Group-graded and group-bigraded rings

Mitsuo Hoshino, Noritsugu Kameyama and Hirotaka Koga

Abstract

Let I be a non-trivial finite multiplicative group with the unit element e and $A=\oplus_{x \in I} A_{x}$ an I-graded ring. We construct a Frobenius extension Λ of A and study when the ring extension A of A_{e} can be a Frobenius extension. Also, formulating the ring structure of Λ, we introduce the notion of I-bigraded rings and show that every I-bigraded ring is isomorphic to the I-bigraded ring Λ constructed above.

Let I be a non-trivial finite multiplicative group with the unit element e and $A=\oplus_{x \in I} A_{x}$ an I-graded ring. In this note, assuming A_{e} is a local ring, we study when a ring extension A of A_{e} can be a Frobenius extension, the notion of which we recall below. Auslander-Gorenstein rings (see Definition 1.2) appear in various fields of current research in mathematics. For instance, regular 3-dimensional algebras of type A in the sense of Artin and Schelter, Weyl algebras over fields of characteristic zero, enveloping algebras of finite dimensional Lie algebras and Sklyanin algebras are Auslander-Gorenstein rings (see [2], [5], [6] and [15], respectively). However, little is known about constructions of Auslander-Gorenstein rings. We have shown in [9, Section 3] that a left and right noetherian ring is an Auslander-Gorenstein ring if it admits an AuslanderGorenstein resolution over another Auslander-Gorenstein ring. A Frobenius extension A of a left and right noetherian ring R is a typical example such that A admits an Auslander-Gorenstein resolution over R.

Now we recall the notion of Frobenius extensions of rings due to Nakayama and Tsuzuku $[11,12]$ which we modify as follows (cf. [1, Section 1]). We use the notation A / R to denote that a ring A contains a ring R as a subring. We say that A / R is a Frobenius extension if the following conditions are satisfied: (F1) A is finitely generated as a left R-module; (F2) A is finitely generated projective as a right R-module; (F3) there exists an isomorphism $\phi: A \xrightarrow{\sim} \operatorname{Hom}_{R}(A, R)$ in $\operatorname{Mod}-A$. Note that ϕ induces a unique ring homomorphism $\theta: R \rightarrow A$ such that

[^0]$x \phi(1)=\phi(1) \theta(x)$ for all $x \in R$. A Frobenius extension A / R is said to be of first kind if $A \cong \operatorname{Hom}_{R}(A, R)$ as R - A-bimodules, and to be of second kind if there exists an isomorphism $\phi: A \xrightarrow{\sim} \operatorname{Hom}_{R}(A, R)$ in $\operatorname{Mod}-A$ such that the associated ring homomorphism $\theta: R \rightarrow A$ induces a ring automorphism of R. Note that a Frobenius extension of first kind is a special case of a Frobenius extension of second kind. Let A / R be a Frobenius extension. Then A is an AuslanderGorenstein ring if so is R, and the converse holds true if A is projective as a left R-module, and if A / R is split, i.e., the inclusion $R \rightarrow A$ is a split monomorphism of R - R-bimodules. It should be noted that A is projective as a left R-module if A / R is of second kind.

To state our main theorem we have to construct a Frobenius extension Λ / A of first kind. Namely, we will define an appropriate multiplication on a free right A-module Λ with a basis $\left\{v_{x}\right\}_{x \in I}$ so that Λ / A is a Frobenius extension of first kind. Denote by $\left\{\gamma_{x}\right\}_{x \in I}$ the dual basis of $\left\{v_{x}\right\}_{x \in I}$ for the free left A-module $\operatorname{Hom}_{A}(\Lambda, A)$ and set $\gamma=\Sigma_{x \in I} \gamma_{x}$. Assume A_{e} is local, $A_{x} A_{x^{-1}} \subseteq \operatorname{rad}\left(A_{e}\right)$ for all $x \neq e$ and A is reflexive as a right A_{e}-module. Our main theorem states that the following are equivalent: (1) $A \cong \operatorname{Hom}_{A_{e}}\left(A, A_{e}\right)$ as right A modules; (2) There exist a unique $s \in I$ and some $\alpha \in \operatorname{Hom}_{A_{e}}\left(A, A_{e}\right)$ such that $\phi_{s x, x}: v_{s x} \Lambda \xrightarrow{\sim} \operatorname{Hom}_{A_{e}}\left(\Lambda v_{x}, A_{e}\right), \lambda \mapsto(\mu \mapsto \alpha(\gamma(\lambda \mu)))$ for all $x \in I$; (3) There exist a unique $s \in I$ and some $\alpha_{s} \in \operatorname{Hom}_{A_{e}}\left(A_{s}, A_{e}\right)$ such that $\psi_{x}: A_{s x} \xrightarrow{\sim}$ $\operatorname{Hom}_{A_{e}}\left(A_{x^{-1}}, A_{e}\right), a \mapsto\left(b \mapsto \alpha_{s}(a b)\right)$ for all $x \in I$ (Theorem 3.3). Assume A / A_{e} is a Frobenius extension. We show that it is of second kind (Corollary 3.5), and that A is an Auslander-Gorenstein ring if and only if so is Λ (Theorem 3.6).

As we saw above, the ring Λ plays an essential role in our argument. Formulating the ring structure of Λ, we introduce the notion of group-bigraded rings as follows. A ring Λ together with a group homomorphism $\eta: I^{\mathrm{op}} \rightarrow \operatorname{Aut}(\Lambda), x \mapsto$ η_{x} is said to be an I-bigraded ring, denoted by (Λ, η), if $1=\sum_{x \in I} v_{x}$ with the v_{x} orthogonal idempotents and $\eta_{y}\left(v_{x}\right)=v_{x y}$ for all $x, y \in I$. A homomorphism $\varphi:(\Lambda, \eta) \rightarrow\left(\Lambda^{\prime}, \eta^{\prime}\right)$ is defined as a ring homomorphism $\varphi: \Lambda \rightarrow \Lambda^{\prime}$ such that $\varphi\left(v_{x}\right)=v_{x}^{\prime}$ and $\varphi \eta_{x}=\eta_{x}^{\prime} \varphi$ for all $x \in I$. We conclude that every I-bigraded ring is isomorphic to the I-bigraded ring Λ constructed above (Proposition 4.3).

This note is organized as follows. In Section 1, we recall basic facts on Auslander-Gorenstein rings and Frobenius extensions. In Section 2, we construct a Frobenius extension Λ / A of first kind and study the ring structure of Λ. In Section 3, we prove the main theorem. In Section 4, we introduce the notion of group-bigraded rings and study the structure of such rings. In Section 5 , we provide a systematic construction of I-graded rings A such that A / A_{e} is a Frobenius extension of second kind.

1 Preliminaries

For a ring R we denote by $\operatorname{rad}(R)$ the Jacobson radical of R, by R^{\times}the set of units in R, by $\mathrm{Z}(R)$ the center of R and by $\operatorname{Aut}(R)$ the group of ring automorphisms of R. Usually, the identity element of a ring is simply denoted by 1. Sometimes, we use the notation 1_{R} to stress that it is the identity element
of the ring R. We denote by Mod- R the category of right R-modules. Left R-modules are considered as right R^{op}-modules, where R^{op} denotes the opposite ring of R. In particular, we denote by $\operatorname{inj} \operatorname{dim} R\left(\right.$ resp., inj $\operatorname{dim} R^{\text {op }}$) the injective dimension of R as a right (resp., left) R-module and by $\operatorname{Hom}_{R}(-,-)$ (resp., $\left.\operatorname{Hom}_{R^{\text {op }}}(-,-)\right)$ the set of homomorphisms in Mod- R (resp., Mod- $R^{\text {op }}$). Sometimes, we use the notation X_{R} (resp., ${ }_{R} X$) to stress that the module X considered is a right (resp., left) R-module.

We start by recalling the notion of Auslander-Gorenstein rings.
Proposition 1.1 (Auslander). Let R be a right and left noetherian ring. Then for any $n \geq 0$ the following are equivalent.
(1) In a minimal injective resolution I^{\bullet} of R in $\operatorname{Mod}-R$, flat $\operatorname{dim} I^{i} \leq i$ for all $0 \leq i \leq n$.
(2) In a minimal injective resolution J^{\bullet} of R in $\operatorname{Mod}-R^{\text {op }}$, flat $\operatorname{dim} J^{i} \leq i$ for all $0 \leq i \leq n$.
(3) For any $1 \leq i \leq n+1$, any $M \in \bmod -R$ and any submodule X of $\operatorname{Ext}_{R}^{i}(M, R) \in \bmod -R^{\mathrm{op}}$ we have $\operatorname{Ext}_{R^{\mathrm{op}}}^{j}(X, R)=0$ for all $0 \leq j<i$.
(4) For any $1 \leq i \leq n+1$, any $X \in \bmod -R^{\text {op }}$ and any submodule M of $\operatorname{Ext}_{R^{\text {op }}}^{i}(X, R) \in \bmod -R$ we have $\operatorname{Ext}_{R}^{j}(M, R)=0$ for all $0 \leq j<i$.

