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Producing large-grained polycrystalline Si (poly-Si) film on glass substrates coatedwith conducting layers is essential for fabricating
Si thin-film solar cells with high efficiency and low cost.We investigated how the choice of conducting underlayer affected the poly-
Si layer formed on it by low-temperature (500∘C) Al-induced crystallization (AIC). The crystal orientation of the resulting poly-Si
layer strongly depended on the underlayer material: (100) was preferred for Al-doped-ZnO (AZO) and indium-tin-oxide (ITO);
(111) was preferred for TiN.This result suggests Si heterogeneously nucleated on the underlayer. The average grain size of the poly-
Si layer reached nearly 20 𝜇m for the AZO and ITO samples and no less than 60 𝜇m for the TiN sample. Thus, properly electing
the underlayer material is essential in AIC and allows large-grained Si films to be formed at low temperatures with a set crystal
orientation. These highly oriented Si layers with large grains appear promising for use as seed layers for Si light-absorption layers
as well as for advanced functional materials.

1. Introduction

High-quality crystalline Si on glass has been widely studied
for use in low-cost thin-film solar cells with high-conversion
efficiencies [1, 2]. In a polycrystalline Si (poly-Si) thin film,
if its grain size is sufficiently larger than the cell thickness
(∼10 𝜇m), the poly-Si cell can approach the efficiency of
single-crystal Si wafer [2, 3]. Additionally, controlling the
crystal orientation of the poly-Si film is essential for forming
an effective antireflection structure [4] as well as for produc-
ing epitaxial seeds, used as starting materials for advanced
functional materials [5] or aligned nanowires [6].

To form polycrystalline semiconductors on glass, alumi-
num-induced crystallization (AIC) is a possible technique
that has received much attention [7, 8]. In this technique,
an amorphous Si (a-Si) layer on an Al layer is transformed
into a crystalline phase via exchange between the Al and Si

layers during annealing at low temperatures (425–500∘C) [9–
11]. Additionally, AIC can grow either (100)- or (111)-oriented
poly-Si films with large grains (diameters of 10–100𝜇m) by
controlling the initial Al thickness [11], the interface between
the Al and Si [12], and the growth temperature [13, 14]. AIC-Si
is being researched as a seed layer for homoepitaxial growth
of a Si light-absorption layer to obtain high-efficiency thin-
film solar cells [2, 15, 16].

To measure its photovoltaic properties, AIC-Si on a glass
substrate coated with a conducting layer should be developed
[17].There are two approaches: inverted AIC [14, 18] and AIC
on conducting layers [19]. Both techniques produced poly-Si
with large grains (10–50 𝜇m) on conducting layers. However,
it is still uncertain how the conducting layer affects the crystal
quality of AIC-Si. Recently we found that the crystal quality
of AIC-Ge depends on the materials contacting Ge [20, 21].
In the present study, we prepared various conducting layers
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Figure 1: Schematic cross-sections and optical micrographs for a sample with an AZO underlayer, annealed at 500∘C for (a) 80min, (b)
100min, and (c) 130min. Each diagram corresponds to its respective optical micrograph showing the back surface of the sample through the
transparent AZO and glass.

on glass, grew AIC-Si layers on them, and investigated the
crystal quality of those AIC-Si layers. We found that the
underlayer significantly influences the crystal orientation and
grain size of the poly-Si films, demonstrating the importance
of selecting a proper conducting layer.

2. Experiment

The thin films were prepared using radio-frequency (RF)
magnetron sputtering (Sanyu Electron SVC-700RF) with an
Ar sputtering pressure of 0.2 Pa and RF power of 100W.
Al-doped-zinc-oxide (AZO, Al

2
O
3
: 2%), indium-tin-oxide

(ITO, SnO
2
: 10%), and titanium nitride (TiN) layers, each

300 nm thick, were prepared on 1 × 1 cm SiO
2
0.6mm-thick

glass substrates (Furuuchi Chemical Corporation).Thedepo-
sition rate was 24 nmmin−1 for AZO, 28 nmmin−1 for ITO,
and 3.8 nmmin−1 for TiN. Before deposition, the substrates
were cleaned with acetone, methanol, and distilled water
sequentially. For comparison, we also deposited on a bare
SiO
2
substrate. During deposition, the substrate temperature

was kept at 300∘C for AZO and ITO and at room temperature
(RT) for TiN. After depositing the underlayers, 100 nm-thick
Al and 100 nm-thick Si layers were prepared at RT, with a
deposition rate of 15 nmmin−1 for Si and 23 nmmin−1 for
Al. Between the Al and Si deposition cycles, the Al layers
were exposed to air for 48 h to form native AlO

𝑥
membranes,

limiting the diffusion of Si and Al. Finally, the samples were
annealed in N

2
at 500∘C for 5 h to induce layer exchange

between the Al and Si layers.

