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Abstract

Let I be a non-trivial finite multiplicative group with the unit element
e and A = ⊕x∈IAx an I-graded ring. We construct a Frobenius extension
Λ of A and study when the ring extension A of Ae can be a Frobenius
extension. Also, formulating the ring structure of Λ, we introduce the no-
tion of I-bigraded rings and show that every I-bigraded ring is isomorphic
to the I-bigraded ring Λ constructed above.

Let I be a non-trivial finite multiplicative group with the unit element e and
A = ⊕x∈IAx an I-graded ring. In this note, assuming Ae is a local ring, we
study when a ring extension A of Ae can be a Frobenius extension, the no-
tion of which we recall below. Auslander-Gorenstein rings (see Definition 1.2)
appear in various fields of current research in mathematics. For instance, reg-
ular 3-dimensional algebras of type A in the sense of Artin and Schelter, Weyl
algebras over fields of characteristic zero, enveloping algebras of finite dimen-
sional Lie algebras and Sklyanin algebras are Auslander-Gorenstein rings (see
[2], [5], [6] and [15], respectively). However, little is known about constructions
of Auslander-Gorenstein rings. We have shown in [9, Section 3] that a left and
right noetherian ring is an Auslander-Gorenstein ring if it admits an Auslander-
Gorenstein resolution over another Auslander-Gorenstein ring. A Frobenius
extension A of a left and right noetherian ring R is a typical example such that
A admits an Auslander-Gorenstein resolution over R.

Now we recall the notion of Frobenius extensions of rings due to Nakayama
and Tsuzuku [11, 12] which we modify as follows (cf. [1, Section 1]). We use the
notation A/R to denote that a ring A contains a ring R as a subring. We say
that A/R is a Frobenius extension if the following conditions are satisfied: (F1)
A is finitely generated as a left R-module; (F2) A is finitely generated projective
as a right R-module; (F3) there exists an isomorphism φ : A ∼→ HomR(A,R) in
Mod-A. Note that φ induces a unique ring homomorphism θ : R→ A such that
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xφ(1) = φ(1)θ(x) for all x ∈ R. A Frobenius extension A/R is said to be of first
kind if A ∼= HomR(A,R) as R-A-bimodules, and to be of second kind if there
exists an isomorphism φ : A ∼→ HomR(A,R) in Mod-A such that the associated
ring homomorphism θ : R → A induces a ring automorphism of R. Note that
a Frobenius extension of first kind is a special case of a Frobenius extension
of second kind. Let A/R be a Frobenius extension. Then A is an Auslander-
Gorenstein ring if so is R, and the converse holds true if A is projective as a left
R-module, and if A/R is split, i.e., the inclusion R→ A is a split monomorphism
of R-R-bimodules. It should be noted that A is projective as a left R-module if
A/R is of second kind.

To state our main theorem we have to construct a Frobenius extension Λ/A
of first kind. Namely, we will define an appropriate multiplication on a free right
A-module Λ with a basis {vx}x∈I so that Λ/A is a Frobenius extension of first
kind. Denote by {γx}x∈I the dual basis of {vx}x∈I for the free left A-module
HomA(Λ, A) and set γ = Σx∈Iγx. Assume Ae is local, AxAx−1 ⊆ rad(Ae)
for all x 6= e and A is reflexive as a right Ae-module. Our main theorem
states that the following are equivalent: (1) A ∼= HomAe(A,Ae) as right A-
modules; (2) There exist a unique s ∈ I and some α ∈ HomAe(A,Ae) such that
φsx,x : vsxΛ ∼→ HomAe(Λvx, Ae), λ 7→ (µ 7→ α(γ(λµ))) for all x ∈ I; (3) There
exist a unique s ∈ I and some αs ∈ HomAe(As, Ae) such that ψx : Asx

∼→
HomAe(Ax−1 , Ae), a 7→ (b 7→ αs(ab)) for all x ∈ I (Theorem 3.3). Assume A/Ae

is a Frobenius extension. We show that it is of second kind (Corollary 3.5), and
that A is an Auslander-Gorenstein ring if and only if so is Λ (Theorem 3.6).

As we saw above, the ring Λ plays an essential role in our argument. Formu-
lating the ring structure of Λ, we introduce the notion of group-bigraded rings as
follows. A ring Λ together with a group homomorphism η : Iop → Aut(Λ), x 7→
ηx is said to be an I-bigraded ring, denoted by (Λ, η), if 1 =

∑
x∈I vx with the

vx orthogonal idempotents and ηy(vx) = vxy for all x, y ∈ I. A homomorphism
ϕ : (Λ, η) → (Λ′, η′) is defined as a ring homomorphism ϕ : Λ → Λ′ such that
ϕ(vx) = v′x and ϕηx = η′xϕ for all x ∈ I. We conclude that every I-bigraded
ring is isomorphic to the I-bigraded ring Λ constructed above (Proposition 4.3).

This note is organized as follows. In Section 1, we recall basic facts on
Auslander-Gorenstein rings and Frobenius extensions. In Section 2, we con-
struct a Frobenius extension Λ/A of first kind and study the ring structure of
Λ. In Section 3, we prove the main theorem. In Section 4, we introduce the
notion of group-bigraded rings and study the structure of such rings. In Section
5, we provide a systematic construction of I-graded rings A such that A/Ae is
a Frobenius extension of second kind.

