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Abstract. The inertial range structure of turbulence obeying the Gross-Pitaevskii

equation, the equation of motion for quantum fluids, is analyzed by means of a spectral

closure approximation. It is revealed that, for the energy-transfer range, the spectrum

of the order parameter field ψ obeys k−2 law for k ≪ k∗ and k−1 law for k ≫ k∗, where

k∗ is the wavenumber where the characteristic time scales associated with linear and

nonlinear terms are of the same order. It is also shown that, for the particle-number-

transfer range, the spectrum obeys k−1 law for k ≪ k∗,n and k−1/3 law for k ≫ k∗,n,

where k∗,n is the wavenumber corresponds to k∗ in the particle-number-transfer range.
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1. Introduction

The order parameter ψ(x) (x := {x, t}) for the condensed phase of a Bose gas satisfies

the Gross-Pitaevskii (GP) equation [1, 2],

ih̄
∂

∂t
ψ(x) = − h̄2

2m
∇2ψ(x)− µψ(x) + g|ψ(x)|2ψ(x), (1)

under a certain approximation (see, e.g., Ref. [3] for the derivation of the equation

and the condition for the approximation). Here, h̄ is the Planck constant divided

by 2π, m the mass of the particles, µ the chemical potential, which is a constant

throughout this paper, and g is the coupling constant. By introducing the velocity

field v(x) := (h̄/m)∇φ(x) with ψ(x) =
√
n(x) eiφ(x), we can interpret the GP equation

(1) as the equation of motion for a fluid as

∂

∂t
n(x) = −∇ · j(x), j(x) :=

h̄

2mi
[ψ∗(x)∇ψ(x)− ψ(x)∇ψ∗(x)] = n(x)v(x), (2)

∂

∂t
v(x) = −v(x) ·∇v(x)−∇p(x), p(x) := − µ

m
+
gn(x)

m
− h̄2

2m2

∇2
√
n(x)√
n(x)

, (3)

where n(x) is the number density of the condensate of quantum fluid. In comparison

with the Navier-Stokes equation for the ordinary fluid, (3) has no dissipation term

and the form of the last term in the r.h.s. is slightly different from the corresponding

term −∇p(x)/ρ(x) in the Navier-Stokes equation where ρ(x) := mn(x) is the mass

density. The pressure-like term p(x) depends not only on n(x) but also on its spatial

derivatives. The vorticity ω(x) := ∇×v(x) is 0 wherever v(x) is defined, i.e., n(x) ̸= 0,

and it is concentrate in lines where n(x) = 0. Due to the uniqueness of the phase

φ(x) up to modulo 2π, the circulation along a path around the line is quantized as∮
C
dl · v(x) = (2πh̄/m)k where k is an integer.

The number of particles n̄ and the energy Ē per unit volume are given by

n̄ :=
1

V

∫
dx|ψ(x)|2, (4)

Ē := EK(t) + EI(t), (5)

EK(t) :=
1

V

∫
dx

h̄2

2m
|∇ψ(x)|2 = 1

V

∫
dx

[
1

2
mn(x)|v(x)|2 + h̄2

2m
|∇
√
n(x)|2

]
, (6)

EI(t) :=
1

V

∫
dx

g

2
|ψ(x)|4 = 1

V

∫
dx

g

2
[n(x)]2, (7)

where V is the volume of the whole integral domain, EK(t) is the kinetic energy and

EI(t) is the interaction energy. Both n̄ and Ē are the constants of the motion. The

potential energy ĒP = −µn̄ is not included in the definition of the energy Ē.

In experiments [4, 5] of turbulence of liquid 4He in superfluid phase, there are some

evidence suggesting that the spectrum corresponding to the velocity energy, the first

term in the r.h.s. of (6), obeys a scaling law which is similar to the Kolmogorov energy
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spectrum E(k) ∝ k−5/3 in the ordinary fluid turbulence, where k is the wavenumber.

Recall that superfluid phase is a mixture of superfluid and normal components and

that the normal component remains even at very low temperature in experiments.

Numerical simulation of GP equation provides a model for the ideal case of a pure

superfluid component. Kobayashi and Tsubota [6] performed the numerical simulations

with forcing and dissipation and obtained a spectrum which is consistent with the

Kolmogorov spectrum for the spectrum corresponding to the velocity energy. This

suggests the possibility that the superfluid component alone yields the Kolmogorov

spectrum.

In the numerical simulations, the spectrum F (k) related to ψ(x) [see (67) for the

definition] is also available since the data for the field ψ(x) can be directly accessed.

Note that k2F (k) is proportional to the the kinetic energy spectrum, i.e., the spectrum

corresponding not only to the velocity energy but to the whole kinetic energy EK in

(6). Proment, Nazarenko and Onorato [7] (hereafter referred to as PNO) performed

numerical simulations of GP equation with forcing and dissipation. The types and

parameters of forcing and dissipation are varied among simulations and they observed

F (k) ∝ k−1 when n̄ is relatively small, cf. Fig. 3 of PNO, and F (k) ∝ k−2 when n̄ is

relatively large, cf. Fig. 4 of PNO. Yoshida and Arimitsu [8] observed a different scaling

law F (k) ∝ k−2/3 in numerical simulations with a different type of forcing and dissipation

from PNO. Thus, there is a possibility that the spectrum is sensitive to the manner of

forcing and dissipation, especially when the scaling range is quite narrow as the present

states of the numerical simulations. In order to avoid the effect of particular forms of

the forcing and dissipation, we performed a preliminary numerical simulation of GP

equation with the same setting as in Yoshida and Arimitsu but switching off the forcing

and dissipation. The system without forcing and dissipation would finally relax to the

thermal equilibrium state but the energy- or particle-number-transfer process, which

is characteristics in turbulence, may be observed in the transient period. We observed

F (k) ∝ k−2 which is consistent with the large n̄ case of PNO in the transient period. We

also observed a spectrum for the velocity energy that is consistent with E(k) ∝ k−5/3 in

a higher wavenumber range. Since the scaling ranges are still narrow, this coexistence

of the spectra F (k) ∝ k−2 and E(k) ∝ k−5/3 should be examined further. The details

and further results of the new numerical simulation will be reported elsewhere.