Proof. See e.g. [7, Theorem 3.7].
Definition 1.2 ([6]). A right and left noetherian ring R is said to satisfy the Auslander condition if it satisfies the equivalent conditions in Proposition 1.1 for all $n \geq 0$, and to be an Auslander-Gorenstein ring if it satisfies the Auslander condition and inj $\operatorname{dim} R=\operatorname{inj} \operatorname{dim} R^{\mathrm{op}}<\infty$.

It should be noted that for a right and left noetherian ring R we have $\operatorname{inj} \operatorname{dim} R=\operatorname{inj} \operatorname{dim} R^{\mathrm{op}}$ whenever $\operatorname{inj} \operatorname{dim} R<\infty$ and $\operatorname{inj} \operatorname{dim} R^{\mathrm{op}}<\infty$ (see [16, Lemma A]).

Next, we recall the notion of Frobenius extensions of rings due to Nakayama and Tsuzuku [11, 12], which we modify as follows (cf. [1, Section 1]).

Definition 1.3. A ring A is said to be an extension of a ring R if A contains R as a subring, and the notation A / R is used to denote that A is an extension ring of R. A ring extension A / R is said to be Frobenius if the following conditions are satisfied:
(F1) A is finitely generated as a left R-module;
(F2) A is finitely generated projective as a right R-module;
(F3) $A \cong \operatorname{Hom}_{R}(A, R)$ as right A-modules.
In case R is a right and left noetherian ring, for any Frobenius extension A / R the isomorphism $A \xrightarrow{\sim} \operatorname{Hom}_{R}(A, R)$ in Mod- A yields an Auslander-Gorenstein resolution of A over R in the sense of [9, Definition 3.5].

The next proposition is well-known and easily verified.

Proposition 1.4. Let A / R be a ring extension and $\phi: A \xrightarrow{\sim} \operatorname{Hom}_{R}(A, R)$ an isomorphism in Mod-A. Then the following hold.
(1) There exists a unique ring homomorphism $\theta: R \rightarrow A$ such that $x \phi(1)=$ $\phi(1) \theta(x)$ for all $x \in R$.
(2) If $\phi^{\prime}: A \xrightarrow{\sim} \operatorname{Hom}_{R}(A, R)$ is another isomorphism in Mod-A, then there exists $u \in A^{\times}$such that $\phi^{\prime}(1)=\phi(1) u$ and $\theta^{\prime}(x)=u^{-1} \theta(x) u$ for all $x \in R$.
(3) ϕ is an isomorphism of R-A-bimodules if and only if $\theta(x)=x$ for all $x \in R$.

Definition 1.5 (cf. [11, 12]). A Frobenius extension A / R is said to be of first kind if $A \cong \operatorname{Hom}_{R}(A, R)$ as R - A-bimodules, and to be of second kind if there exists an isomorphism $\phi: A \xrightarrow{\sim} \operatorname{Hom}_{R}(A, R)$ in Mod- A such that the associated ring homomorphism $\theta: R \rightarrow A$ induces a ring automorphism $\theta: R \xrightarrow{\sim} R$.

Proposition 1.6. If A / R is a Frobenius extension of second kind, then A is projective as a left R-module.

Proof. Let $\phi: A \xrightarrow{\sim} \operatorname{Hom}_{R}(A, R)$ be an isomorphism in Mod- A such that the associated ring homomorphism $\theta: R \rightarrow A$ induces a ring automorphism $\theta: R \xrightarrow{\sim}$ R. Then θ induces an equivalence $U_{\theta}: \operatorname{Mod}-R^{\mathrm{op}} \xrightarrow{\sim} \operatorname{Mod}-R^{\mathrm{op}}$ such that for any $M \in \operatorname{Mod}-R^{\mathrm{op}}$ we have $U_{\theta} M=M$ as an additive group and the left R-module structure of $U_{\theta} M$ is given by the law of composition $R \times M \rightarrow M,(x, m) \mapsto$ $\theta(x) m$. Since ϕ yields an isomorphism of R - A-bimodules $U_{\theta} A \xrightarrow{\sim} \operatorname{Hom}_{R}(A, R)$, and since $\operatorname{Hom}_{R}(A, R)$ is projective as a left R-module, it follows that $U_{\theta} A$ and hence A are projective as left R-modules.

Proposition 1.7. For any Frobenius extensions $\Lambda / A, A / R$ the following hold.
(1) Λ / R is a Frobenius extension.
(2) Assume Λ / A is of first kind. If A / R is of second (resp., first) kind, then so is Λ / R.

Proof. (1) Obviously, (F1) and (F2) are satisfied. Also, we have

$$
\begin{aligned}
\Lambda & \cong \operatorname{Hom}_{A}(\Lambda, A) \\
& \cong \operatorname{Hom}_{A}\left(\Lambda, \operatorname{Hom}_{R}(A, R)\right) \\
& \cong \operatorname{Hom}_{R}\left(\Lambda \otimes_{A} A, R\right) \\
& \cong \operatorname{Hom}_{R}(\Lambda, R)
\end{aligned}
$$

in Mod- Λ.
(2) Let $\psi: \Lambda \xrightarrow{\sim} \operatorname{Hom}_{A}(\Lambda, A)$ be an isomorphism of A - Λ-bimodules and $\phi: A \xrightarrow{\sim} \operatorname{Hom}_{R}(A, R)$ an isomorphism in Mod- A such that the associated ring homomorphism $\theta: R \rightarrow A$ induces a ring automorphism $\theta: R \xrightarrow{\sim} R$. Setting $\gamma=\psi(1)$ and $\alpha=\phi(1)$, as in (1), we have an isomorphism in Mod- Λ

$$
\xi: \Lambda \xrightarrow{\sim} \operatorname{Hom}_{R}(\Lambda, R), \lambda \mapsto(\mu \mapsto \alpha(\gamma(\lambda \mu))) .
$$

For any $x \in R$, we have

$$
\begin{aligned}
x \xi(1)(\mu) & =x \alpha(\gamma(\mu)) \\
& =\alpha(\theta(x) \gamma(\mu)) \\
& =\alpha(\gamma(\theta(x) \mu)) \\
& =\xi(1)(\theta(x) \mu)
\end{aligned}
$$

for all $\mu \in \Lambda$ and $x \xi(1)=\xi(1) \theta(x)$.
Definition 1.8 ([1]). A ring extension A / R is said to be split if the inclusion $R \rightarrow A$ is a split monomorphism of R - R-bimodules.

Proposition 1.9 (cf. [1]). For any Frobenius extension A / R the following hold.
(1) If R is an Auslander-Gorenstein ring, then so is A with $\operatorname{inj} \operatorname{dim} A \leq$ inj $\operatorname{dim} R$.
(2) Assume A is projective as a left R-module and A / R is split. If A is an Auslander-Gorenstein ring, then so is R with inj $\operatorname{dim} R=\operatorname{inj} \operatorname{dim} A$.

Proof. (1) See [9, Theorem 3.6].
(2) It follows by [1, Proposition 1.7] that R is a right and left noetherian ring with inj $\operatorname{dim} R=\operatorname{inj} \operatorname{dim} R^{\mathrm{op}}=\operatorname{inj} \operatorname{dim} A$. Let $A \rightarrow E^{\bullet}$ be a minimal injective resolution in $\operatorname{Mod}-A$. For any $i \geq 0, \operatorname{Hom}_{R}\left(-, E^{i}\right) \cong \operatorname{Hom}_{A}\left(-\otimes_{R} A, E^{i}\right)$ as functors on Mod- R and E_{R}^{i} is injective, and $E^{i} \otimes_{R}-\cong E^{i} \otimes_{A} A \otimes_{R}-$ as functors on Mod- R^{op} and flat $\operatorname{dim} E_{R}^{i} \leq$ flat $\operatorname{dim} E_{A}^{i} \leq i$. Now, since R_{R} appears in A_{R} as a direct summand, it follows that R satisfies the Auslander condition.

2 Graded rings

Throughout the rest of this note, I stands for a non-trivial finite multiplicative group with the unit element e.

