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Hansen and Sargent’s multiplier preferences can explain both these findings. We show that large
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1 Introduction

The coefficient of relative risk aversion (RRA) is a key parameter in macroeconomic and asset

pricing models. However, as shown by Mehra and Prescott (1985) and a subsequent voluminous

literature, obtaining a plausible value of this parameter (ordinarily thought to be less than 2

or 3) is extremely difficult from the available U.S. data. The values sometimes exceed 50 when

calibrated to match asset market data (Tallarini 2000). As Campbell (2003) points out, this

difficulty—referred to in the literature as the equity premium puzzle—is a robust phenomenon

in at least 11 developed countries, including European countries and Japan. Unfortunately,

when international data are used, yet another problem emerges; namely, large variation across

countries in the magnitude of the RRA parameter. For instance, Campbell (2003, Table 4)

reports estimated values of RRA that are sometimes negative, and in excess of 100 for some

countries.

There is one possible explanation for the large values of RRA that at first appear implausible

in the U.S. data. It has been recently proposed by Hansen and Sargent (2008a) and Barillas et

al. (2009) in an attempt to reinterpret the figure in Tallarini (2000). Both Hansen and Sargent

(2008a) and Barillas et al. (2009) assume multiplier preferences as in Hansen and Sargent (2001a,

2001b), and link the risk aversion parameter with a fear of model misspecification. Based on

simulation studies, they show that an agent with an RRA value of around 50 is equivalent to

an agent with a plausible level of concern about model misspecification. This positive view

about large values of RRA contrasts sharply with that in the previous literature (e.g., Lucas

2003). The following simple questions arise here. Does this U.S. finding hold for other developed

countries? If so, to what extent does that fact explain the significant variation in risk aversion

across countries?

In this paper, we show that reexamination of Campbell’s (2003) international data yields
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both the following findings that respond to the above questions and another open question. First,

implausibly high levels of risk aversion can substitute for plausible levels of concerns about model

misspecification for some other developed countries, as well as in the United States. Because

a plausible level of agent concern about model misspecification does not necessarily imply the

same value for the RRA coefficient, the significant cross-country variation in RRA can arise.

Second, our results suggest that there may be substantial heterogeneity in concerns about model

misspecification across countries. This finding raises another question. That is, why are they

different? We compare both the penalty parameters and the detection error probabilities with

measures of cultural traits, including Hofstede’s (2001) scores for dimensions of culture, religious

composition, and primary language. We find that whether countries have stronger uncertainty-

avoiding cultures following the terminology in Hofstede (2001) or differences in religious beliefs

partly explains the heterogeneity in our sample.

The remainder of the paper is organized as follows. Section 2 briefly reviews Tallarini’s (2000)

risk-sensitive preferences and the reinterpretation of Tallarini’s (2000) preference specification

undertaken by Hansen and Sargent (2008a) and Barillas et al. (2009). As in the previous

literature, we use detection error probabilities to measure the degree of concern about model

misspecification. Our computation procedure, however, relies on a simpler calibration technique

than what the existing literature has used in that we employ the cumulative distribution function

instead of simulation. Section 3 explains the international data and presents the estimates of

the parameters used in the computation. Section 4 details the empirical results. In Section 5,

we compare our results with the three types of measures of cultural traits and provide a possible

interpretation of our results. The appendix includes details of the derivation of our formulas for

the detection error probabilities.
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2 Framework

2.1 Risk-Sensitive Preferences

Consider the recursive preference specification suggested by Epstein and Zin (1989) and Weil

(1990):

Vt =

[

(1− β)C1−η
t + β

(
Et[V

1−γ
t+1 ]

) 1−η
1−γ

] 1
1−η

, (1)

where Ct is consumption in period t, β is the subjective discount factor, γ is the coefficient of

RRA, and η denotes the reciprocal of the intertemporal elasticity of substitution (IES). Assuming

that η → 1, this specification reduces to

Vt = C1−β
t

[(
Et[V

1−γ
t+1 ]

) 1
1−γ

]β
. (2)

Let ct denote log consumption. After taking the natural logarithm of both sides, equation (2)

implies risk-sensitive recursion of the form

Ut = ct − βθ ln
(
Et

[
exp

(−Ut+1

θ

)])
, (3)

where Ut ≡ lnVt/(1− β) and

θ = − 1

(1− β)(1− γ)
. (4)

Suppose that a representative agent with recursion (3) values consumption streams generated

from the following random walk with drift model of log consumption in an endowment economy:

ct = µ+ ct−1 + σεεt, εt ∼ i.i.d.N(0, 1). (5)

Then, solving the utility recursion (3) for Ut yields a value function of the form

Ut =
β

(1− β)2

[

µ− σ2
ε

2θ(1− β)

]

+
1

1− β
ct. (6)

An important relation that we can derive from this value function is the following:

g(εt+1) ≡
exp

(
−Ut+1

θ

)

Et

[
exp

(
−Ut+1

θ

)] = exp
(
wRW εt+1 −

1

2
w2
RW

)
, (7)
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where wRW = −σε/θ(1 − β) (see, e.g., Hansen and Sargent (2008a, Ch. 14) for details of the

derivation of (6) and (7)).

