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Abstract

We will study coherent modules of finite weak Gorenstein dimension
and characterize noetherian algebras of finite selfinjective dimension in
terms of weak Gorenstein dimension.

For an artin algebra A we know from [9] that inj dim A = inj dim Aop <∞
if and only if every simple X ∈ mod-A has finite Gorenstein dimension, where
Aop is the opposite ring of A. Our main aim of this note is to extend this fact
to noetherian algebras.

Let R be a commutative noetherian local ring and A a noetherian R-algebra,
i.e., A is a ring endowed with a ring homomorphism R → A whose image is
contained in the center of A and A is finitely generated as an R-module. In
order to state our main result, we have to recall the notion of weak Gorenstein
dimension which was first introduced in [10]. A complex X• ∈ Db(mod-A) with
sup{ i | Hi(X•) 6= 0} = d <∞ is said to have finite weak Gorenstein dimension
if RHom•

A(X•, A) ∈ Db(mod-Aop), Hi(ηX•) is an isomorphism for all i < d and
Hd(ηX•) is a monomorphism, where ηX• : X• → RHom•

Aop(RHom•
A(X•, A), A)

denotes the canonical homomorphism (see [11]). For a module X ∈ mod-A of
finite weak Gorenstein dimension we set Ĝ-dim X = sup{ i | Exti

A(X,A) 6= 0}
unless X = 0 and Ĝ-dim X = 0 if X = 0. Also, we set Ĝ-dim X = ∞ if X
does not have finite weak Gorenstein dimension. Then Ĝ-dim X is called the
weak Gorenstein dimension of X ∈ mod-A. Denote by G-dim X the Gorenstein
dimension of X ∈ mod-A (see [2] and [11]). Then Ĝ-dim X ≤ G-dim X for all
X ∈ mod-A: Ĝ-dim X = G-dim X if G-dim X <∞, but Ĝ-dim X 6= G-dim X
in general (see [10, Example 4.3]).

A noetherian R-algebra A is said to satisfy the condition (G) if the following
equivalent conditions are satisfied: (1) Ĝ-dim X <∞ for all simple X ∈ mod-A;
and (2) Ĝ-dim A/rad(A) <∞. Then inj dim A = inj dim Aop <∞ if and only
if Ap satisfies the condition (G) for all p ∈ SuppR(A) (Theorem 3.7). This
is our main result of this note, the proof of which is based on the fact that
HomR(A,ER(R/m)) ∈ Mod-A is an injective cogenerator and isomorphic to
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a direct limit of modules of finite length, where m is the maximal ideal of R.
In case A is a local ring, we will show that for any d ≥ 0 the following are
equivalent: (1) inj dim A = inj dim Aop = d; (2) inj dim A = depth A = d; and
(3) Ĝ-dim A/rad(A) = d (Theorem 4.7). It should be noted that if inj dim A =
depth A < ∞ then A is a Gorenstein algebra in the sense of Goto and Nishida
[7] (cf. Lemma 4.2).

This note is organized as follows. In Section 1, we will recall several basic
facts. In Section 2, we will recall the notion of weak Gorenstein dimension and
study coherent modules of finite weak Gorenstein dimension. We will show that
the class of such modules is closed under extensions (Lemma 2.7) and provide
a sufficient condition for X ∈ mod-A with RHom•

A(X,A) ∈ Db(mod-Aop) to
have finite weak Gorenstein dimension (Proposition 2.8). In Section 3, we will
study noetherian algebras of finite selfinjective dimension and prove our main
theorem. In Section 4, we will characterize local noetherian algebras of finite
selfinjective dimension in terms of weak Gorenstein dimension. Also, we will
provide several examples showing what rich properties local noetherian algebras
of finite selfinjective dimension enjoy.

1 Preliminaries

For a ring A we denote by rad(A) the Jacobson radical of A. We denote by
Mod-A the category of right A-modules, by mod-A the full subcategory of
Mod-A consisting of finitely presented modules and by PA the full subcategory
of mod-A consisting of projective modules. For each X ∈ Mod-A we denote
by EA(X) its injective envelope and by AnnA(X) its annihilator ideal. Left A-
modules are considered as right Aop-modules, where Aop denotes the opposite
ring of A. In particular, we denote by inj dim A (resp., inj dim Aop) the injec-
tive dimension of A as a right (resp., left) A-module and by HomA(−,−) (resp.,
HomAop(−,−)) the set of homomorphisms in Mod-A (resp., Mod-Aop). Some-
times, we use the notation XA (resp., AX) to stress that the module considered
is a right (resp., left) A-module.

In this note, complexes are cochain complexes and modules are considered
as complexes concentrated in degree zero. We denote by K(Mod-A) the ho-
motopy category of complexes over Mod-A, by K−(PA) (resp., Kb(PA)) the
full triangulated subcategory of K(Mod-A) consisting of bounded above (resp.,
bounded) complexes over PA and by K−,b(PA) the full triangulated subcate-
gory of K−(PA) consisting of complexes with bounded cohomology. We denote
by D(Mod-A) the derived category of complexes over Mod-A. Also, we denote
by Hom•

A(−,−) (resp., − ⊗• −) the associated single complex of the double
hom (resp., tensor) complex and by RHom•

A(−, A) the right derived functor
of Hom•

A(−, A). We refer to [3], [8] and [13] for basic results in the theory of
derived categories.

In this section, we will recall several definitions and basic facts.

