
I(yF(z) < 0), where I(yF(x) < 0) denotes the indicator function with respect to the
occurrence of the incorrect events, i.e., yF'(x) < 0, which gives unit penalty for negative
margin values, with no penalty for positive ones (i.e., correct decisions). In this way, the
decision rule becomes a judgment on a zero-one loss function, which will be investigated in
this study. It is important to note that the zero-one loss function yields the Bayes minimum
classification error for binary classification [2]. In order to approximate the misclassification
loss, Sano et al. [15] proposed the sigmoidal loss function (i.e., smoothed zero-one loss
function, C(z) = 1/(1 + exp(Az)), where A denotes the positive slope parameter), since the
misclassification loss is a discontinuous step function. In this study, however, the derivative
of the misclassification loss is stochastically approximated without using the sigmoidal loss
function.

The exponential loss function exponentially penalizes negative margin observations or
incorrect decisions. At any point in the training process, the exponential criterion concen-
trates much more influence on observations with large negative margins. This is considered
as one of the reasons why AdaBoost is not robust for noisy situation where there is misspeci-
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fication of the class labels in the training data. Since the zero-one loss function concentrates
and uniquely influences on negative margin, it is far more robust in noisy setting where the
Bayes error rate is not close to zero, which is especially the case in mislabeled situation.

Mean-squared approximation errors are well-understood and used as a loss function in
statistics area. Unlike the zero-one loss function which considers only the misclassified
observations, the minimum squared error (MSE) criterion takes into account the entire
training samples with wide range of margin values. Hence, if MSE is adopted, the correct
classification but with yF'(x) > 1 incurs increasing loss for larger values of |F'(x)|. This
makes the squared-error a poor approximation compared to the zero-one loss function and
not desirable since the classification results that are® excessively” correct are also penalized
as much as worst (extremely incorrect) cases. Other functions in Figure 1 can be viewed as
monotone continuous approximations to the misclassification loss.

Here we would like to propose the zero-one loss function which takes account of limited
influences from larger negative margins in a proper manner and, accordingly, robust against
mislabeled noisy training data. Actual misclassification loss is not differentiable at yF'(x) =
0, and one needs to use sub-gradients in general. However, in this study, we try to avoid
formulating sub-gradients, and we use Stochastic Noise Reaction (SNR) technique proposed
in [9] in order to evaluate the derivative of the zero-one loss function.

3.2. Stochastic Noise Reaction

Optimization problems that seek for minimization (or equivalently maximization) of an
objective function have practical importance in various areas. Once a task is modeled as
an optimization problem, general optimization techniques become applicable; e.g., linear
programming, gradient methods, etc. One may encounter difficulties, however, in applying
these techniques when the objective function is non-differentiable or when it is defined as a
procedure. To deal with such a case, Koda and Okano [9] proposed a function minimization
algorithm, called Stochastic Noise Reaction (SNR) that updates solutions based on approx-
imated derivative information. They apply SNR algorithm to traveling salesman problem
(TSP), a representative combinatorial optimization problem, and show its effectiveness [12].
We illustrate here only an essence of SNR needed in the present boosting study.

Consider an objective function L(z) : R® — R, then the gradient vector of L(z) is defined
by

OL(z) OL(z) OL(z)\"
VL(Z):< 0z, ' 0z ' 0z, ) ' 3)

To avoid the exact gradient calculation of Equation (3), SNR technique injects a Gaussian
white noise, & € N(0,0?), into a variable z; as

zi(j) = zi + &(J), (4)

where &;(j) denotes the j-th realization of the noise injected into the i-th variable. Each
component of a derivative is approximated for sufficiently small o; < /2, without explicitly
differentiating the objective function by using the relation,

L(2(5))&i(j) = d(z), (5)

where M is a loop count for taking the average. For details of the derivation of Equation (5),
the readers are referred to [12]. A concise derivation of Equation (5) is given in Appendix



B. It is expected that Equation (5) yields a good approximation when o; — 0 (cf. Equation
(B3) in Appendix B). The value of M is set to 100 in all of the numerical experiments in
Section 5. In actual implementations, all the realizations of the noise should be generated
and normalized in advance to ensure sample mean 17 Z;Vil &(j) = 0 and sample variance

1 : 1 M )2 9
& (60) - H XL &) = ot
3.3. SNR Application to Zero-one Loss Function

Based on Equation (5) with o; = 1, the approximated derivative for the misclassification
loss, i.e., zero-one loss function,