When the nonlinear term, the last term in the r.h.s. of (1), is small compare to the

other terms in the equation, the weak wave turbulence (WWT) theory [9, 10] can be

used to derive the spectrum. The application of WWT theory to the GP equation was

done by Dyachenko et al. [11] (hereafter referred to as DNPZ). For the energy-transfer

range, the spectrum of ψ obeys the scaling law F (k) ∝ k−1 in the WWT theory. The

scaling law coincides with that obtained in PNO for small n̄. The effect of the nonlinear

term in (1) may become dominant as n̄ increases and thus the WWT theory is not

capable of explaining the spectrum F (k) ∝ k−2 observed in PNO for large n̄ or in our

new simulation. We call the turbulence strong turbulence (ST), in contrast to WWT,

when the nonlinear term is dominant.
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The time evolution of the spectrum within the WWT region is discussed by

Svistunov [12], where a self-similar form of F (k, t) with the peak wavenumber kp(t)

decreases with time is obtained. See also Semikoz and Tkachev [13] for the numerical and

further study. The Laplacian in the first term of the r.h.s. of (1) implies multiplication of

k2 in Fourier space and thus the effect of the linear term is small in a low wavenumber

region. The decrease of kp(t) suggests that the dominant part of the system would

eventually enter the ST region.

In this paper, we attempt to derive theoretically the inertial range spectrum of

the turbulence obeying GP equation not only for the WWT region but the ST region,

by means of a spectral closure approximation, or in other words, a two-point closure

approximation. As discussed by Kaneda [14], the closure equations are determined

uniquely by the choice of quantities to close the equations under a fairly weak constraints.

Our choice of the quantities are the two-point correlation function and response function

of the field ψ. The reason for this choice is that it is the most simple and basic choice.

This choice is essentially GP equation equivalent of the direct interaction approximation

(DIA) [15] of the Navier-Stokes equation. A framework for the DIA of general wave

equations with three-wave interaction can be found, e.g., in Ref. [16]. The GP equation

have four-wave interaction and we will go further from the framework to obtain the

structure of the similarity solution for the two-point correlation function, equivalently

the spectrum.

This paper is organized as follows. In Sec. 2, the basic equations in Fourier space

are given. In Sec. 3, the closure equations are given. In Secs. 4 and 5, the similarity

solutions of the closure equations are analyzed for energy- and particle-number-transfer

ranges, respectively. Discussion is given in Sec. 6.

2. Basic equations

Let us introduce a doublet by(
ψ+
k (t)

ψ−
k (t)

)
:= e−Lkt

(
ψk(t)

ψ∗
−k(t)

)
, (8)

where ψk(t) is the Fourier transform of ψ(x, t) with respect to x,

ψk(t) :=

∫
dxe−ik·xψ(x), (9)

and

Lk := i

(
− k2

2m
+ µ

)
σz, (10)

with σi(i = x, y, z) being the Pauli matrices

σx =

(
0 1

1 0

)
, σy =

(
0 −i

i 0

)
, σz =

(
1 0

0 −1

)
. (11)
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Let nk(t) be the Fourier transform of n(x, t) defined similarly as (9). nk(t) can be

written in terms of ψα
k(t) as

nk(t) =

∫
pq

δk−p−qO
βγ

kpq(t)ψ
β
p(t)ψ

γ
q(t), (12)

where
∫
k
=
∑

k /V for a finite volume V (discrete wavevectors k) and
∫
k
=
∫
d3k/(2π)3

for V → ∞ ( continuous k),
∫
pq

is the abbreviation for
∫
p

∫
q
, δk = (2π)3δ(k), and

O βγ
kpq(t) := Õ β′γ′

kpq (eLpt)β
′β(eLqt)γ

′γ, Õ βγ
kpq :=

1

2
σβγ
x . (13)

Here and hereafter, the upper Greece index denotes an element in {+,−}, and the

repeated indices indicate the summation over the elements.

Equations (1) and (2) (h̄ = 1) can be rewritten in terms of ψα
k(t) as

∂

∂t
ψα
k(t) = g

∫
pqr

δk−p−q−rM
αβγζ
kpqr (t)ψ

β
p(t)ψ

γ
q(t)ψ

ζ
r(t), (14)

∂

∂t
nk(t) =

∫
pq

δk−p−qN
βγ

kpq(t)ψ
β
p(t)ψ

γ
q(t), (15)

where

Mαβγζ
kpqr (t) := (e−Lkt)αα

′
M̃α′β′γ′ζ′

kpqr (eLpt)β
′β(eLqt)γ

′γ(eLrt)ζ
′ζ , (16)

M̃αβγζ
kpqr :=


− i

3
for (α, β, γ, ζ) ∈ {(+,−,+,+), (+,+,−,+), (+,+,+,−)}

i
3

for (α, β, γ, ζ) ∈ {(−,+,−,−), (−,−,+,−), (−,−,−,+)}
0 otherwise

, (17)

N βγ
kpq(t) := Ñ β′γ′

kpq (eLpt)β
′β(eLqt)γ

′γ, Ñ βγ
kpq :=

1

4m
(p2 − q2)σβγ

y . (18)

The number density n̄, the energy densities Ek(t) and EI(t) are given in terms of

ψα
k(t) and nk(t) as

n̄ =
1

V

∫
k

ψ+
k (t)ψ

−
−k(t), EK(t) =

1

V

∫
k

k2

2m
ψ+
k (t)ψ

−
−k(t), EI(t) =

1

V

∫
k

g

2
nk(t)n−k(t).

(19)

Note that n̄ does not depend on time since it is a constant of motion.

3. Closure equations

Let us assume statistical homogeneity in space, i.e., the statistical quantities are

invariant under the spatial transition. Then, the two-point correlation function Q and

the two-point response function G can be defined by

⟨ψα
k(t)ψ

β
−k′(t

′)⟩ = Qαβ
k (t, t′)δk−k′ , (20)⟨

δψα
k(t)

δfβ
k′(t′)

⟩
= Gαβ

k (t, t′)δk−k′ , (21)
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where δfα
k (t) is an infinitesimal disturbance added to ψα

k(t), and ⟨·⟩ denotes an ensemble

average.

