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Abstract In this paper, we consider the asymptotic normality for various
inference problems on multisample and high-dimensional mean vectors. We
verify that the asymptotic normality of concerned statistics is proved under
mild conditions for high-dimensional data. We show that the asymptotic nor-
mality can be justified theoretically and numerically even for non-Gaussian
data. We introduce the extended cross-data-matrix (ECDM) methodology to
construct an unbiased estimator at a reasonable computational cost. With the
help of the asymptotic normality, we show that the concerned statistics given
by ECDM can ensure consistency properties for inference on multisample and
high-dimensional mean vectors. We give several applications such as confidence
regions for high-dimensional mean vectors, confidence intervals for the squared
norm and the test of multisample mean vectors. We also provide sample size
determination so as to satisfy prespecified accuracy on inference. Finally, we
give several examples by using a microarray data set.
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1 Introduction

A common feature of high-dimensional data is that the data dimension is high,
however, the sample size is relatively small. This is the so-called “HDLSS” or
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“large p, small n” situation where p/n → ∞; here p is the data dimension
and n is the sample size. The statistical inference on this type of data is
becoming increasingly relevant. Suppose we have independent and p-variate
populations, πi, i = 1, ..., k, having unknown mean vector µi and unknown
covariance matrix Σi(≥ O) for each πi. Let θ = (µ1, ...,µk,Σ1, ...,Σk). We do
not assume either the normality of the population distributions or the equality
of Σs as Σ1 = · · · = Σk. The eigen-decomposition of Σi (i = 1, ..., k) is given
by Σi = HiΛiH

T
i , where Λi is a diagonal matrix of eigenvalues, λi1 ≥ · · · ≥

λip ≥ 0, and Hi is an orthogonal matrix of the corresponding eigenvectors. In
this paper, we focus on inference on multisample and high-dimensional mean
vectors. Let µ =

∑k
i=1 biµi, where bis are known and nonzero scalars. Having

recorded i.i.d. samples, xij , j = 1, ..., ni, of size ni (≥ 4) from each πi, we
define T n =

∑k
i=1 bixini , where n = (n1, ..., nk) and xini =

∑ni

j=1 xij/ni.
Chen and Qin (2010) gave a two-sample test in inference on HDLSS data.

Aoshima and Yata (2011a,b) developed a variety of inference on HDLSS data
such as a given-bandwidth confidence region, a two-sample test, a test of equal-
ity of two covariance matrices, classification, variable selection, regression,
pathway analysis and so on along with sample size determination for each infer-
ence. Yata and Aoshima (2012) provided given-width confidence intervals for
the norm of mean vectors. Aoshima and Yata (2011a,b) and Yata and Aoshima
(2012) assumed that xij = HiΛ

1/2
i zij +µi for i = 1, ..., k; j = 1, ..., ni, where

zij = (zi1j , ..., zipj)T , E(zij) = 0, Var(zij) = Ip and the fourth moments of
each variable in zij are uniformly bounded. Here, Ip denotes the identity ma-
trix of dimension p. They considered one of the following three assumptions
for πis:

(A-i) πi : Np(µi,Σi) for i = 1, ..., k;
(A-ii) zisj , s = 1, ..., p, are independent for i = 1, ..., k;

(A-iii) E(z2
isjz

2
itj) = E(z2

isj)E(z2
itj) and E(zisjzitjziujzivj) = 0 for s ̸=

t, u, v, and some regularity conditions given in Aoshima and Yata (2011a).

They assumed the following conditions for Σis:

(A-iv) lim inf
p→∞

λip > 0, lim sup
p→∞

tr(Σt
i)

p
< ∞ (t = 1, 2) and

tr(Σ4
i )

p2
→ 0 as

p → ∞ for i = 1, ..., k.

Note that (A-i) implies (A-ii). It holds that Eθ(||T n−µ||2) =
∑k

i=1 b2
i tr(Σi)/ni

(= Σn, say). Also, it holds that Varθ(||T n−µ||2) = 2
∑

i,j b2
i b

2
jtr(ΣiΣj)/(ninj)

under (A-i). Let Sini =
∑ni

j=1(xij − xini)(xij − xini)
T /(ni − 1) and Σ̂n =∑k

i=1 b2
i tr(Sini)/ni. It holds that Eθ(||T n − µ||2 − Σ̂n) = 0 and

Varθ(||T n−µ||2 − Σ̂n) = 2
k∑

i=1

b4
i tr(Σ

2
i )

ni(ni − 1)
+4

∑
i<j

b2
i b

2
j tr(ΣiΣj)

ninj
(= K, say).

Let T̂n = ||T n||2 − Σ̂n. It holds that Eθ(T̂n) = ||µ||2 and Varθ(T̂n) = K +
4

∑k
i=1 b2

i µ
T Σiµ/ni (= K∗, say). Then, the following results were obtained

by Aoshima and Yata (2011a) and Yata and Aoshima (2012).
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Theorem 1 (Aoshima and Yata, 2011a) Assume (A-i) and (A-iv). Then,
it holds that

||T n − µ||2 − Σn√
2

∑
i,j b2

i b
2
j tr(ΣiΣj)/(ninj)

⇒ N(0, 1) (1)

when p → ∞ and either ni → ∞ or ni is fixed for i = 1, ..., k, where “⇒”
denotes the convergence in distribution and N(0, 1) denotes a random variable
distributed as the standard normal distribution.

Theorem 2 (Aoshima and Yata, 2011a) Assume (A-iv) and either (A-ii)
or (A-iii). Then, (1) holds as p → ∞ and ni → ∞, i = 1, ..., k.

Corollary 1 (Aoshima and Yata, 2011a) Assume (A-iv) and either (A-ii)
or (A-iii). Then, it holds as p → ∞ and ni → ∞, i = 1, ..., k, that

||T n − µ||2 − Σ̂n

K1/2
⇒ N(0, 1).

Theorem 3 (Yata and Aoshima, 2012) Assume that niµ
T Σiµ/tr(Σ2

i ) =
o(1), i = 1, ..., k. Assume (A-iv) and either (A-ii) or (A-iii). Then, it holds
as p → ∞ and ni → ∞, i = 1, ..., k, that

T̂n − ||µ||2

K
1/2
∗

⇒ N(0, 1).

In this paper, we relax the conditions to verify the asymptotic normality of
concerned statistics for high-dimensional data. Then, we apply the asymptotic
normality to various inference problems on multisample and high-dimensional
mean vectors. In Section 2, we verify that the asymptotic normality of con-
cerned statistics is proved under mild conditions. We show that the asymptotic
normality can be justified theoretically and numerically even for non-Gaussian
data. In Section 3, we introduce the extended cross-data-matrix (ECDM)
methodology, developed by Yata and Aoshima (2013), to construct an unbiased
estimator at a reasonable computational cost. In Section 4, with the help of
the asymptotic normality, we show that the statistics given by ECDM can en-
sure consistency properties for inference on multisample and high-dimensional
mean vectors. We give several applications such as confidence regions for high-
dimensional mean vectors, confidence intervals for the squared norm and the
test of multisample mean vectors. In Section 5, we provide sample size deter-
mination so as to satisfy prespecified accuracy on inference. Finally, in Section
6, we give several examples by using a microarray data set.

