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 The purpose of this study is to examine whether there are some general trends across subject fields 

regarding the factors that affect the number of citations of articles, especially focusing on those factors 

that are not directly related to the quality or content of articles (extrinsic factors). For this purpose, 

from six selected subject fields (condensed matter physics, inorganic and nuclear chemistry, electric 

and electronic engineering, biochemistry and molecular biology, physiology, and gastroenterology), 

original articles published in the same year were sampled out (n = 230–240 for each field). Then, the 

citation counts received by the articles in a relatively long citation window (6 and 11 years after 

publication) were predicted by negative binomial multiple regression (NBMR) analysis for each field. 

Various article features about author collaboration, cited references, visibility, authors’ achievement 

(measured by past publications and citedness), and publishing journals were considered as the 

explanatory variables of NBMR. Some generality across the fields were found regarding the selected 

predicting factors and the degree of significance of these predictors. The Price index was the strongest 

predictor of citations and number of references was the next. The effect of number of authors and 

authors’ achievement measures were rather weak. 

 

Introduction 

 

The application of citation data to research evaluation has attracted a lot of attention in recent years 

(Moed, 2005). The concept is to obtain a quantitative measure of the importance of an article using its 

citation rate. Expanding this approach by grouping articles according to researchers (i.e., the authors of the 

articles), research groups, research institutions, and countries would make it possible to conduct evaluations 

of individuals and groups as well as articles. 

There are many criticisms regarding the use of citation data for research evaluation (Lindsey, 1989; 

MacRoberts & MacRoberts, 1987; 1989; 1996; 2010). However, it is undeniable that citation rate gives the 

most appropriate statistical indicator measuring an aspect of importance of research (the degree of impact 

or utilization of articles) among those presently available. Hence, citation data can be used as important 

information for research evaluation provided that it is done carefully and its limitations are considered (van 

Raan, 1996; Moed, 2005). It should be noted, of course, that research must be evaluated from various 

aspects, and citation rates provide valuable data as one of these aspects. The measures based on citations 

are not objective indicators of evaluation themselves but complementary information for subjective peer 

review. 

Even if it is generally accepted that the citation count of an article is an effective measure of its 

importance, an individual article’s count does not always agree with the assessment of the article. Many 

studies have demonstrated that the correlation between citation rate and score of peer evaluation is moderate; 

that is, the correlation coefficient is approximately 0.4–0.6 (Oppenheim, 1997; Rinia, van Leeuwen, van 

Vuren, & van Raan, 1998; Aksnes, 2006; Abramo, D’Angelo, & Di Costa, 2011; Mryglod, Kenna, 



Holovatch, & Berche, 2013). The reasons for this correlation are as follows: 

(a) The citation rate is a measure of only one aspect of research (impact or utility). 

(b) Citations do not always positively refer to the cited articles. 

(c) The citation count of an article is influenced by various “extrinsic” factors not directly related to the 

content or quality of the article. 

Point (a) is an important matter that has to be kept in mind when using citation data for research 

evaluation, as mentioned above. Concerning point (b), the reported ratios of negative citations are generally 

low; Moravcsik and Murugesan (1975), Chubin and Moitra (1975), and Krampen, Becker, Wahner, and 

Montada (2007) reported rates of 13%, 3%–6%, and <1%, respectively. Therefore, this is not a serious 

problem from a statistical viewpoint.  

The purpose of this study is related to point (c). It is well known that the citation rate of an article is 

influenced by the subject field, country where the journal is issued, type of article (original article, short 

report, review, etc.), and language. Therefore, it is almost meaningless to simply compare articles of 

different types that belong to different fields based on their raw (not normalized) citation counts. In 

addition, as discussed in the next section, many studies have been conducted about various factors that may 

influence the citation rate of an article. However, there is still no consensus about which factors 

significantly affect citation rate. This is in part because most existing studies focus on a single factor (or 

multiple factors as mutually independent); hence, they could not consider interactions among different 

factors. Another reason is that some studies considering integratedly multiple factors (using multiple 

regression models in general) restrict the subject or source of the sample articles to a specific area, hence, 

the generality of the conclusions might be limited. 

In this study, we investigated the variation in citation rates among articles and their dependence on 

numerous factors for articles of the same type (original articles) published in the same year in several journals 

(English language only) for several different fields. Using negative binomial multiple regression analysis, we 

attempted to determine the contribution of each factor. If the analyses of several different fields result in 

some common tendencies, then it is expected that a reference citation rate would be given for an article with 

a set of factor values, and that the citation data could be more accurately applied to research evaluation. 