Throughout this and the next sections, we fix a ring A together with a family $\left\{\delta_{x}\right\}_{x \in I}$ in $\operatorname{End}_{\mathbb{Z}}(A)$ satisfying the following conditions:
(D1) $\delta_{x} \delta_{y}=0$ unless $x=y$ and $\sum_{x \in I} \delta_{x}=\operatorname{id}_{A}$;
(D2) $\delta_{x}(a) \delta_{y}(b)=\delta_{x y}\left(\delta_{x}(a) b\right)$ for all $a, b \in A$ and $x, y \in I$.
Namely, setting $A_{x}=\operatorname{Im} \delta_{x}$ for $x \in I, A=\oplus_{x \in I} A_{x}$ is an I-graded ring. In particular, A / A_{e} is a split ring extension.

To prove our main theorem (Theorem 3.3), we need an extension ring Λ of A such that Λ / A is a Frobenius extension of first kind. Let Λ be a free right A-module with a basis $\left\{v_{x}\right\}_{x \in I}$ and define a multiplication on Λ subject to the following axioms:
(M1) $v_{x} v_{y}=0$ unless $x=y$ and $v_{x} v_{x}=v_{x}$ for all $x \in I$;
(M2) $a v_{x}=\sum_{y \in I} v_{y} \delta_{y x^{-1}}(a)$ for all $a \in A$ and $x \in I$.

We denote by $\left\{\gamma_{x}\right\}_{x \in I}$ the dual basis of $\left\{v_{x}\right\}_{x \in I}$ for the free left A-module $\operatorname{Hom}_{A}(\Lambda, A)$, i.e., $\lambda=\sum_{x \in I} v_{x} \gamma_{x}(\lambda)$ for all $\lambda \in \Lambda$. It is not difficult to see that

$$
\lambda \mu=\sum_{x, y \in I} v_{x} \delta_{x y^{-1}}\left(\gamma_{x}(\lambda)\right) \gamma_{y}(\mu)
$$

for all $\lambda, \mu \in \Lambda$. Also, setting $\gamma=\sum_{x \in I} \gamma_{x}$, we define a mapping

$$
\phi: \Lambda \rightarrow \operatorname{Hom}_{A}(\Lambda, A), \lambda \mapsto \gamma \lambda .
$$

Proposition 2.1. The following hold.
(1) Λ is an associative ring with $1=\sum_{x \in I} v_{x}$ and contains A as a subring via the injective ring homomorphism $A \rightarrow \Lambda, a \mapsto \sum_{x \in I} v_{x} a$.
(2) ϕ is an isomorphism of $A-\Lambda$-bimodules, i.e., Λ / A is a Frobenius extension of first kind.

Proof. (1) Let $\lambda \in \Lambda$. Obviously, $\sum_{x \in I} v_{x} \cdot \lambda=\lambda$. Also, by (D1) we have

$$
\begin{aligned}
\lambda \cdot \sum_{y \in I} v_{y} & =\sum_{x, y \in I} v_{x} \delta_{x y^{-1}}\left(\gamma_{x}(\lambda)\right) \\
& =\sum_{x \in I} v_{x} \gamma_{x}(\lambda) \\
& =\lambda
\end{aligned}
$$

Next, for any $\lambda, \mu, \nu \in \Lambda$ by (D2) we have

$$
\begin{aligned}
(\lambda \mu) \nu & =\sum_{x, y, z \in I} v_{x} \delta_{x z^{-1}}\left(\delta_{x y^{-1}}\left(\gamma_{x}(\lambda)\right) \gamma_{y}(\mu)\right) \gamma_{z}(\nu) \\
& =\sum_{x, y, z \in I} v_{x} \delta_{x y^{-1}}\left(\gamma_{x}(\lambda)\right) \delta_{y z^{-1}}\left(\gamma_{y}(\mu)\right) \gamma_{z}(\nu) \\
& =\lambda(\mu \nu)
\end{aligned}
$$

The remaining assertions are obvious.
(2) Let $\lambda \in \operatorname{Ker} \phi$. For any $y \in I$ we have $0=\gamma\left(\lambda v_{y}\right)=\sum_{x \in I} \delta_{x y^{-1}}\left(\gamma_{x}(\lambda)\right)$ and $\delta_{x y^{-1}}\left(\gamma_{x}(\lambda)\right)=0$ for all $x \in I$. Thus for any $x \in I$ we have $\delta_{x y^{-1}}\left(\gamma_{x}(\lambda)\right)=0$ for all $y \in I$ and by (D1) $\gamma_{x}(\lambda)=0$, so that $\lambda=0$. Next, for any $f=$ $\sum_{x \in I} a_{x} \gamma_{x} \in \operatorname{Hom}_{A}(\Lambda, A)$, setting $\lambda=\sum_{x, z \in I} v_{x} \delta_{x z^{-1}}\left(a_{z}\right)$, by (D1) we have

$$
\begin{aligned}
(\gamma \lambda)\left(v_{y}\right) & =\gamma\left(\lambda v_{y}\right) \\
& =\sum_{x \in I} \delta_{x y^{-1}}\left(\gamma_{x}(\lambda)\right) \\
& =\sum_{x, z \in I} \delta_{x y^{-1}}\left(\delta_{x z^{-1}}\left(a_{z}\right)\right) \\
& =a_{y} \\
& =f\left(v_{y}\right)
\end{aligned}
$$

for all $y \in I$ and $f=\gamma \lambda$. Finally, for any $a \in A$ by (D1) we have

$$
\begin{aligned}
(\gamma a)(\lambda) & =\gamma(a \lambda) \\
& =\sum_{x, y \in I} \delta_{y x^{-1}}(a) \gamma_{x}(\lambda) \\
& =a \gamma(\lambda)
\end{aligned}
$$

for all $\lambda \in \Lambda$ and $\gamma a=a \gamma$.
Remark 2.2. Denote by $|I|$ the order of I. If $|I| \cdot 1_{A} \in A^{\times}$, then Λ / A is a split ring extension.

Lemma 2.3. The following hold.
(1) $v_{x} \lambda v_{y}=v_{x} \delta_{x y^{-1}}\left(\gamma_{x}(\lambda)\right)$ for all $\lambda \in \Lambda$ and $x, y \in I$.
(2) $v_{x} \Lambda v_{y}=v_{x} A_{x y^{-1}}$ for all $x, y \in I$.
(3) $v_{x} a \cdot v_{y} b=v_{x} a b$ for all $x, y, z \in I$ and $a \in A_{x y^{-1}}, b \in A_{y z^{-1}}$.

Proof. Immediate by the definition.
Setting $\Lambda_{x, y}=v_{x} \Lambda v_{y}$ for $x, y \in I$, we have $\Lambda=\oplus_{x, y \in I} \Lambda_{x, y}$ with $\Lambda_{x, y} \Lambda_{z, w}=$ 0 unless $y=z$ and $\Lambda_{x, y} \Lambda_{y, z} \subseteq \Lambda_{x, z}$ for all $x, y, z \in I$. Also, setting $\lambda_{x, y}=$ $\delta_{x y^{-1}}\left(\gamma_{x}(\lambda)\right) \in A_{x y^{-1}}$ for $\lambda \in \Lambda$ and $x, y \in I$, we have a group homomorphism

$$
\eta: I^{\mathrm{op}} \rightarrow \operatorname{Aut}(\Lambda), x \mapsto \eta_{x}
$$

such that $\eta_{x}(\lambda)_{y, z}=\lambda_{y x^{-1}, z x^{-1}}$ for all $\lambda \in \Lambda$ and $x, y, z \in I$. We denote by Λ^{I} the subring of Λ consisting of all λ such that $\eta_{x}(\lambda)=\lambda$ for all $x \in I$.

Proposition 2.4. The following hold.
(1) $\eta_{y}\left(v_{x}\right)=v_{x y}$ for all $x, y \in I$.
(2) $\Lambda^{I}=A$.
(3) $(\lambda \mu)_{x, z}=\sum_{y \in I} \lambda_{x, y} \mu_{y, z}$ for all $\lambda, \mu \in \Lambda$ and $x, z \in I$.