2 Asymptotic normality under mild conditions

We assume that

xij = Γ iwij + µi for i = 1, ..., k; j = 1, ..., ni, (2)
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where Γ i is a p×ri matrix for some ri > 0 such that Γ iΓ
T
i = Σi, and wij , j =

1, ..., ni, are i.i.d. random vectors having E(wij) = 0 and Var(wij) = Iri . Note
that (2) includes the case that Γ i = HiΛ

1/2
i and wij = zij . Refer to Bai and

Saranadasa (1996), Chen and Qin (2010) and Aoshima and Yata (2013) for
the details of the model. Let wij = (wi1j , ..., wirij)

T for any i, j. As for wij ,
we assume that

(A-v) The fourth moments of each variable in wij are uniformly bounded,
E(w2

isjw
2
itj) = E(w2

isj)E(w2
itj) and E(wisjwitjwiujwivj) = 0 for s ̸= t, u, v.

Note that any of the assumptions, (A-i) to (A-iii), implies (A-v). That is (A-v)
is milder than any of (A-i) to (A-iii). We assume the following conditions for
Σis:

(A-vi)
λi1

tr(Σ2
i )1/2

→ 0 as p → ∞ for i = 1, ..., k.

We recall that λi1 (i = 1, ..., k) is the largest eigenvalue of Σi. Note that
{λi1/tr(Σ2

i )
1/2}4 ≤ tr(Σ4

i )/tr(Σ2
i )

2. We also note that lim infp→∞ tr(Σ2
i )/p >

0 under the assumption that lim infp→∞ λip > 0. Thus (A-iv) implies (A-vi).
That is (A-vi) is milder than (A-iv). Under (A-v) and (A-vi), we have the
following result.

Theorem 4 Assume (A-v) and (A-vi). Then, it holds as p → ∞ and ni → ∞,
i = 1, ..., k, that

||T n − µ||2 − Σ̂n

K1/2
⇒ N(0, 1).

We assume the following extra condition:

(A-vii)
∑k

i=1 µT Σiµ/ni

K
= o(1).

Note that the condition that niµ
T Σiµ/tr(Σ2

i ) = o(1), i = 1, ..., k, in Theorem
3 implies (A-vii). Then, we have the following result.

Theorem 5 Assume (A-v) to (A-vii). Then, it holds as p → ∞ and ni → ∞,
i = 1, ..., k, that

T̂n − ||µ||2

K
1/2
∗

⇒ N(0, 1).

When (A-vii) is not met, we have the following result.

Corollary 2 Assume (A-vi) and

(A-viii) lim inf
∑k

i=1 µT Σiµ/ni

K
> 0 as p → ∞ and ni → ∞, i = 1, ..., k.

Then, it holds as p → ∞ and ni → ∞, i = 1, ..., k, that

T̂n

||µ||2
= 1 + op(1).
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We consider the following conditions instead of (A-v):

(A-v’) Varθ[{(xil − µi)T (xjl′ − µj)}2] = O{tr(ΣiΣj)2} and Varθ{(xil −
µi)T Σj(xil − µi)} = O{tr(ΣiΣjΣiΣj)} as p → ∞ for i, j = 1, ..., k.

Then, we have the following result.

Corollary 3 After replacing (A-v) with (A-v’), the results in Theorems 4 and
5 are still justified.

Remark 1 From (14) and (16) in Appendix, we note that (A-v) implies (A-v’).

Since Σis are unknown, it is necessary to estimate K (or K∗). Let us
consider an estimator of K by

K̂ = 2
k∑

i=1

b4
i Wini

ni(ni − 1)
+ 4

∑
i<j

b2
i b

2
j tr(SiniSjnj )

ninj
,

where Wini is defined by (4). From Lemma 3 in Appendix, we note that
K̂/K = 1 + op(1) as p → ∞ and ni → ∞, i = 1, ..., k, under (A-v). Then, we
have the following result.

Corollary 4 Assume (A-v) and (A-vi). Then, it holds as p → ∞ and ni →
∞, i = 1, ..., k, that

||T n − µ||2 − Σ̂n

K̂1/2
⇒ N(0, 1).

Note that K∗/K → 1 as p → ∞ and ni → ∞, i = 1, ..., k, under (A-vii).
Then, we have the following result.

Corollary 5 Assume (A-v) to (A-vii). Then, it holds as p → ∞ and ni → ∞,
i = 1, ..., k, that

T̂n − ||µ||2

K̂1/2
⇒ N(0, 1).

Remark 2 After replacing (A-v) with (A-v’), the results in Corollaries 4 and
5 are still justified.

Let us observe Corollaries 4 and 5. We set k = 2, b1 = 1, b2 = −1,
n1 = n2 = 20, Σ1 = B(0.3|i−j|1/3

)B and Σ2 = B(0.4|i−j|1/3
)B, where

B = diag[{0.5 + 1/(p + 1)}1/2, ..., {0.5 + p/(p + 1)}1/2]. (3)

Note that tr(Σi) = p (i = 1, 2). Also, note that Σi, i = 1, 2, hold (A-vi). We
considered two cases: (i) µ1 = µ2, and (ii) µ1 = ((3/p)1/2, ..., (3/p)1/2)T and
µ2 = 0 (i.e., ||µ||2 = ||µ1 −µ2||2 = 3). Let T̃ = (T̂n − ||µ||2)/K̂1/2. Note that
T̃ = (||T n−µ||2−Σ̂n)/K̂1/2 for case (i). We considered the cases of p =10, 100
and 1000. We generated xij − µi, j = 1, 2, ..., (i = 1, 2) independently from
a p-variate distribution. We considered three distributions: (a) Np(0, Σi), (b)
p-variate t-distribution, tp(0, Σi, ν) with mean zero, covariance matrix Σi and
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degrees of freedom ν = 10, and (c) Γ iwij , where wij = (wi1j , ..., wirij)
T and

wii′j = (yii′j − 1)/
√

2 (i′ = 1, ..., ri) in which yii′js are i.i.d. as the chi-squared
distribution with 1 degree of freedom. Here, ri = 2p and Γ i is a p× ri matrix
such that Γ i = [HiΛ

1/2
i /

√
2,−HiΛ

1/2
i /

√
2]. Note that Γ iΓ

T
i = Σi. It should

be noted that (A-v) or (A-v’) is met in (b) when ν is sufficiently large. Also,
(A-v) is met in (c).