 

Literature Review 

 

As described above, it is well known that the citation rate of an article depends on the field, type, and 

language of the article. In this section, addressing other features of articles, we briefly review the results of 

studies that have investigated whether these features influence the citation rates of articles. This review first 

examines the studies investigating many potential influencing factors integratedly (most of these studies use 

multiple regression analysis), and then discusses the influence of individual factors. We restricted the range 

of the review to citation rates of individual articles rather than aggregates of articles on particular authors or 



research groups, which meets the objective of this research. 

 

Citation analyses considering integratedly various potentially influencing factors 

 

Although numerous features have been investigated as potential factors that influence the citation rate of 

articles, most of the studies conducted to date have focused on a single factor or have considered multiple 

factors as mutually independent. Therefore, even when a correlation does exist between a factor and citation 

rate, it is not possible to exclude the possibility that the correlation is due to confounding of other factor(s). 

For example, the number of authors, the number of institutions, the article length, and the number of 

references have been reported in many studies as positively correlated to the citation rate of articles. However, 

it is worth noting that these factors may be positively correlated to each other, meaning that it is likely that 

only some of the factors have significant correlations with citation rate when each factor is assessed 

separately. 

Multiple regression analysis is the most commonly used approach to separate the effects of individual 

factors (independent variables) and to identify the factors that are significant with respect to citation rate. In 

this subsection, we outline several studies using this method. 

 

Studies on main determinants of citation rates of articles. Peters and van Raan (1994) noted that almost no 

studies have investigated a broad spectrum of factors to identify fewer factors that primarily determine 

citation rates, despite the many studies on factors influencing citation scores. From this viewpoint, they 

investigated the extent to which various factors influence the number of citations of articles in the field of 

chemical engineering. They selected eighteen internationally reputed scientists from the field and counted 

the number of citations received within five years after publication by each of the articles (n = 226) published 

by those scientists between 1980 and 1982. 

Multiple regression analysis using 14 factors as explanatory variables showed that the highly significant 

explanatory variables were as follows (in decreasing order of partial correlation coefficient): (a) the scientist’s 

rank according to the number of articles published between 1980 and 1982, (b) number of references, (c) 

language, (d) reputation of the publishing journal, (e) influence weight (Narin’s indicator of journal 

influence), and (f) Price index. The following four variables were also significant: (g) CA Section, (h) number 

of pages, (i) number of authors, and (j) nationality of the scientist. Interestingly, the scientist’s rank, which 

had extremely high explanatory power, did not show a significant relation with the number of citations when 

the correlation between these two variables was simply calculated, which indicates the importance of 

integrated analysis considering various factors that may influence the citation rates of articles. 

   Didegah and Thelwall (2013) investigated the determinants of citation rates in their study using over 

50,000 articles published from 2007 to 2009 in the field of nanoscience and nanotechnology. They selected 

eight factors as the independent variables, two of which had not been considered until that time – 



internationality of the publishing journal and internationality of references (both were measured by Gini 

coefficient for the geographic distribution of authors). Then, they carried out zero-inflated negative binomial 

regressions for four article sets (for each of publication years and for 3 years together). The journal impact 

factor (JIF) and impact of references (the mean citations of referenced publications) were the most strongly 

influencing factors, and number of references, internationality of references, and number of institutions of 

affiliation were also significant predictors for all article sets. On the other hand, number of authors was shown 

to have little influence. Number of countries of affiliation and journal’s internationality tended to give a 

negative effect on citations, which might be related to dominance of the USA in the research in this field. 

 

What is dominant among the features of author, journal, and article? There have been some studies that 

divide potential factors that influence the citation rates of articles into the factors of author, journal, and 

article itself, and examine which factor is the most dominant. The earliest study of this kind is by Stewart 

(1983), wherein he tried to predict the citation count received by each of 139 articles published in 1968 in 

the field of geoscience using multiple regression models including many author and article variables. He 

concluded that the article features were more important than the author features from a comparison of the 

coefficient of determination (R2) among the regression with author variables only, article variables only, and 

all variables. The article variables that contributed to high citations were number of references, article length, 

time from acceptance to publication, and (to a lesser extent) the recency of references. Moreover, several 

dummy variables on the subject or type of article (e.g., relevance to plate tectonics) had a significant influence 

on citations. On the other hand, significant author variables included average citations per article published 

in the past by the author(s) and the proportion of authors with a university affiliation. The number of authors 

was not a significant predictor. 