Proof. (1) Since $\eta_{y}\left(v_{x}\right)_{z, w}=\delta_{z w^{-1}}\left(\gamma_{z y^{-1}}\left(v_{x}\right)\right)$ for all $z, w \in I$, we have

$$
\eta_{y}\left(v_{x}\right)_{z, w}= \begin{cases}1 & \text { if } z=w \text { and } x=z y^{-1} \\ 0 & \text { otherwise }\end{cases}
$$

(2) For any $a \in A$, since $\eta_{x}(a)_{y, z}=a_{y x^{-1}, z x^{-1}}=\delta_{\left(y x^{-1}\right)\left(z x^{-1}\right)^{-1}}(a)=$ $\delta_{y z^{-1}}(a)=a_{y, z}$ for all $x, y, z \in I$, we have $a \in \Lambda^{I}$. Conversely, for any $\lambda \in \Lambda^{I}$ we have $\delta_{y^{-1}}\left(\gamma_{x}(\lambda)\right)=\lambda_{x, y x}=\eta_{x^{-1}}(\lambda)_{e, y}=\lambda_{e, y}=\delta_{y^{-1}}\left(\gamma_{e}(\lambda)\right)$ for all $x, y \in I$, so that $\gamma_{x}(\lambda)=\gamma_{e}(\lambda)$ for all $x \in I$.
(3) For any $\lambda, \mu \in \Lambda$ and $x, z \in I$ by (D2) we have

$$
\begin{aligned}
(\lambda \mu)_{x, z} & =\sum_{y \in I} \delta_{x z^{-1}}\left(\delta_{x y^{-1}}\left(\gamma_{x}(\lambda)\right) \gamma_{y}(\mu)\right) \\
& =\sum_{y \in I} \delta_{x y^{-1}}\left(\gamma_{x}(\lambda)\right) \delta_{y z^{-1}}\left(\gamma_{y}(\mu)\right) \\
& =\sum_{y \in I} \lambda_{x, y} \mu_{y, z}
\end{aligned}
$$

Remark 2.5. We have $\eta_{y}\left(v_{x} a_{x}\right) v_{y} b_{y}=v_{x y} a_{x} b_{y}$ for all $a_{x} \in A_{x}$ and $b_{y} \in A_{y}$.
Proposition 2.6. The following hold.
(1) $\operatorname{End}_{\Lambda}\left(v_{x} \Lambda\right) \cong A_{e}$ as rings for all $x \in I$.
(2) $v_{x} \Lambda \not \approx v_{y} \Lambda$ in $\operatorname{Mod}-\Lambda$ for all $x, y \in I$ with $A_{x y^{-1}} A_{y x^{-1}} \subseteq \operatorname{rad}\left(A_{e}\right)$.

Proof. (1) We have $\operatorname{End}_{\Lambda}\left(v_{x} \Lambda\right) \cong v_{x} \Lambda v_{x} \cong A_{e}$ as rings.
(2) For any $f: v_{x} \Lambda \rightarrow v_{y} \Lambda$ and $g: v_{y} \Lambda \rightarrow v_{x} \Lambda$ in Mod- Λ, since $f\left(v_{x}\right)=v_{y} a$ with $a \in A_{y x^{-1}}$ and $g\left(v_{y}\right)=v_{x} b$ with $b \in A_{x y^{-1}}$, we have $g\left(f\left(v_{x}\right)\right)=v_{x} b a$ with $b a \in \operatorname{rad}\left(A_{e}\right)$.

The proposition above asserts that if A_{e} is local and $A_{x} A_{x^{-1}} \subseteq \operatorname{rad}\left(A_{e}\right)$ for all $x \neq e$ then Λ is semiperfect and basic. We refer to [3] for semiperfect rings.

3 Auslander-Gorenstein rings

In this section, we will ask when A / A_{e} is a Frobenius extension.
Lemma 3.1. For any $x \in I$ the following hold.
(1) $a v_{x}=v_{x} a$ for all $a \in A_{e}$ and Λv_{x} is a Λ - A_{e}-bimodule.
(2) $\Lambda v_{x}=\sum_{y \in I} v_{y} A_{y x^{-1}}$.
(3) $A \xrightarrow{\sim} \Lambda v_{x}, a \mapsto \sum_{y \in I} v_{y} \delta_{y x^{-1}}(a)$ as A - A_{e}-bimodules.
(4) If Λv_{x} is reflexive as a right A_{e}-module, then $\operatorname{End}_{\Lambda}\left(\operatorname{Hom}_{A_{e}}\left(\Lambda v_{x}, A_{e}\right)\right) \cong$ A_{e} as rings.

Proof. (1) and (2) Immediate by the definition.
(3) By (2) we have a bijection $f_{x}: A \xrightarrow{\sim} \Lambda v_{x}, a \mapsto \sum_{y \in I} v_{y} \delta_{y x^{-1}}(a)$. Since every $\delta_{y x^{-1}}$ is a homomorphism in $\operatorname{Mod}-A_{e}$, so is f_{x}. Finally, for any $a, b \in A$
we have

$$
\begin{aligned}
a \cdot\left(\sum_{y \in I} v_{y} \delta_{y x^{-1}}(b)\right) & =\sum_{y, z \in I} v_{z} \delta_{z y^{-1}}(a) \delta_{y x^{-1}}(b) \\
& =\sum_{z \in I} v_{z}\left(\sum_{y \in I} \delta_{z y^{-1}}(a) \delta_{y x^{-1}}(b)\right) \\
& =\sum_{z \in I} v_{z} \delta_{z x^{-1}}\left(\sum_{y \in I} \delta_{z y^{-1}}(a) b\right) \\
& =\sum_{z \in I} v_{z} \delta_{z x^{-1}}(a b)
\end{aligned}
$$

and f_{x} is a homomorphism in Mod- $A^{\text {op }}$.
(4) Since the canonical homomorphism

$$
\Lambda v_{x} \rightarrow \operatorname{Hom}_{A_{e}^{\mathrm{op}}}^{\mathrm{op}}\left(\operatorname{Hom}_{A_{e}}\left(\Lambda v_{x}, A_{e}\right), A_{e}\right), \lambda \mapsto(f \mapsto f(\lambda))
$$

is an isomorphism, $\operatorname{End}_{\Lambda}\left(\operatorname{Hom}_{A_{e}}\left(\Lambda v_{x}, A_{e}\right)\right) \cong \operatorname{End}_{\Lambda^{\mathrm{op}}}\left(\Lambda v_{x}\right)^{\mathrm{op}} \cong v_{x} \Lambda v_{x} \cong A_{e}$ as rings.

It follows by Lemma 3.1(1) that $\delta_{e} \gamma_{e}: \Lambda \rightarrow A_{e}$ is a homomorphism of $A_{e}-A_{e}$-bimodules and Λ / A_{e} is a split ring extension.

Lemma 3.2. For any $x, y \in I$ and $a, b \in A$ we have

$$
v_{x} a \cdot\left(\sum_{z \in I} v_{z} \delta_{z y^{-1}}(b)\right)=v_{x}\left(\sum_{z \in I} \delta_{x z^{-1}}(a) \delta_{z y^{-1}}(b)\right)
$$

Proof. Immediate by the definition.
Theorem 3.3. Assume A_{e} is local, $A_{x} A_{x^{-1}} \subseteq \operatorname{rad}\left(A_{e}\right)$ for all $x \neq e$ and A is reflexive as a right A_{e}-module. Then the following are equivalent.
(1) $A \cong \operatorname{Hom}_{A_{e}}\left(A, A_{e}\right)$ as right A-modules.
(2) There exist a unique $s \in I$ and some $\alpha \in \operatorname{Hom}_{A_{e}}\left(A, A_{e}\right)$ such that

$$
\phi_{s x, x}: v_{s x} \Lambda \xrightarrow{\sim} \operatorname{Hom}_{A_{e}}\left(\Lambda v_{x}, A_{e}\right), \lambda \mapsto(\mu \mapsto \alpha(\gamma(\lambda \mu)))
$$

for all $x \in I$.
(3) There exist a unique $s \in I$ and some $\alpha_{s} \in \operatorname{Hom}_{A_{e}}\left(A_{s}, A_{e}\right)$ such that

$$
\psi_{x}: A_{s x} \xrightarrow{\sim} \operatorname{Hom}_{A_{e}}\left(A_{x^{-1}}, A_{e}\right), a \mapsto\left(b \mapsto \alpha_{s}(a b)\right)
$$

for all $x \in I$.
Proof. (1) \Rightarrow (2). Let $A \xrightarrow{\sim} \operatorname{Hom}_{A_{e}}\left(A, A_{e}\right), 1 \mapsto \alpha$ in Mod- A. Then, since by Proposition 2.1(2) $\Lambda \xrightarrow{\sim} \operatorname{Hom}_{A}(\Lambda, A), \lambda \mapsto \gamma \lambda$ in $\operatorname{Mod}-\Lambda$, by adjointness we have an isomorphism in Mod- Λ

$$
\Lambda \xrightarrow{\sim} \operatorname{Hom}_{A_{e}}\left(\Lambda, A_{e}\right), \lambda \mapsto(\mu \mapsto \alpha(\gamma(\lambda \mu))) .
$$