Definition 1.1. For a complex X• and an integer n ∈ Z, we denote by Zn(X•),
Z′n(X•) and Hn(X•) the nth cycle, the nth cocycle and the nth cohomology,
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respectively, and define the following truncations:

σ≤n(X•) : · · · → Xn−2 → Xn−1 → Zn(X•) → 0 → · · · ,
σ′
≥n(X•) : · · · → 0 → Z′n(X•) → Xn+1 → Xn+2 → · · · ,

Definition 1.2 ([5]). A module X ∈ Mod-A is said to be coherent if it is finitely
generated and every finitely generated submodule of it is finitely presented. A
ring A is said to be left (resp., right) coherent if it is coherent as a left (resp.,
right) A-module.

Throughout the first two sections, A is a left and right coherent ring. Note
that mod-A consists of coherent modules and is a thick abelian subcategory of
Mod-A in the sense of [8], i.e., it holds true for any short exact sequence in
Mod-A that if any two terms are in mod-A then the remaining term also is in
mod-A.

We denote by Db(mod-A) the full triangulated subcategory of D(Mod-A)
consisting of complexes over mod-A with bounded cohomology.

Definition 1.3 ([8]). A complex X• ∈ Db(mod-A) is said to have finite pro-
jective dimension if HomD(Mod-A)(X•[i],−) vanishes on mod-A for i � 0. We
denote by Db(mod-A)fpd the épaisse subcategory of Db(mod-A) consisting of
complexes of finite projective dimension.

Note that the canonical functor K(Mod-A) → D(Mod-A) gives rise to equiv-
alences of triangulated categories

K−,b(PA) ∼→ Db(mod-A) and Kb(PA) ∼→ Db(mod-A)fpd.

We denote by D(−) both RHom•
A(−, A) and RHom•

Aop(−, A). There exists
a bifunctorial isomorphism

θM•,X• : HomD(Mod-Aop)(M•, DX•) ∼→ HomD(Mod-A)(X•, DM•)

for X• ∈ D(Mod-A) and M• ∈ D(Mod-Aop). For each X• ∈ D(Mod-A) we set

ηX• = θDX•,X•(idDX•) : X• → D2X• = D(DX•).

Definition 1.4. A complex X• ∈ Db(mod-A) is said to have bounded dual
cohomology if DX• ∈ Db(mod-Aop). We denote by Db(mod-A)bdh the full
triangulated subcategory of Db(mod-A) consisting of complexes with bounded
dual cohomology.

Definition 1.5 ([2] and [11]). A complex X• ∈ Db(mod-Aop)bdh is said to
have finite Gorenstein dimension if ηX• is an isomorphism. We denote by
Db(mod-A)fGd the full triangulated subcategory of Db(mod-A) consisting of
complexes of finite Gorenstein dimension.
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For a module X ∈ Db(mod-A)fGd we set

G-dim X = sup{ i ≥ 0 | Exti
A(X,A) 6= 0}

unless X = 0 and G-dim X = 0 if X = 0. Also, we set G-dim X = ∞
unless X ∈ Db(mod-A)fGd. Then G-dim X is called the Gorenstein dimension
of X ∈ mod-A. We denote by GA the full additive subcategory of mod-A
consisting of modules of Gorenstein dimension zero.

Remark 1.6. A module X ∈ mod-A has Gorenstein dimension zero if and only
if X is reflexive, i.e., the canonical homomorphism

X → HomAop(HomA(X,A), A), x 7→ (f 7→ f(x))

is an isomorphism and Exti
A(X,A) = Exti

Aop(HomA(X,A), A) = 0 for i 6= 0.
Remark 1.7. The following hold.

(1) Db(mod-A)fpd ⊆ Db(mod-A)fGd ⊆ Db(mod-A)bdh and PA ⊆ GA.

(2) The pair of functors RHom•
A(−, A) and RHom•

Aop(−, A) defines a dual-
ity between Db(mod-A)fGd and Db(mod-Aop)fGd and a duality between
Db(mod-A)fpd and Db(mod-Aop)fpd.

(3) The pair of functors HomA(−, A) and HomAop(−, A) defines a duality
between GA and GAop and a duality between PA and PAop .

Lemma 1.8. Let A→ I• be a minimal injective resolution in Mod-A. Assume
that flat dim In < ∞ for all n ≥ 0 and that for any nonzero X ∈ mod-A there
exists n ≥ 0 such that HomA(X, In) 6= 0. Then X• ∈ Db(mod-A)fGd for all
X• ∈ Db(mod-A)bdh.

Proof. Let X• ∈ Db(mod-A)bdh and take a quasi-isomorphism P • → X• with
P • ∈ K−,b(PA). Let Q• → Hom•

A(P •, A) be a quasi-isomorphism with Q• ∈
K−,b(PAop) and Z• its mapping cone. Then we have a distinguished triangle in
K(Mod-A)

Hom•
Aop(Z•, A) → P • → Hom•

Aop(Q•, A) → .

It suffices to show that Hi(Hom•
Aop(Z•, A)) = 0 for all i ∈ Z. Since Hi(Z•) = 0

for all i ∈ Z, it follows that Hi(Hom•
Aop(Z•, A)) ∼= Ext1Aop(Z′−i+1(Z•), A) ∼=

Extj
Aop(Z′−i+j(Z•), A) for all i ∈ Z and j > 0. Also, for any i ∈ Z and n ≥ 0 we

have HomA(Extj
Aop(Z′−i+j(Z•), A), In) ∼= TorA

j (In,Z′−i+j(Z•)) = 0 for j � 0.
Thus Hi(Hom•

Aop(Z•, A)) = 0 for all i ∈ Z.