1 Preliminaries

For a ring R we denote by rad(R) the Jacobson radical of R, by R× the set
of units in R, by Z(R) the center of R and by Aut(R) the group of ring auto-
morphisms of R. Usually, the identity element of a ring is simply denoted by
1. Sometimes, we use the notation 1R to stress that it is the identity element
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of the ring R. We denote by Mod-R the category of right R-modules. Left
R-modules are considered as right Rop-modules, where Rop denotes the oppo-
site ring of R. In particular, we denote by inj dim R (resp., inj dim Rop) the
injective dimension of R as a right (resp., left) R-module and by HomR(−,−)
(resp., HomRop(−,−)) the set of homomorphisms in Mod-R (resp., Mod-Rop).
Sometimes, we use the notation XR (resp., RX) to stress that the module X
considered is a right (resp., left) R-module.

We start by recalling the notion of Auslander-Gorenstein rings.

Proposition 1.1 (Auslander). Let R be a right and left noetherian ring. Then
for any n ≥ 0 the following are equivalent.

(1) In a minimal injective resolution I• of R in Mod-R, flat dim Ii ≤ i for
all 0 ≤ i ≤ n.

(2) In a minimal injective resolution J• of R in Mod-Rop, flat dim J i ≤ i for
all 0 ≤ i ≤ n.

(3) For any 1 ≤ i ≤ n + 1, any M ∈ mod-R and any submodule X of
Exti

R(M,R) ∈ mod-Rop we have Extj
Rop(X,R) = 0 for all 0 ≤ j < i.

(4) For any 1 ≤ i ≤ n + 1, any X ∈ mod-Rop and any submodule M of
Exti

Rop(X,R) ∈ mod-R we have Extj
R(M,R) = 0 for all 0 ≤ j < i.

Proof. See e.g. [7, Theorem 3.7].

Definition 1.2 ([6]). A right and left noetherian ring R is said to satisfy the
Auslander condition if it satisfies the equivalent conditions in Proposition 1.1 for
all n ≥ 0, and to be an Auslander-Gorenstein ring if it satisfies the Auslander
condition and inj dim R = inj dim Rop <∞.

It should be noted that for a right and left noetherian ring R we have
inj dim R = inj dim Rop whenever inj dim R < ∞ and inj dim Rop < ∞ (see
[16, Lemma A]).

Next, we recall the notion of Frobenius extensions of rings due to Nakayama
and Tsuzuku [11, 12], which we modify as follows (cf. [1, Section 1]).

Definition 1.3. A ring A is said to be an extension of a ring R if A contains R
as a subring, and the notation A/R is used to denote that A is an extension ring
of R. A ring extension A/R is said to be Frobenius if the following conditions
are satisfied:

(F1) A is finitely generated as a left R-module;
(F2) A is finitely generated projective as a right R-module;
(F3) A ∼= HomR(A,R) as right A-modules.

In case R is a right and left noetherian ring, for any Frobenius extension A/R
the isomorphism A

∼→ HomR(A,R) in Mod-A yields an Auslander-Gorenstein
resolution of A over R in the sense of [9, Definition 3.5].

The next proposition is well-known and easily verified.
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Proposition 1.4. Let A/R be a ring extension and φ : A ∼→ HomR(A,R) an
isomorphism in Mod-A. Then the following hold.

(1) There exists a unique ring homomorphism θ : R → A such that xφ(1) =
φ(1)θ(x) for all x ∈ R.

(2) If φ′ : A ∼→ HomR(A,R) is another isomorphism in Mod-A, then there
exists u ∈ A× such that φ′(1) = φ(1)u and θ′(x) = u−1θ(x)u for all x ∈ R.

(3) φ is an isomorphism of R-A-bimodules if and only if θ(x) = x for all
x ∈ R.

Definition 1.5 (cf. [11, 12]). A Frobenius extension A/R is said to be of first
kind if A ∼= HomR(A,R) as R-A-bimodules, and to be of second kind if there
exists an isomorphism φ : A ∼→ HomR(A,R) in Mod-A such that the associated
ring homomorphism θ : R→ A induces a ring automorphism θ : R ∼→ R.

Proposition 1.6. If A/R is a Frobenius extension of second kind, then A is
projective as a left R-module.

Proof. Let φ : A ∼→ HomR(A,R) be an isomorphism in Mod-A such that the
associated ring homomorphism θ : R→ A induces a ring automorphism θ : R ∼→
R. Then θ induces an equivalence Uθ : Mod-Rop ∼→ Mod-Rop such that for any
M ∈ Mod-Rop we have UθM = M as an additive group and the left R-module
structure of UθM is given by the law of composition R ×M → M, (x,m) 7→
θ(x)m. Since φ yields an isomorphism of R-A-bimodules UθA

∼→ HomR(A,R),
and since HomR(A,R) is projective as a left R-module, it follows that UθA and
hence A are projective as left R-modules.

Proposition 1.7. For any Frobenius extensions Λ/A, A/R the following hold.

(1) Λ/R is a Frobenius extension.

(2) Assume Λ/A is of first kind. If A/R is of second (resp., first) kind, then
so is Λ/R.