2.2 Reinterpretation by Barillas, Hansen, and Sargent

Let εt = [εt, εt−1, . . . , ε1], and {εt} be a sequence of random shocks with conditional densities

π(εt) = π(εt|εt−1, x0), where x0 is a given initial state. The state at time t+1, xt+1, is determined

by the state in the previous period, xt, and the realization of a random shock, εt+1. The

consumption plan denoted by (5) is assumed to arise from the recursive restriction, xt+1 =

µ+ xt + σεεt+1 and ct = xt. Let Wt ≡ W (xt) be a value function. Suppose that an agent does

not completely trust π(εt) because of model uncertainty and chooses some other density π̂(εt) in

proximity to π(εt). The agent then imposes a penalty (known as relative entropy) on the choice

of π̂(εt) and uses the following recursion to value the consumption streams:

Wt = ct + βŴt+1, (8)

where

Ŵt+1 = min
π̂(εt+1)≥0

[∫
π̂(εt+1)Wt+1dεt+1 + θ∗

{∫
π̂(εt+1) ln

(
π̂(εt+1)

π(εt+1)

)
dεt+1

}]
(9)

subject to
∫

π̂(εt+1)dεt+1 = 1. Here the parameter θ∗ limits the magnitude of the probability

distortions measured by relative entropy. Hansen and Sargent (2008a) and Barillas et al. (2009)

interpret this parameter as expressing the agent’s distrust of the density π(εt) or fear of model

misspecification because smaller values of θ∗ allow the agent to choose more distorted densities.

If the parameter θ∗ goes to infinity, then Ŵt+1 = Et[Wt+1], as shown by Maccheroni et al.

(2006). In this case, the agent has no concern about model misspecification and evaluates the

consumption streams according to the utility recursion Wt = ct + βEt[Wt+1]. The solution for

the minimization problem (9) is

Ŵt+1 = −θ∗ ln
(∫

exp
(−Wt+1

θ∗

)
π(εt+1)dεt+1

)
,

= −θ∗ ln
(
Et

[
exp

(−Wt+1

θ∗

)])
,

(10)
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and the ratio of conditional densities is given by

π̂(εt+1)

π(εt+1)
=

exp
(
−Wt+1

θ∗

)

Et

[
exp

(
−Wt+1

θ∗

)] . (11)

As Barillas et al. (2009) argue, three implications arise from these results. First, the agent’s

utility recursion takes the form

Wt = ct − βθ∗ ln
(
Et

[
exp

(−Wt+1

θ∗

)])
. (12)

It follows from (3) and (12) that an agent with risk-sensitive recursion (henceforth, a type I

agent) is observationally equivalent to an agent who is concerned about model misspecification

(henceforth, a type II agent). Second, the parameter θ∗ has two interpretations because this

observational equivalence implies that θ∗ ≡ θ: first, as a measure of risk aversion for the type

I agent; second, as a fear of model misspecification for the type II agent. Third, because

wRW ≡ −σε/θ∗(1− β), it follows from (7) and (11) that

g(εt+1) =
π̂(εt+1)

π(εt+1)
= exp

(
wRW εt+1 −

1

2
w2
RW

)
. (13)

Hence, if π(εt+1) ∼ N(0, 1) as in the random walk model of log consumption, then the distorted

density is specified as

π̂(εt+1) = π(εt+1) exp
(
wRW εt+1 −

1

2
w2
RW

)
,

=
1√
2π

exp
(
−1

2
(εt+1 − wRW )2

)
.

(14)

That is, the random shock εt+1 follows a normal distribution with mean wRW and unitary

variance.

Hansen and Sargent (2008a) and Barillas et al. (2009) exploited these implications to rein-

terpret Tallarini’s (2000) finding; i.e., an implausibly high level of γ for the type I agent. This

paper focuses on this observational equivalence between type I and type II agents, and attempts

to reevaluate the international differences in the parameter γ in terms of model misspecification

aversion.
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Implicit in the random walk model is the assumption that there is no long-run risk in log

consumption. Subsequent to the influential work of Bansal and Yaron (2004), long-run risk

models have received increasing attention in the modeling of aggregate consumption growth (see,

e.g., Ludvigson (2013, Sections 6.3–6.4 and 7) for a survey). However, as Sargent (2007), Hansen

(2007), and Hansen and Sargent (2008b, 2010), among others, have pointed out, it is difficult to

distinguish a model with long-run risk from one without. In practice, the estimation of long-run

risk models appears to invoke a variety of empirical concerns when using U.S. aggregate time-

series data (see, e.g., Beeler and Campbell (2012) and Nakamura et al. (2012) for a discussion).

As Okubo (2014) shows, it is possible to incorporate long-run risk into the present framework

using a simplistic version of these models; however, there is much room for discussion about the

estimation results.1 For the purpose of this paper, we assume that there is no long-run risk in

log consumption and concentrate on the random walk case in the following analysis.

2.3 Detection Error Probabilities

This subsection describes our procedure for calculating detection error probabilities, which we

interpret as a measure of the fear of model misspecification. Unlike the calibration method

using simulation, our procedure enables us to identify the exact value of the detection error

probabilities in an easy and timesaving manner.

Based on the discussion in the previous subsections, suppose that an agent’s baseline ap-

proximating model is

ct+1 = ct + µ+ σεεt+1, εt+1 ∼ i.i.d.N(0, 1). (15)

1 Using the international data described in Section 3, we indeed attempted to estimate the simple version of
long-run risk models specified as

ct+1 − ct = µ+ zt + σεεt+1,

zt+1 = ρzt + σzεt+1, εt+1 ∼ i.i.d.N(0, 1).

The result shows that it is difficult to obtain precise estimates of ρ, σε, and σz even with this simple model. In
particular, the critical problem is that the point estimate of ρ is too low, which is inconsistent with Bansal and
Yaron’s (2004) premise concerning the importance of long-run risks. For this reason, we must impose restrictions
to obtain a value of ρ close to one. See Okubo (2014) for details of the estimation results.
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However, the agent doubts this model and constructs a worst-case model withN(wRW , 1) instead

of N(0, 1):

ct+1 = ct + µ+ σεwRW + σεεt+1, εt+1 ∼ i.i.d.N(0, 1), wRW = −σε/θ
∗(1− β). (16)

Our procedure is as follows.