3. Results

Figures 1(a)–1(c) show the expected schematics of the crystal-
lization stages for the sample with an AZO underlayer, with

corresponding micrographs.Themicrographs suggest that Si
atoms diffuse into the Al layer, grow laterally, and cover the
entire region during annealing. The detailed mechanism of
this layer exchange has been well investigated in previous
studies on AIC [9–11]. We found similar growth morpholo-
gies for the samples with the ITO, TiN, and SiO

2
underlayers.

The cross-sectional structure of the sample with the
AZO underlayer was evaluated using transmission electron
microscopy (TEM) and energy dispersive X-ray spectroscopy
(EDX). Figures 2(a) and 2(c) show low-magnification TEM
images before and after annealing, respectively, revealing
uniform laminate structures. Figures 2(b) and 2(d) show
EDX maps obtained at the same locations as in Figures
2(a) and 2(c), respectively. These EDX maps show that the
layer exchange between the Al and Si layers occurred during
annealing, causing Si to stack on AZO. The AlO

𝑥
membrane

between the Si and Al layers was not clearly detected because
it is thin (∼1 nm) [7, 12]. The magnified TEM image in
Figure 2(e) shows no dislocations or stacking faults in the
Si layer, so the AIC technique can be used to form a high-
quality Si layer on a conducting layer as well as on a bare glass
substrate [11, 13].

After removing the aluminum and oxide layers, the crys-
tal orientations of the poly-Si layers were characterized using
electron backscatter diffraction (EBSD). Prior to this, the
aluminum and oxide layers on the poly-Si layers were etched
using an HF solution (HF: 1.5%) for 1min. Figures 3(a)–3(d)
show EBSD images in the normal direction (ND) for poly-Si
layers on SiO

2
, AZO, ITO, and TiN underlayers. The crystal

orientation in the ND strongly depended on the underlayer
material: Figures 3(a) and 3(d) indicate preferential (111)
orientation for the SiO

2
and TiN samples, while Figures 3(b)

and 3(c) indicate preferential (100) orientation for the AZO
and ITO samples. Figures 3(e)–3(h) showEBSD images in the
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Figure 2: Cross-sectional TEM images and EDX maps for a sample with an AZO underlayer: (a, b) before and (c, d) after annealing (500∘C,
5 h), indicating that layer exchange occurred. (e) Magnified TEM image of the sample after annealing.

transverse direction (TD) obtained at the same locations as in
Figures 3(a)–3(d), respectively. The black solid lines indicate
random grain boundaries, drawn based on EBSD analysis.
All the samples had large grains with diameters of more than
10 𝜇m.

Figures 4(a)–4(d) show the area fractions of the crystal
orientation in the poly-Si layers as functions of angles from
⟨100⟩ and ⟨111⟩ directions. The total preferential orientation
fractions, defined as the integrated values of area fractions
from 0∘ to 20∘, were calculated as follows: 99% (111) for the

SiO
2
sample, 94% (100) for the AZO sample, 88% (100) for

the ITO sample, and 93% (111) for the TiN sample. Figures
4(e)–4(h) show the area-fraction distributions of the grain
diameters in the AIC-Si layers. The average grain diameters
were calculated as follows: 105 𝜇m for the SiO

2
sample, 19 𝜇m

for the AZO sample, 18𝜇m for the ITO sample, and 68𝜇m
for the TiN sample.The grain sizes of AIC-Si were smaller on
the conducting layers than on SiO

2
; however, all these grain

sizes are one order ofmagnitude larger than those of the poly-
Si layers formed by conventional solid-phase crystallization
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Figure 3: EBSD images of the poly-Si layers with SiO
2

, AZO, ITO, and TiN underlayers. (a)–(d) ND and (e)–(h) TD relative to the substrate;
the ND and TDmaps are of the same regions for each sample. The colors indicate the crystal orientation, according to the inserted color key.
The black solid lines in the TD maps indicate random grain boundaries.