Independent pseudorandom 2000 observations of T̃ were generated from
each distribution. Let T̃r be the rth observation of T̃ for r = 1, ..., 2000. In
the end of the rth replication, we checked whether the inequality, T̃r ≤ z0.05,
is true (or false) and defined Pir = 1 (or 0), where z0.05 is the upper 0.05
point of N(0, 1). We calculated P (0.95) =

∑2000
r=1 Pr/2000 as an estimate of

Pθ(T̃ ≤ z0.05). Note that the standard deviation of the estimates is less than
0.011. From Corollaries 4 and 5, it holds that Pθ(T̃ ≤ z0.05) → 0.95. In Figs.
1 and 2, we gave the histograms of T̃ together with P (0.95) for (a), (b) and
(c) when p =10, 100 and 1000. We considered case (i) in Fig. 1 and case
(ii) in Fig. 2. From Corollaries 4 and 5, we also displayed the asymptotic
probability density of T̃ , N(0, 1). We observed from Fig. 1 that the histograms
become close to the probability density and P (0.95)s become close to 0.95 as
p increases in case (i). Compared to (i), in view of Fig. 2, the convergence of
those quantities seemed to be slow in case (ii) when p is not large enough to
meet K∗/K → 1. However, for sufficiently large p, we observed that they give
adequate performances even in non-Gaussian cases such as (b) and (c).

3 Estimation of tr(Σ2)

Throughout this section, we omit the subscript with regard to the population.
Yata and Aoshima (2013) developed the extended cross-data-matrix (ECDM)
methodology that is an extension of the CDM methodology created by Yata
and Aoshima (2010). The ECDM methodology can be applied to obtaining an
unbiased estimator of tr(Σ2) as follows: We assume n ≥ 4. Let n(1) = ⌈n/2⌉
and n(2) = n − n(1), where ⌈x⌉ denotes the smallest integer ≥ x. Let

V n(1)(k) =

{
{⌊k/2⌋ − n(1) + 1, ..., ⌊k/2⌋} if ⌊k/2⌋ ≥ n(1),

{1, ..., ⌊k/2⌋} ∪ {⌊k/2⌋ + n(2) + 1, ..., n} otherwise;

V n(2)(k) =

{
{⌊k/2⌋ + 1, ..., ⌊k/2⌋ + n(2)} if ⌊k/2⌋ ≤ n(1),

{1, ..., ⌊k/2⌋ − n(1)} ∪ {⌊k/2⌋ + 1, ..., n} otherwise

for k = 3, ..., 2n−1, where ⌊x⌋ denotes the largest integer ≤ x. Let #(S) denote
the number of elements in a set S. Note that #(V n(l)(k)) = n(l), l = 1, 2,
V n(1)(k)∩V n(2)(k) = ∅ and V n(1)(k)∪V n(2)(k) = {1, ..., n} for k = 3, ..., 2n−1.
Also, note that i ∈ V n(1)(i+j) and j ∈ V n(2)(i+j) for i < j (≤ n). Let

xn(1)(k) = n−1
(1)

∑
j∈V n(1)(k)

xj and xn(2)(k) = n−1
(2)

∑
j∈V n(2)(k)

xj
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Fig. 1 The histograms of T̃ together with P (0.95) and the probability density of N(0, 1)
for (a), (b) and (c) when p =10, 100 and 1000 in case of (i).

for k = 3, ..., 2n − 1. Then, Yata and Aoshima (2013) gave an estimator of
tr(Σ2) by

Wn =
2un

n(n − 1)

n∑
i<j

{
(xi − xn(1)(i+j))T (xj − xn(2)(i+j))

}2
, (4)

where un = n(1)n(2)/{(n(1) − 1)(n(2) − 1)}. Note that Eθ(Wn) = tr(Σ2).
Aoshima and Yata (2013) and Yata and Aoshima (2013) showed that

Varθ

( Wn

tr(Σ2)

)
=

4
n2

{1 + o(1)} + O
{ tr(Σ4)

tr(Σ2)2n

}
→ 0 (5)
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Fig. 2 The histograms of T̃ together with P (0.95) and the probability density of N(0, 1)
for (a), (b) and (c) when p =10, 100 and 1000 in case of (ii).

as p → ∞ and n → ∞ under (A-v). On the other hand, under (A-v’), we can
claim as p → ∞ and n → ∞ that

Varθ

( Wn

tr(Σ2)

)
= O(n−2) + O

{ tr(Σ4)
tr(Σ2)2n

}
→ 0.

Remark 3 Assume (A-i). It holds as p → ∞ and n → ∞ that

Varθ

( Wn

tr(Σ2)

)
=

4
n2

{1 + o(1)} + 8
tr(Σ4)

tr(Σ2)2n
{1 + o(1)}. (6)

On the other hand, Bai and Saranadasa (1996) and Srivastava (2005) con-
sidered an estimator of tr(Σ2) by Vn = c−1

n {tr(S2
n) − tr(Sn)2/(n − 1)} with

cn = (n−2)(n+1)/(n−1)2. They showed that, when the population distribu-
tion is Gaussian, it holds that Eθ(Vn) = tr(Σ2) together with (6). It should be
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noted that Vn is not an unbiased estimator unless the population distribution
is Gaussian. In addition, one cannot claim Varθ{Vn/tr(Σ2)} < ∞ unless the
eighth moments of each variable in zj are uniformly bounded.

4 Applications

In this section, we give several applications of the results in Section 2.

4.1 Confidence regions for µ

Let zα be a constant such that P{N(0, 1) > zα} = α. We construct confidence
regions for µ by

R = {µ ∈ Rp : max{Σ̂n − zα/2K̂
1/2, 0} ≤ ||T n − µ||2 ≤ Σ̂n + zα/2K̂

1/2};

RU = {µ ∈ Rp : ||T n − µ||2 ≤ Σ̂n + zαK̂1/2},

where α ∈ (0, 1/2). Then, from Corollary 4, it holds as p → ∞ and ni → ∞,
i = 1, ..., k, that

Pθ(µ ∈ R) = 1 − α + o(1) and Pθ(µ ∈ RU ) = 1 − α + o(1)

under (A-v) and (A-vi).

Remark 4 When Σ̂n > zα/2K̂
1/2, R indicates that µ is included in the region

sandwiched by the two p-dimensional spheres with radii of (Σ̂n−zα/2K̂
1/2)1/2

and (Σ̂n + zα/2K̂
1/2)1/2 from center T n. See Section 2 in Aoshima and Yata

(2011a) for the details.

4.2 Confidence intervals for ||µ||2

We construct confidence intervals for ||µ||2 by

I = [max{T̂n − zα/2K̂
1/2, 0}, T̂n + zα/2K̂

1/2];

IL = [max{T̂n − zαK̂1/2, 0}, ∞),

where α ∈ (0, 1/2). Then, from Corollary 5, it holds as p → ∞ and ni → ∞,
i = 1, ..., k, that

Pθ(||µ||2 ∈ I) = 1 − α + o(1) and Pθ(||µ||2 ∈ IL) = 1 − α + o(1)

under (A-v) to (A-vii). We emphasize that one can apply I and IL to the
discriminant analysis for high-dimensional data. Refer to Section 4 in Aoshima
and Yata (2011a, 2011c) and Sections 3 and 4 in Aoshima and Yata (2013).
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4.3 Test of µ = 0 against µ ̸= 0

We consider the following test:

H0 : µ = 0 vs. H1 : µ ̸= 0. (7)

For given α ∈ (0, 1/2), we test the hypothesis (7) by

rejecting H0 ⇐⇒ T̂n

K̂1/2
> zα.