By Proposition 2.6(1) $\Lambda=\oplus_{x \in I} v_{x} \Lambda$ with the $\operatorname{End}_{\Lambda}\left(v_{x} \Lambda\right)$ local. Also, by (1) and (4) of Lemma 3.1

$$
\operatorname{Hom}_{A_{e}}\left(\Lambda, A_{e}\right) \cong \oplus_{x \in I} \operatorname{Hom}_{A_{e}}\left(\Lambda v_{x}, A_{e}\right)
$$

with the $\operatorname{End}_{\Lambda}\left(\operatorname{Hom}_{A_{e}}\left(\Lambda v_{x}, A_{e}\right)\right)$ local. Now, according to Proposition 2.6(2), it follows by the Krull-Schmidt theorem that there exists a unique $s \in I$ such that

$$
\phi_{s, e}: v_{s} \Lambda \xrightarrow{\sim} \operatorname{Hom}_{A_{e}}\left(\Lambda v_{e}, A_{e}\right), \lambda \mapsto(\mu \mapsto \alpha(\gamma(\lambda \mu))) .
$$

Thus, setting $\alpha_{s}=\left.\alpha\right|_{A_{s}}$, by Lemmas 3.1(2) and 3.2 we have

$$
\psi: A \xrightarrow{\sim} \operatorname{Hom}_{A_{e}}\left(A, A_{e}\right), a \mapsto\left(b \mapsto \alpha_{s}\left(\delta_{s}(a b)\right)\right) .
$$

It then follows again by Lemmas 3.1(2) and 3.2 that

$$
\phi_{s x, x}: v_{s x} \Lambda \xrightarrow{\sim} \operatorname{Hom}_{A_{e}}\left(\Lambda v_{x}, A_{e}\right), \lambda \mapsto(\mu \mapsto \alpha(\gamma(\lambda \mu)))
$$

for all $x \in I$.
$(2) \Rightarrow(3)$. Since $A=\oplus_{x \in I} A_{s x}=\oplus_{x \in I} A_{x^{-1}}$, and since $A_{s x} A_{x^{-1}} \subseteq A_{s}$ for all $x \in I, \psi$ induces $\psi_{x}: A_{s x} \xrightarrow{\sim} \operatorname{Hom}_{A_{e}}\left(A_{x^{-1}}, A_{e}\right), a \mapsto\left(b \mapsto \alpha_{s}(a b)\right)$ for all $x \in I$.
$(3) \Rightarrow(1)$. Setting $\psi_{x}: A_{s x} \xrightarrow{\sim} \operatorname{Hom}_{A_{e}}\left(A_{x^{-1}}, A_{e}\right), a \mapsto\left(b \mapsto \alpha_{s}(a b)\right)$ for each $x \in I$, the ψ_{x} yields $\psi: A \xrightarrow{\sim} \operatorname{Hom}_{A_{e}}\left(A, A_{e}\right), a \mapsto\left(b \mapsto \alpha_{s}\left(\delta_{s}(a b)\right)\right)$.

Remark 3.4. In the theorem above, α_{s} is an isomorphism and $A_{e} \xrightarrow{\sim} \operatorname{End}_{A_{e}}\left(A_{s}\right)$ canonically.

Proof. For any $b \in A_{e}$, setting $f: A_{e} \rightarrow A_{e}, 1 \mapsto b$, we have $f=\psi_{e}(a)$ and hence $b=\alpha_{s}(a)$ for some $a \in A_{s}$. Also, Ker $\alpha_{s}=\operatorname{Ker} \psi_{s}=0$. Then, since the composite $A_{e} \rightarrow \operatorname{End}_{A_{e}}\left(A_{s}\right) \rightarrow \operatorname{Hom}_{A_{e}}\left(A_{s}, A_{e}\right)$ is an isomorphism, the last assertion follows.

Corollary 3.5. Assume A_{e} is local and $A_{x} A_{x^{-1}} \subseteq \operatorname{rad}\left(A_{e}\right)$ for all $x \neq e$. If A / A_{e} is a Frobenius extension, then it is of second kind.

Proof. Set $t=\alpha_{s}^{-1}(1) \in A_{s}$. Then for any $u \in A_{s}$ there exists $f \in \operatorname{End}_{A_{e}}\left(A_{s}\right)$ such that $u=f(t)$ and hence $u=$ at for some $a \in A_{e}$. Thus $A_{e} t=A_{s}$ and there exists $\theta \in \operatorname{Aut}\left(A_{e}\right)$ such that $\theta(a) t=t a$ for all $a \in A_{e}$. Then $\left(\alpha_{s} \theta(a)\right)(t)=\alpha_{s}(\theta(a) t)=\alpha_{s}(t a)=\alpha_{s}(t) a=a=\left(a \alpha_{s}\right)(t)$ and $\alpha_{s} \theta(a)=a \alpha_{s}$ for all $a \in A_{e}$. Now, setting $\psi: A \xrightarrow{\sim} \operatorname{Hom}_{A_{e}}\left(A, A_{e}\right), a \mapsto\left(b \mapsto \alpha_{s}\left(\delta_{s}(a b)\right)\right)$, we have $(a \psi(1))(b)=a \alpha_{s}\left(\delta_{s}(b)\right)=\left(a \alpha_{s}\right)\left(\delta_{s}(b)\right)=\left(\alpha_{s} \theta(a)\right)\left(\delta_{s}(b)\right)=\alpha_{s}\left(\theta(a) \delta_{s}(b)\right)=$ $\alpha_{s}\left(\delta_{s}(\theta(a) b)\right)=(\psi(1) \theta(a))(b)$ for all $a, b \in A$, so that $a \psi(1)=\psi(1) \theta(a)$ for all $a \in A$.

Theorem 3.6. Assume A_{e} is local, $A_{x} A_{x^{-1}} \subseteq \operatorname{rad}\left(A_{e}\right)$ for all $x \neq e$, and A / A_{e} is a Frobenius extension. Then A is an Auslander-Gorenstein ring if and only if so is Λ.

Proof. The "only if" part follows by Propositions 1.9(1) and 2.1(2). Assume Λ is an Auslander-Gorenstein ring. By Proposition 2.1(2) Λ / A is a Frobenius extension of first kind, and by Corollary $3.5 A / A_{e}$ is a Frobenius extension of second kind. Thus by Proposition $1.7 \Lambda / A_{e}$ is a Frobenius extension of second kind. Also, by Lemma 3.1(1) Λ / A_{e} is split. Hence by Propositions 1.6 and 1.9(2) A_{e} is an Auslander-Gorenstein ring and by Proposition $1.9(1)$ so is A.

Remark 3.7. Assume A_{e} is local, $A_{x} A_{x^{-1}} \subseteq \operatorname{rad}\left(A_{e}\right)$ for all $x \neq e$ and A / A_{e} is a Frobenius extension. Let $s \in I$ be as in Theorem 3.3. Then the following hold.
(1) $s \neq e$ unless $A=A_{e}$.
(2) Let J be a subgroup of I containing s and $A_{J}=\oplus_{x \in J} A_{x}$. Then A_{J} / A_{e} is a Frobenius extension and, unless $s=e$, the mapping cone of the multiplication map

$$
\bigoplus_{x \in J} \Lambda v_{x} \otimes_{A_{e}} v_{x} \Lambda \rightarrow \Lambda
$$

is a tilting complex for right Λ-modules (see [14] for tilting complexes).
Proof. (1) Suppose to the contrary that $s=e$. Let $x \in I$ with $x \neq e$ and $A_{x} \neq 0$. Then by Remark 3.4 there exists $u \in A_{e} \times$ such that $A_{x} \xrightarrow{\sim} \operatorname{Hom}\left(A_{x^{-1}}, A_{e}\right), a \mapsto$ $(b \mapsto u a b)$. Note that $u a b \in \operatorname{rad}\left(A_{e}\right)$ for all $a \in A_{x}$ and $b \in A_{x^{-1}}$. On the other hand, since $A_{x^{-1}}$ is nonzero projective, and since A_{e} is local, there exists an epimorphism $f: A_{x^{-1}} \rightarrow A_{e}$ in Mod- A_{e}, a contradiction.
(2) Since $\psi_{x}: A_{s x} \xrightarrow{\sim} \operatorname{Hom}_{A_{e}}\left(A_{x^{-1}}, A_{e}\right), a \mapsto\left(b \mapsto \alpha_{s}(a b)\right)$ for all $x \in J$, the ψ_{x} yields $\psi_{J}: A_{J} \xrightarrow{\sim} \operatorname{Hom}_{A_{e}}\left(A_{J}, A_{e}\right), a \mapsto\left(b \mapsto \alpha_{s}\left(\delta_{s}(a b)\right)\right)$. The first assertion follows by Theorem 3.3.

