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Abstract 

Land cover generated from satellite images is widely used in many real-world 

applications such as natural resource management, forest type mapping, hydrological modeling, 

crop monitoring, regional planning, transportation planning, public information services, etc. 

Moreover, land cover data are one of the primary inputs to many geospatial models. In South-

East Asia's cities where the houses are interspersed with small trees, bare land and grassland are 

difficult to detect in multispectral Landsat ETM+ images because its 30 x 30 m spatial 

resolution is likely to capture a variety of land cover within each pixel, particularly in urban 

areas. Although other medium resolution multispectral satellites such as ALOS, SPOT, IRS, and 

so on have higher spatial resolution than Landsat ETM+, it is sometimes difficult to extract the 

built-up or human settlement areas because of the lack of shortwave infrared bands which are 

very useful for distinguishing between soil and vegetation. In this paper, we generated land 

cover data from both Landsat ETM+ multispectral and pansharpened images by applying the 

same training areas but using different spectral properties. We differentiated between two 

classified images visually, spectrally and spatially. Our results showed that 65% of the total area 

had similar land cover and 35% had dissimilar land cover. Although dense urban areas, forest, 

agricultural land and water were almost the same in the classified images, sparse urban areas 

and grassland were quite different. Much of the sparse urban area were detected using the 

pansharpened classified imagery. This is important in South-East Asian cities where many 

houses are mixed with trees or grassland. Accurate delineation of human settlement area plays a 

critical role in population estimation, socio-economic studies, disaster management and regional 

development planning.  
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1. Introduction 

Land cover classification is one of the data processing steps applied to remote sensor 

data to extract information from multispectral satellite images such as Landsat MSS/TM/ETM+, 

ALOS, SPOT, ASTER, etc. Land cover from satellite-generated data are widely used in natural 

resources management, environmental studies and urban and regional planning. Some 

applications are forest type mapping (Kennaway and Helmer 2007), forest fire assessment 

(Mitchell and Fei 2010), Vegetation Drought Response Index (VegDRI) mapping (Brown et al. 

2008), surface water estimation, land resource assessment and urban green space delineation 

(Lwin and Murayama 2011). Moreover, land cover is one of the primary forms of input data in 

many geospatial models and spatial decision-support systems. In addition, remote sensing data 

used in human settlement mapping are important for developing countries where fine-scale GIS 

data are difficult to obtain. Human settlement mapping especially the detection of sparse urban, 

dense, industrial and built-up infrastructures are important for population estimation, country 

resource assessment, urban planning and monitoring of urban growth and disaster management. 

Many studies have used remote sensing data related to human settlement such as house value 

estimation (Jensen et al. 2004), population estimation (Yuan et al. 2008; Wu and Murray 2005; 

Liu and Herold 2006; Mao et al. 2012), slum detection (Weeks et al. 2007; Kit et al. 2012; Kohli 

et al. 2012), urban population density modeling (Joseph et al. 2012), leaf index and household 

energy (Jensen et al. 2003), life quality assessment (Jensen et al. 2004; Nichol and Wong 2006, 

chap.12; Li and Weng 2007), urban growth (Ward et al. 2000; Phinn et al. 2002; Cheng and 

Masser 2003) and social vulnerability assessment (Rashed et al. 2007, chap. 9; Taubenböck et al. 

2008).  

Because of limited data storage capacity onboard satellites and transmission time, many 

earth resource satellites were designed to install a high-resolution band described as 

panchromatic along with multiple low-resolution bands described as multispectral. The 

algorithms fusing these two images are described as pansharpening, and they combine the 

spatially detailed structure of a high-resolution panchromatic image with the high spectral 

information of a lower-resolution multispectral image to produce a high-resolution multispectral 

image (Klonus and Ehlers 2007; Haack and Herold 2007; Lu and Weng 2007). Pansharpened 

images generally improve visual interpretation and quantitative analysis (Klonus and Ehlers 

2007; Lu and Weng 2007). Therefore pansharpening processes play a critical role in remote 
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sensing and evaluation of these pansharpened images in various applications is required. Until 

now, many pansharpened images were utilized for visualization purposes in GIS applications as 

a basemap. Although many data fusion algorithms have been proposed and evaluated for 

visualization purposes, there are still none which evaluate other remote sensing applications 

such as land cover classification, forest type mapping, vegetation indexing, wetland delineation, 

water quality assessment and so on. In the case of Landsat ETM+, the 30 x 30 m spatial 

resolution in multiple spectral bands is likely to contain a variety of land covers particularly in 

the urban areas (Jensen and Cowen 1999) in cities in developing countries where the houses are 

interspersed with trees or bare land. This will introduce errors in socio-economic studies, 

disaster management and population estimation. Therefore, classified multispectral 

pansharpened images could possibly reduce these errors and improve the accuracy of socio-

economic studies performed using remote sensing data.  