Proof. (1) Obviously, (F1) and (F2) are satisfied. Also, we have

Λ ∼= HomA(Λ, A)
∼= HomA(Λ,HomR(A,R))
∼= HomR(Λ ⊗A A,R)
∼= HomR(Λ, R)

in Mod-Λ.
(2) Let ψ : Λ ∼→ HomA(Λ, A) be an isomorphism of A-Λ-bimodules and

φ : A ∼→ HomR(A,R) an isomorphism in Mod-A such that the associated ring
homomorphism θ : R → A induces a ring automorphism θ : R ∼→ R. Setting
γ = ψ(1) and α = φ(1), as in (1), we have an isomorphism in Mod-Λ

ξ : Λ ∼→ HomR(Λ, R), λ 7→ (µ 7→ α(γ(λµ))).
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For any x ∈ R, we have

xξ(1)(µ) = xα(γ(µ))
= α(θ(x)γ(µ))
= α(γ(θ(x)µ))
= ξ(1)(θ(x)µ)

for all µ ∈ Λ and xξ(1) = ξ(1)θ(x).

Definition 1.8 ([1]). A ring extension A/R is said to be split if the inclusion
R→ A is a split monomorphism of R-R-bimodules.

Proposition 1.9 (cf. [1]). For any Frobenius extension A/R the following hold.

(1) If R is an Auslander-Gorenstein ring, then so is A with inj dim A ≤
inj dim R.

(2) Assume A is projective as a left R-module and A/R is split. If A is an
Auslander-Gorenstein ring, then so is R with inj dim R = inj dim A.

Proof. (1) See [9, Theorem 3.6].
(2) It follows by [1, Proposition 1.7] that R is a right and left noetherian ring

with inj dim R = inj dim Rop = inj dim A. Let A→ E• be a minimal injective
resolution in Mod-A. For any i ≥ 0, HomR(−, Ei) ∼= HomA(− ⊗R A,Ei) as
functors on Mod-R and Ei

R is injective, and Ei ⊗R − ∼= Ei ⊗A A ⊗R − as
functors on Mod-Rop and flat dim Ei

R ≤ flat dim Ei
A ≤ i. Now, since RR

appears in AR as a direct summand, it follows that R satisfies the Auslander
condition.

2 Graded rings

Throughout the rest of this note, I stands for a non-trivial finite multiplicative
group with the unit element e.

Throughout this and the next sections, we fix a ring A together with a family
{δx}x∈I in EndZ(A) satisfying the following conditions:

(D1) δxδy = 0 unless x = y and
∑

x∈I δx = idA;
(D2) δx(a)δy(b) = δxy(δx(a)b) for all a, b ∈ A and x, y ∈ I.

Namely, setting Ax = Im δx for x ∈ I, A = ⊕x∈IAx is an I-graded ring. In
particular, A/Ae is a split ring extension.

To prove our main theorem (Theorem 3.3), we need an extension ring Λ of
A such that Λ/A is a Frobenius extension of first kind. Let Λ be a free right
A-module with a basis {vx}x∈I and define a multiplication on Λ subject to the
following axioms:

(M1) vxvy = 0 unless x = y and vxvx = vx for all x ∈ I;
(M2) avx =

∑
y∈I vyδyx−1(a) for all a ∈ A and x ∈ I.
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We denote by {γx}x∈I the dual basis of {vx}x∈I for the free left A-module
HomA(Λ, A), i.e., λ =

∑
x∈I vxγx(λ) for all λ ∈ Λ. It is not difficult to see that

λµ =
∑

x,y∈I

vxδxy−1(γx(λ))γy(µ)

for all λ, µ ∈ Λ. Also, setting γ =
∑

x∈I γx, we define a mapping

φ : Λ → HomA(Λ, A), λ 7→ γλ.

Proposition 2.1. The following hold.

(1) Λ is an associative ring with 1 =
∑

x∈I vx and contains A as a subring
via the injective ring homomorphism A→ Λ, a 7→

∑
x∈I vxa.

(2) φ is an isomorphism of A-Λ-bimodules, i.e., Λ/A is a Frobenius extension
of first kind.

Proof. (1) Let λ ∈ Λ. Obviously,
∑

x∈I vx · λ = λ. Also, by (D1) we have

λ ·
∑
y∈I

vy =
∑

x,y∈I

vxδxy−1(γx(λ))

=
∑
x∈I

vxγx(λ)

= λ.

Next, for any λ, µ, ν ∈ Λ by (D2) we have

(λµ)ν =
∑

x,y,z∈I

vxδxz−1(δxy−1(γx(λ))γy(µ))γz(ν)

=
∑

x,y,z∈I

vxδxy−1(γx(λ))δyz−1(γy(µ))γz(ν)

= λ(µν).

The remaining assertions are obvious.
(2) Let λ ∈ Ker φ. For any y ∈ I we have 0 = γ(λvy) =

∑
x∈I δxy−1(γx(λ))

and δxy−1(γx(λ)) = 0 for all x ∈ I. Thus for any x ∈ I we have δxy−1(γx(λ)) = 0
for all y ∈ I and by (D1) γx(λ) = 0, so that λ = 0. Next, for any f =∑

x∈I axγx ∈ HomA(Λ, A), setting λ =
∑

x,z∈I vxδxz−1(az), by (D1) we have

(γλ)(vy) = γ(λvy)

=
∑
x∈I

δxy−1(γx(λ))

=
∑

x,z∈I

δxy−1(δxz−1(az))

= ay

= f(vy)
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for all y ∈ I and f = γλ. Finally, for any a ∈ A by (D1) we have

(γa)(λ) = γ(aλ)

=
∑

x,y∈I

δyx−1(a)γx(λ)

= aγ(λ)

for all λ ∈ Λ and γa = aγ.