  Walters (2006) used negative binomial regression analysis to predict the citation counts of 428 articles 

published in 12 prime-psychology journals in 2003, with nine explanatory variables including author, article, 

and journal characteristics. The results revealed significant positive effects of the average citations of the first 

author’s past publications, the first author’s nationality (whether the USA or not), and whether or not it was 

a review article. Multi-authorship and the journal impact were  significant, while the first author’s gender 

and occupational affiliation, article length, and the subject of the article (correctional/criminological) were 

not significant. From these results, Walters suggested that the author characteristics might be more powerful 

for citation prediction than the journal and article characteristics. 

  Haslam et al. (2008) analyzed the citation counts of 308 articles published in three major journals of social-

personality psychology in 1996. Thirty potential factors affecting citations were classified into four groups 

(characteristics of author, institution, article organization, and research approach). Multiple regression 

analyses were performed at two stages: first, using the characteristics within each of the four groups as the 

explanatory variables and second, using nine variables that were significant in the first four analyses. The 

main factors that increased citations were (a) high productivity (number of past publications) of the first 



author, (b) existence of a co-author with higher productivity than the first author, (c) high journal prestige, 

(d) more pages in the article, (e) more references, and (f) recency of references. Aggregate productivity of 

the authors other than the first author, competitive grant support, length of the article title, and whether it was 

a theoretical/review article were significant at the first stage, but not at the second stage. 

  Peng and Zhu (2012) used 18,580 social science articles about internet studies. They also carried out two-

stage multiple regression analyses, using article characteristics (including author characteristics) as 

explanatory variables at the initial stage and adding journal characteristics at the second stage. The results 

indicated a stronger effect of the journal characteristics, especially the JIF. Significant predictors, however, 

included some article characteristics such as article length, number of authors, topical popularity (measured 

as the number of internet-related words in the abstract), the proportion of highly-cited publications in 

references, and active years of the first author. 

 

“Signals” bringing quick attention to an article. Van Dalen and Henkens (2001; 2005) examined which 

factors influence the citation impact of articles in the field of demography to determine whether the factors 

shown to influence the citation impact in natural sciences are also applicable to the social sciences field. They 

especially focused on the roles of author and journal reputation as “signals” that brought quick attention to 

an article. They counted citations received by each of 1,371 articles in this field with citation windows of 5 

years (van Dalen & Henkens, 2001) and 10 years (van Dalen & Henkens, 2005) after publication and 

developed several negative binomial regression models using characteristics of authors, visibility, content, 

and publishing journal as the explanatory variables. 

The variables regarding journal reputation, such as the JIF, journal circulation number, and reputation of 

the editorial board (measured by the average number of citations obtained by the editorial board members) 

showed extensive influence on the citation rate of articles, while the influence of the variable regarding author 

reputation, which was measured by the accumulated number of citations obtained by the author (the author 

with the highest accumulated citations in case of co-authored articles), was significant but less influential. 

Other variables that showed highly significant associations with the citation rate of articles were article type 

(notes or comments were less cited than normal articles), number of pages, regional focus of the article 

(articles focusing on the USA or Europe were highly cited), and the language of the journal. Additionally, 

the author’s nationality, number of authors, and the position of the article in the journal issue showed 

moderately significant relations to the article’s citation rate. 

 

Other studies. In addition to those mentioned above, some studies investigate integratedly factors that 

potentially influence the citation rate of articles. These studies focused on the effect of a specific factor on 

citations, taking various controlling variables into account. 

To investigate whether the peer review system of refereed journals fulfills its objective to select superior 

work, Bornmann and Daniel (2008) compared the citation rates between 878 accepted articles and 959 



articles that were initially rejected but later accepted by another journal, both of which were submitted to 

Angewandte Chemie International Edition (ACIE) in 2000. The results of negative binomial regression 

analysis controlling the possible effect of various influencing factors revealed that the accepted articles had 

an advantage over the rejected articles by 40–50% in the average number of citations. Regarding the control 

factors, the language of the article (English or other) and author’s status (number of authors in the article 

listed at ISIHighlyCited.com) were statistically significant. Furthermore, articles about organic, 

physical/inorganic, and macromolecular chemistry had significantly more citations than those about applied 

chemistry and biochemistry (subject classification according to CA Sections). The number of authors was 

statistically significant only in a short citation window (three years after publication). Article length was not 

statistically significant, probably because the articles used in this study were from the “Communications” of 

ACIE, which generally publishes short articles. 