The main objective of this study was to evaluate classified Landsat ETM+ multispectral 

and pansharpened images by applying the well-known data fusion method, principle component 

analysis (PCA), in order to use them in human settlement mapping in developing countries. 

Moreover, Landsat ETM+ imagery has many advantages because of its favorable moderate 

spatial resolution for thematic mapping and a wide range of spectral properties from visible to 

short-wave infrared. In this paper, we used the PCA fusion method to generate pansharpened 

images in order to maintain the original spectral properties of the multispectral bands (Band 6 

omitted) for supervised classification and many commercial image processing vendors provide 

the PCA image generation. We classified both multispectral and pansharpened images using the 

same training areas but in using different spectral properties. Finally, we evaluated two 

classified images visually, spectrally and spatially. Many classification accuracy assessment 

studies are based on Kappa statistics which normally do not take into the account spatial 

patterns and spatial contiguity. Therefore, in this study we used additional Anselin Local 

Moran’s I and Z scores to evaluate the classified images in terms of the spatial patterns and 

spatial contiguity between two images.    

 

2. Methodology 

2.1. Study area and data 
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Figure 1. Study area and description of Landsat ETM+ image.  

The study area is Yangon City, in the south of Myanmar (Figure 1), with a population 

of about 4.4 million (2010). The city is composed of various land cover types, forest, rivers, 

lakes, industrial zones, agricultural land, dense and sparse urban land, grassland and bare land. 

Figure 2 shows the overall research flow in this study. In this research, we used Landsat ETM+ 

imagery. All images are pre-processed images which have been atmospherically and 

geometrically corrected. We used ERDAS Imagine remote sensing software to produce the 

pansharpened images using the PCA fusion algorithm and then stretched the data to Unsigned 8-

bit.  
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Figure 2. Research flow. 

 

2.2. PCA-based image fusion 

Different data fusion methods have been proposed in the literature: principal component 

analysis, intensity-hue-saturation (IHS) transforms, Brovey transforms, multiplicative 

transforms and wavelet transforms. Some of these methods have been compared for the fusion 

of ETM+ PAN and MS data (Vaiopoulos et al. 2001; Nikolakopoulos 2003) and commercial 

remote sensing software provided most of the algorithms. Among them is the principle 

component analysis (PCA) fusion method for generating PS images in order to maintain the 

original number of MS bands (Band 6 omitted) for supervised classification. PCA is a statistical 

approach based on eigenvectors and values which maintains the key features in the original 

image while reducing the noise level. PCA converts inter-correlated MS bands into a new set of 

uncorrelated components. The first component typically resembles a PAN image. It is, 

therefore, replaced by high-resolution PAN band for image fusion. The PAN image is fused into 

the low-resolution MS bands by a reverse PCA transform (Zhang 2004). PCA is designed to 
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reduce a large set of variables to a small set that still contains most of the information available 

in the larger set. The PCA technique enables the creation and use of a reduced set of variables, 

which are called principal factors. A reduced set is much easier to analyze and interpret. Figure 

3 compares the original multispectral image (left) and pansharpened image (right) at RGB = 653 

combination. Urban sparse areas are much clearer in the pansharpened image and distinguish 

between soil and vegetation thanks to the presence of shortwave infrared regions.   

 

Figure 3. Original multispectral image (left) and PCA-based pansharpened image (right) at RGB 

= 653 combination. 

 

2.3. Classification scheme 

We acquired Landsat ETM+ images in the harvest period, winter season (1 February 

2003). Therefore, in this classified image, agricultural land may include crop land, barren land 

and other farmland. During the rainy season between June and October, these agricultural lands 

are filled with paddy fields and are difficult to distinguish from grasslands. Moreover, it is very 

difficult to obtain cloud-free images during the rainy season. We used supervised classification 

for both the multispectral and pansharpened images and collected signatures from the 

pansharpened images thanks to visual landscape characteristics which were easier to identify 

than those found in the multispectral images. For classification, the same signatures of the AOIs 

were used for both images because we wanted to keep the same area but analyze different 

spectral properties.  