Remark 2.2. Denote by |I| the order of I. If |I| · 1A ∈ A×, then Λ/A is a split
ring extension.

Lemma 2.3. The following hold.

(1) vxλvy = vxδxy−1(γx(λ)) for all λ ∈ Λ and x, y ∈ I.

(2) vxΛvy = vxAxy−1 for all x, y ∈ I.

(3) vxa · vyb = vxab for all x, y, z ∈ I and a ∈ Axy−1 , b ∈ Ayz−1 .

Proof. Immediate by the definition.

Setting Λx,y = vxΛvy for x, y ∈ I, we have Λ = ⊕x,y∈IΛx,y with Λx,yΛz,w =
0 unless y = z and Λx,yΛy,z ⊆ Λx,z for all x, y, z ∈ I. Also, setting λx,y =
δxy−1(γx(λ)) ∈ Axy−1 for λ ∈ Λ and x, y ∈ I, we have a group homomorphism

η : Iop → Aut(Λ), x 7→ ηx

such that ηx(λ)y,z = λyx−1,zx−1 for all λ ∈ Λ and x, y, z ∈ I. We denote by ΛI

the subring of Λ consisting of all λ such that ηx(λ) = λ for all x ∈ I.

Proposition 2.4. The following hold.

(1) ηy(vx) = vxy for all x, y ∈ I.

(2) ΛI = A.

(3) (λµ)x,z =
∑

y∈I λx,yµy,z for all λ, µ ∈ Λ and x, z ∈ I.

Proof. (1) Since ηy(vx)z,w = δzw−1(γzy−1(vx)) for all z, w ∈ I, we have

ηy(vx)z,w =

{
1 if z = w and x = zy−1,

0 otherwise.

(2) For any a ∈ A, since ηx(a)y,z = ayx−1,zx−1 = δ(yx−1)(zx−1)−1(a) =
δyz−1(a) = ay,z for all x, y, z ∈ I, we have a ∈ ΛI . Conversely, for any λ ∈ ΛI

we have δy−1(γx(λ)) = λx,yx = ηx−1(λ)e,y = λe,y = δy−1(γe(λ)) for all x, y ∈ I,
so that γx(λ) = γe(λ) for all x ∈ I.
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(3) For any λ, µ ∈ Λ and x, z ∈ I by (D2) we have

(λµ)x,z =
∑
y∈I

δxz−1(δxy−1(γx(λ))γy(µ))

=
∑
y∈I

δxy−1(γx(λ))δyz−1(γy(µ))

=
∑
y∈I

λx,yµy,z.

Remark 2.5. We have ηy(vxax)vyby = vxyaxby for all ax ∈ Ax and by ∈ Ay.

Proposition 2.6. The following hold.

(1) EndΛ(vxΛ) ∼= Ae as rings for all x ∈ I.

(2) vxΛ � vyΛ in Mod-Λ for all x, y ∈ I with Axy−1Ayx−1 ⊆ rad(Ae).

Proof. (1) We have EndΛ(vxΛ) ∼= vxΛvx
∼= Ae as rings.

(2) For any f : vxΛ → vyΛ and g : vyΛ → vxΛ in Mod-Λ, since f(vx) = vya
with a ∈ Ayx−1 and g(vy) = vxb with b ∈ Axy−1 , we have g(f(vx)) = vxba with
ba ∈ rad(Ae).

The proposition above asserts that if Ae is local and AxAx−1 ⊆ rad(Ae) for
all x 6= e then Λ is semiperfect and basic. We refer to [3] for semiperfect rings.

3 Auslander-Gorenstein rings

In this section, we will ask when A/Ae is a Frobenius extension.

Lemma 3.1. For any x ∈ I the following hold.

(1) avx = vxa for all a ∈ Ae and Λvx is a Λ-Ae-bimodule.

(2) Λvx =
∑

y∈I vyAyx−1 .

(3) A
∼→ Λvx, a 7→

∑
y∈I vyδyx−1(a) as A-Ae-bimodules.

(4) If Λvx is reflexive as a right Ae-module, then EndΛ(HomAe(Λvx, Ae)) ∼=
Ae as rings.

Proof. (1) and (2) Immediate by the definition.
(3) By (2) we have a bijection fx : A ∼→ Λvx, a 7→

∑
y∈I vyδyx−1(a). Since

every δyx−1 is a homomorphism in Mod-Ae, so is fx. Finally, for any a, b ∈ A
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we have

a · (
∑
y∈I

vyδyx−1(b)) =
∑

y,z∈I

vzδzy−1(a)δyx−1(b)

=
∑
z∈I

vz(
∑
y∈I

δzy−1(a)δyx−1(b))

=
∑
z∈I

vzδzx−1(
∑
y∈I

δzy−1(a)b)

=
∑
z∈I

vzδzx−1(ab)

and fx is a homomorphism in Mod-Aop.
(4) Since the canonical homomorphism

Λvx → HomAop
e

(HomAe(Λvx, Ae), Ae), λ 7→ (f 7→ f(λ))

is an isomorphism, EndΛ(HomAe(Λvx, Ae)) ∼= EndΛop(Λvx)op ∼= vxΛvx
∼= Ae as

rings.