The set of closed equations for Qk(t, t
′) and Gk(t, t

′) can be obtained by the method

of renormalized expansion and truncation. The method was applied to the Navier-Stokes

equation by Kraichnan [17] and Kaneda [18]. The method is explained in the present

context as follows.

(i) Expand Q and G in functional power series of the solutions Q(0) and G(0) for the

zeroth-order in g.

(ii) Invert these expansions to obtain Q(0) and G(0) in functional power series of Q and

G.

(iii) Substitute these inverted expansions into the primitive expansions of dQ/dt and

dG/dt to obtain the renormalized expansions.

(iv) Truncate these renormalized expansions at the lowest nontrivial order.

Following the above procedure, we arrive at

∂

∂t
Qαβ

k (t, t′)

= 3g

∫
p

Mαγζη
kppk(t)Q

γζ
p (t, t)Qηβ

k (t, t′)

+ g2
∫ t

t0

dt′′
∫
pqr

δk−p−q−r

[
18Mαγζη

kpqr(t)M
λνχκ
pqrk (t

′′)Gγλ
p (t, t′′)Qζν

q (t, t′′)Qηχ
r (t, t′′)Qκβ

k (t′′, t′)

+ 6Mαγζη
kpqr(t)M

κλνχ
−k−p−q−r(t

′′)Qγλ
p (t, t′′)Qζν

q (t, t′′)Qηχ
r (t, t′′)Gβκ

−k(t
′, t′′)

]
+O(g3), (22)

∂

∂t
Gαβ

k (t, t′)

= δαβδ(t− t′) + 3g

∫
p

Mαγζη
kppk(t)Q

γζ
p (t, t)Gηβ

k (t, t′)

+ g2
∫ t

t′
dt′′
∫
pqr

δk−p−q−r18M
αγζη
kpqr(t)M

λνχκ
pqrk (t

′′)Gγλ
p (t, t′′)Qζν

q (t, t′′)Qηχ
r (t, t′′)Gκβ

k (t′′, t′)

+O(g3), (23)

Gαβ
k (t, t′) = 0 (t < t′), (24)

where t0 is the initial time. We will take the limit t0 → −∞ in the following . The

equations for Q and G are closed when the O(g3) terms in (22) and (23) are neglected.

In the following, we will work within this closure approximation.

Let us assume that the statistical quantities are invariant under the global

phase transformation, ψα
k(t) → eαiθψα

k(t). Since Qαβ
k (t, t′) and Gαβ

k (t, t′)

transform as Qαβ
k (t, t′)e(α+β)iθ and Gαβ

k (t, t′)e(α−β)iθ respectively under the global phase



Inertial range structure of Gross-Pitaevskii turbulence 7

transformation, the correlation function and the response function can be written as

Q+−
k (t, t′) = e−2ign̄(t−t′)Qk(t, t

′), Q−+
k (t, t′) = e2ign̄(t−t′)Q∗

−k(t, t
′), (25)

G++
k (t, t′) = e−2ign̄(t−t′)Gk(t, t

′), G−−
k (t, t′) = e2ign̄(t−t′)G∗

−k(t, t
′), (26)

and otherwise 0. Here, the exponential factors are introduced to extract the time

dependence of Qαβ
k (t, t′) and Gαβ

k (t, t′) due to the terms of O(g) in the r.h.s. of Eqs.

(22) and (23) while the time dependence due to the terms of O(g2) are left to Qk(t, t
′)

and Gk(t, t
′). The equations for Qk(t, t

′) and Gk(t, t
′) are given as

∂

∂t
Qk(t, t

′)

=g2
∫ t

−∞
dt′′
∫
pqr

δk−p−q−re
i

2m
(k2+p2−q2−r2)(t−t′′)

×
[
−2Q∗

−p(t, t
′′)Qq(t, t

′′)Gr(t, t
′′)Qk(t

′′, t′)− 2Q∗
−p(t, t

′′)Gq(t, t
′′)Qr(t, t

′′)Qk(t
′′, t′)

+ 2G∗
−p(t, t

′′)Qq(t, t
′′)Qr(t, t

′′)Qk(t
′′, t′) + 2Q∗

−p(t, t
′′)Qq(t, t

′′)Qr(t, t
′′)G∗

k(t
′, t′′)

]
,

(27)

∂

∂t
Gk(t, t

′)

=g2
∫ t

t′
dt′′
∫
pqr

δk−p−q−re
i

2m
(k2+p2−q2−r2)(t−t′′)

×
[
−2Q∗

−p(t, t
′′)Qq(t, t

′′)Gr(t, t
′′)Gk(t

′′, t′)− 2Q∗
−p(t, t

′′)Gq(t, t
′′)Qr(t, t

′′)Gk(t
′′, t′)

+ 2G∗
−p(t, t

′′)Qq(t, t
′′)Qr(t, t

′′)Gk(t
′′, t′)

]
+ δ(t− t′), (28)

Gk(t, t
′) = 0 (t < t′). (29)

The equation for the one-time correlation function is given by

∂

∂t
Qk(t, t) =

∂

∂t
Qk(t, t

′)

∣∣∣∣
t′=t

+ c.c., (30)

where c.c. denotes the complex conjugate.