Remark 1.9. The assumptions in the lemma above are fulfilled if Exti
Aop(−, A)

vanishes on mod-Aop for i� 0.

Proof. For any injective I ∈ Mod-A and M ∈ mod-Aop we have TorA
i (I,M) ∼=

HomA(Exti
Aop(M,A), I) = 0 for i � 0. Also, for any X ∈ mod-A with

HomA(X, In) = 0 for all n ≥ 0, we have Extn
A(X,A) = 0 for all n ≥ 0

and hence, taking a projective resolution P • → X in mod-A, we have X ∼=
Exti

Aop(Z′i(Hom•
A(P •, A)), A) = 0 for i� 0.
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2 Weak Gorenstein dimension

In this section, we will study coherent modules of finite weak Gorenstein dimen-
sion, the notion of which was first introduced in [10].

Definition 2.1. We denote by ĜA the full additive subcategory of mod-A con-
sisting of modules X ∈ mod-A with Exti

A(X,A) = 0 for i 6= 0.

Definition 2.2. A complex X• ∈ Db(mod-A) with sup{ i | Hi(X•) 6= 0} =
d <∞ is said to have finite weak Gorenstein dimension if X• ∈ Db(mod-A)bdh,
Hi(ηX•) is an isomorphism for all i < d and Hd(ηX•) is a monomorphism.

For a module X ∈ mod-A of finite weak Gorenstein dimension we set

Ĝ-dim X = sup{ i | Exti
A(X,A) 6= 0}

unless X = 0 and Ĝ-dim X = 0 if X = 0. Also, we set Ĝ-dim X = ∞ if X does
not have finite weak Gorenstein dimension. Then Ĝ-dim X is called the weak
Gorenstein dimension of X ∈ mod-A.

Remark 2.3. For any X ∈ mod-A the following hold.

(1) Ĝ-dim X = 0 if and only if X is embedded in some P ∈ PA and X ∈ ĜA,
i.e., the canonical homomorphism

X → HomAop(HomA(X,A), A), x 7→ (f 7→ f(x))

is a monomorphism and Exti
A(X,A) = 0 for i 6= 0.

(2) If G-dim X = d <∞ then Ĝ-dim X = d.

(3) If Ĝ-dim X = d < ∞ then Ĝ-dim X ′ ≤ d for all X ′ ∈ add(X), the full
additive subcategory of mod-A consisting of direct summands of finite
direct sums of copies of X.

Proof. (1) ”Only if” part. Since X ∈ ĜA, HomA(X,A) ∼= DX in Db(mod-Aop).
Take a projective resolution Q• → HomA(X,A) in mod-Aop. Then D2X ∼=
HomAop(Q•, A) in Db(mod-A). Since H0(ηX) is a monomorphism, X is embed-
ded in HomAop(Q0, A) ∈ PA.

”If” part. We have an exact sequence 0 → X
µ−→ P → Y → 0 in mod-A

with P ∈ PA and a distinguished triangle D2X
D2µ−−−→ D2P → D2Y → in

Db(mod-A). Since X ∈ ĜA, Exti+1
A (Y,A) ∼= Exti

A(X,A) = 0 for i > 0. Take
a projective resolution Q• → DY in Db(mod-Aop) with Qi = 0 for i > 1.
By the long exact cohomology sequence we have H−i(D2X) ∼= H−i−1(D2Y ) ∼=
H−i−1(Hom•

Aop(Q•, A)) = 0 for i > 0. Finally, H0(D2µ) ◦ H0(ηX) = H0(ηP ) ◦ µ
is a monomorphism and so is H0(ηX).

(2) Obvious.
(3) Since X ′ ∈ add(X), DX ′ is a direct summand of a finite direct sum of

copies of DX and D2X ′ is a direct summand of a finite direct sum of copies
of D2X, so that Hi+d(DX ′) = 0 and H−i(D2X ′) = 0 for i > 0. Denoting by
ι the split monomorphism X ′ → ⊕nX, H0(D2ι) ◦ H0(ηX′) = H0(η⊕nX) ◦ ι is a
monomorphism and so is H0(ηX′).
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Remark 2.4. In general, Ĝ-dim X 6= G-dim X (see [10, Example 4.3]).

Proposition 2.5 ([10, Proposition 2.7]). A complex X• ∈ Db(mod-A) with
sup{ i | Hi(X•) 6= 0} = d < ∞ has finite weak Gorenstein dimension if and
only if there exists a distinguished triangle in Db(mod-A)

X• → Y • → Z[−d] →

with Y • ∈ Kb(PA), Y i = 0 for i > d, and Z ∈ ĜA.

Corollary 2.6 ([10, Corollary 2.8]). For any X ∈ mod-A with Ĝ-dim X < ∞
there exists an exact sequence 0 → X → Y → Z → 0 in mod-A with Ĝ-dim X =
proj dim Y and Z ∈ ĜA.

The corollary above is a generalization of [6, Lemma 2.17].

Lemma 2.7. For any exact sequence 0 → X → Y → Z → 0 in mod-A the
following hold.

(1) If Ĝ-dim Z <∞, then Ĝ-dim X <∞ if and only if Ĝ-dim Y <∞.

(2) If Ĝ-dim Y < ∞, then Ĝ-dim X < ∞ if and only if Z ∈ Db(mod-A)bdh

and Hi(D2Z) = 0 for i < −1.