1. Set the values of β, µ, and σε. Consider a sample of observations on log consumption ct

with a size of T . Find the value of γ when a pair of the mean and standard deviation of

the stochastic discount factor m, (E(m),σ(m)), succeeds in achieving Hansen and Jagan-

nathan’s (1991) volatility bounds and then compute the value of θ∗−1 associated with this

γ using the relation derived from (4): θ∗−1 = (1− β)(γ − 1). For the random walk model,

the pair is given by

E(m) = β exp

(

−µ+
σ2
ε

2
(2γ − 1)

)

,

σ(m) = E(m)
[
exp

(
σ2
ε γ

2
)
− 1

]1/2
.

(17)

2. Suppose that before observing the data, the agent initially assigns a probability of 0.5 to the

approximating model (henceforth, model A) and the worst-case model associated with θ∗−1

(henceforth, model B). Suppose that after observing the data, the agent performs a test

for distinguishing model A from model B. Calculate the log-likelihood ratio, ln(LA/LB).

The test selects model A if ln(LA/LB) > 0 and model B if ln(LA/LB) < 0. Then compute

the detection error probability that the agent selects model B when model A generates the

data

pA = Prob
(
ln

(
LA

LB

)
< 0

)
= Φ

(

−
√
T

2

σε
θ∗(1− β)

)

, (18)

where Φ(·) denotes the standard normal cumulative distribution function.

3. Conversely, compute the detection error probability that the agent selects model A when
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model B generates the data

pB = Prob
(
ln

(
LA

LB

)
> 0

)
= 1− Φ

(√
T

2

σε
θ∗(1− β)

)

. (19)

4. Compute the overall probability of model detection errors by weighting pA and pB by prior

probabilities of 0.5

p(θ∗−1) =
1

2
(pA + pB). (20)

Note that pA and pB are equivalent because of the symmetry of the normal distribution.

Hence, the overall detection error probability p(θ∗−1) is equal to pA (see Appendix A for

the derivations of (18) and (19)).

The procedure developed by Hansen and Sargent (2008a) and Barillas et al. (2009) conversely

starts from giving a plausible value of p(θ∗−1) and then inverts p(θ∗−1) to set a value of θ∗−1.

It is possible to follow the same flow as that of the Barillas–Hansen–Sargent procedure by using

the inverse function of Φ(·): θ∗−1 = [−2(1−β)/
√
Tσε]Φ−1(pA). In practice, the obtained results

are equivalent. Our procedure, however, is more straightforward in two respects: first, it does

not rely on simulation, and second, it does not require us to repeat the flow for various given

values of p(θ∗−1).

Our formula (18) establishes that the overall detection error probability p(θ∗−1) is a de-

creasing function of the penalty parameter θ∗−1, which is consistent with the finding using the

simulation-based method of Hansen and Sargent (2008a) and Barillas et al. (2009). This means

that an agent with smaller values of θ∗ can substitute for an agent with smaller model detection

errors. Similarly, we could consider from the formula that an increase in the volatility parameter

σε leads to a decrease in p(θ∗−1). However, this is not necessarily the case. The intuition is

as follows. An increase in σε moves a locus of a pair (E(m), σ(m)) upward. The value of γ

that attains the Hansen–Jagannathan bounds will then decrease. This decrease in γ leads to a

decrease in θ∗−1 because of the relation θ∗−1 = (1− β)(γ − 1). That is, the increase in σε may
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make the value of p(θ∗−1) larger. This example also suggests that if an increase in the sample

size T leads to a decrease in σε, the value of p(θ∗−1) is not necessarily a decreasing function of

the sample size T .2

The first step of our procedure requires us to determine the value of γ that matches the

asset market data using the Hansen–Jagannathan bounds. This step usually relies on a visual

assessment of a graph that plots both the Hansen–Jagannathan bounds and pairs (E(m),σ(m))

for various values of γ. In order to obtain more precise values of γ, we use a condition that the

standard deviation σ(m) exceeds the minimum value of the Hansen–Jagannathan bounds:

σ(m) ≥ σ∗(m), (21)

where the minimum value is calculated as

σ∗(m) =

[

1′Var(x)−11− (E(x)′Var(x)−11)2

E(x)′Var(x)−1E(x)

]1/2
. (22)

Here, x is a 2×1 vector of gross real returns on stocks and Treasury bills (or their proxies)

and 1 denotes a 2×1 vector of ones in our application. This condition is one way of expressing

the situation in which a pair (E(m),σ(m)) approaches the Hansen–Jagannathan bounds in the

sense of Tallarini (2000).3 For a sensitivity analysis, we also employ a stronger condition that

requires that a pair (E(m),σ(m)) be definitely on or inside the Hansen–Jagannathan bounds.

3 Data

In this section, we describe the international data used in this paper and report maximum

likelihood (ML) estimates of the random walk model. The data are from Campbell (2003) and are

available at quarterly and annual frequencies. We use only the quarterly data because, according
2 Note that our formula suggests that the overall detection error probability p(θ∗−1) is a decreasing function of

the sample size T , other things being equal. This is consistent with the Monte Carlo simulation finding in Hansen
(2007, Figure 1).

3 In his visual assessment, Tallarini (2000) does not require that pairs (E(m),σ(m)) be definitely inside the
bounds. Hansen and Sargent (2008a) and Barillas et al. (2009) also follow the same approach as Tallarini (2000).
Hence, for our base result, we use this condition to determine the value of γ.
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to Campbell (2003, Table 4), there is no significant variation in RRA across countries when using

annual data. The quarterly data are for 11 developed countries (the country code from Campbell

(2003)): Australia (AUL), Canada (CAN), France (FR), Germany (GER), Italy (ITA), Japan

(JAP), the Netherlands (NTH), Sweden (SWD), Switzerland (SWT), the United Kingdom (UK),

and the United States (USA). The main data source is the International Financial Statistics

of the International Monetary Fund and Morgan Stanley Capital International (see Campbell

(1998) for a description of the data).