It follows by Lemma 3.1(1) that δeγe : Λ → Ae is a homomorphism of
Ae-Ae-bimodules and Λ/Ae is a split ring extension.

Lemma 3.2. For any x, y ∈ I and a, b ∈ A we have

vxa · (
∑
z∈I

vzδzy−1(b)) = vx(
∑
z∈I

δxz−1(a)δzy−1(b))

Proof. Immediate by the definition.

Theorem 3.3. Assume Ae is local, AxAx−1 ⊆ rad(Ae) for all x 6= e and A is
reflexive as a right Ae-module. Then the following are equivalent.

(1) A ∼= HomAe(A,Ae) as right A-modules.

(2) There exist a unique s ∈ I and some α ∈ HomAe(A,Ae) such that

φsx,x : vsxΛ ∼→ HomAe(Λvx, Ae), λ 7→ (µ 7→ α(γ(λµ)))

for all x ∈ I.

(3) There exist a unique s ∈ I and some αs ∈ HomAe(As, Ae) such that

ψx : Asx
∼→ HomAe(Ax−1 , Ae), a 7→ (b 7→ αs(ab))

for all x ∈ I.

Proof. (1) ⇒ (2). Let A ∼→ HomAe(A,Ae), 1 7→ α in Mod-A. Then, since by
Proposition 2.1(2) Λ ∼→ HomA(Λ, A), λ 7→ γλ in Mod-Λ, by adjointness we have
an isomorphism in Mod-Λ

Λ ∼→ HomAe(Λ, Ae), λ 7→ (µ 7→ α(γ(λµ))).
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By Proposition 2.6(1) Λ = ⊕x∈IvxΛ with the EndΛ(vxΛ) local. Also, by (1)
and (4) of Lemma 3.1

HomAe(Λ, Ae) ∼= ⊕x∈IHomAe(Λvx, Ae)

with the EndΛ(HomAe(Λvx, Ae)) local. Now, according to Proposition 2.6(2),
it follows by the Krull-Schmidt theorem that there exists a unique s ∈ I such
that

φs,e : vsΛ
∼→ HomAe(Λve, Ae), λ 7→ (µ 7→ α(γ(λµ))).

Thus, setting αs = α|As , by Lemmas 3.1(2) and 3.2 we have

ψ : A ∼→ HomAe(A,Ae), a 7→ (b 7→ αs(δs(ab))).

It then follows again by Lemmas 3.1(2) and 3.2 that

φsx,x : vsxΛ ∼→ HomAe(Λvx, Ae), λ 7→ (µ 7→ α(γ(λµ)))

for all x ∈ I.
(2) ⇒ (3). Since A = ⊕x∈IAsx = ⊕x∈IAx−1 , and since AsxAx−1 ⊆ As for

all x ∈ I, ψ induces ψx : Asx
∼→ HomAe(Ax−1 , Ae), a 7→ (b 7→ αs(ab)) for all

x ∈ I.
(3) ⇒ (1). Setting ψx : Asx

∼→ HomAe(Ax−1 , Ae), a 7→ (b 7→ αs(ab)) for each
x ∈ I, the ψx yields ψ : A ∼→ HomAe(A,Ae), a 7→ (b 7→ αs(δs(ab))).

Remark 3.4. In the theorem above, αs is an isomorphism and Ae
∼→ EndAe(As)

canonically.

Proof. For any b ∈ Ae, setting f : Ae → Ae, 1 7→ b, we have f = ψe(a) and
hence b = αs(a) for some a ∈ As. Also, Ker αs = Ker ψs = 0. Then, since
the composite Ae → EndAe(As) → HomAe(As, Ae) is an isomorphism, the last
assertion follows.

Corollary 3.5. Assume Ae is local and AxAx−1 ⊆ rad(Ae) for all x 6= e. If
A/Ae is a Frobenius extension, then it is of second kind.

Proof. Set t = α−1
s (1) ∈ As. Then for any u ∈ As there exists f ∈ EndAe(As)

such that u = f(t) and hence u = at for some a ∈ Ae. Thus Aet = As

and there exists θ ∈ Aut(Ae) such that θ(a)t = ta for all a ∈ Ae. Then
(αsθ(a))(t) = αs(θ(a)t) = αs(ta) = αs(t)a = a = (aαs)(t) and αsθ(a) = aαs for
all a ∈ Ae. Now, setting ψ : A ∼→ HomAe(A,Ae), a 7→ (b 7→ αs(δs(ab))), we have
(aψ(1))(b) = aαs(δs(b)) = (aαs)(δs(b)) = (αsθ(a))(δs(b)) = αs(θ(a)δs(b)) =
αs(δs(θ(a)b)) = (ψ(1)θ(a))(b) for all a, b ∈ A, so that aψ(1) = ψ(1)θ(a) for all
a ∈ A.

Theorem 3.6. Assume Ae is local, AxAx−1 ⊆ rad(Ae) for all x 6= e, and A/Ae

is a Frobenius extension. Then A is an Auslander-Gorenstein ring if and only
if so is Λ.
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Proof. The ”only if” part follows by Propositions 1.9(1) and 2.1(2). Assume
Λ is an Auslander-Gorenstein ring. By Proposition 2.1(2) Λ/A is a Frobenius
extension of first kind, and by Corollary 3.5 A/Ae is a Frobenius extension of
second kind. Thus by Proposition 1.7 Λ/Ae is a Frobenius extension of second
kind. Also, by Lemma 3.1(1) Λ/Ae is split. Hence by Propositions 1.6 and 1.9(2)
Ae is an Auslander-Gorenstein ring and by Proposition 1.9(1) so is A.