Then, from Corollary 5, it holds as p → ∞ and ni → ∞, i = 1, ..., k, that

size = α + o(1) and power = Φ
( ||µ||2

K1/2
− zα

)
+ o(1) (8)

under (A-v) to (A-vii), where Φ(·) denotes the c.d.f. of N(0, 1). If one cannot
assume (A-vii) in case of µ ̸= 0, from Corollaries 2 and 5, it holds as p → ∞
and ni → ∞, i = 1, ..., k, that

size = α + o(1) and power = 1 + o(1)

under (A-v), (A-vi) and (A-viii).

Remark 5 When k = 2 and (b1, b2) = (1,−1), Chen and Qin (2010) also gave
(8) under slightly different conditions.

Remark 6 After replacing (A-v) with (A-v’), all the results in Section 4 are
still justified.

5 Sample size determination

In this section, we provide sample size determination so as to satisfy prespec-
ified accuracy on inference.

5.1 Given-bandwidth confidence region for µ

We consider constructing a given-bandwidth confidence region for µ by

Rn = {µ ∈ Rp : max{Σ̂n − δ, 0} ≤ ||T n − µ||2 ≤ Σ̂n + δ} (9)

for given δ (> 0). We assume δ = o{mini=1,...,k tr(Σ2
i )1/2}. For given α ∈

(0, 1/2), we determine the sample size so as to satisfy

Pθ(µ ∈ Rn) ≥ 1 − α.
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Aoshima and Yata (2011a) considered sample size determination as follows:
From the fact that tr(ΣiΣj) ≤ {tr(Σ2

i )tr(Σ
2
j )}1/2, it holds K1/2 ≤

√
2

∑k
i=1 b2

i

tr(Σ2
i )

1/2/(ni − 1). One may choose nis such that

min
k∑

i=1

ni subject to
√

2
k∑

i=1

b2
i tr(Σ

2
i )

1/2/(ni − 1) ≤ δ/zα/2.

Then, the sample size is determined by

ni ≥
zα/2

√
2

δ
|bi|tr(Σ2

i )
1/4

k∑
j=1

|bj |tr(Σ2
j )

1/4 + 1 (= Ci, say) (10)

for each πi. Note that ni → ∞, i = 1, ..., k, as p → ∞.

Theorem 6 (Aoshima and Yata, 2011a) Assume (A-iv) and either (A-ii)
or (A-iii). Then, for nis satisfying (10), it holds as p → ∞ that

lim inf Pθ(µ ∈ Rn) ≥ 1 − α. (11)

We can claim (11) under mild conditions as follows.

Theorem 7 Assume (A-v) and (A-vi). Then, for nis satisfying (10), (11)
holds as p → ∞.

5.2 Two-stage procedure

Since Σis are unknown, it is necessary to estimate Ci in (10). We proceed
with the following two steps along the lines of the elastic two-stage procedure
given by Aoshima and Yata (2011b):

1. Choose mi(≥ 4), i = 1, ..., k, such as

mi

Ci
≤ 1,

Ci

m2
i

→ 0 and
Ci

mi

tr(Σ4
i )

tr(Σ2
i )2

→ 0 as p → ∞ under (A-vi). (12)

Note that (12) is met when lim infp→∞ mi/Ci > 0 and lim supp→∞ mi/Ci < 1.
Take pilot samples, xij , j = 1, ..., mi, of size mi from each πi. Then, calculate
Wimi according to (4). Define the total sample size for each πi by

Ni = max
{

mi,
⌈zα/2

√
2

δ
|bi|W 1/4

imi

k∑
j=1

|bj |W 1/4
jmj

⌉
+ 1

}
, (13)

where ⌈x⌉ denotes the smallest integer ≥ x.
2. For each i, if Ni = mi, do not take any additional samples from πi and

otherwise, that is if Ni > mi, take additional samples, xij , j = m+1, ..., Ni, of
size Ni−mi from πi. By combining the initial samples and the additional sam-
ples, calculate xiNi and SiNi , i = 1, ..., k. Let N = (N1, ..., Nk). Then, define
RN according to (9) with TN =

∑k
i=1 bixiNi and Σ̂N =

∑k
i=1 b2

i tr(SiNi)/Ni.
We have the following theorem.
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Theorem 8 Assume (A-v) and (A-vi). For two-stage procedure given by (12)
and (13), we have as p → ∞ that

lim inf Pθ(µ ∈ RN) ≥ 1 − α.

Remark 7 The results in Theorems 7 and 8 are still justified under (A-v’)
instead of (A-v).

Remark 8 Under (12), (A-v) and (A-vi), it holds as p → ∞ that Varθ{Wimi

/tr(Σ2
i )} = o(C−1

i ). Then, we can claim as p → ∞ that Ni/Ci = 1 + op(1),
which is in the HDLSS situation in the sense that Ni/p = op(1) under the
condition that maxi=1,...,k tr(Σ2

i )
1/2/δ = o(p).

Remark 9 One may choose mi(≥ 4) such as mi/Ci > 1 for some i. Then,
the assertion in Theorem 8 can still be claimed. However, it may cause over-
sampling in the sense that Ni/Ci > 1 w.p.1.

Remark 10 One can obtain sample size determination both for the confidence
interval (Section 4.2) and for the test (Section 4.3) as well in similar fashion.
Under (A-v) and (A-vi), it can be verified to ensure the accuracy required in
Yata and Aoshima (2012, Sections 2 and 3) and Aoshima and Yata (2011a,
Section 3). We omit the details for brevity.

5.3 Simulation

In order to study the performance of the two-stage procedure given by (12) and
(13), we used computer simulations. Our goal was to construct a 95% given-
bandwidth confidence region, RN. In other words, we set α = 0.05. We set
µi′ = (0, ..., 0)T , bi′ = (−1)i′−1 and Σi′ = ci′B(ρ|i−j|1/3

i′ )B, i′ = 1, ..., k, where
B is defined by (3). Note that tr(Σi) = cip (i = 1, .., k). We considered two
cases: (i) k = 2, δ = 5, (c1, c2) = (1, 1), (ρ1, ρ2) = (0.3, 0.4) and (m1,m2) =
(10, 10), and (ii) k = 4, δ = 10, (c1, c2, c3, c4) = (1, 1, 1.2, 1.2), (ρ1, ρ2, ρ3, ρ4) =
(0.3, 0.4, 0.3, 0.4) and (m1,m2,m3,m4) = (10, 10, 15, 15). In Table 1, we gen-
erated independent pseudorandom observations from πi : Np(0, Σi), i =
1, ..., k. In Table 2, we generated them from Γ iwij , where Γ i = HiΛ

1/2
i ,

wij = (wi1j , ..., wipj)T and wii′j = yii′j − 1 (i′ = 1, ..., p) in which yii′js are
i.i.d. as the Poisson distribution with parameter λ = 1 for πi, i = 1, ..., k.