  Lokker, McKibbon, McKinlay, Wilczynski, and Haynes (2008) tested the predictability of citation counts 

of clinical articles that met basic criteria for critical appraisal from data obtained within three weeks of 

publication. The explanatory variables in multiple regression analysis included those about quality 

assessment of the articles and publishing journals as well as the usual bibliographic attributes. The significant 

predictors of citations were the average relevant score by raters (the average newsworthiness score was not 

significant) and selection by EBM synoptic journals with regard to article quality; number of databases 

indexing the journal and the proportion of articles recorded in EBM synoptic journals with regard to journal 

quality; and number of authors, number of references, being a multicenter study, and being a therapy article 

with regard to bibliographic attributes.  

Under the hypothesis that open access (OA) articles have a higher citation impact than non-open access 

(NOA) articles because of biases toward OA (e.g., self-selection by the authors), Davis, Lewenstein, Simon, 

Booth, and Connolly (2008) conducted a randomized controlled trial (RCT) that compared the citation rates 

between randomly-assigned OA and NOA articles. Negative binomial regression analysis including many 

control variables revealed no evidence that OA articles received higher rates of citation than NOA articles. 

Among the control variables considered, the number of authors, inclusion of author(s) from the USA, the 

JIF, and number of references were significant, while article length was not significant.  

Intending to argue against the accepted view that internationally co-authored articles have a higher 

citation rate compared to domestic ones, He (2009) applied negative binomial regression analysis to articles 

by biomedical researchers in New Zealand using several co-authorship variables and controlling variables as 

the explanatory variables. The results revealed that adding one author from the same institute brought an 

effect on increase of the citation count of an article comparable to adding one foreign (outside New Zealand) 

author. Among the controlling variables used, more cited references boosted the citation count; the 

significance of h-index depended on the model used, and the length and type of article was not significant. 

  Fu and Aliferis (2010) developed a supervised learning model using the SVM (support vector machines) 

algorithm for predicting long-term citation counts (10 years after publication) of articles. Applying this model 



to 3,788 articles about internal medicine sampled from eight general medical journals published between 

1991 and 1994, they selected effective variables from many content-based features (terms extracted from the 

title, abstract, and indexed MeSH of each article) and nine bibliometric features. Within the selected 

variables, they further identified significant variables using logistic regression analysis that differentiated 

between more highly-cited and less-cited articles. Among the bibliometrics features, only the JIF and 

accumulated number of citations obtained by the last author were significant, while the publication type and 

accumulated number of citations obtained by the first author were not significant in the final logistic 

regression. The effective content-based features varied greatly according to the threshold value of the citation 

count in the logistic regression. 

 

The studies described in this subsection are summarized in Table 1. (Chen (2012) in this table is 

introduced in “Quantitative relations between citation rates and measures of the quality or content of articles” 

in the next subsection.) Although each of these studies yielded interesting results, the conclusions of these 

studies do not have generality because the sample articles used were restricted to a specific field (Stewart, 

1983; Peters & van Raan, 1994; van Dalen & Henkens, 2001; van Dalen & Henkens, 2005; Walters, 2006; 

Haslam et al., 2008; Lokker et al., 2008; Fu & Aliferis, 2010; Peng & Zhu, 2012), to one (or a few) specific 

journal(s) (Bornmann & Daniel, 2008; Davis et al., 2008), or to articles by authors from a specific nation 

(He, 2009).  

In this research, using only “extrinsic” factors that do not directly associate to the quality or content of 

articles as explanatory variables, we aim to find the factors affecting citation rate of articles common to 

several different fields to examine whether there are general tendencies among fields. 

 



  



Analyses of the individual factors potentially influencing citations 

 

  This subsection summarizes the findings that have been reported about the main factors that potentially 

influence citations, which include those from the integrated analyses mentioned in the preceding subsection 

and those from other studies that have investigated the relations between citation rates and specific factors. 

 

Does collaboration boost the citation rate of articles? There have been many studies investigating the 

relationship between citation rate and the number of authors of an article. These studies, at least partially, 

rely on the hypothesis that adding authors to an article leads to more citations of the article because the 

authors would have different scientific influences. This idea was expanded to examine the relationship 

between the number of collaborative institutions or countries in articles and the citation rates of the articles. 

Such research would be motivated by questions about whether joint research among different research 

institutions or countries contributes to an increased impact of the research. 