Remark 3.7. Assume Ae is local, AxAx−1 ⊆ rad(Ae) for all x 6= e and A/Ae is a
Frobenius extension. Let s ∈ I be as in Theorem 3.3. Then the following hold.

(1) s 6= e unless A = Ae.

(2) Let J be a subgroup of I containing s and AJ = ⊕x∈JAx. Then AJ/Ae

is a Frobenius extension and, unless s = e, the mapping cone of the
multiplication map ⊕

x∈J

Λvx ⊗Ae vxΛ → Λ

is a tilting complex for right Λ-modules (see [14] for tilting complexes).

Proof. (1) Suppose to the contrary that s = e. Let x ∈ I with x 6= e and Ax 6= 0.
Then by Remark 3.4 there exists u ∈ Ae

× such that Ax
∼→ Hom(Ax−1 , Ae), a 7→

(b 7→ uab). Note that uab ∈ rad(Ae) for all a ∈ Ax and b ∈ Ax−1 . On the other
hand, since Ax−1 is nonzero projective, and since Ae is local, there exists an
epimorphism f : Ax−1 → Ae in Mod-Ae, a contradiction.

(2) Since ψx : Asx
∼→ HomAe(Ax−1 , Ae), a 7→ (b 7→ αs(ab)) for all x ∈ J , the

ψx yields ψJ : AJ
∼→ HomAe(AJ , Ae), a 7→ (b 7→ αs(δs(ab))). The first assertion

follows by Theorem 3.3.
Next, let vJ =

∑
x∈J vx. Then by Lemma 3.1(1) avJ = vJa for all a ∈ Ae.

Since Λ/Ae is a Frobenius extension, ΛvJ is finitely generated projective as
a right Ae-module and by Theorem 3.3 vJΛ ∼= HomAe(ΛvJ , Ae) as right Λ-
modules. Note that vxΛvx 6= 0 and vsxΛvx 6= 0 for all x ∈ J . Thus the last
assertion follows by the same argument as in [1, Example 4.3].

We will see in the final section that the element s ∈ I in Theorem 3.3 does
not necessarily depend on the structure of the group I (Example 5.3).

4 Bigraded rings

Formulating the ring structure of Λ constructed in Section 2, we make the
following.

Definition 4.1. A ring Λ together with a group homomorphism

η : Iop → Aut(Λ), x 7→ ηx

is said to be an I-bigraded ring, denoted by (Λ, η), if 1 =
∑

x∈I vx with the vx

orthogonal idempotents and ηy(vx) = vxy for all x, y ∈ I. A homomorphism
ϕ : (Λ, η) → (Λ′, η′) is defined as a ring homomorphism ϕ : Λ → Λ′ such that
ϕ(vx) = v′x and ϕηx = η′xϕ for all x ∈ I.
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Throughout this section, we fix an I-bigraded ring (Λ, η). Set Ax = vxΛve

for x ∈ I and A = ⊕x∈IAx. Note that ηy(Ax) = vxyΛvy for all x, y ∈ I.
For any ax ∈ Ax and by ∈ Ay we define the multiplication ax · by in A as the
multiplication ηy(ax)by in Λ (cf. Remark 2.5).

Proposition 4.2. The following hold.

(1) A is an associative ring with 1 = ve.

(2) A is an I-graded ring.

Proof. (1) For any ax ∈ Ax, by ∈ Ay and cz ∈ Az we have

(ax · by) · cz = ηy(ax)by · cz
= ηz(ηy(ax)by)cz
= ηyz(ax)ηz(by)cz
= ax · (by · cz).

Also, for any ax ∈ Ax we have ve · ax = ηx(ve)ax = vxax = ax and ax · ve =
ηe(ax)ve = axve = ax.

(2) Obviously, AxAy ⊆ Axy for all x, y ∈ I.

In the following, for each x ∈ I we denote by δx : A → Ax the projection.
Then, setting λx,y = vxλvy for λ ∈ Λ and x, y ∈ I, we have a mapping ϕ : A→ Λ
such that ϕ(a)x,y = ηy(δxy−1(a)) for all a ∈ A and x, y ∈ I.

Proposition 4.3. The following hold.

(1) ϕ : A→ Λ is an injective ring homomorphism with Im ϕ = ΛI .

(2) vxΛvy = vxϕ(Axy−1) for all x, y ∈ I.

(3) {vx}x∈I is a basis for the right A-module Λ.

(4) ϕ(a)vx =
∑

y∈I vyϕ(δyx−1(a)) for all a ∈ A and x ∈ I.

(5) vxϕ(a)vyϕ(b) = vxϕ(ab) for all x, y, z ∈ I and a ∈ Axy−1 , b ∈ Ayz−1 .