When p = 200 and 1000, we used the two-stage procedure given by (12)
and (13). The findings were obtained by averaging the outcomes from 2000
(= R, say) replications. Under a fixed scenario, suppose that the rth replication
ends with Ni = nir (i = 1, ..., k) observations and the corresponding confidence
region with nr = (n1r, ..., nkr) for r = 1, ..., R. Let ni = R−1

∑R
r=1 nir and

V (ni) = (R − 1)−1
∑R

r=1(nir − ni)2. In the end of the rth replication, we
checked whether µ does (or does not) belong to the corresponding confidence
region and defined Pr = 1 (or 0) accordingly. Let P = R−1

∑R
r=1 Pr, which
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Table 1 Required sample size and coverage probability given by (12) and (13) when πi :
Np(0, Σi), i = 1, ..., k.

Ci ni ni − Ci V (ni) P s(P )

Case (i): k = 2, δ = 5 and (m1, m2) = (10, 10)

p = 200

π1 22.67 22.67 0.0 8.42 0.957 0.00456
π2 25.29 25.25 -0.04 17.51

p = 1000

π1 49.87 49.55 -0.31 30.86 0.954 0.00468
π2 56.1 55.82 -0.28 47.26

Case (ii): k = 4, δ = 10 and (m1, m2, m3, m4) = (10, 10, 15, 15)

p = 200

π1 23.7 23.76 0.06 6.29 0.958 0.00449
π2 26.45 26.26 -0.19 11.32
π3 25.87 25.96 0.09 3.89
π4 28.88 28.88 0.0 8.82

p = 1000

π1 52.2 51.97 -0.23 21.6 0.95 0.0049
π2 58.73 58.26 -0.47 33.03
π3 57.09 57.07 -0.02 12.55
π4 64.24 63.96 -0.28 21.95

estimates the target coverage probability, having its estimated standard error
s(P ) where s2(P ) = R−1P (1 − P ).

Let us explain, for example, the entries from the second block for case (i)
in Table 1 that were given when p = 1000. We had C1 = 49.87 and C2 = 56.1
from (10). From 2000 independent replications, we observed n1 = 49.55 (n1 −
C1 = −0.31), n2 = 55.82 (n2 − C2 = −0.28) and P = 0.954 together with
V (n1) = 30.86, V (n2) = 47.26 and s(P ) = 0.00468. Throughout, the two-
stage procedure seemed to construct required confidence regions successfully
even for a discrete case such as in Table 2.

6 Example

We analyzed gene expression data given by Chiaretti et al. (2004) in which
the data set consists of 12625 (= p) genes. The expression measures were ob-
tained by using the three-step robust multichip average (RMA) preprocessing
method. Refer to Pollard et al. (2005) as well for the details. The data set had
two tumor cellular subtypes, B-cell and T-cell. We divided each type into two
groups with respect to the relapse as follows: (a) π1: B-cell with the relapse
(n1 = 50 samples); (b) π2: B-cell without the relapse (n2 = 26 samples); (c)
π3: T-cell with the relapse (n3 = 15 samples); and (d) π4: T-cell without the
relapse (n4 = 9 samples).
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Table 2 Required sample size and coverage probability given by (12) and (13) when Γ i =

HiΛ
1/2
i , wij = (wi1j , ..., wipj)

T and wii′j = yii′j − 1 (i′ = 1, ..., p) in which yii′js are i.i.d.
as the Poisson distribution with parameter λ = 1 for πi i = 1, ..., k.

Ci ni ni − Ci V (ni) P s(P )

Case (i): k = 2, δ = 5 and (m1, m2) = (10, 10)

p = 200

π1 22.67 22.51 -0.16 10.06 0.958 0.00451
π2 25.29 25.06 -0.23 19.89

p = 1000

π1 49.87 49.74 -0.13 32.03 0.955 0.00466
π2 56.1 55.89 -0.21 50.49

Case (ii): k = 4, δ = 10 and (m1, m2, m3, m4) = (10, 10, 15, 15)

p = 200

π1 23.7 23.65 -0.05 6.65 0.954 0.00471
π2 26.45 26.15 -0.3 14.02
π3 25.87 25.97 0.1 5.06
π4 28.88 28.84 -0.04 11.78

p = 1000

π1 52.2 52.02 -0.18 22.79 0.955 0.00466
π2 58.73 58.52 -0.21 40.09
π3 57.09 57.11 -0.02 13.63
π4 64.24 64.16 -0.08 24.75

6.1 Tests of µ1 = µ3 and µ2 = µ4

We first considered testing µ1 = µ3. We set α = 0.05. We calculated T̂n =
||x1n1−x3n3 ||2−tr(S1n1)/n1−tr(S3n3)/n3 = 1267 and K̂ = 2(W1n1/{n1(n1−
1)}+W3n3/{n3(n3−1)})+4tr(S1n1S3n3)/(n1n3) = 4331 with W1n1 = 2.84×
105, W3n3 = 2.83×105 and tr(S1n1S3n3) = 2.64×105 according to (4). Hence,
we obtained T̂n/K̂1/2 = 19.3. From the fact that

T̂n

K̂1/2
> zα = 1.64,

we rejected the null hypothesis, µ1 = µ3, with size 0.05 according to Sec-
tion 4.3. According to Section 4.2, we calculated 95% confidence intervals for
||µ||2 = ||µ1 − µ3||2 as follows:

I = [1138, 1396],

IL = [max{T̂n − zαK̂1/2, 0},∞) = [1159,∞).

Since both I and IL did not include ||µ|| = 0, we concluded µ1 ̸= µ3 signifi-
cantly.
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Similarly, we considered testing µ2 = µ4. From the fact that

T̂n

K̂1/2

=
||x2n2 − x4n4 ||2 − tr(S2n2)/n2 − tr(S4n4)/n4√

2W2n2/{n2(n2 − 1)} + 2W4n4/{n4(n4 − 1)} + 4tr(S2n2S4n4)/(n2n4)

= 23.6 > zα,

we rejected the null hypothesis, µ2 = µ4, with size α = 0.05.