1 ifz<0

0 otherwise

I(z<0) = { (6)

is shown in Figure 2. Figure 2 depicts that the discontinuous point of the zero-one loss
function at z = 0 is leveled, and the derivative is obtained. Note that the stochastic
gradient resembles the derivative of C'(z) = 3(1 — tanh(z)), which is the smoothed zero-one
loss function and is differentiable as C'(z) = 1 (tanh(z) + 1)(tanh(z) — 1). It is recognized
that the stochastic gradient is negative and smallest at the origin, and equals to 0 as z is
distant from the origin. It is difficult to observe, however, that there could be a positive
derivative at distant points from the origin.

4. Proposed Boosting Method—SNRBoost

Based on the algorithmic framework of MarginBoost.L; and Stochastic Noise Reaction
(SNR), the proposed boosting method referred to as SNRBoost is presented in this sec-
tion. Essentially the proposed algorithm works as in MarginBoost.L, however, in deriving
the method, we use the zero-one loss function (cf. Equation (6)) as the margin cost function
in finding pattern weightings for the training set.
In principle, any boosting algorithm selects iteratively a base learner or hypothesis at
a time and then updates the weight w. In MarginBoost.L;, one updates only the weight
of the last classifier selected as described in the line 3(e) of MarginBoost.L; algorithm as
follows:
C'(#)

]

wi(l) = =——=7—~ 7

t( ) Z?ZI 01(25)7 ( )

where z! denotes the margin of the i-th training data at the ¢-th iteration, z! = y; F(x;), and

C(z}) is the differentiable (monotonically decreasing) cost function. Recall that C'(zf) < 0

and the normalized weight w;(i) > 0 can be interpreted as a probability, but it actually
gives a gradient information.

Let d;(i) denote the stochastic gradient approximated by using SNR algorithm (cf. Equa-
tion (5)) for the zero-one loss function at z!. Then, we may incorporate SNR algorithm
in updating the weight by replacing the derivatives C’(2}) involved in Equation (7), uti-
lizing a formal relationship C'(2) = dy(j) even when the margin cost function C(z) is
non-differentiable, zero-one step function, i.e., C(z) = I(z < 0).

Therefore, in view of our ultimate goal to achieve a gradient-type minimization through
the zero-one loss function, we propose to update the pattern weighting as follows:

dy (i)



Note, however, Equation (8) may result in computing negative weights due to a stochastic
nature of SNR algorithm and w;(i7) > 0 is not automatically satisfied. Hence, if w;(i) < 0,
then it is set to 0 and the computing process is continued to obtain weightings of the training
set, for a selection of the next classifier which minimizes the weighted training error. If the
total sum of the weighted margins becomes non-negative meaning correct classification over
the training data (i.e., > .. w1(2)yife(z;) > 0), then the algorithm returns Fy(x) and
terminates.

Above weighting rule implies that the weight is assigned proportional to the normalized
value of the corresponding gradient computed from Equations (7) or (8). For instance,
the largest weight is given to the training data with largest gradient component (related
to the quantity often called the edge in supervised learning [1]); this is easily understood
as the training data with greatest importance is the one that makes most progress in the
gradient-type search. Hence, MarginBoost.L; and SNRBoost both fall into the category of
gradient-type boosting algorithms.

For the appropriate choice of 3, in Equation (1), which also appears in the lines 3(c)
and 3(d) of MarginBoost.L; algorithm, we propose 3, = K/(K +t), where K is a suitable
integer. This setting of (3; is based on the well-known stochastic approximation technique
[2], which satisfies the conditions

T
: 2
l1m E B = oo, and Tlgrgo tg_l B < 0. (9)

Note, if the technique is used in the gradient-type search, the proposed method guarantees a
convergence of F; to its local optimal point. In our numerical experiments in Section 5, the
proposed method of setting 3, with K = T is used in the implementation of MarginBoost. L,
and SNRBoost.

We have now discussed all the necessary parts of the proposed algorithm, which is
summarized in the following box as pseudo-code.

SNRBoost
1. Initialize wo(i) = 1/n fori=1,2,...,n, Fy(xr) = 0 and specify K.
2. Fort=1,2,...,T, do:
(a) Fit a classifier f;(z) to the training data weighted by w;_; (%)
fori=1,2,....,n
(b) If > w1 (d)yi fe(x;) > 0, then return Fy(z), and stop.
end If.
(c) Set By = K/(K +t).
(d) Let Fy(x) = Fy_1(x) + Bifi(2).
(e) Compute approximated derivatives for zero-one loss function
dy(i) using SNR for i=1,2,...,n
(f) Set wy (i) = En pfori=1,2,.
(g) If wy(7) < 0 then wt( ) = 0.
end If.
end For
3. Output sign(Fr(x)).