The two-point correlation function for nk(t) is introduced by

⟨nk(t)n−k(t
′)⟩ − ⟨nk(t)⟩⟨n−k(t

′)⟩ = Qn
k(t, t

′)δk−k′ , (31)
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and the equation for Qn is given by

∂

∂t
Qn

k(t, t
′)

=i

∫
pq

δk−p−q
1

2m
(p2 − q2)e

i
2m

(p2−q2)(t−t′)Q∗
−p(t, t

′)Qq(t, t
′)

+ g

∫ t

−∞
dt′′
∫
pqrs

δk−p−qδk−r−s
1

m
(p2 − q2)e

i
2m

[
(−p2+q2)(t−t′′)+(r2−s2)(t′−t′′)

]
×
[
−Gp(t, t

′′)Q∗
−q(t, t

′′)Q∗
r(t

′, t′′)Q−s(t
′, t′′) +Qp(t, t

′′)G∗
−q(t, t

′′)Q∗
r(t

′, t′′)Q−s(t
′, t′′)

+Qp(t, t
′′)Q∗

−q(t, t
′′)G∗

r(t
′, t′′)Q−s(t

′, t′′)−Qp(t, t
′′)Q∗

−q(t, t
′′)Q∗

r(t
′, t′′)G−s(t

′, t′′)
]

+O(g2). (32)

Hereafter, we will work within the approximation of neglecting the O(g2) terms. For

the one-time correlation function, we have

∂

∂t
Qn

k(t, t) =
∂

∂t
Qn

k(t, t
′)

∣∣∣∣
t′=t

+ c.c.. (33)

The number density n̄, the energy densities EK and EI are given in terms of Q and

Qn as

n̄ =

∫
k

Qk(t, t), EK(t) =

∫
k

k2

2m
Qk(t, t), EI(t) =

g

2

(∫
k

Qn
k(t, t) + n̄2

)
. (34)

4. Energy-transfer range

In general, turbulence is a non-equilibrium state accompanied with an external forcing

and dissipation. The forcing term Bk(t) and the dissipation term Dk(t) should be added

to the r.h.s of (14). Let k0 and k1 be such wavenumbers that Bk(t) and Dk(t) can be

neglected in comparison with the nonlinear term in the r.h.s. of (14) in the range

k0 ≪ k ≪ k1, i.e., k0 ≪ k ≪ k1 is the inertial range. Since we will deal with the

structure of turbulence within the inertial range, Bk(t) and Dk(t) will be neglected in

the closure equations hereafter. We assume that the statistical quantities are isotropic,

i.e., Qk(t, t
′) = Qk(t, t

′), Gk(t, t
′) = Gk(t, t

′) and Qn
k(t, t

′) = Qn
k(t, t

′), in the inertial

range.

Let

TL(k) := 2mk−2 (35)

be the characteristic time scale associated with the linear term, the first term in the

r.h.s. of (1). Note that µ does not play any role in the dynamics of Q and G since µ does

not appear in (27) and (28). Let TNL(k) be the time scale characterizing the change of

Qk(t, t
′) and Gk(t, t

′) with respect to t− t′. The explicit estimate of TNL(k) will be given

later.

Now, we consider the ST region, the wavenumber range within the inertial range

where TNL(k) ≪ TL(k) is satisfied. In the ST region, we expect that the modes with
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wavenumber k lose their memory within the time scale TNL(k), i.e., Qk(t, t
′), Gk(t, t

′) ≈ 0

for |t − t′| ≫ TNL(k). Since e
i

2m
k2(t−t′) varies with the time scale TL(k) (≫ TNL(k)), it

may be approximated by its value at t = t′ in the time interval where Qk(t, t
′) and

Gk(t, t
′) take significant values. Thus, the factor e

i
2m

(k2+p2−q2−r2)(t−t′) in the integrand of

(27) and (28) can be approximated by 1. Assume that, for k in the range, the dominant

contributions of the wavevector integrals in (27) and (28) come from the region where

two of the norms p, q and r are of the same order as or smaller than k0. Note that three

norms p, q and r can not be smaller than k0 simultaneously due to the factor δk−p−q−r.

The assumption will be verified from the result later. Under this assumption, we can

use the approximation ∫
k

Qkf(k) ≃ f(0)

∫
k

Qk, (36)

for arbitrary function f(k) which do not vary rapidly in the range k ≤ k0 and f(0) ̸= 0.

Then, (27) and (28) reduce to

∂

∂t
Qk(t, t

′) = g2
∫ t

−∞
dt′′
[
n(t, t′′)

]2[
−4Gk(t, t

′′)Qk(t
′, t′′) + 6Qk(t, t

′′)Gk(t
′, t′′)

]
, (37)

∂

∂t
Gk(t, t

′) = −4g2
∫ t

t′
dt′′
[
n(t, t′′)

]2
Gk(t, t

′′)Gk(t
′′, t′) + δ(t− t′), (38)

where

n(t, t′) =

∫
k

Qk(t, t
′), (39)

and we have applied Q∗
k(t, t

′) = Qk(t, t
′) and G∗

k(t, t
′) = Gk(t, t

′), which are now

compatible with the equations.

Note that (38) with (29) implies that Gk(t, t
′) satisfies the same equation and the

boundary condition for all k. Thus, Gk(t, t
′) do not depend on k. Let us write Qk(t, t

′)

as

Qk(t, t
′) = Rk(t, t

′)Qk(t
′, t′), (40)

with Rk(t, t) = 1. In the following, we consider the statistically stationary states, in

which Qk(t, t
′) and Gk(t, t

′) depend on t and t′ only through t− t′. Especially, we denote
Qk(t, t) by Qk. From (37) and (40), we see that Rk(t, t

′) also do not depend on k. For

rescaled functions Ĝ and R̂, specified by

Gk(t, t
′) = Ĝ(gn̄ (t− t′)), Rk(t, t

′) = R̂(gn̄ (t− t′)), (41)

we have

d

dτ
R̂(τ) =

∫ τ

−∞
dτ ′
[
R̂(τ − τ ′)

]2[
−2Ĝ(τ − τ ′)R̂(τ ′) + 6R̂(τ − τ ′)Ĝ(−τ ′)

]
, (42)

d

dτ
Ĝ(τ) = −4

∫ τ

0

dτ ′
[
R̂(τ − τ ′)

]2
Ĝ(τ − τ ′)Ĝ(τ ′) + δ(τ), (43)

Ĝ(τ) = 0 (τ < 0). (44)
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The scaling in (41) implies that

TNL(k) = g−1n̄−1, (45)

that is, TNL(k) is independent of k. Since TNL(k) is related to the time scale of the

loss of memory for the modes with wavenumber k and not the inverse of the angular

frequency ω(k), TNL(k) being independent of k does not imply the strong correlation

among different wavenumber modes due to a phase lock. The wavenumber k∗ at which

TNL(k∗) = TL(k∗) is given by

k∗ = (2m)1/2g1/2n̄1/2. (46)

Provided that k0 ≪ k∗, (41) with (42)–(44) is valid in k0 ≪ k ≪ min(k∗, k1).