The method and timing convention used for the construction of our dataset follow Yogo

(2004) except for one point (see Appendix B). Log consumption, ct, in the model is defined as

log real consumption per capita. As reported in Table 1, the sample periods differ by country.4

For the United States, we report two sample periods beginning in 1947 and 1970.

There are four points to note concerning the Campbell and Yogo data. First, the consumption

measure is total consumption but only expenditure on nondurables and services for the United

States. Second, we use the GDP deflator when converting nominal to real consumption, and

the corresponding consumption deflator only for the U.S. data. Third, we employ the consumer

price index when calculating real asset returns. Fourth, the timing convention when measuring

consumption is at the beginning of the period (see Campbell (2003, pp. 813–814) for the reason).

It is well known that the treatment of durables can affect estimates of the IES and the RRA

coefficient (see, e.g., Mankiw (1985), Ogaki and Reinhart (1998a, 1998b), Yogo (2006), and

Pakoš (2011)). In our framework, the lumpiness of durables consumption may affect estimates

of the volatility parameter. Hence, for the United States, we add a case using total consumption

instead of nondurables and services. The data on total consumption and the price index are

from line 2 (labeled “personal consumption expenditures”) in the NIPA (National Income and

Product Accounts) Tables 1.1.4 and 1.1.5 compiled by the Bureau of Economic Analysis in the

4 Our samples are just two periods longer than those in Yogo (2004, Table 1), as we do not require twice-lagged
variables in the estimation of the random walk model of log consumption.
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U.S. Department of Commerce. In Table 1, this case is headed USA (PCE). For USA (PCE),

we report only the truncated sample period that begins in 1970 to avoid the period associated

with the rapid restocking of durables after World War II.

Table 1 reports the results of the ML estimation of the random walk model. This model can

be regarded as a regression of ∆ct on a constant with normal errors. The ML estimator of µ

therefore is the ordinary least squares estimator, and the ML estimator of σ2
ε is the sum of the

squared residuals divided by the sample size. In Table 1, the square root of the ML estimate of

σ2
ε is also reported for ease of comparison.

The estimate of µ falls in the range of 0.0023 to 0.0080. The estimate of σε is around

0.010, except in the United States. As a point of comparison, Barillas et al. (2009) obtain

estimates of µ = 0.00495 and σε = 0.0050 using quarterly U.S. data over the period 1948:2–

2006:4. Our estimates of µ and σε for the United States are thus very similar to those of

Barillas et al. (2009). As noted above, in the Campbell–Yogo data, the consumption measure

is consumption of nondurables and services only for the United States. This appears to explain

the small estimate of σε for the United States because it increases from 0.0046 to 0.0073 when

total consumption is used. The estimate of σε = 0.0073, however, remains the smallest value

among the 11 countries.

4 Results

Table 2 reports the results of γ, θ∗−1, and p(θ∗−1) based on the random walk with drift model

when the values of µ and σε are set to those reported in Table 1. Column (1) in Table 2 reports

the value of γ that attains the Hansen–Jagannathan bounds in the sense described in Section

2.3, where E(m) and σ(m) are computed using equation (17). We set β = 0.995. The minimum

of γ is 8.04 for Australia (AUL), while the maximum is 51.09 for the United States (USA). This

finding reveals that even with risk-sensitive preferences, there is still a large variation in risk
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aversion among countries when we calibrate it to match the asset market data.

Columns (2) and (3) in Table 2 report the penalty parameter θ∗−1 and the detection error

probability p(θ∗−1) associated with the value of γ. For the United States (USA), the value of the

penalty parameter is 0.2505 and the corresponding detection error probability is 0.0264 when

using the sample period 1947:1–1998:4. This result essentially replicates those in Hansen and

Sargent (2008a) and Barillas et al. (2009). When we use the sample period 1970:1–1998:4 to

facilitate comparisons with other countries, however, the detection error probability increases

from 0.0264 to 0.1382. The value of p(θ∗−1) = 0.1382 is below 0.20; it remains what is called

“sensible,” “plausible,” or “moderate” by Barillas et al. (2009, p. 2405), Hansen and Sargent

(2008a, p. 322), and Ljungqvist and Sargent (2012, p. 547), respectively. Thus, we verify that

implausibly high levels of risk aversion can substitute for moderate amounts of model uncertainty

as long as we use the U.S. data.

For countries other than the United States, there is no existing work comparable to that

reported here. We observe the following from the comparisons across countries. First, the levels

of the detection error probability for countries other than the United States tend to be larger

than that of the United States. The highest of these is about two and a half times that of the

United States. Second, even though the levels of the detection error probability are similar,

the magnitude of risk aversion appears to differ across countries. For instance, the value of γ

for Sweden (SWD) is 25.76 with a detection error probability of 0.1076. This detection error

probability is close to the value of 0.1382 for the United States (USA), but its value of γ is 45.31.

So far we have used the condition that σ(m) exceeds the minimum of the Hansen–Jagannathan

bounds when determining the value of γ. As already discussed, it is not technically required

that the pair be inside the Hansen–Jagannathan bounds. In this sense, this condition is weak.

For a sensitivity analysis, we impose a stronger condition such that the pair (E(m),σ(m)) is on

or inside the Hansen–Jagannathan bounds.
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Table 3 reports the results of γ, θ∗−1, and p(θ∗−1) when this alternative condition is used.

The results exhibit much larger variation in γ across countries. The minimum of γ is 12.38 for

France (FR), while the maximum is 125.85 for Germany (GER). Comparing the detection error

probability between Tables 2 and 3, the value of p(θ∗−1) decreases for all countries because the

value of the penalty parameter θ∗−1 increases. The use of this strong condition substantially

alters the results for some countries, in particular Germany (GER) and the Netherlands (NTH).