(3) If Ĝ-dim X < ∞ and H0(ηX) is an isomorphism, then Ĝ-dim Y < ∞ if
and only if Ĝ-dim Z <∞.

Proof. We have a distinguished triangle DZ → DY → DX → in D(Mod-Aop)
and a distinguished triangle D2X → D2Y → D2Z → in D(Mod-A).

(1) Since Z ∈ Db(mod-A)bdh, X ∈ Db(mod-A)bdh if and only if Y ∈
Db(mod-A)bdh. Also, since Hi(D2Z) = 0 for i < 0, by the long exact coho-
mology sequence we have Hi(D2X) ∼= Hi(D2Y ) for i < 0 and a commutative
diagram with exact rows

0 −−−−→ X −−−−→ Y −−−−→ Z −−−−→ 0

H0(ηX)

y yH0(ηY )

yH0(ηZ)

0 −−−−→ H0(D2X) −−−−→ H0(D2Y ) −−−−→ H0(D2Z).

It follows by Snake lemma that Ker H0(ηX) ∼= Ker H0(ηY ).
(2) Since Y ∈ Db(mod-A)bdh, X ∈ Db(mod-A)bdh if and only if Z ∈

Db(mod-A)bdh. Also, since Hi(D2Y ) = 0 for i < 0, by the long exact cohomol-
ogy sequence we have Hi−1(D2Z) ∼= Hi(D2X) for i < 0. Finally, denoting by µ
the monomorphism X → Y , H0(D2µ)◦H0(ηX) = H0(ηY )◦µ is a monomorphism
and so is H0(ηX).

(3) The ”if” part follows by (1) above. Assume that Ĝ-dim Y < ∞. Since
X,Y ∈ Db(mod-A)bdh, Z ∈ Db(mod-A)bdh. Also, by the long exact cohomol-
ogy sequence we have Hi(D2Z) = 0 for i < −1 and an exact sequence

0 → H−1(D2Z) → H0(D2X) → H0(D2Y ).
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Since H0(ηX) an isomorphism, and since H0(ηY ) is a monomorphism, it follows
that H0(D2X) → H0(D2Y ) is a monomorphism and H−1(D2Z) = 0, so that we
have a commutative diagram with exact rows

0 −−−−→ X −−−−→ Y −−−−→ Z −−−−→ 0

H0(ηX)

y yH0(ηY )

yH0(ηZ)

0 −−−−→ H0(D2X) −−−−→ H0(D2Y ) −−−−→ H0(D2Z)

and by Snake lemma Ker H0(ηZ) ∼= Ker H0(ηY ) = 0.

Proposition 2.8. Let X ∈ mod-A with sup{ i | Exti
A(X,A) 6= 0} = d < ∞.

Let P • → X be a projective resolution in mod-A and M = Z′d+1(Hom•
A(P •, A)).

Then the following hold.

(1) Ĝ-dim X <∞ if and only if Exti
Aop(M,A) = 0 for 1 ≤ i ≤ d+ 1.

(2) Ext1Aop(M,A) = 0 unless d = 0.

(3) If Extj
Aop(Exti

A(X,A), A) = 0 for 0 ≤ j < i ≤ d then Exti
Aop(M,A) = 0

for 1 ≤ i ≤ d and Extd+1
Aop (M,A) ∼= Ker H0(ηX).

Proof. Let Q• → Hom•
A(P •, A) be a quasi-isomorphism with Q• ∈ K−,b(PAop),

Qi = 0 for i > d, and Z• its mapping cone. Then Hi(Z•) = 0 for all i ∈ Z
and Z′d+1(Z•) ∼= M , so that H−i(Hom•

Aop(Z•, A)) ∼= Ext1Aop(Z′i+1(Z•), A) ∼=
Extd+1−i

Aop (M,A) for 0 ≤ i ≤ d. On the other hand, we have a distinguished
triangle in K(Mod-A)

Hom•
Aop(Z•, A) → P • η→ Hom•

Aop(Q•, A) →

and, since H−i(P •) = 0 for i > 0, by the long exact cohomology sequence we
have H−i−1(Hom•

Aop(Q•, A)) ∼→ H−i(Hom•
Aop(Z•, A)) for i > 0 and an exact

sequence

0 → H−1(Hom•
Aop(Q•, A)) → H0(Hom•

Aop(Z•, A)) → Ker H0(η) → 0.

Now, since H−i(Hom•
Aop(Q•, A)) = 0 for i > d, the first two assertions follow.

Next, assume that Extj
Aop(Exti

A(X,A), A) = 0 for 0 ≤ j < i ≤ d. We
have only to show that H−j(Hom•

Aop(Q•, A)) = 0 for 1 ≤ j ≤ d. Note that
Hom•

Aop(Q•, A) ∼= D(σ≤d(Q•)). For each 1 ≤ i ≤ d we have a distinguished
triangle in Db(mod-Aop)

σ≤i−1(Q•) → σ≤i(Q•) → Exti
A(X,A)[−i] →

and hence a distinguished triangle in Db(mod-A)

DExti
A(X,A)[i] → D(σ≤i(Q•)) → D(σ≤i−1(Q•)) → .

We have H−j(DExti
A(X,A)[i]) ∼= Exti−j

Aop(Exti
A(X,A), A) = 0 for 1 ≤ j ≤ i ≤ d.

Also, H−j(D(σ≤i(Q•))) = 0 for j > i. It follows by the long exact cohomology
sequences that H−j(D(σ≤d(Q•))) = 0 for 1 ≤ j ≤ d.
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3 Finiteness of selfinjective dimension

In this section, we will provide a necessary and sufficient condition for noetherian
algebras to have finite selfinjective dimension.