We collected a total 17 training samples: W1, W2, W3, W4, W5, F1, F2, F3, F4, F5, 

A1, A2, A3, A4, U1, U2, and U3, to classify the images. We collected training samples for 

every different land cover type and classified the image. Later we merged the land cover classes 
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into six major classes: water, forest, grassland, agricultural land, sparse and dense urban land 

(Figure 4). For example, we collected training samples from various surface waterbodies such 

as shallow water, deep water, lake water, small ponds and turbid water and assigned them to W1 

to W5. F1 to F5 were collected from various forest and grassland covers and A1 to A5 were 

collected from paddy fields, dry land and other man-made infrastructures like playgrounds, 

airports, etc. Training samples from dense urban pixels (i.e., downtown) were assigned to U1 

and urban area patches with vegetation and industrial zones were assigned to U2 and U3, 

respectively. We applied the parallelepiped rule for non-parametric signatures and the maximum 

likelihood classifier algorithm for parametric signatures. The maximum likelihood classifier is 

still one of the most popular methods of classification in remote sensing whereby a pixel with 

the maximum likelihood is classified into the corresponding class. Figure 4 shows the various 

land cover types in the study area from high-resolution satellite images.  

 

Figure 4. Various land cover types in the study area from high-resolution satellite images. 
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2.4. Evaluation Approaches 

We distinguished between classified pansharpened and multispectral images visually, 

spectrally and spatially.  

 

2.4.1. Visual Assessment 

We performed visual comparison and image differencing methods to evaluate two 

classified images visually and quantitatively.  

 

(1) Visual comparison 

Visual comparison or interpretation is the first step in remote sensing data processing. 

We compared two classified images with high-resolution satellite imagery using the ERDAS 

Imagine view link function (Figure 5).  
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Figure 5. Visual assessment by means of spatial linking between two classified images and 

high-resolution satellite images (the urban sparse pixels in the pansharpened classified image 

are higher than in the multispectral classified image)  

 

(2) Image differencing 

We used image differencing methods to assess two classified images quantitatively 

since the primary purpose of remote sensing data is to quantify land cover, vegetation intensity 
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or surface temperature. We performed quantitative analysis of two classified images. This 

analysis measures how much of the classified image has similar or dissimilar land cover rather 

than classification accuracy. Image differencing allows us to evaluate the overall percentage of 

similarity and dissimilarity between two classified images (Figure 7).  

 

2.4.2. Classification accuracy assessment 

Two accuracy assessment approaches were performed for both classified images. One 

collected 153 image-based ground reference information points (GRIPs) to assess the two 

classified images individually and another accuracy assessment generated 200 random points on 

both images and matched their land covers.     

 

(1) Image-based ground reference information points collection 

Many land cover classification accuracy assessments involve ground-refernce data 

collection. Ground reference data can be acquired by field investigation with handheld GPS, 

using high spatial resolution satellite images or air photos and questionnaire surveys of local 

people. This approach has some limitations, such as GPS accuracy, time differences and 

accessibility issues. For example, the accuracy of a handheld GPS can vary several meters 

depending on various landscape characteristics such as open space, semi-open space and closed 

space (i.e., forest and high-rise buildings). The time difference is another issue in collecting 

ground reference data for the past 10 or 15 years necessary for land cover change analysis. 

Although the time difference issue can be solved by using past high-resolution aerial photos and 

questionnaire surveys of native or local people for validation purposes, some land cover classes, 

such as dense forest, lakes and rivers, are difficult to access and collecting ground reference data 

is time-consuming. Today's web-based high-resolution satellite images, which are available 

around the world, such as Google Map/Earth and Microsoft Bing Maps, allow geospatial users 

to collect GRIPs in a timely manner for general land use types such as water, forest, grassland, 

crop land and urban areas in natural color (i.e., RGB-321). Ground reference data collection is 

still required, however, for detailed land cover type classification, such as forest into evergreen 

forest, deciduous forest, bamboo forest, and so on because some land covers are difficult to 

discriminate in natural color mode.  