6.2 Confidence region for µ = (µ1 − µ3) − (µ2 − µ4)

We considered constructing a confidence region for µ = (µ1−µ3)− (µ2−µ4).
We set α = 0.05. We calculated T n = (x1n1 − x3n3) − (x2n2 − x4n4) =
(0.151,−0.193, ..., 0.115,−0.102)T , K̂ = 2

∑4
i=1 Wini/{ni(ni − 1)} + 4

∑
i<j

tr(SiniSjnj ) /(ninj) = 20010 and Σ̂n =
∑4

i=1 tr(Sini)/ni = 563. According
to Section 4.1, we obtained a confidence region as

R = {µ ∈ Rp : max{Σ̂n − zα/2K̂
1/2, 0} ≤ ||T n − µ||2 ≤ Σ̂n + zα/2K̂

1/2}
= {µ ∈ Rp : 285 ≤ ||T n − µ||2 ≤ 840}.

When µ = 0, we had ||T n−µ||2 = ||T n||2 = 651, so that µ = 0 ∈ R. Thus we
considered 0 as a likely candidate of µ = (µ1−µ3)−(µ2−µ4). In other words,
we concluded that there is not much significant difference between B-cell and
T-cell in terms of the relapse.

6.3 Given-bandwidth confidence region for µ = µ1 − µ2

We considered constructing a given-bandwidth confidence region for µ = µ1−
µ2 along the line of Section 5.2. We set α = 0.05, δ = 150 and m1 = m2 = 15.
By using pilot samples of sizes m1 = m2 = 15, we calculated W1m1 = 2.96×105

and W2m2 = 2.21 × 105 according to (4). From (13), we calculated the total
sample sizes as

N1 = max
{

15,
⌈zα/2

√
2

δ
W

1/4
1m1

2∑
j=1

W
1/4
jmj

⌉
+ 1

}
= 21 and N2 = 20.

So, we took the next 6 samples from π1 and the next 5 samples from π2.
Then, we had TN = x1N1 − x2N2 = (0.101,−0.185, ..., 0.012, 0.025)T and
Σ̂N = tr(S1N1)/N1 + tr(S2N2)/N2 = 259. According to (9), we constructed a
given-bandwidth confidence region as

RN = {µ ∈ Rp : max{Σ̂N − δ, 0} ≤ ||TN − µ||2 ≤ Σ̂N + δ}
= {µ ∈ Rp : 109 ≤ ||TN − µ||2 ≤ 409}.
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When µ = 0, we had ||TN − µ||2 = ||TN||2 = 243, so that µ = 0 ∈ RN.
Thus we considered 0 as a likely candidate of µ = µ1 −µ2. If one considers a
mean structure such as µ = µ1 −µ2 = c(1, ..., 1)T with an unknown constant
c, we can provide an allowable range of c by c ∈ [−0.126, 0.104] such that
µ = c(1, ..., 1)T ∈ RN.

7 Appendix

Throughout this section, we assume that b1 = · · · = bk = 1, without loss
of generality. Throughout, let n∗ =

∑k
i=1 ni. Let yj = (x1j − µ1)/n1 for

j = 1, ..., n1, and yj+
∑i−1

i′=1
ni′

= (xij − µi)/ni for j = 1, ..., ni (i ≥ 2).

Let Vn∗j =
∑j−1

i=1 yT
i yj for j = 2, ..., n∗. Note that Eθ{(2

∑n∗
j=2 Vn∗j)2} =

2
∑k

i=1 tr(Σ2
i )(ni − 1)/n3

i + 4
∑

i<j tr(ΣiΣj)/(ninj) (= Kv, say).

Lemma 1 Assume (A-v) and (A-vi). Then, it holds as p → ∞ and ni →
∞, i = 1, ..., k, that

4
∑n∗

j=2 V 2
n∗j

Kv
= 1 + op(1).

Proof Let Γ i = (γi1, ...,γiri
), i = 1, ..., k. Let i∗ be an integer such that

i ∈ [1+
∑i∗−1

j=1 nj ,
∑i∗

j=1 nj ], where
∑0

j=1 nj = 0. Note that tr(ΣiΣjΣi′Σj) =

tr(Σ1/2
j ΣiΣ

1/2
j Σ

1/2
j Σi′Σ

1/2
j ) ≤ {tr(ΣiΣjΣiΣj)tr(Σi′ΣjΣi′Σj)}1/2. Un-

der (A-v), we have for i ̸= i′ ̸= j that

n2
i∗n

2
i′∗

n4
j∗Eθ{(yT

i yj)
2(yT

i′yj)
2} = n4

j∗Eθ(yT
j Σi∗yjy

T
j Σi′∗

yj)

= Eθ(
rj∗∑

s,t,u,v

γT
j∗sΣi∗γj∗tγ

T
j∗uΣi′∗

γj∗vwj∗sjwj∗tjwj∗ujwj∗vj)

= tr(Σi∗Σj∗)tr(Σi′∗Σj∗) + 2tr(Σi∗Σj∗Σi′∗Σj∗)

+ O{
rj∗∑
s=1

γT
j∗sΣi∗γj∗sγ

T
j∗sΣi′∗γj∗s}

= tr(Σi∗Σj∗)tr(Σi′∗Σj∗) + O[{tr(Σi∗Σj∗Σi∗Σj∗)tr(Σi′∗Σj∗Σi′∗Σj∗)}1/2]
(14)

from the fact that

rj∗∑
s=1

γT
j∗sΣi∗γj∗sγ

T
j∗sΣi′∗

γj∗s ≤
{ rj∗∑

s=1

(γT
j∗sΣi∗γj∗s)

2

rj∗∑
s′=1

(γT
j∗s′Σi′∗

γj∗s′)2
}1/2

≤
{ rj∗∑

s,t

(γT
j∗sΣi∗γj∗t)

2

rj∗∑
s′,t′

(γT
j∗s′Σi′∗

γj∗t′)
2
}1/2

= {tr(Σi∗Σj∗Σi∗Σj∗)tr(Σi′∗
Σj∗Σi′∗

Σj∗)}1/2 (15)
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On the other hand, from (15), under (A-v), we have for i ̸= j that

Eθ{(yT
i yj)

4}n4
i∗n

4
j∗

= Eθ

{( ri∗∑
s,u

rj∗∑
t,v

γT
i∗sγj∗twi∗siwj∗tjγ

T
i∗uγj∗vwi∗uiwj∗vj

)2}
= tr(Σi∗Σj∗)

2 + Eθ

{( ri∗∑
s ̸=u

rj∗∑
t̸=v

γT
i∗sγj∗twi∗siwj∗tjγ

T
i∗uγj∗vwi∗uiwj∗vj

)2}

+ O{tr(Σi∗Σj∗Σi∗Σj∗)} + O
( rj∗∑

s=1

γT
j∗sΣi∗γj∗sγ

T
j∗sΣi∗γj∗s

)
+ O

( ri∗∑
s=1

γT
i∗sΣj∗γi∗sγ

T
i∗sΣj∗γi∗s

)
= 3tr(Σi∗Σj∗)