Throughout the rest of this note, (R,m) is a commutative noetherian local
ring and A is a noetherian R-algebra, i.e., A is a ring endowed with a ring
homomorphism R → A whose image is contained in the center of A and A is
finitely generated as an R-module. It should be noted that A/mA is a finite
dimensional algebra over a field R/m.

We denote by Spec(R) the set of prime ideals of R. For each p ∈ Spec(R)
we denote by (−)p the localization at p and for each X ∈ Mod-R we denote by
SuppR(X) the set of p ∈ Spec(R) with Xp 6= 0. Also, we denote by dim X the
Krull dimension of X ∈ mod-R. We refer to [12] for standard commutative ring
theory.

Lemma 3.1. We have AnnR(S) = m for all simple S ∈ mod-A. In particular,
A/rad(A) ∈ mod-A is semisimple.

Proof. Let S ∈ mod-A be simple and p = AnnR(S). Then we have an injective
ring homomorphism ϕ : R/p → EndA(S). Since EndA(S) is a division ring, R/p
is an integral domain and ϕ can be extended to its quotient field K. Also, since
EndA(S) is a subring of EndR(S), EndA(S) is finitely generated over R/p. Thus
K is finitely generated and hence integral over R/p, so thatK = R/p and p = m.
It follows that mA ⊂ rad(A). Thus, since A/mA is a finite dimensional algebra
over a field R/m, A/rad(A) is an artinian ring and the assertion follows.

Lemma 3.2. For any injective I ∈ Mod-A the following hold.

(1) flat dim I ≤ inj dim Aop and the equality holds if I is an injective cogen-
erator.

(2) flat dim I ≤ d if lim−→ Xλ
∼= I for some direct system ({Xλ}, {fλ

µ}) in
mod-A over a directed set Λ with Ĝ-dim Xλ ≤ d for all λ ∈ Λ.

Proof. (1) For any M ∈ mod-Aop we have a functorial homomorphism

ψM : I ⊗A M → HomA(HomAop(M,A), I), a⊗ x 7→ (h 7→ ah(x)).

Obviously, ψM is an isomorphism if M ∈ PAop . Thus, since both I ⊗A − and
HomA(HomAop(−, A), I) are right exact, ψM is an isomorphism for all M ∈
mod-Aop. It then follows that TorA

i (I,M) ∼= HomA(Exti
Aop(M,A), I) for all

i ≥ 0 and M ∈ mod-Aop.
(2) For each λ ∈ Λ, since Ĝ-dim Xλ ≤ d, by Corollary 2.6 we have a

monomorphism hλ : Xλ → Yλ in mod-A with proj dim Yλ ≤ n. Set

Ỹλ = Πµ≥λ Yµ and h̃λ : Xλ → Ỹλ, x 7→ (hµ(fλ
µ (x)))µ≥λ

for each λ ∈ Λ, and denote by gλ
µ : Ỹλ → Ỹµ the projection for each pair of

λ, µ ∈ Λ with λ ≤ µ. It is not difficult to check that ({Ỹλ}, {gλ
µ}) is a direct
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system in Mod-A and {h̃λ} is a monomorphism of direct systems. Note also
that flat dim Ỹλ ≤ d for all λ ∈ Λ and hence flat dim lim−→ Ỹλ ≤ d. Now,
since lim−→ h̃λ : lim−→ Xλ → lim−→ Ỹλ is a monomorphism (see e.g. [4, p. 287]),
and since lim−→ Xλ

∼= I, we have a split monomorphism I → lim−→ Ỹλ and hence
flat dim I ≤ d.

Lemma 3.3. Let E = HomR(A,ER(R/m)) and Xn = {x ∈ E | mnx = 0} for
n ≥ 1. Then the following hold.

(1) flat dim EA = inj dim Aop.

(2) E = ∪n≥1Xn with the Xn ∈ Mod-A of finite length.

Proof. (1) Since HomA(−,HomR(A,ER(R/m))) ∼= HomR(−, ER(R/m)), and
since ER(R/m) ∈ Mod-R is an injective cogenerator, it follows that E ∈ Mod-A
is an injective cogenerator. Thus the assertion follows by Lemma 3.2(1).

(2) Since A ∈ Mod-R is finitely generated, E is embedded in a finite direct
sum of copies of ER(R/m). Also, ER(R/m) = ∪n≥1{x ∈ ER(R/m) | mnx = 0}.
It follows that E = ∪n≥1Xn. Next, let n ≥ 1. We have HomR(R/mn, E) ∼→ Xn

and HomR(R/mn, E) ∼= HomR(A/mnA,ER(R/m)). Since A/mnA ∈ Mod-R
has finite length, so does Xn ∈ Mod-R. Thus Xn ∈ Mod-R is both noetherian
and artinian, so is Xn ∈ Mod-A.

Lemma 3.4. Assume that inj dim A = d <∞. Then the following hold.

(1) inj dim Ap < d for all non-maximal p ∈ SuppR(A).

(2) The last non-zero term of a minimal injective resolution of A in Mod-A
is a finite direct sum of indecomposable submodules with nonzero socle.