In this study, we collected 153 ground reference information points (water = 43, forest 

= 9, grassland = 29, agricultural land = 31, urban sparse = 30 and urban dense= 11)(Table 1) 

from a high-resolution Google Earth/Map integrated with original multispectral and 

pansharpened images based on spectral properties and knowledge of the study area. Although 

Google Earth/Map has much detailed and recent ground information, our classified image was 
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ten years old. Therefore, we needed carefully to collect GRIPs at the permanent land covers 

between Google Earth/Map and our satellite image. Moreover, in the satellite imagery, different 

band combinations allowed the discrimination of various land cover types. For example, lake 

water shows as dark blue and turbid water shows as bright blue in the RGB-543 band 

combination in Landsat TM/ETM+; dense forest shows as reddish and grassland as orange or 

pale red in the RGB 432 band combination. We computed an error matrix and Kappa statistics 

between GRIPs and classified multispectral and pansharpened images individually. An error 

matrix was created and used to assess user’s and producer’s accuracies (Story and Congalton 

1986) for each land cover. User’s accuracy is useful for spatial analysis purposes because the 

accuracy assessment is carried out point-to-point or row-by-row, whereas producer’s accuracy is 

useful for the overall accuracy assessment of the classified image. Tables 1 and 2 show the error 

matrices and Tables 3 and 4 show the Kappa statistics of both classified images. 

 

(2) Accuracy assessment of two classified images 

An accuracy assessment was made of two classified images by generating 200 random 

ground reference information points and matching the land covers between two classified 

images. Table 5 shows the error matrix and Table 6 shows the Kappa statistics for the two 

images.  

 

2.4.3. Spatial Assessment 

(1) Spatial assessment using spatial autocorrelation method 

Foody (1992) argues that the Kappa coefficient may be misleading because it is derived 

from the row and column margins, which include actual as well as chance agreement. Most 

accuracy assessment methods are based on statistical approaches, for example, user’s and 

producer’s accuracy, and the Kappa coefficient does not take into the account the spatial 

patterns and spatial contiguity which evaluate the characteristics of spatial units that are 

connected. These units share one or more characteristics with adjacent units and form a group. 

Pontius and Millones (2011) also provide very compelling reasons for abandoning Kappa as it 

gives redundant or misleading information. They recommend that the error matrix is 

summarized by the use of two much simpler summary parameters: quantity disagreement and 

allocation disagreement. To perform accuracy assessments of geospatial data, such as land 

cover, we need to include not only positions but also associated attribute information (i.e., 

water, forest, urban, etc.), referred to as spatial contiguity.  

In this research, we used the spatial autocorrelation method to analyze and compare the 

spatial distribution patterns of both classified images. There are several ways of performing 
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spatial autocorrelation; the most popular are Global Moran’s I, Local Anselin Moran’s I and 

Geary’s C methods. We used Local Anselin Moran’s I to assess whether two classified images 

had similar spatial distribution patterns. The local Moran test (Anselin 1995) detects local 

spatial autocorrelation. It can be used to identify local clusters (regions where adjacent areas 

have similar values) or spatial outliers (areas distinct from their neighbors). The Local Moran 

statistic decomposes Moran's I into contributions for each location i, expressed as Ii. The sum of 

Ii for all observations is proportional to Moran's I, an indicator of global patterns. Thus, there 

can be two interpretations of Local Moran statistics, I as indicators of local spatial clusters (i.e., 

clustered, random or disperse) and Z scores indicating that the surrounding features have similar 

or dissimilar attribute values. Although this assessment does not measure classification 

accuracy, it does measure land cover similarities or dissimilarities in spatial patterns between 

two classified images, similarly to the previous image differencing method. We can also apply 

this approach to assess classification accuracy between GRIPs and classified images. We 

generated 3000 random points and collected land covers from both images. Then we measured 

Local Anselin Moran’s I and Z scores. Here we used random points for spatial accuracy 

assessment unlike the previous stratified sampling method which is used for classification 

accuracy assessment.  

 

3. Results and Discussion 

Figures 6 and 7 show the results of both the multispectral and the pansharpened 

classified images. We observed that most land cover classes are very similar in both classified 

images, with the exception of urban sparse and grasslands. Road patterns, boundaries of rivers, 

lakes and small houses are more clearly distinguishable, however, in the pansharpened classified 

images. Small houses mixed with trees and paddy fields are also distinguishable in the 

pansharpened classified images.  
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Figure 6. Classified Landsat multispectral image (spatial resolution at 30m). 

 

Figure 7. Classified Landsat pansharpened image (spatial resolution at 15m). 