The energy flux Π(K) into modes with wavenumber larger than K is defined by

Π(K) :=
∂

∂t

∫
k

k>K

[
k2

2m
Qk(t, t) +

g

2
Qn

k(t, t)

]
. (47)

From (27),(30), (32), (33) and (47),we have

Π(K) = g2

∫
kpqr
k>K

−
∫
kpqr

|k−q|>K,|p−r|>K

 δk+p−q−r

∫ t

−∞
dt′e

i
2m

(k2+p2−q2−r2)(t−t′)

× k2

m

[
−Q∗

k(t, t
′)Q∗

p(t, t
′)Qq(t, t

′)Gr(t, t
′)−Q∗

k(t, t
′)Q∗

p(t, t
′)Gq(t, t

′)Qr(t, t
′)

+Q∗
k(t, t

′)G∗
p(t, t

′)Qq(t, t
′)Qr(t, t

′) +G∗
k(t, t

′)Q∗
p(t, t

′)Qq(t, t
′)Qr(t, t

′)
]

+ c.c.. (48)

Assume that, for K in the inertial range, the dominant contribution in the

wavevector integrals in (48) comes from the region where one of the norms k, p, q and

r is of the same order as or smaller than k0. The assumption will be verified from the

result later. By applying e
i

2m
(k2+p2−q2−r2)(t−t′) = 1 and (36) to (48), we obtain

Π(K) = 4g2

( ∫
kpq

k>K,p<K

−
∫
kpq

k<K,p>K

)
δk−p−q

k2

m

×
∫ t

−∞
dt′n(t, t′)Qp(t, t

′)
[
Qq(t, t

′)Gk(t, t
′)−Gq(t, t

′)Qk(t, t
′)
]
, (49)

where we have applied Q∗
k(t, t

′) = Qk(t, t
′) and G∗

k(t, t
′) = Gk(t, t

′) since they are

compatible with (37) and (38). Note that (36) can not be applied to (49) since f(0) = 0.

In the energy-transfer range, the energy flux Π(K) is a constant Π which is

independent of K. Let as assume the similarity form

Qk = Aka(2m)bgcn̄d|Π|e, (50)
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where A is a constant, in the range k0 ≪ k ≪ min(k∗, k1). By using∫
p,q

δk−p−qf(k, p, q) =
1

(2π)2

∫ ∞

0

dp

∫ k+p

|k−p|
dq
pq

k
f(k, p, q), (51)

for an arbitrary function f(k, p, q) which depends only on the norms k, p and q, and the

change of the variables {k, p, q} → {α, p′, q′} given by α = K/k, p′ = p/k and q′ = q/k

to (49), we have

a = −4, b =
1

2
, c = −1

2
, d = 0, e =

1

2
, A = |I1|−1/2, (52)

with

I1 :=
64π2

(2π)6

(∫ 1

0

dα

α

∫ α

0

dp′ −
∫ ∞

1

dα

α

∫ ∞

α

dp′
)∫ 1+p′

|1−p′|
dq′p′q′

[
p′−4q′−4 − p′−4

]
×
∫ ∞

0

dτ
[
R̂(τ)

]3
Ĝ(τ)

=
3

4π2

∫ ∞

0

dτ
[
R̂(τ)

]3
Ĝ(τ). (53)

(50) and (52) imply

Qk = |I1|−1/2(2m)1/2g−1/2|Π|1/2k−4, (54)

for k0 ≪ k ≪ min(k∗, k1). The assumptions on the dominant contribution of the

integrals in (27), (28) and (48) are valid when a < −3. Thus, the assumptions

are consistent with the obtained result (52). We have sgn(Π) = sgn(I1). Since

R̂(0) = Ĝ(0) = 1 and we expect R̂(τ), Ĝ(τ) → 0 for τ → ∞, it is likely that the

main contribution in the τ integral in (53) comes from small τ and thus I1 > 0 and

Π > 0, i.e., the energy is transferred from low to high wavenumbers.

Note that the constant energy flux implies

∂

∂t

[
k2

2m
Qk(t, t) +

g

2
Qn

k(t, t)

]
= 0, (55)

by definition (47). We see from (30),(32),(33) and (37) that

k2

2m

∂

∂t
Qk(t, t) = −g

2

∂

∂t
Qn

k(t, t) =
2

m
g2k2

∫ t

−∞
dt′′
[
n(t, t′′)

]2
Qk(t, t

′′), (56)

which is not 0 in general and likely to be positive from the same reason noted for I1. This

implies that the energy is flowing from the interaction energy to the kinetic energy and

that the assumption of statistical stationarity is violated. Therefore, some correction

should be made on Qk in (54) to maintain the statistical stationarity.

The situation is somewhat similar to that of the magnetohydrodynamic (MHD)

turbulence. In the closure analysis of MHD turbulence [19], the equipartition between

the kinetic and magnetic energy spectra yields energy flow from the kinetic to magnetic
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energy. The nonzero residual energy spectrum, difference between the kinetic and

magnetic energy spectrum, is introduce to cancel the energy flow and to maintain the

statistical stationarity. However, the present situation and that in the MHD turbulence

are not completely parallel since velocity and magnetic fields are mutually independent

degrees of freedom in MHD but ψ(x) and n(x) = |ψ(x)|2 are not so. Therefore, it is not
yet clear whether the statistical stationary can be maintained by introducing a some

sort of residual energy spectrum. It is left for a future study to derive the correction of

Qk to maintain the statistical stationarity.