Proof. Let A→ I• be a minimal injective resolution in Mod-A.
(1) Suppose to the contrary that Id contains an indecomposable direct sum-

mand I with Ip 6= 0 for some non-maximal p ∈ SuppR(A). Take a finitely
generated nonzero submodule X of I. Note that X does not contain a sim-
ple submodule and there exists an X-regular element x ∈ m. Thus, applying
HomA(−, A) to the exact sequence 0 → X

x→ X, we have an exact sequence
Extd

A(X,A) x→ Extd
A(X,A) → 0, so that by Nakayama lemma Extd

A(X,A) = 0,
a contradiction.

(2) It follows by (1) above that Id has an essential socle. Also, by Lemma
3.1 there are only a finite number of non-isomorphic simple modules in mod-A.
Let S1, S2, · · · , Sn ∈ mod-A be the non-isomorphic simple modules. Note that
every Extd

A(Si, A) is finite dimensional over R/m. Denote by µi the dimension
of Extd

A(Si, A) over EndA(Si) for each 1 ≤ i ≤ n. Then Id ∼= ⊕n
i=1EA(Si)µi

with Σn
i=1µi <∞.

Definition 3.5. We say that A satisfies the condition (G) if the following
equivalent conditions are satisfied (cf. Lemma 3.1):

(1) Ĝ-dim X <∞ for all simple X ∈ mod-A.
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(2) Ĝ-dim A/rad(A) <∞.

Lemma 3.6. Assume that A satisfies the condition (G). Then, setting d =
Ĝ-dim A/rad(A), we have inj dim Aop ≤ d.

Proof. According to Lemma 2.7(1), it follows by induction on the Loewy length
that Ĝ-dim X ≤ d for all X ∈ mod-A of finite length. The assertion follows by
Lemmas 3.2(2) and 3.3.

Theorem 3.7. Let (R,m) be a commutative noetherian local ring and A a
noetherian R-algebra. Then the following are equivalent.

(1) inj dim A = inj dim Aop <∞.

(2) Ap satisfies the condition (G) for all p ∈ SuppR(A).

Proof. (1) ⇒ (2). For any p ∈ SuppR(A), by [14, Lemma A] and Lemma
3.4 we have inj dim Ap = inj dim Aop

p < ∞, so that by [9, Lemma 6] every
X ∈ mod-Ap has finite Gorenstein dimension.

(2) ⇒ (1). Let d = Ĝ-dim A/rad(A). Then by Lemma 3.6 inj dim Aop ≤ d.
We claim that inj dim A < ∞. We will make use of induction on dim A.
Consider first the case where SuppR(A) = {m}. Then A is an artinian ring
and hence Extd+1

A (A/rad(A), A) = 0 implies inj dim A ≤ d. Next, assume
that SuppR(A) 6= {m} and that inj dim Ap < ∞ for all non-maximal p ∈
SuppR(A). Taking a minimal injective resolution A → I• in Mod-A, we have
HomA(A/rad(A), Id+1) ∼= Extd+1

A (A/rad(A), A) = 0 and HomR(R/m, Id+1) ∼=
HomA(A/mA, Id+1) = 0. Also, for any non-maximal p ∈ SuppR(A), by [14,
Lemma A] and Lemma 3.4(1) we have inj dim Ap < d and hence Id+1

p = 0. It
follows that Id+1 = 0 and inj dim A ≤ d.

4 Gorenstein algebras

In this section, we will be mainly concerned with the case where inj dim A =
inj dim Aop = depth A, i.e., A is a Gorenstein algebra in the sense of Goto
and Nishida [7] and characterize local noetherian algebras of finite selfinjective
dimension in terms of weak Gorenstein dimension.

We set S = A/rad(A) and denote by depth X the depth of X ∈ mod-R.

Lemma 4.1. For any nonzero X ∈ mod-A we have

depth X = inf{ i | Exti
A(S,X) 6= 0}.

Proof. We will make use of induction on d = depth X. Consider first the case
where d = 0. Then HomA(A/mA,X) ∼= HomR(R/m, X) 6= 0, so that X has
a nonzero socle and HomA(S,X) 6= 0. Next, assume that d ≥ 1 and take
an X-regular element x ∈ m. Then depth X/xX = d − 1 and by induction
hypothesis inf{ i | Exti

A(S,X/xX) 6= 0} = d − 1. Since HomA(A/mA,X) ∼=
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HomR(R/m, X) = 0, HomA(S,X) = 0. Also, xExti
A(S,X) = 0 for all i ≥ 0

because mS = 0. Thus, applying HomA(S,−) to the exact sequence

0 → X
x→ X → X/xX → 0,

we have exact sequences

0 → Exti−1
A (S,X) → Exti−1

A (S,X/xX) → Exti
A(S,X) → 0

for i ≥ 1, so that Exti−1
A (S,X/xX) = 0 implies Exti

A(S,X) = 0 for 1 ≤ i < d

and Extd
A(S,X) ∼= Extd−1

A (S,X/xX) 6= 0.

Lemma 4.2. If inj dim A = depth A = d <∞ then the following hold.

(1) A is Cohen-Macaulay as an R-module.

(2) Ĝ-dim X = d for all simple X ∈ mod-A with Extd
A(X,A) 6= 0.

(3) inj dim Aop = d if Extd
A(X,A) 6= 0 for all simple X ∈ mod-A.

Proof. (1) It follows by Lemma 3.4(1) that dim A ≤ inj dim A. Thus dim A ≤
depth A and hence dim A = depth A.