2 + O{tr(Σi∗Σj∗Σi∗Σj∗)} = O{tr(Σi∗Σj∗)
2} (16)

from the fact that tr(ΣiΣjΣiΣj) = tr{(Σ1/2
i ΣjΣ

1/2
i )2} ≤ tr(ΣiΣj)2. Let

Bj = Σj′/n2
j′ for j ∈ [1 +

∑j′−1
i=1 ni,

∑j′

i=1 ni], where
∑0

i=1 ni = 0. Note that
Eθ(V 2

n∗j) =
∑j−1

i=1 tr(BiBj) for j = 2, ..., n∗, and 4
∑n∗

j=2

∑j−1
i=1 tr(BiBj) =

Kv. From (14)-(16), we have for 2 ≤ j < j′ that

Eθ[{V 2
n∗j − Eθ(V 2

n∗j)}2] ≤ Eθ(V 4
n∗j) = O

{ j−1∑
i,i′

tr(BiBj)tr(Bi′Bj)
}

; (17)

Eθ[{V 2
n∗j − Eθ(V 2

n∗j)}{V 2
n∗j′ − Eθ(V 2

n∗j′)}]

= O
[ j−1∑

i,i′

{tr(BiBjBiBj)tr(Bi′Bj′Bi′Bj′)}1/2
]

+ O
[ j−1∑

i=1

tr(BiBj){tr(BiBj′) + tr(BjBj′)}
]

(18)

from the fact that

Eθ{(yT
i yj)

2(yT
i yj′)(yT

j yj′)} ≤ [Eθ{(yT
i yj)

4}Eθ{(yT
i yj′)2(yT

j yj′)2}]1/2

= O[tr(BiBj){tr(BiBj′)tr(BjBj′)}1/2]
= O[tr(BiBj){tr(BiBj′) + tr(BjBj′)}]

for i < j < j′. Then, from (17), we can obtain as ni → ∞, i = 1, ..., k, that

n∗∑
j=2

Eθ[{V 2
n∗j − Eθ(V 2

n∗j)}2] ≤
n∗∑

j=2

Eθ(V 4
n∗j) = O

( K2
v

mini=1,...,k ni

)
= o(K2

v ).

(19)
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On the other hand, under (A-vi), we have for all i, i′, j, j′ that

{tr(ΣiΣjΣiΣj)tr(Σi′Σj′Σi′Σj′)}1/2

{tr(Σ2
i )tr(Σ

2
j )tr(Σ

2
i′)tr(Σ

2
j′)}1/2

≤
{tr(Σ4

i )tr(Σ
4
j )tr(Σ

4
i′)tr(Σ

4
j′)}1/4

{tr(Σ2
i )tr(Σ

2
j )tr(Σ

2
i′)tr(Σ

2
j′)}1/2

≤ {λi1λj1λi′1λj′1}1/2

{tr(Σ2
i )tr(Σ

2
j )tr(Σ

2
i′)tr(Σ

2
j′)}1/4

→ 0

from the facts that tr(ΣiΣjΣiΣj) ≤ tr(Σ2
i Σ

2
j ) ≤ tr(Σ4

i )
1/2tr(Σ4

j )
1/2 and

tr(Σ4
i )

1/2 ≤ λi1tr(Σ2
i )

1/2. Then, it holds under (A-vi) that

{tr(ΣiΣjΣiΣj)tr(Σi′Σj′Σi′Σj′)}1/2/(ninjni′nj′)
K2

v

= O
[ {tr(ΣiΣjΣiΣj)tr(Σi′Σj′Σi′Σj′)}1/2/(ninjni′nj′)
{tr(Σ2

i )/n2
i + tr(Σ2

j )/n2
j}{tr(Σ

2
i′)/n2

i′ + tr(Σ2
j′)/n2

j′}

]
= O

[{tr(ΣiΣjΣiΣj)tr(Σi′Σj′Σi′Σj′)}1/2

{tr(Σ2
i )tr(Σ

2
j )tr(Σ

2
i′)tr(Σ

2
j′)}1/2

]
→ 0.

Hence, from (18), under (A-vi), we can claim that
n∗∑

2≤j<j′

Eθ[{V 2
n∗j − Eθ(V 2

n∗j)}{V 2
n∗j′ − Eθ(V 2

n∗j′)}] = o(K2
v ). (20)

Thus by combining (19) and (20), we have as p → ∞ and ni → ∞, i = 1, ..., k,
that

Varθ

( n∗∑
j=2

V 2
n∗j

)
= o(K2

v )

under (A-v) and (A-vi). Thus by using Chebyshev’s inequality, from the fact
that 4

∑n∗
j=2 Eθ(V 2

n∗j) = Kv, it holds that 4
∑n∗

j=2 V 2
n∗j/Kv = 1 + op(1). Thus

it concludes the result. �
Lemma 2 Let I(·) be the indicator function. For Lindeberg’s condition, under
(A-v), it holds as p → ∞ and ni → ∞, i = 1, ..., k, that

n∗∑
j=2

Eθ

{V 2
n∗j

Kv
I
(V 2

n∗j

Kv
> τ

)}
→ 0

for any τ > 0.

Proof By using Chebyshev’s inequality and Schwarz’s inequality, we have that
n∗∑

j=2

Eθ

{V 2
n∗j

Kv
I
(V 2

n∗j

Kv
> τ

)}
≤

n∗∑
j=2

[
Eθ

(V 4
n∗j

K2
v

)
Eθ

{
I
(V 2

n∗j

Kv
> τ

)}]1/2

≤ τ−1K−2
v

n∗∑
j=2

Eθ(V 4
n∗j). (21)

Then, by combining (21) with (19), we can conclude the result. �
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Lemma 3 Assume (A-v). Then, it holds as p → ∞ and ni → ∞, i = 1, ..., k,
that

K̂

K
= 1 + op(1).

Proof From (14) and (16), we have for i ̸= j that

Eθ

[{(
(xis − µi)

T (xjt − µj)
)2 − tr(ΣiΣj)

}2] = O{tr(ΣiΣj)2};
Eθ

[
{(xis − µi)

T (xjt − µj)}2{(xis′ − µi)
T (xjt − µj)}2 − tr(ΣiΣj)2

]
= O{tr(ΣiΣjΣiΣj)} (s ̸= s′) (22)

under (A-v). We write that

tr(SiniSjnj ) =
ni∑

s=1

nj∑
t=1

[{xis − µi − (xini
− µi)}T {xjt − µj − (xjnj

− µj)}]2

(ni − 1)(nj − 1)
.