This suggests that when international data are used, the use of the weak condition along the

lines of Tallarini (2000) is not necessarily appropriate for some countries. However, it turns

out that implausibly high levels of risk aversion can substitute for moderate amounts of model

uncertainty for some countries other than the United States.

5 Discussion and Conclusion

One of the main points that Hansen and Sargent (2008a) and Barillas et al. (2009) empha-

size using U.S. data is that a large risk-aversion parameter that at first appears implausible

is consistent with agents who have a plausible amount of concern about robustness to model

misspecification. The analysis in the previous section reveals that when applied to international

data, we can draw the same conclusion for some developed countries other than the United

States. Consequently, large variation in risk aversion can arise across countries.

Our analysis relies crucially on the assumption that there is no long-run risk in log con-

sumption. As Okubo (2014) shows, as long as we assume the simplistic version of long-run risk

models suggested by Hansen (2007, Example 2) and Hansen and Sargent (2008b, 2010), it is

possible to extend the framework used in this paper and the procedure for computing detection

error probabilities. In that case, lower values of the risk-aversion parameter appear to attain the

Hansen–Jagannathan bounds because we can show that both the mean and standard deviation

of the stochastic discount factor increase relative to the case of no long-run risk. This would
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substantially affect the magnitude of the penalty parameter and detection error probabilities.5

However, we must overcome the issue of imprecise estimates of the long-run risk model, before

drawing any conclusion from the results based on such estimates.6

Another notable feature of our results is that there may be substantial heterogeneity in con-

cerns about model misspecification across countries. In our framework, the penalty parameter

depends on both the volatility of consumption and that of stock and bond markets, from the

conventional viewpoint of the type I agent.7 Therefore, one possible explanation may relate to

the reasons that these volatilities differ among countries. Given the observational equivalence

between the type I and type II agents, however, it is not the only way to explain the hetero-

geneity identified in this paper. From the viewpoint of the type II agent, the issue of interest

can be related to the reasons that the agent’s distrust of the density of random shocks varies

across countries. International differences in the agent’s distrust may partly have caused those

differences in volatility for consumption and the stock and bond markets. As readily understood,

it is no simple task to identify the causes of international differences in the agent’s distrust.

Before concluding the paper, we discuss a possible explanation for the international dif-

ferences in the agent’s distrust. Presumably, the most promising is an explanation based on

the relationship between cultural factors and economic outcomes. The basic logic proposed in

the literature is as follows: a culture trait of a group of people affects their beliefs and prefer-

5 Preliminary results are reported in Okubo (2014).
6 There are two related studies that have attempted to improve the estimates of long-run risk models. One is

Bidder and Smith (2013), who propose estimating a long-run risk model that allows the stochastic volatility of
consumption growth by applying a particle filter. Another is Nakamura et al. (2012), who propose estimating
a long-run risk model that allows for both global and country-specific growth rate shocks, using international
panel data. In view of possible international comparisons, allowing for global shocks, as specified by Nakamura
et al. (2012), would be an important direction for future research. However, this is beyond the scope of the
present paper. As discussed in the Introduction, our primary interest is in Campbell’s (2003) findings that
suggest internationally large variation in the risk aversion parameter. Note that in estimating the risk aversion
parameter, Campbell (2003) does not consider shocks common to all countries.

7 Note that we used the relation that θ∗ is a function of γ, and determined the value of γ based on the Hansen–
Jagannathan bounds calculated from the mean and covariance matrix of stock and bond returns. Note also that
the mean and standard deviation of the stochastic discount factor (E(m),σ(m)) depends on the consumption
volatility parameter σε.
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ences, and those beliefs and preferences influence their economic decision-making, and thus lead

to differences in economic outcomes (see, e.g., Guiso et al. (2003, 2006), Haung (2008), and

Gorodnichenko and Roland (2010)). This chain of causality has also interested researchers as a

possible explanation for cross-country differences in creditor rights, equity holdings, trading vol-

ume, volatility, and foreign portfolio investment (see, e.g., Stulz and Williamson (2003), Guiso

et al. (2008, 2009), Chui et al. (2010), Anderson et al. (2011), and Aggarwal et al. (2012)). An

issue of interest is thus whether there is any correlation between a country’s cultural traits and

its penalty parameter or overall detection error probability.

Table 4 presents Hofstede’s (2001) scores for four dimensions of culture, which are one of

the most widely used data in the economics and finance literature. Hofstede (2001, p. 161)

defines the uncertainty avoidance index (UAI) as “the extent to which the members of a culture

feel threatened by ambiguous or unknown situations”. The more relevant comparison for our

purpose is thus the correlation between Hofstede’s UAI score and the penalty parameter or

detection error probability. As shown in the last two rows of Table 4, the correlation between

the UAI score and the penalty parameter is negative and, as expected from our formula, that

between the UAI score and the detection error probability is positive.8 Figure 1 plots the penalty

parameter and detection error probability against the UAI score to clarify the location of each

country. As shown, countries with higher UAI scores tend to have smaller values of θ∗−1 (i.e.,

larger values of θ∗) and therefore higher detection error probabilities.

As discussed in Section 2, the parameter θ∗ represents the degree of the agent’s concern

about model misspecification. Maccheroni et al. (2006) give some theoretical justification for

this interpretation in a more general framework. More specifically, they show that as the pa-

rameter θ∗ becomes larger, the agent focuses more on the approximating model as the true

8 Note that according to Hofstede et al. (2010), the power distance index (PDI) tends to be positively correlated
with the UAI, which measures “the extent to which the less powerful members of institutions and organizations
within a country expect and accept that power is distributed unequally” (p. 61).
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model and gives less importance to possible alternative models. Hence, our finding suggests

that agents in countries with higher UAI scores give less importance to possible worst-case

models. A relevant finding for countries with uncertainty-avoiding cultures by Hofstede et al.