5. Numerical Experiments

In this section, numerical results are presented and, especially, the robustness of the pro-
posed method are analyzed and compared with that of AdaBoost and MarginBoost.L; with
C(z) = 5(1 —tanh(\z)), where X is the positive slope parameter. The normalized version of
AdaBoost and MarginBoost.L; such that 22:1 (s = 1 is used to compare effects of the loss
function. We focus our attention to classification results for mislabeled (i.e., noisy) cases.
The back-propagation neural network with single hidden layer is used as a base learner for
all the three boosting methods. The number of units in hidden layer (i.e., hidden units)
is 3. Since a multilayer neural network has been shown to be able to define an arbitrary
decision function, with a flexible architecture in terms of the number of hidden units, it thus
provides the ideal potential for generalization of training results by boosting. Throughout
the experiments, SNR algorithm uses an estimator of the gradients which averages 100 noisy
samples, i.e., M = 100 (cf. Equation (5)).
5.1. Toy Example
For numerical experiments, toy data (with 2% mislabeled case) is generated as follows:

1. Generate uniformly x = (z1,x2) € x = [—4, 4] x [—4, 4];

2. assign y = sign(F(x)), where F(x) = xy — 3sin(z);

3. sort |F(x;)| by descending order;

4. sample randomly 2% from top 50% (far case) or bottom 50% (near case) examples;

5. flip sampled examples in Step 4.

In Step 2, note that F(x) = x9 — 3sin(z1) is used as a nonlinear decision function. In
Step 4, we generate two mislabeled cases; one where mislabeled data are located far from
the decision boundary (far case) and the other where mislabeled data are concentrated near
the decision boundary (near case). Figure 3(a) shows the far case, while Figure 3(b) shows
the near case, and Figure 3(c) shows the noiseless case. The decision boundary is given by
the solid line.

The number of training data is 300 and that of test data is 1000. In all the experiments,
noiseless data is used as test data. Iteration number of the base learner, which is referred to
as round (number), is set to 1000, and the stopping condition is not used to compare effects
of the margin cost function utilized. Above procedure is repeated 5 times, each time different
dataset is generated and the performance of boosting methods for each dataset is evaluated.
Figure 4 shows the average performance of test error rates. Variance of the proposed SNR
method is set to var(§;) = 1.0, and for MarginBoost.L;, A is set to A = 1.0. In all three
cases, the performance of SNRBoost exhibits similar performance to MarginBoost.L; with
C(z) = 3(1—tanh(z)). It is clear that the performance of SNRBoost is superior to AdaBoost
in mislabeled cases (see Figures 4(a) and 4(b)).

5.2. Higher-dimensional Example
In this experiment, the level of variance of the proposed SNR method is changed as var(;) =
1.0, 0.1, 0.01, and MarginBoost.L; is executed using the range of slope parameters with
A =1, 5, 10. We focus our attention to classification results for the mislabeled (i.e.,
noisy) case near decision boundary, the mislabeled case far from decision boundary, and the
correctly labeled (i.e., noiseless) case, as in toy data experiments.
5.2.1. Generation of Mislabeled Data
For numerical experiments, data (with 2% mislabeled case) is generated as follows:

1. Decide n, the size of training and test examples;



2. generate n training and n test examples from five-dimensional standard normal dis-
tribution x ~ N®(0, I);
3. decide 72, the squared-radius from the origin, for all examples;

5

r(xi)®> =Y aj (i=1,...,2n)

j=1

4. decide threshold th by the median of r(x)?;

5. assign y = sign(F(x)), where F(x) = r(x)? — th;

6. sort |r(x;)> —th| ( = 1,...,n) corresponding to training examples by descending
order;

7. sample randomly 2% from top (or bottom) 50% of the outcome of Step 6;

8. flip the label of sampled examples in Step 7.