(2) Let X ∈ mod-A be simple with Extd
A(X,A) 6= 0. Set L = Extd

A(X,A) ∈
mod-Aop. Then DX ∼= L[−d] in D(Mod-Aop) and, since L 6= 0, ηX 6= 0
in D(Mod-A). Also, for any i < d, by Lemma 4.1 Exti

Aop(S,A) = 0 and
it follows by induction on the Loewy length that Exti

Aop(−, A) vanishes on
mod-(A/mA)op. Thus Exti

Aop(L,A) = 0 for i < d. Now, take a projective reso-
lution P • → X in mod-A and a projective resolution Q• → L in mod-Aop. Then
D2X ∼= σ′

≥d(Hom•
Aop(Q•, A))[d] in D(Mod-A) and ηX is given by a cochain map

η : P • → σ′
≥d(Hom•

Aop(Q•, A))[d].

Since η is not homotopic to zero, H0(η) 6= 0. Thus, since X is simple, H0(η) is
a monomorphism. It follows that Ĝ-dim X <∞ and hence Ĝ-dim X = d.

(3) According to (2) above, we have Ĝ-dim SA = d and by Lemma 3.6
inj dim Aop ≤ d, so that by [14, Lemma A] inj dim Aop = d.

Lemma 4.3. We have inj dim A = inj dim Aop = d if Ĝ-dim SA = depth A =
d <∞.

Proof. By Lemma 3.6 inj dim Aop ≤ d. Also, since Extd
A(S,A) 6= 0, inj dim A ≥

d. Thus, according to [14, Lemma A], it suffices to show that inj dim A ≤ d.
We divide the proof into several steps.

Claim 1. For any X ∈ mod-A/mA and M ∈ mod-(A/mA)op we have a bifunc-
torial isomorphism HomAop(M,Extd

A(X,A)) ∼= HomA(X,Extd
Aop(M,A)), and

X
∼→ Extd

Aop(Extd
A(X,A), A) canonically for all X ∈ mod-A/mA.

11



Proof. Note that by Lemma 4.1 we have Exti
A(S,A) = 0 for i 6= d. It follows

by induction on the Loewy length that Exti
A(−, A) vanishes on mod-A/mA for

i 6= d and DX ∼= Extd
A(X,A)[−d] in D(Mod-Aop) for all X ∈ mod-A/mA.

Similarly, since inj dim Aop ≤ d, by Lemma 4.1 we have Exti
Aop(S,A) = 0

for i 6= d, so that Exti
Aop(−, A) vanishes on mod-(A/mA)op for i 6= d and

DM ∼= Extd
Aop(M,A)[−d] in D(Mod-A) for all M ∈ mod-(A/mA)op. Thus we

have bifunctorial isomorphisms

HomAop(M,Extd
A(X,A)) ∼= HomD(Mod-Aop)(M,DX[d])

∼= HomD(Mod-A)(X,DM [d])
∼= HomA(X,Extd

Aop(M,A))

for X ∈ mod-A/mA and M ∈ mod-(A/mA)op. Also, for any X ∈ mod-A/mA,
since inj dim Aop ≤ d, by Lemma 1.8 together with Remark 1.9 we have
G-dim X <∞ and hence a functorial isomorphism

X
∼→ Extd

Aop(Extd
A(X,A), A).

Claim 2. L = Extd
A(A/mA,A) is an injective cogenerator for mod-(A/mA)op.

Proof. Since by Claim 1 PA/mA
∼→ add(L), the number of non-isomorphic inde-

composable direct summands of L coincides with that of non-isomorphic simple
modules. Thus we have only to show that L is injective in mod-(A/mA)op.
Let f : L → M be a monomorphism in mod-(A/mA)op. Then Extd

Aop(f,A)
is an epimorphism and, since by Claim 1 A/mA ∼→ Extd

Aop(L,A), splits. Thus
Extd

A(Extd
Aop(f,A), A) is a split monomorphism, so is f because by Claim 1

L
∼→ Extd

A(Extd
Aop(L,A), A).

Claim 3. Extd
A(X,A) ∈ mod-Aop is simple with G-dim Extd

A(X,A) = d for all
simple X ∈ mod-A.

Proof. Note that by Lemma 3.1 X ∈ mod-A/mA and hence Extd
A(X,A) ∈

mod-(A/mA)op. Let 0 → M → Extd
A(X,A) → N → 0 be an exact sequence

in mod-(A/mA)op. Then 0 → Extd
Aop(N,A) → X → Extd

Aop(M,A) → 0 is an
exact sequence in mod-A/mA with X simple, so that either Extd

Aop(M,A) = 0
or Extd

Aop(N,A) = 0. On the other hand, since by Claim 1

Extd
Aop(M,A) ∼= HomA(A/mA,Extd

Aop(M,A))
∼= HomAop(M,L),

by Claim 2 Extd
Aop(M,A) = 0 implies M = 0. Similarly, Extd

Aop(N,A) = 0
implies N = 0. It follows that Extd

A(X,A) is simple. Finally, by Remark 1.7(2)
G-dim Extd

A(X,A) <∞ and hence G-dim Extd
A(X,A) = d.

Now, it follows by Claims 1 and 3 that Aop satisfies the condition (G). Thus
by Lemma 3.6 inj dim A ≤ d.
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Lemma 4.4. For any X ∈ Mod-A with flat dim X = n < ∞ and Y ∈ mod-A
with inf{ i | Exti

A(Y,A) 6= 0} = d < ∞ we have HomD(Mod-A)(Y,X[i]) = 0 for
i < d− n and HomD(Mod-A)(Y,X[d− n]) ∼= TorA

n (X,Extd
A(Y,A)).