(2010, pp. 197–198) is “Uncertainty-avoiding cultures shun ambiguous situations. People in

such cultures look for structure in their organizations, institutions, and relationships that makes

events clearly interpretable and predictable”. In other words, countries with higher UAI scores

have a stronger tendency to create institutions and rules to reduce ambiguity. This cultural

trait may partially explain our finding that agents in high-UAI countries give less importance

to worst-case situations.9

Some of the cited literature also divides countries into groups based on religion and language

and investigates the abovementioned causality chain (see Guiso et al. (2003, 2006) and Haung

(2008)). As Hofstede (2001) and Hofstede et al. (2010) point out, there is a strong correlation

between the population share of Catholics relative to Protestants and the country’s UAI score.

To see whether this holds for our sample, columns (7) and (8) in Table 4 report the percentage

population share of Catholics and Protestants in each country. The data are from Table 1 in Stulz

and Williamson (2003). A correlation holds roughly for the 11 developed countries: countries

with higher percentage shares of Catholics tend to have higher UAI scores. One exception is

Japan, where the percentages of Catholics and Protestants are both extremely low. However,

unlike the other countries, the population share of Buddhists (55.4%, not reported in the table)

is very high. Thus, our finding may be partly associated with differences in religious beliefs

9 In a preliminary analysis, we also investigated the uncertainty avoidance index reported in House et al.
(2004). The correlation coefficient was similar to that reported in this paper, but the locations of the countries
on the scatter plot were not identical (see Okubo (2014) for the scatter plot). Hofstede et al. (2010, pp. 198–
199) argue that the uncertainty avoidance index of House et al. (2004) presents no alternative to Hofstede’s
index. This suggests that we may be able to provide a different interpretation for our finding. However, we do
not pursue this here as resolving the issue of inconsistency between the two indexes is beyond the scope of the
current analysis. Another widely used dataset in the literature is from the World Values Survey (WVS) led by
a U.S. sociologist, Ronald Inglehart. As Hofstede et al. (2010) discuss, various extensions of Hofstede’s (2001)
cultural dimensions based on the WVS results are attempted, and some of the WVS results are closely related
with Hofstede’s scores. However, we concentrated on Hofstede’s scores in this paper, as there seem to be various
arguments and interpretations for those extensions.
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across countries. On the other hand, as the last column in Table 4 shows, differences in the

primary language are unlikely to explain our finding.

These explanations based on cultural traits require further empirical investigation. Note that

they do not necessarily hold under the stronger condition for the attainment of the Hansen–

Jagannathan bounds. However, our preliminary investigations in this section suggest that ex-

tending a model with Hansen and Sargent’s multiplier preferences to an international environ-

ment may connect two different strands of research in economics and finance: robustness studies

and culture–economic studies. Analyzing a richer model of this kind would be an interesting re-

search topic, in addition to straightforward extensions such as increasing the number of countries

used in the analysis, and allowing for long-run risks.
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Appendix

This appendix describes the derivation of our formulas for the detection error probabilities and

the construction method for the asset returns data.

A. Derivation of Formulas for the Detection Error Probabilities

Consider the following AR(1) process with trend:10

ct = ζ + µt+ zt, zt = ρzt−1 + σεεt, εt ∼ i.i.d.N(0, 1). (A1)

Since zt has an AR(1) structure, the (average) log-likelihood function for a sample of t =

1, 2, . . . , T takes the form

lnL =
1

T
ln f(c1) +

1

T

T∑

t=2

ln f(ct|ct−1). (A2)

In the case of the random walk with drift (ρ = 1), (A1) at t = 1 is c1 = ζ + µ + z1 and

z1 = z0 + σεε1. Assuming z0 = 0, it follows that z1 = σεε1, so that c1 = ζ + µ+ σεε1. Under the

approximating model (model A), therefore, the logarithm of the density f(c1) is

ln f(c1) = −1

2
ln 2π − 1

2
lnσ2

ε −
1

2σ2
ε
(c1 − ζ − µ)2, (A3)

and the logarithm of the conditional density f(ct|ct−1) is

ln f(ct|ct−1) = −1

2
ln 2π − 1

2
lnσ2

ε −
1

2σ2
ε
(ct − ct−1 − µ)2. (A4)

Substituting (A3) and (A4) into (A2), we obtain the log-likelihood function under model A:

lnLA = −1

2
ln 2π − 1

2
lnσ2

ε −
1

T

1

2σ2
ε
(c1 − ζ − µ)2 − 1

T

T∑

t=2

1

2σ2
ε
(ct − ct−1 − µ)2. (A5)

10 Another way is to begin with the first-differenced form of the model: ∆ct+1 = µ+σεεt+1. When ρ = 1, these
two ways lead to the same formulas for the detection error probabilities, as discussed in Okubo (2014). However,
when ρ < 1, the first-differenced approach is not valid. Here, we describe a more general one that allows the case
of ρ < 1.
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Noting that the difference between the approximating and worst-case models is that the mean

of εt shifts from 0 to wRW , the log-likelihood function under model B is

lnLB = −1

2
ln 2π−1

2
lnσ2

ε−
1

T

1

2σ2
ε
(c1−ζ−µ−σεwRW )2− 1

T

T∑

t=2

1

2σ2
ε
(ct−ct−1−µ−σεwRW )2. (A6)

Thus, we obtain the following log-likelihood ratio:

ln
(
LA

LB

)
= − 1

T

[
1

2σ2
ε
(c1 − ζ − µ)2 +

T∑

t=2

1

2σ2
ε
(ct − ct−1 − µ)2

]

+
1

T

[
1

2σ2
ε
(c1 − ζ − µ− σεwRW )2 +

T∑

t=2

1

2σ2
ε
(ct − ct−1 − µ− σεwRW )2

]

.

