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Abstract—We extend an original lapped transform (LT) and
use block-lifting factorization to get an extended block-lifting-
based LT (XBL-LT). The block-lifting structure maps integer
input signals to integer output signals and results in a reversible
transform that reduces rounding errors by merging many round-
ing operations. Although other such block-lifting-based LTs (BL-
LTs) have been proposed, they are forcibly constrained by the use
of discrete cosine transform (DCT) matrices. In contrast, XBL-
LT is DCT-unconstrained and hence also embodies the DCT-
constrained form. Furthermore, it has fewer rounding operations
by merging the scaling factor with block-lifting coefficients.
The both DCT-constrained and unconstrained XBL-LTs perform
well at lossy-to-lossless image coding which has scalability from
lossless data to lossy data.

Index Terms—Block-lifting structure, lapped transform (LT),
lossy-to-lossless image coding

I. INTRODUCTION

LAPPED transforms (LTs) [1] are popular subband trans-
forms that can be used as substitutes for the discrete

cosine transform (DCT) [2] used in image/video compression
(image coding). Although almost all of the JPEG and H.26x
series [3–5], image coding standards, use DCTs for their
good energy compaction, DCT-based image codings generate
unpleasant artifacts, i.e., blocking artifacts, at low bit rates due
to their ignoring the continuity of the blocks. LT-based image
coding solves that problem by using a processing that works
over the blocks.

The lifting structure [6] is a very important technology to
achieve a lossless mode in subband transform-based image
coding. It maps integer input signals to integer output signals;
i.e., it is an integer-to-integer transform. The 4 × 8 lifting-
based LT (L-LT) [7] in JPEG XR [8], the newest image
coding standard, is a time-domain LT (TDLT) [9] with simple
scaling factors and lifting structures. In spite of its simple
structure, it performs well at lossy-to-lossless image coding,
which has scalability from lossless to lossy data. The block-
lifting structure [10] is a class of lifting structures and results in
a reversible transform that reduces rounding errors by merging
many rounding operations. Inspired by the L-LT in JPEG XR,
we have proposed block-lifting-based LTs (BL-LTs) [11], [12]
that perform well with larger block size than those of the L-LT
in JPEG XR. However, they are forcibly DCT-constrained and
degrade coding performance at high bit rates.

Here, we extend an original LT and use block-lifting fac-
torization to get an extended BL-LT (XBL-LT). The XBL-LT
is DCT-unconstrained, unlike the BL-LTs presented in [11],
[12], and hence also embodies the DCT-constrained form.
Furthermore, more rounding operations than the methods
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described in our previous studies are removed by merging the
scaling factor with block-lifting coefficients. As a result, the
both DCT-constrained and unconstrained XBL-LTs perform
well at lossy-to-lossless image coding.

Notation: The italic letter M (M = 2n, n ∈ N) denotes
the block size. Boldface letters Im, Jm, 0, and Dm denote an
m×m identity matrix, an m×m reversal matrix, a null matrix,
and an m×m diagonal matrix with alternating ±1 entries (i.e.,
diag{1,−1, 1,−1, · · · }), respectively. The superscripts T and
−1 respectively mean the transpose and inverse of a matrix.

II. REVIEW AND DEFINITION

A. Lapped Transform (LT)

In accordance with [11], [12], let E(z) be a polyphase
matrix of an M × 2M LT with a scaling factor s derived
from the L-LT in JPEG XR [7]:

E(z) = P

[
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N

]
Γ(z)

[
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0 CIV
N JN

]
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(1)

where

Γ(z) = WΛ(z)W, Λ(z) = diag{IN , z−1IN}
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where ck = 1/
√
2 (k = 0) or 1 (k ̸= 0), respectively. The

following relationships between matrices can be established:

CIII
M =

(
CII
M

)−1

=
(
CII
M

)T

, SIV
M = DMCIV

M JM . (2)

Here, P is an M×M permutation matrix. The optimal scaling
s in S is empirically determined, e.g., s = 0.8981 if M = 8
and 0.9360 if M = 16. Since the LT in Eq. (1) with s = 1 is
completely equivalent to a lapped orthogonal transform (LOT),
we will use the LT in Eq. (1) as a representative expression
of LT.
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Fig. 1. Block-lifting structure (black and white circles mean adders and
rounding operations, respectively).

B. Block-Lifting Structure

The block-lifting structure [10] (Fig. 1) is a class of lifting
structures. The structure can be expressed as follows:

yj = xj + round(B0xi), yi = xi + round(B1yj)
zi = yi − round(B1yj) = xi, zj = yj − round(B0zi) = xj ,

where x×, y×, and z× are N × 1 input/output vector sig-
nals, round(·) is a rounding operation, and the block-lifting
coefficients B0 and B1 are N ×N arbitrary matrices. In this
case, the matrices and their inverses are expressed as lower
and upper block-lifting matrices as follows:

L [B0] ≜
[
IN 0
B0 IN

]
, L [B0]

−1
= L [−B0]

U [B1] ≜
[
IN B1

0 IN

]
, U [B1]

−1
= U [−B1] .