The studies by Basu and Levinson (2005), Figg et al. (2006), and Sooryamoorthy (2009) focused on the 

relationship between citation rates of articles, and the number of authors and their institutions and/or 

countries. Their results showed that in many cases multiple authors, institutions, or countries have a positive 

effect on the citation rate of an article. 

  Persson, Glänzel, and Danell (2004) investigated the relationship between the number of authors of articles 

and the citation rate received by the articles in two publication years, 1980 and 2000, to test their hypothesis 

that the inflationary tendency of co-authorships in the last two decades is (at least) one cause of the increase 

in references (consequently, citations) per article. For both years, a clear relation was shown that adding one 

author to an article resulted in adding 0.6 citations on average in the 3-year citation window after publication. 

They also found that the average number of citations for articles with the same number of authors increased 

by 8 from 1980 to 2000, which implies that the spread of research collaboration is not the only cause of 

growth of citations during this period. 

In addition to these studies, many studies have reported a positive correlation between the number of 

authors and the citation rate of articles (Aksnes, 2003a; Leimu & Koricheva, 2005; Bornmann & Daniel, 

2006; Davis et al., 2008; Lokker et al., 2008; Sin, 2011; Chen, 2012; Peng & Zhu, 2012; Fanelli, 2013; Rigby, 

2013). However, some studies using multiple regression analysis with numerous explanatory variables 

demonstrated that the ability of the number of authors to predict the citation impact of articles is weak (Peters 

& van Raan, 1994; van Dalen & Henkens, 2001; Walters, 2006; Bornmann & Daniel, 2008) or insignificant 

(Stewart, 1983; Fu & Aliferis, 2010). 

Analyzing eight journals that publish many articles and also have a high JIF, Hsu and Huang (2011) 

showed that the probability that an article with more authors gains more citations than an article with fewer 

authors is not as high as expected, i.e., 53– 65% depending on the journal, although statistically the more 

authors an article has, the more citations it tends to receive. On the basis of their observation that there is no 



significant relation between the number of authors and the citation rate within article sets in which only the 

articles by highly-cited authors were extracted, Levitt and Thelwall (2009) suggested that the apparent 

positive correlation between them seen in a mixed article may reflect a positive correlation between the 

average number of co-authors and the average citation count of individual authors. 

Articles with international collaboration, which have multiple author affiliation countries, have been 

suggested to be more highly cited than those with local or domestic collaboration (Katz & Hicks, 1997; van 

Raan, 1998; Persson et al., 2004; Sooryamoorthy, 2009; Sin, 2011; Peclin, Juznic, Blagus, Sajko, & Stare, 

2012; Ibanez, Bielza, & Larranaga, 2013; Bordons, Aparicio, & Costas, 2013). For example, Katz and Hicks 

(1997) reported that adding one foreign co-author increased citations by 1.6 per article on average, while 

adding one co-author from the same or different domestic institution resulted in an increase of only 0.75 

citations. In contrast, He (2009) suggested that grouping articles into international, national, and local 

categories used in many of the previous studies may understate the contribution of local or national co-

authorship to the citation impact compared with that of international co-authorship. This is because the 

average number of authors in the international group would be larger than that in the national or local group, 

and the number of authors would positively correlate with citation rate. He assigned the three collaboration 

variables (numbers of foreign, domestic, and local co-authors) to each article in his sample (1,860 articles 

published by 65 biomedical scientists at a university in New Zealand) and indicated through negative 

binomial regression analysis that the effect of adding one local co-author on the citation impact was 

comparable to that of adding one international co-author. (Domestic collaboration was not significantly 

associated with the citation impact.) 

Table 2 summarizes the studies mentioned here excluding those included in Table 1. 

 



Table 2 Outline of studies investigating attributes on collaboration as citation-influencing factors. 

a) LR:Linear single regression, LMR:Linear multiple regression, CMR:Categorical multiple regression, 

NBMR:Negative binomial multiple regression, LogMR:Logistic multiple regression 

  LogC shows the independent variable of LMR. 

b) A:Strong or definite predictor  B:Weak predictor or predictive power dependent on the model, C:Not-

significant or negative predictor 

c) Including domestic interinstitutional collaboration and number of co-authors of other domestic institutions 

d) Including international collaboration and number of foreign co-authors 

 

Do articles determine the journal impact, or is the reverse true? It is natural that the citation rate of an article 

is positively associated with the citation impact of the journal in which it is published, but it is debatable 

#Au-
thors

#Insti-
tutions c)

#Coun-
tries d)

Aksnes (2003a) Natural sciences 46,849 Simple
comparison A A

Basu & Levison
(2005)