Then, from (22), it holds as p → ∞ and ni → ∞, i = 1, ..., k, that

Varθ{tr(SiniSjnj )} = o{tr(ΣiΣj)2} (23)

for i < j. By combining (5) with (23), we can claim under (A-v) that K̂ =
K{1+op(1)} as p → ∞ and ni → ∞, i = 1, ..., k. Thus it concludes the result.
�

Proofs of Theorem 4 and Corollary 4 Define Sn∗t =
∑t

j=2 Vn∗j for t = 2, ..., n∗.
Let Fn∗i = σ(y1, y2, ...,yi) be the σ algebra by {y1, y2, ...,yi} for i ≥ 2. Note
that Sn∗t is of zero mean and square integrable. Note that Eθ(Sn∗t|Fi) =∑i

j=2 Vn∗j = Sn∗i for t > i. Thus {Sn∗i,Fn∗i}n∗
i=2 is a sequence of zero mean

and a square integrable martingale. We consider applying the martingale cen-
tral limit theorem given by McLeish (1974). Refer to Section 2.6 in Ghosh et
al. (1997) for the details of the martingale central limit theorem. We have as
ni → ∞, i = 1, ..., k, that

||T n − µ||2 − Σ̂n

= 2
k∑

i=1

∑
s<t

(xis − µ)T (xit − µ)
ni(ni − 1)

+ 2
∑
i<j

ni∑
s=1

nj∑
t=1

(xis − µ)T (xjt − µ)
ninj

= 2
n∗∑

j=2

Vn∗j + 2
k∑

i=1

∑
s<t

(xis − µ)T (xit − µ)
n2

i (ni − 1)
= 2

n∗∑
j=2

Vn∗j + op(K1/2). (24)

Note that K/Kv → 1 as ni → ∞, i = 1, ..., k. Then, by using the martingale
central limit theorem, we obtain that

||T n − µ||2 − Σ̂n

K
=

2
∑n∗

j=2 Vn∗j

Kv
+ op(1) ⇒ N(0, 1) (25)

by combining Lemmas 1 and 2 with (24). Thus it concludes the result of
Theorem 4. On the other hand, by using Lemma 3, we obtain from (25) that
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(||T n − µ||2 − Σ̂n)/K̂ ⇒ N(0, 1). It concludes the result of Corollary 4. �

Proofs of Theorem 5 and Corollary 5 Note that

T̂n − ||µ||2 = ||T n − µ||2 − Σ̂n + 2(T n − µ)T µ

= ||T n − µ||2 − Σ̂n + op(K1/2)

and K∗/K → 1 under (A-vii). Thus in a way similar to the proofs of Theorem
4 and Corollary 4, we can conclude the results. �

Proof of Corollary 2 Note that
∑k

i=1 λi1/(niK
1/2) = O{

∑k
i=1 λi1/tr(Σ2

i )
1/2}

= o(1) under (A-vi). Then, it holds under (A-vi) that

k∑
i=1

µT Σiµ

niK
≤ ||µ||2

k∑
i=1

λi1

niK
=

||µ||2

K1/2

k∑
i=1

λi1

niK1/2
=

||µ||2

K1/2
× o(1),

so that we obtain that K/||µ||4 = o(1) under (A-vi) and (A-viii). Then, it
holds that

∑k
i=1 µT Σiµ/(ni||µ||4) ≤

∑k
i=1 λi1/(ni||µ||2) ≤

∑k
i=1 tr(Σ2

i )1/2

/(ni||µ||2) = O(K1/2/||µ||2) = o(1). Thus we have that Varθ(T̂n)/||µ||4 =
K∗/||µ||4 = o(1) under (A-vi) and (A-viii). It concludes the result. �

Proof of Corollary 3 By using Schwarz’s inequality, it holds under (A-v’)
that Eθ[{(xil − µi)T Σj(xil − µi) − tr(ΣiΣj)}{(xil − µi)T Σj′(xil − µi) −
tr(ΣiΣj′)}] ≤ [Varθ{(xil − µi)T Σj(xil − µi)}Varθ{(xil − µi)T Σj′(xil −
µi)}]1/2 = O[{tr(ΣiΣjΣiΣj)tr(ΣiΣj′ΣiΣj′)}1/2] for i, j, j′ = 1, ..., k. Then,
we have under (A-v’) that

n4
j∗Eθ{yT

j Σi∗yjy
T
j Σi′∗yj} − tr(Σi∗Σj∗)tr(Σi′∗Σj∗)

= Eθ[{n2
j∗y

T
j Σi∗yj − tr(Σi∗Σj∗)}{n2

j∗y
T
j Σi′∗

yj − tr(Σi′∗
Σj∗)}]

= O[{tr(Σi∗Σj∗Σi∗Σj∗)tr(Σi′∗
Σj∗Σi′∗

Σj∗)}1/2],

so that (14) holds. On the other hand, under (A-v’), it holds for i ̸= j that
n4

i∗
n4

j∗
Eθ{(yT

i yj)4} = Varθ{n2
i∗

n2
j∗

(yT
i yj)2}+tr(Σi∗Σj∗)

2 = O{tr(Σi∗Σj∗)
2},

so that (16) holds. Thus we claim Lemmas 1 and 2 after replacing (A-v) with
(A-v’). We can conclude the result in a way similar to the proofs of Theorems
4 and 5. �

Proof of Theorem 7 We have from (10) that K1/2 ≤ δ/zα/2. Then, from
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Theorem 4, we claim as p → ∞ that

Pθ(µ ∈ Rn) = Pθ(max{−δ + Σ̂n, 0} ≤ ||T n − µ||2 ≤ δ + Σ̂n)

= Pθ

( −δ

K1/2
≤ ||T n − µ||2 − Σ̂n

K1/2
≤ δ

K1/2

)
= Pθ

(∣∣∣ ||T n − µ||2 − Σ̂n

K1/2

∣∣∣ ≤ δ

K1/2

)
≥ Pθ

(∣∣∣ ||T n − µ||2 − Σ̂n

K1/2

∣∣∣ ≤ zα/2

)
= Pθ(|N(0, 1)| < zα/2) + o(1) = 1 − α + o(1) (26)

under (A-v) and (A-vi). Thus the proof is completed. �

Proof of Theorem 8 From (5) and (12), it holds as p → ∞ that |Ni − Ci| =
op(C

1/2
i ) under (A-v) and (A-vi). Then, we write that |Ni −Ci| = Op(ωC

1/2
i ),

where ω (> 0) is a variable such that ω → 0 as p → ∞. Let CiL = ⌊Ci −
(ωCi)1/2⌋, i = 1, ..., k. We claim as p → ∞ that max{mi, CiL} ≤ Ni <
Ci +(ωCi)1/2 w.p.1. Then, in a way similar to the proofs of Theorems 2.4 and
2.5 in Aoshima and Yata (2011a), we claim that

||T N − µ||2 − Σ̂N = ||T CL
− µ||2 − Σ̂CL

+ op(δ),

where CL = (C1L, ..., CkL). From the fact that CiL/Ci → 1 as p → ∞,
similarly to (26), we can obtain under (A-v) and (A-vi) that

Pθ(µ ∈ RN) = Pθ

(∣∣||TN − µ||2 − Σ̂N

∣∣ ≤ δ
)

= Pθ

(∣∣||TCL
− µ||2 − Σ̂CL

∣∣ ≤ δ
)

+ o(1) ≥ 1 − α + o(1).

It concludes the result. �
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