We now consider the WWT region, the wavenumber range within the inertial range

where non-linearity is weak in the sense TNL(k) ≫ TL(k). The wavenumber range is

located at max(k∗, k0) ≪ k ≪ k1. In this range, Qk(t, t
′) and Gk(t, t

′) in the integrand

of (48) can be approximated by Qk and 1, respectively. By virtue of this approximation

and the identity ∫ ∞

0

dteiωt = −πδ(ω) + p.v.
1

iω
, (57)

where p.v. denotes the principal value, (48) reads

Π(K) = 2g2
∫
kpqr
k>K

δk+p−q−rπδ

(
1

2m
(k2 + p2 − q2 − r2)

)

× k2

m
QkQpQqQr(−Q−1

k −Q−1
p +Q−1

q +Q−1
r ). (58)

Note that the contribution of the interaction energy to Π(K), i.e., the second term in

the r.h.s. of (47) or the integral over the domain where |k − q| > K and |p − r| > K

in the r.h.s. of (48), vanishes in (58) as shown in the following. Apply three types of

change of variables {k,p, q, r} → {p,k, r, q}, {q, r,k,p} and {r, q,p,k} which do not

change the domain of the integral, |k − q| > K and |p− r| > K, to the corresponding

integral in (48) to obtain three alternative expressions for the integral. Taking the

average over the original and three alternative expressions of the integral yields the

factor (k2 + p2 − q2 − r2)δ
(

1
2m

(k2 + p2 − q2 − r2)
)
= 0. Since contribution from the

interaction energy vanishes, (58) is equivalent to the corresponding equation of the

WWT theory. The similarity solution of Qk for the present case was already obtained

in DNPZ. Here, we rederive it in the present context.

By substituting (50) into (58), we obtain

a = −3, b = 0, c = −2

3
, d = 0, e =

1

3
. (59)

However, for a = −3, the wavevector integrals in (58) are logarithmically divergent

as kb → 0, where kb := max(k∗, k0) is the bottom wavenumber of the scaling range.

Therefore, we have to work with the cutoff of the spectrum at kb explicitly. The

wavevector integrals are convergent for k1 → ∞. These imply that, for K ≫ kb,

the integral over the wavenumber larger than K is negligible in comparison with that
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over the wavenumber smaller than K with respect to each of p, q and r. By using (36)

to the integrals of (58) over p, q and r satisfying p or q or r < K, we obtain

Π(K) = 2g2
∫
r

Qr

r<K

∫
kpq

k>K

k2

m
QkQpQq

×
[
δk−p−qπδ

(
1

2m
(k2 − p2 − q2)

)
(−Q−1

k +Q−1
p +Q−1

q )

+ δk−p+qπδ

(
1

2m
(k2 − p2 + q2)

)
(−Q−1

k +Q−1
p −Q−1

q )

+ δk+p−qπδ

(
1

2m
(k2 + p2 − q2)

)
(−Q−1

k −Q−1
p +Q−1

q )
]
. (60)

Let us assume the modified form of the spectrum

Qk = Ag−2/3Π1/3k−3ϕ(k), (61)

for k ≥ kb and 0 otherwise, where ϕ(k) is a slowly varying function which is to be

determined. When (61) is substituted into (60), ϕ in the integrals can be approximated

by the typical value ϕ(K). Then, we have

ϕ(k) =

(
ln

k

kb

)−1/3

, A =

(
I2
2π2

)−1/3

, (62)

where

I2(a) := 4

∫
kpq

k>K

k2(kpq)a
[
δk−p−qπδ(k

2 − p2 − q2)(−k−a + p−a + q−a)

+ δk−p+qπδ(k
2 − p2 + q2)(−k−a + p−a − q−a)

+ δk+p−qπδ(k
2 + p2 − q2)(−k−a − p−a + q−a)

]
, (63)

and I2 := I2(−3). It can be proved that I2 is independent of K and positive, which

implies Π > 0, i.e., the energy is transferred from low to high wavenumber. The proof

of I2 > 0 is given in Appendix A.

Within WWT region, let us consider another situation such that sufficient

amplitude of mode is present in wavenumbers smaller than kb and that∫
r

r<K

Qr ≃ n̄ (64)

is satisfied for K > kb. By substituting (50) and (64) into (60), we obtain

a = −3, b = 0, c = −1, d = −1

2
, e =

1

2
, A = I

−1/2
2 , (65)

which imply

Qk = I
−1/2
2 g−1n̄−1/2Π1/2k−3. (66)
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As shown in Appendix A, we have I2 > 0 and therefore Π > 0, i.e., energy is transferred

from low to high wavenumber. Unlike (61), there is no logarithmic correction in (66).

The relation between (61) and (66) is similar to that between k−3[ln(k/kb)]
−1/3 energy

spectrum by Kraichnan [20] and k−3 energy spectrum by Kaneda and Ishihara [21] in

the enstrophy-transfer range of the two-dimensional Navier-Stokes turbulence.

The results for the energy-transfer range are summarized in terms of one-

dimensional spectrum

F (k) =

∫
k′
δ(k′ − k)Qk′ , (67)

as follows. In the ST region, k0 ≪ k ≪ min(k∗, k1),

F (k) = C1(2m)1/2g−1/2|Π|1/2k−2, (68)

with C1 = |I1|−1/2/(2π2) and some sort of correction is necessary to maintain the

statistical stationarity. The correction is not known yet. The direction of the energy-

transfer is likely to be forward, i.e., Π > 0. In WWT region, max(k∗, k0) ≪ k ≪ k1,

F (k) = C2g
−2/3Π1/3k−1

(
ln

k

kb

)−1/3

, (69)

with C2 = (4π4I2)
−1/3 for the case (64) is not satisfied, and

F (k) = C ′
2g

−1n̄−1/2Π1/2k−1 (70)

with C ′
2 = I

−1/2
2 /(2π2) for the case (64) is satisfied. The direction of the energy-transfer

is forward, i.e., Π > 0, for both (69) and (70). Note that the spectra (68) and (70) can

coexist with (68) located at the lower wavenumber range and (70) the higher.