Astronomy &
astrophysics 95,186 LMR (Log(C+1)) A A C

Bordons et al.
(2013)

Pharmacology &
Pharmacy

1,971 and 2,858
(Two samples) CMR A A A

Bornmann &
Daniel (2006) Biomedicine 1,586 NBMR A

Fanelli (2013) Hypthesis-testing 2,545 NBMR A

Figg et al.
(2006) Medicine 164 - 886

(Six samples) LR (LogC) A A

Hsu & Huang
(2011) Natural sciences 10,000 - 15,000

(Eight samples) LR A

Ibáñez et al.
(2013)

Computer
science ca. 20,000

Mann-Whitney
test; Kruskal-
Wallis test

C A

Katz & Hicks
(1997) General c.a. 376,000 LR A A A

Leimu &
Koricheva (2005) Ecology 228 t-test; ANOVA;

Correlation A

Peclin et al.
(2012) Natural sciences 5,263 ANOVA B A

Persson et al.
(2004) General All WoS articles

in 1980 and 2000 LR A A

Rigby (2013) Biochemistry 3,596 LMR (Log(C+1)) A C

Sin (2011) Library &
inf science 7,489 LogMR A C A

Slyder et al.
(2011)

Geography &
Forestry 213 t-test; ANOVA;

Correlation C

Sooryamoorthy
(2009) General 11,196 LR (LogC) A C A

van Raan (1998) Astronomy 2,090 Simple mean
comparison C A

Influencing factors b)

Work Target field Sample size
(n) Analysis a)



whether the quality or importance of an article determines the journal impact indicators such as JIF (Seglen, 

1994), or the reputation of a journal attracts citations to articles in that journal (van Dalen & Henkens, 2005). 

   As mentioned in the preceeding subsection, Van Dalen and Henkens (2001; 2005) showed that the journal 

reputation measures such as the JIF, the average number of citations obtained by the editorial board members, 

and the circulation numbers had a strong positive influence on the citation impact. Some other studies 

described in the preceding subsection took the JIF (or other impact indicator) of the journal publishing an 

article as one of the most important factors to increase the citation rate of that article (Peters & van Raan, 

1994; Davis et al., 2008; Fu & Aliferis, 2010; Peng & Zhu, 2012 Didegah & Thelwall, 2013). However, the 

explanatory power of the JIF was not as strong by Walters (2006). 

  Callaham, Wears, and Weber (2002), Aksnes (2003a), Bornmann and Daniel (2006), Slyder et al. (2011), 

and Wang, Yu, and Yu (2011) also reported an association between the citation rate of articles and the JIF of 

the journals in which they were published. Moreover, Lariviere and Gingras (2010b) used a unique method 

of comparing 4,532 pairs of “duplicate” articles with the same title, the same first author, and the same 

number of references published in two different journals; they reported that the article published in a higher-

impact journal obtained on average twice as many citations as its counterpart published in a lower-impact 

journal. The obvious difference in citation count between identical articles is strongly suggestive of the halo 

effect of journal prestige on the scientific impact of articles. 

Table 3 summarizes the studies mentioned here excluding those included in Table 1. 

 

Table 3 Outline of studies investigating journal attributes as citation-influencing factors. 

a) CMR:Categorical multiple regression, NBMR:Negative binomial multiple regression,  

b) A:Strong or definite predictor  B:Weak predictor or predictive power dependent on the model, C:Not-

significant or negative predictor 

 

Is there a halo effect of authors, institutions, or countries? There have been many discussions about the halo 

JIF
Other

citation
impact

Aksnes (2003a) Natural sciences 46,849 Simple
comparison A

Bordons et al.
(2013)

Pharmacology &
Pharmacy

1,971 and 2,858
(Two samples) CMR A

Bornmann &
Daniel (2006) Biomedicine 1,586 NBMR A

Callaham et al.
(2002)

Emergency
medicine 204 CMR A

Ibáñez et al.
(2013)

Computer
science ca. 20,000

Mann-Whitney
test; Kruskal-
Wallis test

A

Larivière &
Gingras (2010b) General 4,532 pair t-test A

Slyder et al.
(2011)

Geography &
Forestry 213 t-test; ANOVA;

Correlation A

Work Target field Sample size
(n) Analysis a)

Influencing factors b)



effect on scientific impact suggesting that articles written by authors with good reputations or high 

achievement levels or authors affiliated with famous institutions attract more citations than those written by 

other authors. 