In Step 5, note that F'(x) = r(x)? — th is used as a nonlinear decision function. In the
mislabeled case far from decision boundary, samples from top 50% training example are
selected in Step 7. In the mislabeled case near decision boundary, samples from bottom
50% training examples are chosen as training examples. It is noted that the mislabeled
data is only contained in training examples x; (i = 1,...,n), and the test examples x; (i =
n+1,...,2n) are noise-free. Above procedure is repeated 5 times, each time different dataset
is generated and the performance of boosting methods for each dataset is evaluated. The
number of training and test data is 1000 each. Iteration number of the base learner is 1000,
and the stopping condition is not used to compare effects of the margin cost function.

5.2.2. Numerical Results

We plot in Figure 5 the test error curves for 2% mislabeled data located far from the decision
boundary, and in Figure 6 that for 2% mislabeled data near the decision boundary. In Figure
7, the test error curves are shown for noiseless case. In each figure, (a) shows AdaBoost test
error rates, (b) test error rates of the proposed method, with var(¢;) = 1.0, 0.1, 0.01, (c)
test error rates of the MarginBoost.L; with A = 1, 5, 10, and (d) comparison of test error
rates of AdaBoost, SNRBoost and MarginBoost.L;, respectively.

(i) Mislabeled case far from decision boundary

In Figure 5(a), AdaBoost test error rate falls into 0.105% at 1000 round (boosting iteration).
In Figure 5(b), for SNRBoost with var(§) = 0.01, test error rate falls into 0.048% at
1000 round. In Figure 5(c), for MarginBoost.L; with A = 10, test error rate falls into
0.048% at 1000 round. In Figure 5(d), on test error rates, the performance of SNRBoost
with var(¢;) = 0.01 is superior to that of AdaBoost and exhibits similar performance to
MarginBoost.L; with A = 10.

(ii) Mislabeled case near decision boundary

In Figure 6(a), AdaBoost test error rate falls into 0.070% at 1000 round. In Figure 6(b),
for SNRBoost with var(;) = 0.01, test error rate falls into 0.049% at 1000 round. In Figure
6(c), for MarginBoost.L; with A = 10, test error rate falls into 0.053% at 1000 round. In
Figure 6(d), on test error rates, the performance of SNRBoost with var(&;) = 0.01 is superior
to that of AdaBoost and exhibits slightly better performance than that of MarginBoost. L,
with A = 10.

(iii) Noise-free case

In Figure 7(a), AdaBoost test error rate falls into 0.048% at 1000 round. In Figure 7(b),
for SNRBoost with var(;) = 0.01, test error rate falls into 0.038% at 1000 round. In Figure
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7(c), for MarginBoost.L; with A = 10, test error rate falls into 0.044% at 1000 round.
In Figure 7(d), the performance of SNRBoost with var(§;) = 0.01 is superior to that of
AdaBoost and exhibits better performance than that of Margin.Boost.L; with A = 10.
From the above, it is found that the performance of the proposed SNRBoost is im-
proved when var(&;) is smaller, while that of MarginBoost.L; with C(z) = £(1 — tanh(\z))
is improved as A becomes larger. We note that the proposed margin cost function for
MarginBoost.L; approaches the zero-one step function as A becomes larger, which may vali-
date the use of the zero-one loss function in the present method. As expected, SNR method
gives improved accuracy when var(§;) is smaller (cf. Equation (B3) in Appendix B). In
summary, SNRBoost exhibits a higher potential for generalization than AdaBoost.

6. Conclusion

We developed a new, robust boosting method against mislabeled, noisy data. The new
formulation uses the misclassification loss function, i.e., zero-one step function. In de-
riving the algorithm, Stochastic Noise Reaction technique [9] is used to approximate the
gradient of the zero-one loss function. Performance evolution (i.e., error minimization)
of the proposed method is compared with that of AdaBoost and MarginBoost.L; with
C(z) = 5(1 — tanh(\z)) through intensive numerical experiments. The proposed method is
robust compared to AdaBoost especially in the mislabeled cases. Even for the mislabeled
data located far from decision boundary, the method exhibits the similar performance to
that of MarginBoost.L;.
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Appendices
A. Derivation of AdaBoost
Consider the following exponential loss function:

Cly, F(r)) = exp(—yF(x)), (A1)

where F'(x) denotes the classification model.
In AdaBoost, the basis function is the individual classifier f(z) € {—1,1}. Using the
exponential loss function (A1), one must solve

(Bi, fr) = arg Hﬁllfn Z expl—y;(Fy1(7:) + Bf(2:))]

for the optimal classifier f;(x) and corresponding coefficient f3; to be added at the t-th step.
This can be expressed as

(B, f2) = arg min Z wy (i) exp(—Byif () (A2)

with w; (i) = exp(—y; F}_1(x;)). Since each wy(i) depends neither on 3 nor f(z), it can be
regarded as a weight that is applied to each observation. This weight depends on F} ;(x;),
and so the individual weight value changes at each iteration t.