5. Particle-number-transfer range

The flux Πn(K) of the particle number into modes with wavenumber larger than K is

given by

Πn(K) :=
∂

∂t

∫
k

k>K

Qk(t, t). (71)

From (27),(30) and (71), we obtain

Πn(K) = 2g2
∫
kpqr

k>K,q<K

δk−p−q−r

∫ t

−∞
dt′e

i
2m

(k2+p2−q2−r2)(t−t′)

×
[
−Q∗

p(t, t
′)Qq(t, t

′)Gr(t, t
′)Q∗

k(t, t
′)−Q∗

p(t, t
′)Gq(t, t

′)Qr(t, t
′)Q∗

k(t, t
′)

+G∗
p(t, t

′)Qq(t, t
′)Qr(t, t

′)Q∗
k(t, t

′) +Q∗
p(t, t

′)Qq(t, t
′)Qr(t, t

′)G∗
k(t, t

′)
]

+ c.c., (72)
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where we have used that the integrand in (72) is anti-symmetric with respect to

the interchange {k,p} ↔ {q, r}. In the particle-number-transfer range, Πn(K) is a

constant. Suppose we have Πn(K) = Πn in the range k0 ≪ K ≪ k1.

The characteristic time scale TL(k) associated to the linear term is same as (35).

The characteristic time scale associated to t− t′ in Qk(t, t
′) and Gk(t, t

′) in the particle-

number-transfer range is in general different from TNL(k) in the energy-transfer range

and we denote it by TNL,n(k).

Let us consider the ST region where TNL,n(k) ≪ TL(k). The factor

e
i

2m
(k2+p2−q2−r2)(t−t′) in (72) is approximated by 1 and we can assume that Qk(t, t

′) and

Gk(t, t
′) are real in the range. We assume the similarity forms,

Qk = Akagb|Πn|c, (73)

Rk(t, t
′) = R̂(kdge|Πn|f (t− t′)), (74)

Gk(t, t
′) = Ĝ(kdge|Πn|f (t− t′)), (75)

in the range and substitute them into (27), (28) and (72). Then, we find that

a = −3, b = −1

2
, c = e = f =

1

2
, d = 0, A = |I3|−1/3, (76)

where

I3 :=
64π2

(2π)9

∫ 1

0

dα

α

∫ α

0

dq′
∫ 1+q′

|1−q′|
dl′
∫ ∞

0

dp′
∫ l′+p′

|l′−p′|
dr′p′q′r′

[
(−1 + q′−3)p′−3r′−3

]
×
∫ ∞

0

dτ
[
R̂(τ)

]3
Ĝ(τ), (77)

and R̂ and Ĝ satisfy

d

dτ
R̂(τ) = |I3|−2/3 8π2

(2π)6

∫ ∞

0

dq′
∫ 1+q′

|1−q′|
dl′
∫ ∞

0

dp′
∫ l′+p′

|l′−p′|
p′q′r′p′−3r′−3

×
∫ τ

−∞
dτ ′
[
R̂(τ − τ ′)

]2 [
−Ĝ(τ − τ ′)R̂(τ ′) + q′−3R̂(τ − τ ′)Ĝ(−τ ′)

]
, (78)

d

dτ
Ĝ(τ) = |I3|−2/3 8π2

(2π)6

∫ ∞

0

dq′
∫ 1+q′

|1−q′|
dl′
∫ ∞

0

dp′
∫ l′+p′

|l′−p′|
p′q′r′p′−3r′−3

×
∫ τ

0

dτ ′
[
R̂(τ − τ ′)

]2
Ĝ(τ − τ ′)Ĝ(τ ′). (79)

(74), (75) and (76) imply that

TNL,n(k) = g−1/2|Πn|−1/2, (80)

and therefore the wavenumber k∗,n at which TNL,n(k) = TL(k) is given by

k∗,n = (2m)1/2g1/4|Πn|1/4. (81)
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From (73) and (76), we have

Qk = |I3|−1/3g−1/2|Πn|1/2k−3, (82)

in the range k0 ≪ k ≪ min(k∗, k1).

The exponent a = −3 is marginal, that is, the wavenumber integrals in (77)–(79)

are logarithmically divergent at the both ends of the integral range and the lower and

higher cutoff wavenumber k0 and kt = min(k∗, k1), respectively, should be explicitly

used in the analysis. The analysis would yield logarithmic correction of the form

Qk ∝ k−3[ln(k/k0)]
m1 [ln(kt/k)]

m2 . Our preliminary analysis showed thatm1 = m2 = −1

which implies that the divergence are not evaded and that the further correction is

needed. We may expect I3, with some cutoff introduced for the wavenumber integral,

to be positive from the same reason as I1. Then, Πn > 0, i.e., the particle number is

transferred from low to high wavenumbers.

Let us consider the WWT region, max(k∗,n, k0) ≪ k ≪ k1. Since TNL,n(k) ≫ TL(k)

in the range, Qk(t, t
′) and Gk(t, t

′) in the integrand (72) are approximated by Qk and

1, respectively. The approximated equation is equivalent to the corresponding equation

of the WWT theory. By using (57) and substituting the similarity form

Qk = Aka(2m)bgc|Πn|d (83)

into (72), we find that

a = −7

3
, b = −1

3
, c = −2

3
, d =

1

3
, A = |I4|−1/3, (84)

with

I4 =
64π3

(2π)9

∫ 1

0

dα

α

∫ α

0

dq′
∫ 1+q′

|1−q′|
dl′
∫ ∞

0

dp′
∫ l′+p′

|l′−p′|
dr′p′q′r′

× δ(1 + p′2 − q′2 − r′2)(p′aq′a + p′ar′a − q′ar′a + p′aq′ar′a). (85)

(83), (84) and (85) imply that

Qk = |I4|−1/3(2m)−1/3g−2/3|Πn|1/3k−7/3. (86)

Obviously, (86) is same as the result from the WWT theory. It is known in the WWT

theory that I4 < 0 and the proof can be obtained in a similar way as in Appendix A.

Therefore, we have Πn < 0, i.e., the particle number is transferred from high to low

wavenumber.

When k0 ≪ k∗,n ≪ k1, we have Πn > 0 for k0 ≪ k ≪ k∗,n and Πn < 0 for

k∗,n ≪ k ≪ k1. These imply accumulation of the particles around k∗,n. The sink

of particles around k∗,n is required in order to maintain the statistical stationarity.