(A7)

To calculate the detection error probability under model A, substituting c1 − ζ − µ = σεε1

and ct − ct−1 − µ = σεεt for t = 2, . . . , T into (A7) yields

ln
(
LA

LB

)
=

1

T

T∑

t=1

[
−1

2
ε2t +

1

2
(εt − wRW )2

]
,

=
1

T

T∑

t=1

(−wRW εt) +
1

2
w2
RW .

(A8)

Therefore, the detection error probability under model A is

pA = Prob
(
ln

(
LA

LB

)
< 0

)
,

= Prob

(
1

T

T∑

t=1

(−wRW εt) +
1

2
w2
RW < 0

)

,

= Prob

(
1

T

T∑

t=1

(
σε

θ(1− β)

)
εt < −1

2

(
σε

θ(1− β)

)2
)

,

= Prob

(
1

T

T∑

t=1

εt < −1

2

σε
θ(1− β)

)

,

= Prob

(

Z < −
√
T

2

σε
θ(1− β)

)

,

(A9)

where Z ≡ (1/
√
T )

∑T
t=1 εt. Because of εt ∼ i.i.d.N(0, 1), Z ∼ N(0, 1). Thus, as in equation

(18), the detection error probability pA can be expressed using the cumulative distribution

function of the standard normal. On the other hand, substituting c1 − ζ − µ = σεwRW + σεε1

and ct − ct−1 − µ = σεwRW + σεεt for t = 2, . . . , T into (A7), it reduces to

ln
(
LA

LB

)
=

1

T

T∑

t=1

[
−1

2
(εt + wRW )2 +

1

2
ε2t

]
,

=
1

T

T∑

t=1

(−wRW εt)−
1

2
w2
RW .

(A10)
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Therefore, the detection error probability under model B is

pB = Prob
(
ln

(
LA

LB

)
> 0

)
,

= Prob

(
1

T

T∑

t=1

(−wRW εt)−
1

2
w2
RW > 0

)

,

= Prob

(
1

T

T∑

t=1

(
σε

θ(1− β)

)
εt >

1

2

(
σε

θ(1− β)

)2
)

,

= Prob

(
1

T

T∑

t=1

εt >
1

2

σε
θ(1− β)

)

,

= Prob

(

Z >

√
T

2

σε
θ(1− β)

)

.

(A11)

This gives equation (19).

B. Asset Returns Data

The gross real returns on stocks are constructed as

1 + rrt ≡ (1 +Rt)
cpit−1

cpit
, (B1)

where Rt is stock returns in quarter t and cpit is the consumer price index in quarter t. The

gross real returns on relatively riskless assets are constructed as

1 + rrft ≡






(
1 +

irt−1

100

)
cpit−1

cpit
for the United States,

(
1 +

irt−1

400

)
cpit−1

cpit
for the other countries,

(B2)

where irt is the short-term interest rate in period t. Here the timing convention for the interest

rate follows that in Campbell (2003) and Yogo (2004). In Campbell’s (2003) data, the interest

rate is quarterly for the United States, while it is an annual percentage rate for countries other

than the United States. Hence, note that the short-term interest rate is divided by 400 for

countries other than the United States to convert it to a quarterly series. The 2×1 vector x in

the main text is defined as x = (1 + rrt, 1 + rrft)′.
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Table 1

Estimates of the Random Walk Model

µ σ2
ε σε #Obs

Country Sample Period (1) (2) (3) (4)
USA 1947.1–1998.4 0.0049 0.2874×10−4 0.0054 208

(0.0004) (0.0282×10−4)
AUL 1970.1–1998.4 0.0052 0.1051×10−3 0.0103 116

(0.0010) (0.0138×10−3)
CAN 1970.1–1999.1 0.0054 0.9140×10−4 0.0096 117

(0.0009) (0.1195×10−4)
FR 1970.1–1998.3 0.0039 0.2019×10−3 0.0142 115

(0.0013) (0.0266×10−3)
GER 1978.3–1998.3 0.0043 0.1406×10−3 0.0119 81

(0.0013) (0.0221×10−3)
ITA 1971.2–1998.1 0.0057 0.6865×10−4 0.0083 108

(0.0008) (0.0934×10−4)
JAP 1970.1–1998.4 0.0080 0.1617×10−3 0.0127 116

(0.0012) (0.0212×10−3)
NTH 1977.1–1998.4 0.0046 0.1678×10−3 0.0130 88

(0.0014) (0.0253×10−3)
SWD 1970.1–1999.2 0.0025 0.8497×10−4 0.0092 118

(0.0008) (0.1106×10−4)
SWT 1975.4–1998.4 0.0023 0.1511×10−3 0.0123 93

(0.0013) (0.0222×10−3)
UK 1970.1–1999.1 0.0056 0.1563×10−3 0.0125 117

(0.0012) (0.0204×10−3)
USA 1970.1–1998.4 0.0046 0.2081×10−4 0.0046 116

(0.0004) (0.0273×10−4)
USA (PCE) 1970.1–1998.4 0.0058 0.5273×10−4 0.0073 116

(0.0007) (0.0692×10−4)

Note: This table reports maximum likelihood (ML) estimates from a regression of log consumption

growth ∆ct on a constant, where the error term is assumed to be i.i.d.N(0,σ2
ε ). Standard errors are in

parentheses. The column denoted by σε reports the square root of the ML estimate of σ2
ε . #Obs denotes

the number of observations of ∆ct used in the ML estimation. The country codes follow Campbell