  The measures of reputation or achievement of authors include indicators that are based on the number of 

publications in the past (published before the publication of the article under consideration), the citation count 

received by the past publications (before the publication of the article under consideration), active years, and 

present status. Most of the studies mentioned in the preceding subsection have used such indicators as the 

explanatory variables of their prediction model. Peters and van Raan (1994) and Haslam et al. (2008) 

determined past publications to be an effective predictor of citations, but Fu and Aliferis (2010) did not find 

it to be significant. As the indicators of the past citations, aggregated citations (Fu & Aliferis, 2010), average 

citations per article (Stewart, 1983; Walters, 2006), h-index (He, 2009; Wang et al., 2011; Wang, Yu, An, & 

Yu, 2012), and the proportion of authors appearing in the ISI Highly Cited list (Bornmann & Daniel, 2008) 

were significant predictors in all cases. Some reports claimed that articles by senior authors tended to receive 

higher citations (Slyder et al., 2011; Peng & Zhu, 2012), whereas others contradicted the claim (Stewart, 

1983; He, 2009). 

  Danell (2011) investigated whether the citation rate of an article in the future can be predicted from the 

author’s previous publication number and citation rate using two article sets of limited subject areas (episodic 

memory and Bose-Einstein condensation). Using quantile regression models, he found that the previous 

citation rate was a significant predictor at most quantiles of the dependent variables (future citation rate) and 

was more significant at higher quantile values, while the previous publication number was not significant at 

most quantiles except in some quantiles near the median. 

As an indicator of the status of the institution with which the author is affiliated, Leimu and Koricheva 

(2005) and Fu and Aliferis (2010) used the rank given by the Academic Ranking of World Universities 

(ARWU), and Stewart (1983) used the past publications by the institution, but these indicators were found to 

provide no or very weak influence on citations. 

Regarding bias toward particular countries in citation rates, it has been suggested that articles by authors 

in a few highly productive countries, such as the USA, tend to acquire higher numbers of citations because 

authors tend to favorably cite articles by other authors from their own country. Using several sets of 

hypothesis-testing articles in the field of ecology, Leimu and Koricheva (2005) indicated that the annual 

citation rate of articles was positively associated with authors from English-speaking nations compared with 

non-English-speaking nations and with US authors compared with European authors. Cronin and Shaw 

(1999) showed that in the field of library and information science, the proportion of uncited articles was 

lower in the case of a first author from the USA, UK, or Canada than from other countries. There have been 

other reports demonstrating an association of articles by authors from the USA or western/northern Europe 

with higher citation rates (van Dalen & Henkens, 2001; van Dalen & Henkens, 2005; Basu & Lewison, 2005; 

Walters, 2006; Davis et al., 2008; Sin, 2011; Peng & Zhu, 2012). On the other hand, Peters and van Raan 



(1994), Haslam et al. (2008), and Lokker et al. (2008) reported that the affiliation country of authors was not 

an important factor for predicting the citation rate of articles. 

  Pasterkamp, Rotmans, de Kleijn, and Borst (2007) examined the relationship of the affiliation countries of 

corresponding authors of articles published in 1996 in six cardiovascular journals to those of corresponding 

authors of references cited by those articles, and indicated that authors cited articles by authors from their 

own country as much as 32% more frequently than expected, even excluding author self-citations. The bias 

toward self-country citations was observed for all countries and in all journals that were investigated. 

Schubert and Glänzel (2006) also reported evidence of the tendency for self-country citations. However, 

some studies denied this tendency based on a modified method for calculating self-country (or self-language) 

citation rate (Bookstein & Yitzhaki, 1999; p.291–300 in Moed, 2005). 

Table 4 summarizes the studies mentioned here excluding those included in Table 1. 

 

Table 4 Outline of studies investigating attributes on author's status as citation-influencing factors.  

a) LMR:Linear multiple regression, NBMR:Negative binomial multiple regression 

  Log(C+1) shows the independent variable of LMR. 

b) A:Strong or definite predictor  B:Weak predictor or predictive power dependent on the model, C:Not-

significant or negative predictor 

 

Quantitative relations between citation rates and measures of the quality or content of articles. Although 

quality and content are the most crucial factors determining the citation rate of an article, quantitative analysis 

of this is difficult. There have, however, been several studies examining the relation between the number of 

citations of articles and their quality ranking or subject classes. Although this study mainly focuses on the 

citation-influencing factors not directly related to the quality or content of articles, these studies are briefly 

discussed below. 