Rounding errors generated by the rounding operation in each
lifting step degrade coding performance. The block-lifting
structure reduces such rounding errors by merging many
rounding operations. A special class of block-lifting structure
is expressed as [13][

M 0
0 M−1

]
= L

[
M−1

]
U [−M]L

[
M−1

]
J̃M (3)

= ĴML [−M]U
[
M−1

]
L [−M] , (4)

where

J̃M =

[
0 IN

−IN 0

]
, ĴM =

[
0 −IN
IN 0

]
,

and M is an N ×N arbitrary nonsingular matrix.

III. EXTENDED BLOCK-LIFTING-BASED LAPPED
TRANSFORM (XBL-LT)

Theorem: We can extend the DCT-constrained LT in Eq.
(1) to a DCT-unconstrained LT as follows:

E(z) = P

[
IN 0

0 DN Ṽ
−1

JN Ũ
−1

]
Γ(z)

[
Ũ 0

0 ṼJN

]
SW̃JM ,

where Ũ and Ṽ are N × N arbitrary nonsingular matrices.
This equation can be simplified as

E(z) = P

[
IN 0

0 V−1JNU−1

]
Γ(z)

[
U 0
0 VJN

]
ŴJM ,

(5)

where

U =
√
2s Ũ , V =

1√
2s

Ṽ , Ŵ =

[
1
2IN

1
2JN

JN −IN

]
,

by using Eq. (2) and skipping the sign inversion matrix DN .
The scaling matrix S is being embedded in U and V . When
Ũ = CII

N and Ṽ = CIV
N , the LT in Eq. (5) is completely

equivalent to the LT in Eq. (1) except that the signs are
different. Then, we factorize the LT in Eq. (5) into block-
lifting structures as

E(z) = PL [B4]U [B3]Λ(z)U [B3]L [B2]U [B1]L [B0]

·U
[
−1

2
JN

]
L [JN ] J̃M , (6)

wherein each matrix is defined as

B0 = −V−1, B1 = V , B2 = B0 +B4

B3 = −1

2
UJNV , B4 = V−1JNU−1.

Actually, the block-lifting matrices U [B3] on both sides of
the delay matrix Λ(z) are collectively implemented, as shown
in Fig. 2.

Proof: We can perform an easy matrix manipulation as
follows:[
M0 0
0 M1

] [
IN N0

N1 IN

]
=

[
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−1
1

M1N1M
−1
0 IN

] [
M0 0
0 M1

]
,

where M× and N× are an N×N arbitrary nonsingular matrix
and N × N arbitrary matrix, respectively. First, Γ(z) in Eq.
(5) can easily be represented by

Γ(z) = L [IN ]U

[
−1

2
IN

]
Λ(z)U

[
1

2
IN

]
L [−IN ] .

Next, U−1 in Eq. (5) is moved to the right side of Γ(z) and
simplified as

Ψ(z) ≜
[
IN 0
0 U−1

]
Γ(z)

[
U 0
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]
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[
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U
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U
]
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U
]
L
[
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] [U 0
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]
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[
U−1

]
U

[
−1

2
U
]
Λ(z)U

[
−1

2
U
]
L
[
U−1

]
J̃M ,

because the block diagonal matrix diag{U ,U−1} in Ψ(z) can
be factorized into block-lifting structures as in Eq. (3). Then,
V−1JN in Eq. (5) is moved to the right side of Ψ(z) and
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Fig. 2. XBL-LT (black and white circles mean adders and rounding operations, respectively).

TABLE I
CODING GAINS OF XBL-LTS.

Block Size DCT-Constrained DCT-Unconstrained
8 9.4475 9.4538
16 9.8455 9.8621

TABLE II
NUMBERS OF ROUNDING OPERATIONS OF BL-LTS.

Block Size BL-LT [11] BL-LT [12] XBL-LT
8 48 28 24
16 96 56 48
M 6M 7M/2 3M

simplified as

Ω(z) ≜
[
IN 0
0 V−1JN

]
Ψ(z)
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0 VJN

]
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[
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where W = UJNV , because the block diagonal matrix
diag{V−1,V} in Ω(z) can also be factorized into block-
lifting structures as in Eq. (4). Finally, the residual part
ŴJM in Eq. (5) and diag{JN ,JN} in Ω(z) are collectively
factorized as[

JN 0
0 JN

]
ŴJM = U

[
−1

2
JN

]
L [JN ] J̃M .