Next, let $v_{J}=\sum_{x \in J} v_{x}$. Then by Lemma 3.1(1) $a v_{J}=v_{J} a$ for all $a \in A_{e}$. Since Λ / A_{e} is a Frobenius extension, Λv_{J} is finitely generated projective as a right A_{e}-module and by Theorem $3.3 v_{J} \Lambda \cong \operatorname{Hom}_{A_{e}}\left(\Lambda v_{J}, A_{e}\right)$ as right Λ modules. Note that $v_{x} \Lambda v_{x} \neq 0$ and $v_{s x} \Lambda v_{x} \neq 0$ for all $x \in J$. Thus the last assertion follows by the same argument as in [1, Example 4.3].

We will see in the final section that the element $s \in I$ in Theorem 3.3 does not necessarily depend on the structure of the group I (Example 5.3).

4 Bigraded rings

Formulating the ring structure of Λ constructed in Section 2, we make the following.
Definition 4.1. A ring Λ together with a group homomorphism

$$
\eta: I^{\mathrm{op}} \rightarrow \operatorname{Aut}(\Lambda), x \mapsto \eta_{x}
$$

is said to be an I-bigraded ring, denoted by (Λ, η), if $1=\sum_{x \in I} v_{x}$ with the v_{x} orthogonal idempotents and $\eta_{y}\left(v_{x}\right)=v_{x y}$ for all $x, y \in I$. A homomorphism $\varphi:(\Lambda, \eta) \rightarrow\left(\Lambda^{\prime}, \eta^{\prime}\right)$ is defined as a ring homomorphism $\varphi: \Lambda \rightarrow \Lambda^{\prime}$ such that $\varphi\left(v_{x}\right)=v_{x}^{\prime}$ and $\varphi \eta_{x}=\eta_{x}^{\prime} \varphi$ for all $x \in I$.

Throughout this section, we fix an I-bigraded ring (Λ, η). Set $A_{x}=v_{x} \Lambda v_{e}$ for $x \in I$ and $A=\oplus_{x \in I} A_{x}$. Note that $\eta_{y}\left(A_{x}\right)=v_{x y} \Lambda v_{y}$ for all $x, y \in I$. For any $a_{x} \in A_{x}$ and $b_{y} \in A_{y}$ we define the multiplication $a_{x} \cdot b_{y}$ in A as the multiplication $\eta_{y}\left(a_{x}\right) b_{y}$ in Λ (cf. Remark 2.5).
Proposition 4.2. The following hold.
(1) A is an associative ring with $1=v_{e}$.
(2) A is an I-graded ring.

Proof. (1) For any $a_{x} \in A_{x}, b_{y} \in A_{y}$ and $c_{z} \in A_{z}$ we have

$$
\begin{aligned}
\left(a_{x} \cdot b_{y}\right) \cdot c_{z} & =\eta_{y}\left(a_{x}\right) b_{y} \cdot c_{z} \\
& =\eta_{z}\left(\eta_{y}\left(a_{x}\right) b_{y}\right) c_{z} \\
& =\eta_{y z}\left(a_{x}\right) \eta_{z}\left(b_{y}\right) c_{z} \\
& =a_{x} \cdot\left(b_{y} \cdot c_{z}\right)
\end{aligned}
$$

Also, for any $a_{x} \in A_{x}$ we have $v_{e} \cdot a_{x}=\eta_{x}\left(v_{e}\right) a_{x}=v_{x} a_{x}=a_{x}$ and $a_{x} \cdot v_{e}=$ $\eta_{e}\left(a_{x}\right) v_{e}=a_{x} v_{e}=a_{x}$.
(2) Obviously, $A_{x} A_{y} \subseteq A_{x y}$ for all $x, y \in I$.

In the following, for each $x \in I$ we denote by $\delta_{x}: A \rightarrow A_{x}$ the projection. Then, setting $\lambda_{x, y}=v_{x} \lambda v_{y}$ for $\lambda \in \Lambda$ and $x, y \in I$, we have a mapping $\varphi: A \rightarrow \Lambda$ such that $\varphi(a)_{x, y}=\eta_{y}\left(\delta_{x y^{-1}}(a)\right)$ for all $a \in A$ and $x, y \in I$.
Proposition 4.3. The following hold.
(1) $\varphi: A \rightarrow \Lambda$ is an injective ring homomorphism with $\operatorname{Im} \varphi=\Lambda^{I}$.
(2) $v_{x} \Lambda v_{y}=v_{x} \varphi\left(A_{x y^{-1}}\right)$ for all $x, y \in I$.
(3) $\left\{v_{x}\right\}_{x \in I}$ is a basis for the right A-module Λ.
(4) $\varphi(a) v_{x}=\sum_{y \in I} v_{y} \varphi\left(\delta_{y x^{-1}}(a)\right)$ for all $a \in A$ and $x \in I$.
(5) $v_{x} \varphi(a) v_{y} \varphi(b)=v_{x} \varphi(a b)$ for all $x, y, z \in I$ and $a \in A_{x y^{-1}}, b \in A_{y z^{-1}}$.

Proof. (1) Obviously, φ is a monomorphism of additive groups. Also, we have

$$
\varphi\left(v_{e}\right)_{x, y}= \begin{cases}v_{x} & \text { if } x=y \\ 0 & \text { otherwise }\end{cases}
$$

and $\varphi\left(1_{A}\right)=1_{\Lambda}$. Let $a_{x} \in A_{x}, b_{y} \in A_{y}$ and $z, w \in I$. Since $\varphi\left(a_{x} \cdot b_{y}\right)_{z, w}=$ $\varphi\left(\eta_{y}\left(a_{x}\right) b_{y}\right)_{z, w}=\eta_{w}\left(\delta_{z w^{-1}}\left(\eta_{y}\left(a_{x}\right) b_{y}\right)\right), \varphi\left(a_{x} \cdot b_{y}\right)_{z, w}=0$ unless $x y=z w^{-1}$. If $x y=z w^{-1}$, then $\eta_{w}\left(\delta_{z w^{-1}}\left(\eta_{y}\left(a_{x}\right) b_{y}\right)\right)=\eta_{y w}\left(a_{x}\right) \eta_{w}\left(b_{y}\right)$. On the other hand,

$$
\begin{aligned}
\left(\varphi\left(a_{x}\right) \varphi\left(b_{y}\right)\right)_{z, w} & =\sum_{u \in I} \varphi\left(a_{x}\right)_{z, u} \varphi\left(b_{y}\right)_{u, w} \\
& =\sum_{u \in I} \eta_{u}\left(\delta_{z u^{-1}}\left(a_{x}\right)\right) \eta_{w}\left(\delta_{u w^{-1}}\left(b_{y}\right)\right) .
\end{aligned}
$$

Thus $\left(\varphi\left(a_{x}\right) \varphi\left(b_{y}\right)\right)_{z, w}=0$ unless $z u^{-1}=x$ and $u w^{-1}=y$, i.e., $z w^{-1}=x y$. If $z w^{-1}=x y$, then $\sum_{u \in I} \eta_{u}\left(\delta_{z u^{-1}}\left(a_{x}\right)\right) \eta_{w}\left(\delta_{u w^{-1}}\left(b_{y}\right)\right)=\eta_{y w}\left(a_{x}\right) \eta_{w}\left(b_{y}\right)$. As a consequence, $\varphi\left(a_{x} \cdot b_{y}\right)_{z, w}=\left(\varphi\left(a_{x}\right) \varphi\left(b_{y}\right)\right)_{z, w}$. The first assertion follows.