[17, 22]. In particular, the poly-Si we produced onTiNhad the
largest grain size among AIC-Si on conducting layers [18, 19].
These results indicate that selecting a proper conducting layer
is essential to AIC for obtaining high-quality Si layers.

4. Discussion

Here, we will discuss how the crystal orientation depended
on the underlayer. The surface roughness of the conducting
underlayers was measured using atomic force microscopy
(AFM). The root-mean-square (RMS) roughness was 0.5 nm
for SiO

2
, 11.6 nm for AZO, 4.9 nm for ITO, and 5.5 nm for

TiN.The EBSD results show no clear correlation between the
underlayer roughness and the crystal orientation of the AIC-
Si layers. Because the substrate influences the crystal quality
of a solid-phase-crystallized semiconducting film when its
nucleation occurs at the substrate [23], we attribute the
dependence of the crystal orientation on the underlayer as
a consequence of the interfacial energy between Si and the
underlayer material.

Figure 5 shows a schematic cross-section of a sample with
the vertical distribution of Si concentration. In AIC, Si atoms
diffuse into the Al layer from the a-Si layer through the AlO

𝑥

membrane [11, 12, 24]. Because the Si diffusion rate in Al (1.7
× 10−7 cm2 s−1) is several orders of magnitude higher than
that in AlO

𝑥
(3.5 × 10−15 cm2 s−1) while, annealing at 500∘C,

the Si concentration in Al, 𝐶Al is constant throughout the
Al layer [11]. In this case, Si can nucleate heterogeneously
at the surface of the underlayer. Experimental results in our
previous reports on thickness-dependent AIC of Si [14] and
Ge [20] also suggest that this nucleation heterogeneously
occurs at the surface of the substrate (SiO

2
) when the Al layer

is thin (≤100 nm) and that a preferential (111) orientation is
caused by minimization of interfacial energy between Si(Ge)

and SiO
2
. Thus, we conclude that Si nucleation likely occurs

at the underlayer. Though it is difficult to obtain the true
interfacial energies between Si and underlayers consisting of
compound materials, the difference of interfacial energy is
a possible reason behind the varying crystal orientation of
AIC-Si.

5. Conclusion

We investigated how underlayers affected the crystal quality
of AIC-Si in order to obtain high-quality poly-Si on a
conducting-layer-coated glass substrate. AIC allowed for
low-temperature (500∘C) formation of large-grained poly-
Si films on conducting layers (AZO, ITO, and TiN). The
crystal quality of the poly-Si varied dramatically on different
underlayers: the grain size and crystal orientation fraction of
the resulting poly-Si layers were 105 𝜇m and 99% (111) for the
SiO
2
sample, 19 𝜇mand 94% (100) for the AZO sample, 18 𝜇m

and 88% (100) for the ITO sample, and 68 𝜇m and 93% (111)
for the TiN sample.These results suggest that the Si nucleated
heterogeneously on the underlayer. The poly-Si we produced
on TiN had the largest grain size among all reports of poly-Si
on conducting layers so far. Thus, we conclude that selecting
a proper underlayer is absolutely essential to AIC and that
AIC is effective for obtaining large-grained Si films with a set
crystal orientation. This finding will be useful for fabricating
poly-Si thin-film solar cells, allowing for high performance at
low cost.
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Figure 4: Distribution histograms of the (a)–(d) crystal orientation fraction and the (e)–(h) grain size in the poly-Si layers with SiO
2
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AZO, ITO, and TiN underlayers. These histograms were obtained from the orientation maps shown in Figure 3. The integrated values of
the preferentially oriented area fraction from 0∘ to 20∘ are shown in (a)–(d); the average grain sizes are shown in (e)–(h).
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Figure 5: Schematic of Si heterogeneous nucleation during AIC
with a vertical distribution of Si concentration in the sample. 𝐶Si is
the atomic concentration in the a-Si layer, 𝐶
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is the Si concentration
at the bottom of the AlO
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membrane, and𝐶Al is the Si concentration
in the Al layer.The crystal orientation of nuclei is determined by the
interfacial energy between Si and the underlayer.
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