Proof. (1) Obviously, ϕ is a monomorphism of additive groups. Also, we have

ϕ(ve)x,y =

{
vx if x = y,

0 otherwise

and ϕ(1A) = 1Λ. Let ax ∈ Ax, by ∈ Ay and z, w ∈ I. Since ϕ(ax · by)z,w =
ϕ(ηy(ax)by)z,w = ηw(δzw−1(ηy(ax)by)), ϕ(ax · by)z,w = 0 unless xy = zw−1. If
xy = zw−1, then ηw(δzw−1(ηy(ax)by)) = ηyw(ax)ηw(by). On the other hand,

(ϕ(ax)ϕ(by))z,w =
∑
u∈I

ϕ(ax)z,uϕ(by)u,w

=
∑
u∈I

ηu(δzu−1(ax))ηw(δuw−1(by)).
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Thus (ϕ(ax)ϕ(by))z,w = 0 unless zu−1 = x and uw−1 = y, i.e., zw−1 = xy.
If zw−1 = xy, then

∑
u∈I ηu(δzu−1(ax))ηw(δuw−1(by)) = ηyw(ax)ηw(by). As a

consequence, ϕ(ax · by)z,w = (ϕ(ax)ϕ(by))z,w. The first assertion follows.
Next, for any a ∈ A and x, y, z ∈ I we have

ηx(ϕ(a))y,z = vyηx(ϕ(a))vz

= ηx(vyx−1ϕ(a)vzx−1)
= ηx(ϕ(a)yx−1,zx−1)
= ηx(ηzx−1(δyz−1(a)))
= ηz(δyz−1(a))
= ϕ(a)y,z,

so that Im ϕ ⊆ ΛI . Conversely, let λ ∈ ΛI . Then λx,y = ηy(λxy−1,e) = λxy−1,e

for all x, y ∈ I. Thus, setting a =
∑

x∈I λx,e, we have ϕ(a)x,y = ηy(δxy−1(a)) =
ηy(λxy−1,e) = λxy−1,e = λx,y for all x, y ∈ I and ϕ(a) = λ.

(2) Let x, y ∈ I and a ∈ Axy−1 . For any z 6= y we have δxz−1(a) = 0 and
hence vxϕ(a)vz = ϕ(a)x,z = ηz(δxz−1(a)) = 0. Thus vxϕ(a) = ϕ(a)x,y = ηy(a).
It follows that vxΛvy = ηy(vxy−1Λve) = ηy(Axy−1) = vxϕ(Axy−1).

(3) This follows by (2).
(4) Note that ηx(δyx−1(a)) = vyηx(δyx−1(a)) for all y ∈ I. Thus ϕ(a)vx =∑

y∈I vyϕ(a)vx =
∑

y∈I ηx(δyx−1(a)) =
∑

y∈I vyηx(δyx−1(a)). Also,

vyϕ(δyx−1(a)) =
∑
z∈I

vyϕ(δyx−1(a))vz

=
∑
z∈I

vyηz(δyz−1(δyx−1(a)))

= vyηx(δyx−1(a))

for all y ∈ I.
(5) This follows by (2) and (4).

Let us call the I-bigraded ring constructed in Section 2 standard. Then
the proposition above asserts that every I-bigraded ring is isomorphic to a
standard one. Namely, according to Lemma 2.3, ϕ : A→ Λ can be extended to
an isomorphism of I-bigraded rings.

5 Examples

In this section, we will provide a systematic construction of I-graded rings A
such that A/Ae is a Frobenius extension of second kind.

Let (s, χ) be a pair of an element s ∈ I and a mapping χ : I → Z satisfying
the following conditions:

(X1) χ(x) + χ(y) ≥ χ(xy) for all x, y ∈ I;
(X2) χ(x) + χ(x−1s) = χ(s) for all x ∈ I.
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These are obviously satisfied if s is arbitrary and χ(x) = 0 for all x ∈ I. We set

ω(x, y) = χ(x) + χ(y) − χ(xy)

for x, y ∈ I.

Lemma 5.1. The following hold.

(1) ω(x, y) ≥ 0 for all x, y ∈ I.

(2) ω(e, x) = ω(x, e) = χ(e) = 0 for all x ∈ I.

(3) χ(x) + χ(y) = ω(x, y) + χ(xy) for all x, y ∈ I.

(4) ω(xy, z) + ω(x, y) = ω(x, yz) + ω(y, z) for all x, y, z ∈ I.

(5) ω(x, x−1s) = 0 for all x ∈ I.

Proof. It follows by (X2) that χ(e) = 0. The other assertions are obvious.

In the following, we fix a ring R together with a pair (σ, c) of σ ∈ Aut(R)
and c ∈ R satisfying the following condition:

(∗) σ(c) = c and ac = cσ(a) for all a ∈ R.

This is obviously satisfied if either σ = idR and c ∈ Z(R), or σ is arbitrary and
c = 0. As usual, we require c0 = 1 even if c = 0.

Let A be a free right R-module with a basis {ux}x∈I . By abuse of notation
we denote by {δx}x∈I the dual basis of {ux}x∈I for the free left R-module
HomR(A,R), i.e., a =

∑
x∈I uxδx(a) for all a ∈ A. According to Lemma 5.1(1),

we can define a multiplication on A subject to the following axioms:
(M1) uxuy = uxyc

ω(x,y) for all x, y ∈ I;
(M2) aux = uxσ

χ(x)(a) for all a ∈ R and x ∈ I.

Proposition 5.2. The following hold.

(1) A is an I-graded ring with Ae
∼= R.

(2) A/Ae is a Frobenius extension of second kind.

(3) If c ∈ rad(R), then AxAx−1 ⊆ rad(Ae) for all x 6= e with ω(x, x−1) > 0.