Next, for any $a \in A$ and $x, y, z \in I$ we have

$$
\begin{aligned}
\eta_{x}(\varphi(a))_{y, z} & =v_{y} \eta_{x}(\varphi(a)) v_{z} \\
& =\eta_{x}\left(v_{y x x^{-1}} \varphi(a) v_{z x x^{-1}}\right) \\
& =\eta_{x}\left(\varphi(a)_{y x^{-1}, z x^{-1}}\right) \\
& =\eta_{x}\left(\eta_{z x^{-1}}\left(\delta_{y z^{-1}}(a)\right)\right) \\
& =\eta_{z}\left(\delta_{y z^{-1}}(a)\right) \\
& =\varphi(a)_{y, z},
\end{aligned}
$$

so that $\operatorname{Im} \varphi \subseteq \Lambda^{I}$. Conversely, let $\lambda \in \Lambda^{I}$. Then $\lambda_{x, y}=\eta_{y}\left(\lambda_{x y^{-1}, e}\right)=\lambda_{x y^{-1}, e}$ for all $x, y \in I$. Thus, setting $a=\sum_{x \in I} \lambda_{x, e}$, we have $\varphi(a)_{x, y}=\eta_{y}\left(\delta_{x y^{-1}}(a)\right)=$ $\eta_{y}\left(\lambda_{x y^{-1}, e}\right)=\lambda_{x y^{-1}, e}=\lambda_{x, y}$ for all $x, y \in I$ and $\varphi(a)=\lambda$.
(2) Let $x, y \in I$ and $a \in A_{x y^{-1}}$. For any $z \neq y$ we have $\delta_{x z^{-1}}(a)=0$ and hence $v_{x} \varphi(a) v_{z}=\varphi(a)_{x, z}=\eta_{z}\left(\delta_{x z^{-1}}(a)\right)=0$. Thus $v_{x} \varphi(a)=\varphi(a)_{x, y}=\eta_{y}(a)$. It follows that $v_{x} \Lambda v_{y}=\eta_{y}\left(v_{x y^{-1}} \Lambda v_{e}\right)=\eta_{y}\left(A_{x y^{-1}}\right)=v_{x} \varphi\left(A_{x y^{-1}}\right)$.
(3) This follows by (2).
(4) Note that $\eta_{x}\left(\delta_{y x^{-1}}(a)\right)=v_{y} \eta_{x}\left(\delta_{y x^{-1}}(a)\right)$ for all $y \in I$. Thus $\varphi(a) v_{x}=$ $\sum_{y \in I} v_{y} \varphi(a) v_{x}=\sum_{y \in I} \eta_{x}\left(\delta_{y x^{-1}}(a)\right)=\sum_{y \in I} v_{y} \eta_{x}\left(\delta_{y x^{-1}}(a)\right)$. Also,

$$
\begin{aligned}
v_{y} \varphi\left(\delta_{y x^{-1}}(a)\right) & =\sum_{z \in I} v_{y} \varphi\left(\delta_{y x^{-1}}(a)\right) v_{z} \\
& =\sum_{z \in I} v_{y} \eta_{z}\left(\delta_{y z^{-1}}\left(\delta_{y x^{-1}}(a)\right)\right) \\
& =v_{y} \eta_{x}\left(\delta_{y x^{-1}}(a)\right)
\end{aligned}
$$

for all $y \in I$.
(5) This follows by (2) and (4).

Let us call the I-bigraded ring constructed in Section 2 standard. Then the proposition above asserts that every I-bigraded ring is isomorphic to a standard one. Namely, according to Lemma 2.3, $\varphi: A \rightarrow \Lambda$ can be extended to an isomorphism of I-bigraded rings.

5 Examples

In this section, we will provide a systematic construction of I-graded rings A such that A / A_{e} is a Frobenius extension of second kind.

Let (s, χ) be a pair of an element $s \in I$ and a mapping $\chi: I \rightarrow \mathbb{Z}$ satisfying the following conditions:
(X1) $\chi(x)+\chi(y) \geq \chi(x y)$ for all $x, y \in I$;
(X2) $\chi(x)+\chi\left(x^{-1} s\right)=\chi(s)$ for all $x \in I$.

These are obviously satisfied if s is arbitrary and $\chi(x)=0$ for all $x \in I$. We set

$$
\omega(x, y)=\chi(x)+\chi(y)-\chi(x y)
$$

for $x, y \in I$.
Lemma 5.1. The following hold.
(1) $\omega(x, y) \geq 0$ for all $x, y \in I$.
(2) $\omega(e, x)=\omega(x, e)=\chi(e)=0$ for all $x \in I$.
(3) $\chi(x)+\chi(y)=\omega(x, y)+\chi(x y)$ for all $x, y \in I$.
(4) $\omega(x y, z)+\omega(x, y)=\omega(x, y z)+\omega(y, z)$ for all $x, y, z \in I$.
(5) $\omega\left(x, x^{-1} s\right)=0$ for all $x \in I$.

Proof. It follows by (X2) that $\chi(e)=0$. The other assertions are obvious.
In the following, we fix a ring R together with a pair (σ, c) of $\sigma \in \operatorname{Aut}(R)$ and $c \in R$ satisfying the following condition:

$$
(*) \quad \sigma(c)=c \quad \text { and } \quad a c=c \sigma(a) \text { for all } a \in R .
$$

This is obviously satisfied if either $\sigma=\operatorname{id}_{R}$ and $c \in \mathrm{Z}(R)$, or σ is arbitrary and $c=0$. As usual, we require $c^{0}=1$ even if $c=0$.

Let A be a free right R-module with a basis $\left\{u_{x}\right\}_{x \in I}$. By abuse of notation we denote by $\left\{\delta_{x}\right\}_{x \in I}$ the dual basis of $\left\{u_{x}\right\}_{x \in I}$ for the free left R-module $\operatorname{Hom}_{R}(A, R)$, i.e., $a=\sum_{x \in I} u_{x} \delta_{x}(a)$ for all $a \in A$. According to Lemma 5.1(1), we can define a multiplication on A subject to the following axioms:
(M1) $u_{x} u_{y}=u_{x y} c^{\omega(x, y)}$ for all $x, y \in I$;
(M2) $a u_{x}=u_{x} \sigma^{\chi(x)}(a)$ for all $a \in R$ and $x \in I$.
Proposition 5.2. The following hold.
(1) A is an I-graded ring with $A_{e} \cong R$.
(2) A / A_{e} is a Frobenius extension of second kind.
(3) If $c \in \operatorname{rad}(R)$, then $A_{x} A_{x^{-1}} \subseteq \operatorname{rad}\left(A_{e}\right)$ for all $x \neq e$ with $\omega\left(x, x^{-1}\right)>0$.

Proof. (1) It follows by Lemma 5.1(2) that $u_{e} \cdot u_{x} a=u_{x} a=u_{x} a \cdot u_{e}$ for all $x \in I$ and $a \in R$. For any $x, y, z \in I$ and $a_{x}, a_{y}, a_{z} \in R$ we have

$$
\begin{aligned}
\left(u_{x} a_{x} \cdot u_{y} a_{y}\right) \cdot u_{z} a_{z} & =u_{x y} c^{\omega(x, y)} \sigma^{\chi(y)}\left(a_{x}\right) a_{y} \cdot u_{z} a_{z} \\
& =u_{x y z} c^{\omega(x y, z)} \sigma^{\chi(z)}\left(c^{\omega(x, y)} \sigma^{\chi(y)}\left(a_{x}\right) a_{y}\right) a_{z} \\
& =u_{x y z} c^{\omega(x y, z)} c^{\omega(x, y)} \sigma^{\chi(z)+\chi(y)}\left(a_{x}\right) \sigma^{\chi(z)}\left(a_{y}\right) a_{z} \\
& =u_{x y z} c^{\omega(x y, z)+\omega(x, y)} \sigma^{\chi(z)+\chi(y)}\left(a_{x}\right) \sigma^{\chi(z)}\left(a_{y}\right) a_{z} \\
u_{x} a_{x} \cdot\left(u_{y} a_{y} \cdot u_{z} a_{z}\right) & =u_{x} a_{x} \cdot u_{y z} c^{\omega(y, z)} \sigma^{\chi(z)}\left(a_{y}\right) a_{z} \\
& =u_{x y z} c^{\omega(x, y z)} \sigma^{\chi(y z)}\left(a_{x}\right) c^{\omega(y, z)} \sigma^{\chi(z)}\left(a_{y}\right) a_{z} \\
& =u_{x y z} c^{\omega(x, y z)} c^{\omega(y, z)} \sigma^{\omega(y, z)}\left(\sigma^{\chi(y z)}\left(a_{x}\right)\right) \sigma^{\chi(z)}\left(a_{y}\right) a_{z} \\
& =u_{x y z} c^{\omega(x, y z)+\omega(y, z)} \sigma^{\omega(y, z)+\chi(y z)}\left(a_{x}\right) \sigma^{\chi(z)}\left(a_{y}\right) a_{z}
\end{aligned}
$$

and by (3), (4) of Lemma $5.1\left(u_{x} a_{x} \cdot u_{y} a_{y}\right) \cdot u_{z} a_{z}=u_{x} a_{x} \cdot\left(u_{y} a_{y} \cdot u_{z} a_{z}\right)$. Thus A is an associative ring with $1=u_{e}$. Obviously, A contains R as a subring via the injective ring homomorphism $R \rightarrow A, a \mapsto u_{e} a$, i.e., setting $A_{x}=u_{x} R$ for $x \in I, A=\oplus_{x \in I} A_{x}$ is an I-graded ring with $A_{e}=R$.
(2) It follows by (M2) that $\delta_{x} a=\sigma^{\chi(x)}(a) \delta_{x}$ for all $a \in R$ and $x \in I$. In particular, $\left\{\delta_{x}\right\}_{x \in I}$ is a basis for the right R-module $\operatorname{Hom}_{R}(A, R)$. Also, for any $x \in I$ by Lemma 5.1(5) $u_{x} u_{x^{-1} s}=u_{s}$ and hence $\delta_{s} u_{x}=\delta_{x^{-1} s}$. It follows that $A \xrightarrow{\sim} \operatorname{Hom}_{R}(A, R), a \mapsto \delta_{s} a$ in Mod- A. Obviously, A is a free left R-module with a basis $\left\{u_{x}\right\}_{x \in I}$. Thus, since $\delta_{s} a=\sigma^{\chi(s)}(a) \delta_{s}$ for all $a \in R, A / R$ is a Frobenius extension of second kind.
(3) Immediate by (M1).