(2003): Australia (AUL), Canada (CAN), France (FR), Germany (GER), Italy (ITA), Japan (JAP), the

Netherlands (NTH), Sweden (SWD), Switzerland (SWT), the United Kingdom (UK), and the United

States (USA). USA (PCE) denotes that personal consumption expenditures are used as the consumption

measure.
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Table 2

Risk Aversion and Detection Error Probability under the Random Walk Model

γ θ∗−1 p(θ∗−1) T
Country Sample Period (1) (2) (3) (4)
USA 1947.1–1998.4 51.09 0.2505 0.0264 208
AUL 1970.1–1998.4 8.04 0.0352 0.3478 116
CAN 1970.1–1999.1 11.32 0.0516 0.2968 117
FR 1970.1–1998.3 11.81 0.0541 0.2051 115
GER 1978.3–1998.3 18.68 0.0884 0.1728 81
ITA 1971.2–1998.1 8.87 0.0394 0.3674 108
JAP 1970.1–1998.4 9.33 0.0417 0.2842 116
NTH 1977.1–1998.4 27.25 0.1313 0.0554 88
SWD 1970.1–1999.2 25.76 0.1238 0.1076 118
SWT 1975.4–1998.4 24.44 0.1172 0.0824 93
UK 1970.1–1999.1 15.91 0.0746 0.1567 117
USA 1970.1–1998.4 45.31 0.2216 0.1382 116
USA (PCE) 1970.1–1998.4 28.48 0.1374 0.1413 116

Note: This table reports calibration results of the risk aversion parameter γ, the penalty parameter θ∗−1,

and the detection error probability p(θ∗−1) when log consumption follows the random walk with drift

model. The risk aversion parameter γ is chosen to satisfy the condition σ(m) ≥ σ∗(m), where σ∗(m) is

the minimum of the Hansen–Jagannathan bounds. The discount factor is set to β = 0.995.
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Table 3

Sensitivity Analysis under the Random Walk Model

γ θ∗−1 p(θ∗−1) T
Country Sample Period (1) (2) (3) (4)
USA 1947.1–1998.4 108.30 0.5365 1.6773×10−5 208
AUL 1970.1–1998.4 19.02 0.0901 0.1599 116
CAN 1970.1–1999.1 17.74 0.0837 0.1934 117
FR 1970.1–1998.3 12.38 0.0569 0.1930 115
GER 1978.3–1998.3 125.85 0.6243 1.3581×10−11 81
ITA 1971.2–1998.1 18.66 0.0883 0.2235 108
JAP 1970.1–1998.4 31.05 0.1503 0.0198 116
NTH 1977.1–1998.4 95.15 0.4708 5.3063×10−9 88
SWD 1970.1–1999.2 25.78 0.1239 0.1074 118
SWT 1975.4–1998.4 28.07 0.1354 0.0543 93
UK 1970.1–1999.1 21.97 0.1049 0.0781 117
USA 1970.1–1998.4 107.84 0.5342 0.0043 116
USA (PCE) 1970.1–1998.4 66.96 0.3298 0.0050 116

Note: This table reports calibration results of the risk aversion parameter γ, the penalty parameter θ∗−1,

and the detection error probability p(θ∗−1) when log consumption follows the random walk with drift

model. The risk aversion parameter γ is chosen to satisfy the condition that the pair (E(m),σ(m)) is on

or inside the Hansen–Jagannathan bounds. The discount factor is set to β = 0.995.
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Table 4

Comparisons with Cultural Traits

Hofstede’s Scores Religion (%) Primary
θ∗−1 p(θ∗−1) IDV MAS PDI UAI Protestant Catholic Language

Country (1) (2) (3) (4) (5) (6) (7) (8) (9)
AUL 0.0352 0.3478 90 61 36 51 36.7 28.1 English
ITA 0.0394 0.3674 76 70 50 75 0.8 97.2 Italian
JAP 0.0417 0.2842 46 95 54 92 0.5 0.4 Japanese
CAN 0.0516 0.2968 80 52 39 48 20.3 41.9 English
FR 0.0541 0.2051 71 43 68 86 1.6 82.8 French
UK 0.0746 0.1567 89 66 35 35 53.8 9.6 English
GER 0.0884 0.1728 67 66 35 65 37.2 34.9 German
SWT 0.1172 0.0824 68 70 34 58 41.6 44.8 German
SWD 0.1238 0.1076 71 5 31 29 94.8 1.9 Swedish
NTH 0.1313 0.0554 80 14 38 53 27.1 35.5 Dutch
USA (PCE) 0.1374 0.1413 91 62 40 46 24.3 21.2 English

Correlation with θ∗−1 and p(θ∗−1)
θ∗−1 1.000 -0.903 0.182 -0.052a -0.502 -0.523 0.520 -0.331
p(θ∗−1) -0.903 1.000 -0.033 0.081a 0.373 0.409 -0.514 0.336

Note: This table reports the penalty parameter θ∗−1, the detection error probability p(θ∗−1), Hofstede’s

(2001) scores for four dimensions of culture, the percentages of Protestants and Catholics in the popula-

tion, the primary language, and the correlation coefficients between these variables. Countries are sorted

in ascending order of the values of the penalty parameter. In this table, USA (PCE) is only listed for

the United States for ease of comparison with the other countries (see Section 3 for details). The penalty

parameter and detection error probability are from Table 2. IDV, MAS, PDI, and UAI are the individu-

alism, masculinity, power distance, and uncertainty avoidance indexes, respectively, from the four tables

(labeled Exhibit 5.1, Exhibit 6.3, Exhibit 3.1, and Exhibit 4.1) in Hofstede (2001). The percentages for

religion and the primary language are from Table 1 in Stultz and Williamson (2003).

a SWD and NTH are excluded when computing the correlation coefficient because they are obvious

outliers in the sample.
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