However, it may be difficult to think of physical situations in which the sink of particles

is located around a particular wavenumber. When the sink is absent, the peak of F (k)

around k∗,n would increase with time and the (marginal) convergence of the integrals in
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the both ranges k ≪ k∗,n and k ≫ k∗,n would be violated at some time, which implies

that (82) and (86) would not be sustained.

The results for the particle-number-transfer range are summarized in terms of one-

dimensional spectrum F (k) as follows. In the ST region, k0 ≪ k ≪ min(k∗,n, k1),

F (k) = C3g
−1/2|Πn|1/2k−1, (87)

with C3 := |I3|−1/3/(2π2) and a possible logarithmic corrections or further corrections

near the both ends of the wavenumber range. The direction of particle-number transfer

is forward, i.e., Πn > 0. In the WWT region, max(k∗,n, k0) ≪ k ≪ k1,

F (k) = C4(2m)−1/3g−2/3|Πn|1/3k−1/3, (88)

with C4 := |I4|−1/3/(2π2). The direction of particle-number transfer is inverse, i.e.,

Πn < 0.

6. Discussion

In the present analysis, we assumed a constant energy flux or particle-number flux in a

certain wavenumber range. For individual cases, whether which or both or none of the

constant fluxes emerges depends on the manner of forcing and dissipation.

Let us assume that the forcing Bk(t) is applied in a narrow band range around kB
andDk(t) is applied in k < k0 and k > k1 with k0 ≪ kB ≪ k1. When kB is located in the

WWT region, i.e., kB ≫ k∗, k∗,n, there will be a particle-number flux from kB to the lower

wavenumbers and a energy flux from kB to the higher wavenumbers (see, for example,

Ref. [12]). If the forcing is continuously applied and a statistically quasi-stationary

state is achieved, the scaling law F (k) ∝ k−1/3 for the particle-number-transfer range

in the WWT region will be observed in max(k0, k∗,n) ≪ k ≪ kB and F (k) ∝ k−1

for the energy-transfer range in the WWT region will be observed in kB ≪ k ≪ k1.

When k∗,n > k0, the particle-number-transfer range terminates at k∗,n and the particle

accumulates around k∗,n since it is the positive particle-number flux that is allowed for

the ST region k < k∗,n.

When kB is located in the ST region, i.e., kB ≪ k∗, k∗,n, both the energy flux and

the particle-number flux are positive and whether which of the transfer range emerges

in the range k ≫ kB would depend on more details of the forcing. When the constant

energy flux is realized, F (k) ∝ k−2 for the energy-transfer range in the ST region will

be observed in kB ≪ k ≪ min(k∗, k1) and F (k) ∝ k−1 for the energy-transfer range in

the WWT region will be observed in k∗ ≪ k ≪ k1 when k∗ ≪ k1.

The spectrum F (k) ∝ k−2 obtained in the wavenumber range k > kB of the

numerical simulation of PNO is in support of the prediction of the closure analysis for

the energy transfer range in the ST region. The spectrum F (k) ∝ k−2 is also obtained

in our new numerical simulation without forcing and dissipation which is referred to in

Sec. 1. This suggests that, when F (k) is initially distributed in the ST region, it will

freely evolve to form constant energy flux to the higher wavenumber.
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In PNO, k−2 spectrum for large n̄ is explained by a phenomenological “critical

balance” proposition. Although the scaling k−2 is the same, their phenomenology is

essentially different from the present closure result (68). In PNO phenomenology, it

is assumed that the nonlinear interactions are local in the Fourier space and that two

time scales TL(k) and TNL(k) are of the same order. On the contrary, in the present

closure analysis, there are some dominant contributions from outside the inertial range

in the wavevector integration, which implies the non-locality, and TNL(k) ≪ TL(k). Note

that the non-locality and the time scale separation are not the assumptions but they

are derived to be consistent with the similarity solution of the closure equations. The

difference appears also in the resulting spectrum F (k). When PNO phenomenology is

applied to arbitrary spatial dimension d, F (k) is given by

F (k) ∝ Ld(2m)−1g−1k1−d, (89)

where L is the system size. PNO phenomenology explicitly depends on L and d.

Although we showed explicit formulas for d = 3 in this paper, the closure results for

F (k) will be unchanged, except for the non-dimensional constants, for arbitrary d. Thus,

the present closure result (68) does not depend on L and d. On the other hand, (68)

depends on the energy flux Π whereas the spectrum from the PNO phenomenology is

independent of Π. Whether the present closure analysis or PNO phenomenology is the

correct explanation for the results from the numerical simulations would be checked by

changing the parameters in the numerical simulations.

Appendix A. Proof of I2 > 0

The proof is obtained by a similar method used in Refs. [9, 10]. From (63), two

alternative expressions for I2(a) can be obtained by applying two types of change of

variables {k,p, q} → {(k/p)p, (k/p)q, (k/p)k} and {(k/q)q, (k/q)k, (k/q)p}. Taking

average over the original expression of I2 (63) and the two alternative expressions,

introducing {p′, q′} := {p/k, q/k} and performing integral over k yield

I2(a) = −4π

3

K6+2a

6 + 2a

∫
dek

(2π)3

∫
p′q′

(p′q′)a

×
[
δek−p′−q′δ(1− p′2 − q′2)(−1 + p′−a + q′−a)(1− p′−4−2a − q′−4−2a)

+ δek−p′+q′δ(1− p′2 + q′2)(−1 + p′−a − q′−a)(1− p′−4−2a + q′−4−2a)

+ δek+p′−q′δ(1 + p′2 − q′2)(−1− p′−a + q′−a)(1 + p′−4−2a − q′−4−2a)
]
, (A.1)

where ek := k/k and
∫
dek denote the integral over the solid angle of k. Both the

numerator and the denominator in the r.h.s. of (A.1) approach 0 in the limit a→ −3+0

and the limiting value can be obtained by taking the ratio of the derivatives with

respect to a of the numerator and the denominator. It can be easily proved that

sgn(kx + px − qx) = sgn(y−x) and ky ln k+ py ln p− qy ln q < 0 for ky + py − qy = 0 and

x, y > 0. Using these identities, we find that I2 = lima→−3+0 I2(a) > 0.
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