Example 5.3. For any $s \in I \backslash\{e\}$, setting

$$
\chi(x)= \begin{cases}0 & \text { if } x=e \\ 2 & \text { if } x=s \\ 1 & \text { otherwise }\end{cases}
$$

we have a pair (s, χ) satisfying the conditions (X1), (X2).
Example 5.4. Consider the case where $I=I_{1} \times \cdots \times I_{n}$ with the I_{k} cyclic. For each $1 \leq k \leq n$, fix a generator $x_{k} \in I_{k}$ and set $m_{k}=\left|I_{k}\right|$. Set $s=$ $\left(x_{1}^{m_{1}-1}, \ldots, x_{n}^{m_{n}-1}\right)$ and $\chi\left(\left(x_{1}^{i_{1}}, \ldots, x_{n}^{i_{n}}\right)\right)=i_{1}+\cdots+i_{n}$, where $0 \leq i_{k} \leq m_{k}-1$ for all $1 \leq k \leq n$. Then the pair (s, χ) satisfies the conditions (X1), (X2).
Remark 5.5. The following hold.
(1) $0 \leq \chi(x) \leq \chi(s)$ for all $x \in I$.
(2) $I_{0}=\chi^{-1}(0)$ is a subgroup of I with $s I_{0}=I_{0} s$.
(3) χ takes the constant value $\chi(x)$ on $I_{0} x I_{0}$ for all $x \in I$.
(4) $\omega\left(x, x^{-1}\right)>0$ for all $x \neq e$ if and only if $I_{0}=\{e\}$.

Proof. (1) For any $x \in I$, since $x^{m}=e$ for some $m>0$, it follows by (X1) that $m \chi(x) \geq \chi\left(x^{m}\right)=\chi(e)=0$ and $\chi(x) \geq 0$. It then follows by (X2) that $\chi(x) \leq \chi(s)$ for all $x \in I$.
(2) We have $e \in I_{0}$ and by (X1) $x y \in I_{0}$ for all $x, y \in I_{0}$. Also, by (X2) we have $s I_{0}=\chi^{-1}(\chi(s))=I_{0} s$.
(3) It follows by (X1) that $\chi(x) \geq \chi(x y)$ for all $x \in I$ and $y \in I_{0}$. It then follows that $\chi(x y) \geq \chi\left(x y y^{-1}\right)=\chi(x)$ for all $x \in I$ and $y \in I_{0}$. Similarly, $\chi(x)=\chi(y x)$ for all $x \in I$ and $y \in I_{0}$.
(4) By the fact that I_{0} is a subgroup of I.

Remark 5.6. Set $A_{0}=\oplus_{x \in I_{0}} A_{x}$, which is the group ring of I_{0} over R. It follows by Remark 5.5(3) that A is free as a right (resp., left) A_{0}-module. Next, define mappings $\delta_{0}: A \rightarrow A_{0}$ and $\theta: A_{0} \rightarrow A_{0}$ as follows:

$$
\delta_{0}(a)=\sum_{x \in I_{0}} u_{x} \delta_{s x}(a) \quad \text { and } \quad \theta(b)=\sum_{x \in I_{0}} u_{x} \sigma^{\chi(s)}\left(\delta_{s x s^{-1}}(b)\right)
$$

for $a \in A$ and $b \in A_{0}$, respectively. Then $\delta_{0} \in \operatorname{Hom}_{A_{0}}\left(A, A_{0}\right)$ and $\theta \in \operatorname{Aut}\left(A_{0}\right)$. Furthermore, $A \xrightarrow{\sim} \operatorname{Hom}_{A_{0}}\left(A, A_{0}\right), a \mapsto \delta_{0} a$ in $\operatorname{Mod}-A$ and $\delta_{0} b=\theta(b) \delta_{0}$ for all $b \in A_{0}$. Consequently, A / A_{0} is a Frobenius extension of second kind.
Remark 5.7. Consider the case where R is commutative, $\sigma=\operatorname{id}_{R}$ and s lies in the center of I. Then $A \xrightarrow{\sim} \operatorname{Hom}_{R}(A, R), a \mapsto \delta_{s} a$ as A - A-bimodules.

Proof. Note first that $A \xrightarrow{\sim} \operatorname{Hom}_{R}(A, R), a \mapsto \delta_{s} a$ in $\operatorname{Mod}-A$, which we have shown in the proof of Proposition 5.2(2). Next, for any $a, b \in A$ we have

$$
\begin{aligned}
\delta_{s}(a b) & =\sum_{x \in I} \delta_{x}(a) \delta_{x^{-1} s}(b) \\
& =\sum_{x \in I} \delta_{s x^{-1}}(b) \delta_{x}(a) \\
& =\sum_{y \in I} \delta_{y}(b) \delta_{y^{-1} s}(a) \\
& =\delta_{s}(b a),
\end{aligned}
$$

so that $\delta_{s} a=a \delta_{s}$ for all $a \in I$.

References

[1] H. Abe and M. Hoshino, Frobenius extensions and tilting complexes, Algebras and Representation Theory 11(3) (2008), 215-232.
[2] M. Artin, J. Tate and M. Van den Bergh, Modules over regular algebras of dimension 3, Invent. Math. 106 (1991), no. 2, 335-388.
[3] H. Bass, Finitistic dimension and a homological generalization of semiprimary rings, Trans. Amer. Math. Soc. 95 (1960), 466-488.
[4] H. Bass, On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8-28.
[5] J. -E. Björk, Rings of differential operators, North-Holland Mathematical Library, 21. North-Holland Publishing Co., Amsterdam-New York, 1979.
[6] J. -E. Björk, The Auslander condition on noetherian rings, in: Séminaire d'Algèbre Paul Dubreil et Marie-Paul Malliavin, 39ème Année (Paris, 1987/1988), 137-173, Lecture Notes in Math., 1404, Springer, Berlin, 1989.
[7] R. M. Fossum, Ph. A. Griffith and I. Reiten, Trivial extensions of abelian categories, Lecture Notes in Math., 456, Springer, Berlin, 1976.
[8] M. Hoshino, Strongly quasi-Frobenius rings, Comm. Algebra 28(8)(2000), 3585-3599.
[9] M. Hoshino and H. Koga, Auslander-Gorenstein resolution, J. Pure Appl. Algebra 216 (2012), no. 1, 130-139.
[10] G. Karpilovsky, The algebraic structure of crossed products, NorthHolland Mathematics Studies, 142, Notas de Matemática, 118. NorthHolland Publishing Co., Amsterdam, 1987.
[11] T. Nakayama and T. Tsuzuku, On Frobenius extensions I, Nagoya Math. J. 17 (1960), 89-110.
[12] T. Nakayama and T. Tsuzuku, On Frobenius extensions II, Nagoya Math. J. 19 (1961), 127-148.
[13] D. S. Passman, Infinite crossed products, Pure and Applied Mathematics, 135, Academic Press, Inc., Boston, MA, 1989.
[14] J. Rickard, Morita theory for derived categories, J. London Math. Soc. (2) 39 (1989), no. 3, 436-456.
[15] J. Tate and M. Van den Bergh, Homological properties of Sklyanin algebras, Invent. Math. 124 (1996), no. 1-3, 619-647.
[16] A. Zaks, Injective dimension of semi-primary rings, J. Algebra 13 (1969), 73-86.

Institute of Mathematics, University of Tsukuba, Ibaraki, 305-8571, Japan E-mail address: hoshino@math.tsukuba.ac.jp

Interdisciplinary Graduate School of Science and Technology, Shinshu University, Nagano, 390-8621, Japan
E-mail address: kameyama@math.shinshu-u.ac.jp
School of Information Environment, Tokyo Denki University, Chiba, 2701382, Japan
E-mail address: koga@mail.dendai.ac.jp

[^0]: 2010 Mathematics Subject Classification: Primary: 16S35, 16S50; Secondary: 16E10, 16 W 22.

 Key words: Auslander-Gorenstein ring, Frobenius extension, group-graded ring, groupbigraded ring.