□

IV. EXPERIMENTAL RESULTS

A. Coding Gain, Frequency Response, and Number of Round-
ing Operations

We designed 8 × 16 and 16 × 32 XBL-LTs by optimizing
the coding gain (CG) [14]

CG [dB] = 10 log10
σ2
x∏M−1

k=0 σ2
xk

∥ fk ∥2
,

where σ2
x is the variance of the input signal, σ2

xk
is the variance

of the k-th subbands and ∥ fk ∥2 is the norm of the k-th
synthesis filter. To simplify the design in DCT-unconstrained

Fig. 3. Frequency responses of analysis and synthesis parts of XBL-LTs
(dashed and solid lines indicate DCT-constrained and unconstrained cases,
respectively): (top) 8× 16 XBL-LT, (bottom) 16× 32 XBL-LT.

case, we set Ũ and Ṽ in Eq. (6) as N ×N arbitrary unitary
matrices, where Ũ is designed such that it has structural one-
degree regularity [10] to achieve good image coding. Table
I compares of the CGs[dB] of the XBL-LTs in the DCT-
constrained and unconstrained cases. In addition, Fig. 3 shows
the frequency responses of the analysis and synthesis parts of
the XBL-LTs for the same cases as in Table I. In Table I and
Fig. 3, the DCT-unconstrained case had slightly better results
than the DCT-constrained case. Table II shows the numbers
of rounding operations of BL-LTs. It is clear that the XBL-
LTs have fewer rounding operations than those of conventional
BL-LTs.

B. Lossy-to-Lossless Image Coding

For convenience regarding the number of pages, lossy-to-
lossless image coding was implemented in only the M = 8
case. We used L-LTs in [7], [9], [11], [12] as the conventional
L-LTs. The L-LT in [7] is the 4 × 8 L-LT for JPEG XR.
The L-LT in [9] is the 8 × 16 TDLT with the pre-filtering
part indicated by Cfg. 5 in Table V in [9] and the DCT
part indicated by [15]. The L-LTs in [11], [12] are the DCT-
constrained BL-LTs. After the images were transformed by
the L-LTs and periodic extension at the boundaries, the trans-
formed coefficients were rearranged from the subband mode
to the multiresolution mode similar to the wavelet transform.
They were encoded with a common wavelet-based zerotree
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Fig. 4. Results of lossy image coding (blue dotted, blue chained, blue dashed, green solid, and red bold solid lines indicate 8×16 L-LT in [9], 8×16 BL-LT
in [11], 8× 16 BL-LT in [12], 8× 16 DCT-constrained XBL-LT, and 8× 16 DCT-unconstrained XBL-LT, respectively): (top) Baboon, Barbara, Finger, and
Goldhill, (bottom) Grass, Lena, Pepper, and Tank.

TABLE III
RESULTS OF LOSSLESS IMAGE CODING (LBR [BPP], (α) AND (β) MEAN

DCT-CONSTRAINED AND DCT-UNCONSTRAINED CASES, RESPECTIVELY.)

Test L-LTs BL-LTs XBL-LTs
Images [7] [9] [11] [12] (α) (β)
Baboon 6.23 6.26 6.21 6.21 6.21 6.20
Barbara 4.96 4.90 4.90 4.86 4.84 4.83

Boat 5.20 5.15 5.16 5.14 5.13 5.12
Elaine 5.27 5.24 5.26 5.23 5.23 5.23
Finger 5.89 5.92 5.84 5.82 5.82 5.82
Finger2 5.62 5.64 5.55 5.53 5.52 5.51
Goldhill 5.12 5.17 5.15 5.12 5.11 5.11
Grass 6.09 6.14 6.08 6.07 6.07 6.06
Lena 4.63 4.64 4.66 4.62 4.61 4.60

Pepper 5.00 4.93 4.96 4.93 4.92 4.91
Room 4.47 4.51 4.55 4.48 4.46 4.44
Sakura 5.94 6.03 5.95 5.93 5.92 5.90
Station 5.16 5.25 5.21 5.16 5.15 5.14
Tank 5.16 5.19 5.18 5.16 5.15 5.15

coder (SPIHT) [16]. The XBL-LTs were compared with the
conventional L-LTs by using the lossless bit rate (LBR) and
peak-to-noise ratio (PSNR) in lossy-to-lossless image coding:

LBR [bpp] =
Total number of bits [bit]

Total number of pixels [pixel]

PSNR [dB] = 10 log10

(
2552

MSE

)
.

Table III and Fig. 4 show the results of lossless and lossy
image coding. The vertical axes in Fig. 4 are the differences
in PSNRs relative to the 4 × 8 L-LT in [7] for JPEG XR. It
is clear that the XBL-LTs outperformed the conventional L-
LTs in lossy-to-lossless image coding. In particular, although
lifting-based transforms tended to degrade coding performance
at high bit rates, the XBL-LTs preserved coding performance
even at such high bit rates.

V. CONCLUSION

By extending an original LT and using block-lifting fac-
torization, we developed an XBL-LT with fewer rounding

operations. It is DCT-unconstrained and hence can be DCT-
constrained as well; i.e., it can be considered to be a more
general structure than other BL-LTs. Although we constrained
the design by using unitary matrices in this paper, the DCT-
unconstrained structures have the potential to achieve better
coding.
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