Proof. Take a flat resolution F • → X in Mod-A with F−i = 0 for i > n and a
projective resolution P • → Y in mod-A. Set Q• = σ′

≥d(Hom•
A(P •, A)). Then

HomD(Mod-A)(Y,X[i]) ∼= HomK(Mod-A)(P •, F •[i])
∼= Hi(Hom•

A(P •, F •))
∼= Hi(F • ⊗•

A Hom•
A(P •, A))

∼= Hi(F • ⊗•
A Q•)

for all i ∈ Z. Also, Hi(F • ⊗•
A Q•) = 0 for i < d− n and

Hd−n(F • ⊗•
A Q•) ∼= Z−n(F • ⊗•

A Qd) ∩ Zd(F−n ⊗•
A Q•)

∼= Z−n(F • ⊗•
A Extd

A(Y,A))
∼= TorA

n (X,Extd
A(Y,A)).

Throughout the rest of this note, we assume that A is a local ring, i.e., S is
a division ring.

Note that S ∈ mod-A is a unique simple module up to isomorphism and
that every X ∈ mod-A admits a minimal projective resolution.

Proposition 4.5. For any X ∈ mod-A with proj dim X <∞ we have

proj dim X + depth X = depth A.

Proof. Let n = proj dim X. Since X admits a minimal projective resolution in
mod-A, we have TorA

n (X,S) 6= 0. Let L = Extd
A(S,A) ∈ mod-Aop with d =

depth A. Note that L ∈ mod-Aop has finite length. Thus, since TorA
n (X,S) 6= 0,

and since TorA
n (X,−) is left exact, we have TorA

n (X,L) 6= 0 and the assertion
follows by Lemma 4.4.

Corollary 4.6. We have depth A = d if Ĝ-dim SA = d <∞.

Proof. Obviously, depth A ≤ d. On the other hand, by Corollary 2.6 there exists
X ∈ mod-A with proj dim X = d and by Proposition 4.5 depth A ≥ d.

Theorem 4.7. Let R be a commutative noetherian local ring and A a local
noetherian R-algebra with S = A/rad(A). Then for any d ≥ 0 the following are
equivalent.

(1) inj dim A = inj dim Aop = d.

(2) inj dim A = depth A = d.
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(3) Ĝ-dim SA = d.

Proof. (1) ⇒ (2). By Theorem 3.7 Ĝ-dim SA < ∞, so that by Lemma 3.4(2)
Ĝ-dim SA = d and hence by Corollary 4.6 depth A = d.

(2) ⇒ (3). By Lemma 4.2(2).
(3) ⇒ (1). By Lemma 4.3 together with Corollary 4.6.

Proposition 4.8. The following hold.

(1) EA(S) ∼= HomR(A,ER(R/m)).

(2) If inj dim A = inj dim Aop = d <∞ then Id ∼= HomR(A,ER(R/m)) in a
minimal injective resolution A→ I• in Mod-A.

Proof. (1) Since S ∈ mod-R has finite length, HomR(S,ER(R/m)) ∼= S in
mod-S. Also, HomA(S,HomR(A,ER(R/m))) ∼= HomR(S,ER(R/m)) in mod-S.
It follows that HomR(A,ER(R/m)) ∈ mod-A has a simple socle.

(2) We have HomA(S, Id) ∼= Extd
A(S,A) in mod-S. Also, we have seen in the

proof of Lemma 4.3 that Extd
A(S,A) ∼= S in mod-Aop. Thus HomA(S, Id) and S

have the same dimension as vector spaces over R/m and hence HomA(S, Id) ∼= S
in mod-S, so that Id has a simple socle.

Example 4.9. Even if inj dim A = inj dim Aop <∞, it may happen that A is
not Cohen-Macaulay as an R-module. For instance, let R be a Gorenstein local
ring with dim R ≥ 1 and set

A =
(
R R/xR
0 R/xR

)
with x ∈ m a regular element. Then A is not Cohen-Macaulay as an R-module
but inj dim A = inj dim Aop <∞ (see [1, Example 4.7]).

Example 4.10. Even if A is Cohen-Macaulay as an R-module and inj dim A =
inj dim Aop < ∞, it may happen that inj dim A 6= depth A. For instance, let
R be a Gorenstein local ring with dim R = d and set

A =
(
R R
0 R

)
.

Then A is a Cohen-Macaulay R-module with depth A = d but inj dim A =
inj dim Aop = d+ 1.

Example 4.11. Even if inj dim A = inj dim Aop = depth A = d < ∞, it
may happen that Id � HomR(A,ER(R/m)) for a minimal injective resolution
A→ I• in Mod-A. For instance, let R be a Gorenstein local ring with dim R =
d and A a free R-module with a basis {eij}1≤i,j≤3. Define a multiplication
on A subject to the following axioms: (A1) eijekl = 0 unless j = k; (A2)
eiieij = eij = eijejj for all i, j; (A3) e12e21 = e11 and e21e12 = e22; and (A4)
ei3e3j = e3jei3 = 0 for all i, j 6= 3. Set ei = eii for all i. Then A is an R-
algebra with 1 = e1 + e2 + e3 and Cohen-Macaulay as an R-module. Also,
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setting Ω = HomR(A,R), we have e1A ∼= e2A ∼= e3Ω and e1Ω ∼= e2Ω ∼= e3A.
It follows that inj dim A = inj dim Aop = d but Id ∼= HomR(Ω, ER(R/m)) �
HomR(A,ER(R/m)) in Mod-A.
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