 

Figure 7 compares the area of each land cover in both classified images. The analysis 

shows that 65% of the study area has the same land cover and 35% has dissimilar. The left bar 

chart (Figure 7) shows the quantitative comparison of each land cover. Although water, forest 
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and urban dense areas are classified as being of similar quantity, urban sparse and grassland 

areas are significantly different between the two images. Urban sparse areas are greater in the 

pansharpened classified image and grassland areas are greater in the multispectral classified 

image. In this case, the 30m multispectral image is unsuitable for delineating the urban sparse 

category. Accurate identification of urban sparse areas is important for population estimation 

and disaster management.  

 

Figure 8. Quantitative assessments of two classified images (units are in hectares). 

Tables 1 and 2 show the error matrixes of both classified images and * values are 

missed classified pixels. In this assessment, the overall classification accuracy for the 

multispectral image is 80.39% and the Kappa coefficient is 0.7566 (Table 3). The overall 

accuracy of the pansharpened image is 81.05% and the Kappa coefficient is 0.7646 (Table 4). 

 

Table 1. Error matrix for the multispectral classified image and ground reference information 

points. 

ERROR MATRIX (MULTISPECTRAL VS. GROUND REFERENCE INFORMATION POINTS) 

 WATER FOREST GRASSLAND AG. LAND URBAN (S) URBAN (D) Total 

WATER 43 0 0 0 0 0 43 

FOREST 0 9 16* 0 0 0 25 

GRASSLAND 0 0 13 0 0 1* 14 

AG. LAND 0 0 0 31 0 5* 36 

URBAN (S) 0 0 0 0 26 4* 30 

URBAN (D) 0 0 0 0 4* 1 5 

Total 43 9 29 31 30 11 153 

*= Missed classified pixels 
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Table 2. Error matrix of pansharpened classified images and ground reference information 

points. 

ERROR MATRIX (PANSHARPENED VS. GROUND REFERENCE INFORMATION POINTS) 

 WATER FOREST GRASSLAND AG. LAND URBAN (S) URBAN (D) Total 

WATER 42 0 0 0 0 0 42 

FOREST 0 9 13* 0 0 0 22 

GRASSLAND 0 0 16 0 0 1* 17 

AG. LAND 0 0 0 30 0 4* 34 

URBAN (S) 0 0 0 0 26 5* 31 

URBAN (D) 1* 0 0 1* 4* 1 7 

Total 43 9 29 31 30 11 153 

*= Missed classified pixels 

 

Table 3. Accuracy assessment and Kappa statistics of multispectral classified image and ground 

reference information points. 

ACCURACY ASSESSMENT AND KAPPA (K^) STATISTICS (MULTISPECTRAL VS. GROUND REFERENCE INFORMATION 
POINTS) 

 
 Reference  

Totals 
Classified  

Totals 
Number  
Correct 

 Producer’s  
Accuracy 

User’s  
Accuracy 

KAPPA (K^) STATISTICS 

WATER 43 43 43 100% 100% 1.0000 

FOREST 9 25 9 100% 36% 0.3200 

GRASSLAND 29 14 13 45% 93% 0.9119 

AG. LAND 31 36 31 100% 86% 0.8258 

URBAN (S) 30 30 26 87% 87% 0.8341 

URBAN (D) 11 5 1 9% 20% 0.1380 

Total 153 153 123    

Producer’s Accuracy = (Number Correct / Reference Total * 100) 
User’s Accuracy = (Number Correct / Classified Total * 100) 
Overall Classification Accuracy = 80.39% 

Overall Kappa Statistic = 0.7566 

 

Table 4. Accuracy assessment and Kappa statistics of pansharpened classified image and ground 

reference information points. 

ACCURACY ASSESSMENT AND KAPPA (K^) STATISTICS (PANSHARPENED VS. GROUND REFERENCE INFORMATION POINTS) 

 
 Reference  

Totals 
Classified  

Totals 
Number  
Correct 

 Producer’s 
Accuracy 

User’s  
Accuracy 

KAPPA (K^) 
STATISTICS 

WATER 43 42 42 97% 100% 1.0000 

FOREST 9 22 9 100% 41% 0.3722 

GRASSLAND 29 17 16 55% 94% 0.9274 

AG. LAND 31 34 30 97% 88% 0.8525 

URBAN (S) 30 31 26 87% 84% 0.7994 

URBAN (D) 11 7 1 9% 14% 0.0765 

 153 153 124    

Producer’s Accuracy = (Number Correct / Reference Total * 100) 
User’s Accuracy = (Number Correct / Classified Total * 100) 
Overall Classification Accuracy = 81.05% 
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Overall Kappa Statistic = 0.7646 

 

 Table 5 shows the error matrix of the multispectral and pansharpened classified images 

and Table 6 shows the producer’s and user’s accuracies and the Kappa coefficient for each land 

cover. Overall, the classification accuracy is 80% and the Kappa coefficient is 0.7145. 