The solution to Equation (A2) can be obtained in two steps. First, for any value of
(> 0, the solution to Equation (A2) for f;(z) is given by

f = arg mlnz wt yz 7£ f(xz)) (A3)

which is the classifier that minimizes the weighted error rate in predicting y. This can be
easily seen by expressing the criterion in Equation (A2) as

e P Z wy (i) + e - Z wy(7),

yi=f(wi) yi#f(wi)

which in turn can be written as

n

Zwt yz v f(xz)) e’ Zwt(i)' (A4)

=1

By plugging in f = f;, i.e., Equation (A3), into Equation (A2) and solving for the
optimal value of (3, one obtains

ﬁt =3 lOg ) (A5)
where err,, is the optimal error rate defined as

S0 w0 # i)
> w0 (46)

Note that Equation (A6) is equivalent to line 2(b) of AdaBoost.M1. algorithm. The repre-
sentation of Fy(x) is then updated as

Fi(z) = Fi1(x) + Bife(x),

11

err; =




which renews the weights for the next iteration as follows:
Wiy (2) = wy(7) - e~ Pewife(@i) (A7)
Using the fact that —y; fi(x;) = 2 - I(y; # fi(x;)) — 1, Equation (A7) becomes
w1 (1) = wy(i) - et (yi# fr(z:)) | efﬂt, (A8)

where a; = 203, is the quantity defined at line 2(c) of AdaBoost.M1. The factor e in
Equation (A8) multiplies all weights by the same value, so it has no effect. Thus Equation
(A8) is equivalent to line 2(d) of AdaBoost.M1. algorithm. One can view line 2(a) of
the algorithm as a method for solving the weighted minimization involved in Equation
(A3). Hence we conclude that AdaBoost.M1. minimizes the exponential loss criterion (A1)
through adaptively adding a new function f(x).

B. Derivation of Equation (5)
The Stochastic Noise Reaction (SNR) algorithm, Equation (5), uses the following relation-
ship:
0L(z)
aZZ'

where L(z) : R* — R is a continuously differentiable function, and (-) denotes the expecta-
tion operator. In Equation (B1), £ is an n-dimensional vector each of whose components &;
is an independent Gaussian noise with mean 0 and standard deviation o;; i.e.,

~ %@(z +€)6), (B1)

(2r)!
2rp!”’

<§i§j> = 035@', <§i2r+1> =0, <§?r> = Ui?r (B2)

where 0;; denotes the Kronecker delta, and 7 is a non-negative integer value.
Using (B2) in a Taylor series expansion of L(z + £) around z gives

aLz+8&) = #({L)+XE & Z? (&) L(2) )6 )

= ?{L(2)<§Z> + Zk 1 Bl Z] 1<§z(§y Bz; )k>L(2)}

= 0%2 220:1 k!<§k+1> L(2)
7 D24 <§k> T L(2) (B3)
- @ 8zl —|—Zk —4,6.8,. (kl i <§2> a‘i}iL(z)

i o 2(r— g2r—1
= 8z1 +ZT 2 (\/5) 3Zi2r—1L(Z)

OL(z)
0z;

eyl

for sufficiently small o; < v/2. It is expected that Equation (B3) yields a good approximation
when 0; — 0. In Equation (B3), it is important to note that the differential operator has
disappeared and the gradient information is given as an expected value of the product of the
cost function L(z+ &) and the noise ;. Since the present method will smoothen the margin
cost function to be estimated by sampling and averaging, it may be efficiently applied to
discontinuous functions, such as piecewise constant functions or zero-one loss function. In
Equation (5), the expectation is replaced by the sample mean.
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Figure 3: Toy Example
(a) Case of 2% mislabeled data located far from the decision boundary. (b) Case of 2%
mislabeled data concentrated near the decision boundary. (c¢) Noiseless data.
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Figure 4: Comparison of three boosting methods for toy example. (a) Test error rates of
three boosting methods in 2% mislabeled data located far from the decision boundary. (b)
Test error rates of three boosting methods in 2% mislabeled data concentrated near the
decision boundary. (c¢) Test error rates of three boosting methods in noiseless data.
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