Proof. (1) It follows by Lemma 5.1(2) that ue · uxa = uxa = uxa · ue for all
x ∈ I and a ∈ R. For any x, y, z ∈ I and ax, ay, az ∈ R we have

(uxax · uyay) · uzaz = uxyc
ω(x,y)σχ(y)(ax)ay · uzaz

= uxyzc
ω(xy,z)σχ(z)(cω(x,y)σχ(y)(ax)ay)az

= uxyzc
ω(xy,z)cω(x,y)σχ(z)+χ(y)(ax)σχ(z)(ay)az

= uxyzc
ω(xy,z)+ω(x,y)σχ(z)+χ(y)(ax)σχ(z)(ay)az,

uxax · (uyay · uzaz) = uxax · uyzc
ω(y,z)σχ(z)(ay)az

= uxyzc
ω(x,yz)σχ(yz)(ax)cω(y,z)σχ(z)(ay)az

= uxyzc
ω(x,yz)cω(y,z)σω(y,z)(σχ(yz)(ax))σχ(z)(ay)az

= uxyzc
ω(x,yz)+ω(y,z)σω(y,z)+χ(yz)(ax)σχ(z)(ay)az
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and by (3), (4) of Lemma 5.1 (uxax · uyay) · uzaz = uxax · (uyay · uzaz). Thus
A is an associative ring with 1 = ue. Obviously, A contains R as a subring via
the injective ring homomorphism R → A, a 7→ uea, i.e., setting Ax = uxR for
x ∈ I, A = ⊕x∈IAx is an I-graded ring with Ae = R.

(2) It follows by (M2) that δxa = σχ(x)(a)δx for all a ∈ R and x ∈ I. In
particular, {δx}x∈I is a basis for the right R-module HomR(A,R). Also, for any
x ∈ I by Lemma 5.1(5) uxux−1s = us and hence δsux = δx−1s. It follows that
A

∼→ HomR(A,R), a 7→ δsa in Mod-A. Obviously, A is a free left R-module with
a basis {ux}x∈I . Thus, since δsa = σχ(s)(a)δs for all a ∈ R, A/R is a Frobenius
extension of second kind.

(3) Immediate by (M1).

Example 5.3. For any s ∈ I \ {e}, setting

χ(x) =


0 if x = e,

2 if x = s,

1 otherwise,

we have a pair (s, χ) satisfying the conditions (X1), (X2).

Example 5.4. Consider the case where I = I1 × · · · × In with the Ik cyclic.
For each 1 ≤ k ≤ n, fix a generator xk ∈ Ik and set mk = |Ik|. Set s =
(xm1−1

1 , . . . , xmn−1
n ) and χ((xi1

1 , . . . , x
in
n )) = i1 + · · ·+ in, where 0 ≤ ik ≤ mk −1

for all 1 ≤ k ≤ n. Then the pair (s, χ) satisfies the conditions (X1), (X2).

Remark 5.5. The following hold.

(1) 0 ≤ χ(x) ≤ χ(s) for all x ∈ I.

(2) I0 = χ−1(0) is a subgroup of I with sI0 = I0s.

(3) χ takes the constant value χ(x) on I0xI0 for all x ∈ I.

(4) ω(x, x−1) > 0 for all x 6= e if and only if I0 = {e}.

Proof. (1) For any x ∈ I, since xm = e for some m > 0, it follows by (X1)
that mχ(x) ≥ χ(xm) = χ(e) = 0 and χ(x) ≥ 0. It then follows by (X2) that
χ(x) ≤ χ(s) for all x ∈ I.

(2) We have e ∈ I0 and by (X1) xy ∈ I0 for all x, y ∈ I0. Also, by (X2) we
have sI0 = χ−1(χ(s)) = I0s.

(3) It follows by (X1) that χ(x) ≥ χ(xy) for all x ∈ I and y ∈ I0. It then
follows that χ(xy) ≥ χ(xyy−1) = χ(x) for all x ∈ I and y ∈ I0. Similarly,
χ(x) = χ(yx) for all x ∈ I and y ∈ I0.

(4) By the fact that I0 is a subgroup of I.

Remark 5.6. Set A0 = ⊕x∈I0Ax, which is the group ring of I0 over R. It follows
by Remark 5.5(3) that A is free as a right (resp., left) A0-module. Next, define
mappings δ0 : A→ A0 and θ : A0 → A0 as follows:

δ0(a) =
∑
x∈I0

uxδsx(a) and θ(b) =
∑
x∈I0

uxσ
χ(s)(δsxs−1(b))
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for a ∈ A and b ∈ A0, respectively. Then δ0 ∈ HomA0(A,A0) and θ ∈ Aut(A0).
Furthermore, A ∼→ HomA0(A,A0), a 7→ δ0a in Mod-A and δ0b = θ(b)δ0 for all
b ∈ A0. Consequently, A/A0 is a Frobenius extension of second kind.

Remark 5.7. Consider the case where R is commutative, σ = idR and s lies in
the center of I. Then A ∼→ HomR(A,R), a 7→ δsa as A-A-bimodules.

Proof. Note first that A ∼→ HomR(A,R), a 7→ δsa in Mod-A, which we have
shown in the proof of Proposition 5.2(2). Next, for any a, b ∈ A we have

δs(ab) =
∑
x∈I

δx(a)δx−1s(b)

=
∑
x∈I

δsx−1(b)δx(a)

=
∑
y∈I

δy(b)δy−1s(a)

= δs(ba),

so that δsa = aδs for all a ∈ I.
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