 

Table 5. Error matrix between two classified images. 

ERROR MATRIX (MULTISPECTRAL VS. PANSHARPENED) 

  WATER FOREST GRASSLAND AG. LAND URBAN (S) URBAN (D)   

WATER 14 0 0 0 0 1* 15 

FOREST 0 1 0 0 0 0 1 

GRASSLAND 0 0 37 3* 0 16* 56 

AG. LAND 0 0 1* 81 1* 9* 92 

URBAN (S) 0 0 0 0 6 0 6 

URBAN (D) 1* 0 1* 4* 3* 21 30 

  15 1 39 88 10 47 200 

*= Missed classified pixels 

 

Table 6. Accuracy assessment and Kappa statistics of two classified images. 

ACCURACY ASSESSMENT AND KAPPA (K^) STATISTICS (MULTISPECTRAL VS. PANSHARPENED) 

  Reference  
Totals 

Classified  
Totals 

Number  
Correct 

 Producer’s  
Accuracy 

User’s  
Accuracy 

KAPPA (K^)  
STATISTICS 

WATER 15 15 14 93% 93% 0.9279 

FOREST 1 1 1 100% 100% 1.0000 

GRASSLAND 39 56 37 95% 66% 0.5785 

AG. LAND 88 92 81 92% 88% 0.7865 

URBAN (S) 10 6 6 60% 100% 1.0000 

URBAN (D) 47 30 21 45% 70% 0.6078 

 200 200 160    

Producer’s Accuracy = (Number Correct / Reference Total * 100) 
User’s Accuracy = (Number Correct / Classified Total * 100) 
Overall Classification Accuracy = 80.00% 
Overall Kappa Statistic = 0.7145 

 

As regards accuracy assessment by spatial pattern and contiguity approaches, Figure 8 

shows the regression analysis result of local Anselin Moran’s I and Z scores for two classified 

images.   
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Figure 9. Regression analysis of Anselin Local Moran’s I and Z score for multispectral and 

pansharpened images.  

Although high accuracy values were seen in the Kappa coefficient analysis, above 80% 

for both classified images, the image differencing and Anselin Local Moran’s Index regression 

analysis results showed that only 65% of the area has similar land cover classes and 35% has 

dissimilar land cover classes. Therefore, we can expect about 35% of the dissimilar land cover 

classes to be identified from pansharpened classified image. This percentage may vary, 

however, as regards the land cover types classified. For example, massive land cover types such 

as forest, water surfaces and agricultural land may show more similarity and urban dense, urban 

sparse and grassland may show more dissimilarity in both classified images (Figure 5). Based 

on the Anselin Local Moran’s I and Z score, the R
2
 was 0.5624 for I  and 0.5693 for the Z score. 

Therefore only half of the land cover has similar spatial distribution patterns and associated 

attribute information.  

 

4. Conclusion 

Delineation of human settlement areas by Landsat ETM+ pansharpened images is more 

promising than when using non-pansharpened multispectral images, especially in South-East 

Asia's cities. Although there are other high- or moderate-resolution earth resource satellites such 

as ALOS, SPOT, IRS, and so on, it is sometimes difficult to extract images of built-up or human 

settlement areas because of the lack of shortwave infrared bands which significantly help 

distinguish between soil and vegetation. Moreover, higher spatial resolution may introduce 

other unnecessary characteristics, such as trees and buildings. These high spatial resolution 

satellite images are typically suitable for object-oriented classification but not for multispectral 

per-pixel classification. ALOS AVNR-2 images, however, are suitable for studying vegetation 

intensity, especially urban green space, because of their favorable resolution at 10m with a near 

infrared band which is suitable for distinguishing between green space and non-green space 
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(Lwin and Murayama 2011). We are continuing to work on fine scale population mapping by 

integrating remote sensing and GIS data for developing countries where fine scale population 

maps are absent. Among the resource satellites, Landsat is the only one which has continuously 

captured the Earth for four decades and made an important contribution to studies of land cover 

change and geomorphological processes. The Landsat Data Continuity Mission (LDCM) 

(Landsat 8) launched on 11 February 2013 is the next satellite in the Landsat series and will 

continue to obtain valuable data and imagery for use in agriculture, education, business, science, 

and government.  
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