Some studies have examined whether the citation impact of hypothesis-testing articles differs depending 

on the testing method or test results. These studies analyzed the correlation between the citation rate and the 

Author's
affili-
ation

Author's
national-

ity

Author's
produc-

tivity

Author's
cited-
ness

Author's
career

Bornmann &
Daniel (2006) Biomedicine 1,586 NBMR A

Basu & Levison
(2005)

Astronomy &
astrophysics 95,186 LMR (Log(C+1)) A

Cronin & Shaw
(1999)

Library and
inf science 716 Chi-squre test A

Danell (2011) Two topics (a) 728
(b) 1,450

Quantile
regression B A

Leimu &
Koricheva (2005) Ecology 228 t-test; ANOVA;

Correlation B A

Slyder et al.
(2011)

Geography &
Forestry 213 t-test; ANOVA;

Correlation A

Influencing factors b)

Work Target field Sample size
(n) Analysis a)



following attributes: sample size or the type of subjects (Callaham et al., 2002; Leimu & Koricheva, 2005; 

Lortie, Aarssen, Budden, & Leimu, 2013); presence/absence of a control group or randomization (Callaham 

et al., 2002); positiveness/negativeness of the results or support/rejection of the hypothesis (Callaham et al., 

2002; Leimu & Koricheva, 2005; Fanelli, 2013); and strength of statistical significance (Leimu & Koricheva, 

2005). In many cases, however, the correlation was either not significant or, if present, weak. 

   Some of the studies mentioned in the preceding subsection involved features concerning article’s content 

as the explanatory factor in their multiple regression models. These features include topic terms of medical 

articles (Fu & Aliferis, 2010); research design of clinical medicine research (Lokker et al., 2008); subfields 

and research methods of geoscience research (Stewart, 1983); and themes of demographic articles (van 

Dalen & Henkens, 2001; 2005). 

A considerable number of studies have assessed the connection between an article’s citation rate and the 

peer evaluation it received. The indicators of peer evaluation examined in the studies were as follows: the 

results of peer reviews of manuscripts submitted to a journal (Bornmann & Daniel, 2008; Patterson & Harris, 

2009; Bornmann, Schier, Marx, & Daniel, 2011); acquisition of competitive funding mentioned in the 

acknowledgments (Cronin & Shaw, 1999; Haslam et al., 2008; Rigby, 2013); and self-evaluation by the 

authors (Aksnes, 2006). Some studies addressing articles of clinical medicine analyzed the dependence of 

citation rate on the score of clinical relevance and newsworthiness (Callaham et al., 2002; Lokker et al., 

2008), methodological rigor (Akcan, Axelsson, Bergh, Davidson, & Rosen, 2013), and whether they were 

abstracted by EBM synoptic journals (Lokker et al., 2008). However, these indicators mentioned here could 

not be obtained from the articles, except for funding information in the acknowledgments. 

It is difficult to represent the quality of an article by a quantitative measure that does not rely on self-

evaluation or peer review. A recent study by Chen (2012) is notable in this regard. Chen proposed to represent 

the potential (or value) of an article in terms of the degree to which it alters the intellectual structure of the 

state-of-the-art (an ability of “boundary-spanning”) and to measure this ability by three metrics quantifying 

the change in the existing intellectual network structure: (a) modularity change rate, (b) cluster linkage, and 

(c) centrality divergence. Using these three “intrinsic” attributes and three traditional “extrinsic” attributes 

(number of authors, number of references, and number of pages) as the explanatory variables of negative 

binomial regression analysis, he predicted the citation rates of articles in several document sets in different 

fields. The results revealed that the cluster linkage was a much stronger predictor than the three extrinsic 

variables and that the centrality divergence might also have a boundary-spanning ability, although its 

predicting power was somewhat unstable. 

Table 5 summarizes the studies mentioned here excluding those included in Table 1. 

 

Table 5 Outline of studies investigating attributes on research quality/content as citation-influencing factors. 



a) LMR:Linear multiple regression, CMR:Categorical multiple regression, NBMR:Negative binomial multiple 

regression 

  Log(C+1) shows the independent variable of LMR. 

b) A:Strong or definite predictor  B:Weak predictor or predictive power dependent on the model, C:Not-

significant or negative predictor 

 

Other potential factors that might influence citation rate. As shown in the preceding subsection, several 

studies that used multiple regression analysis considering various citation-influencing factors included 

number of references as one of the explanatory variables and found it to be a significant predictor of citations 

(Stewart, 1983; Peters & van Raan, 1994; Davis et al., 2008; Haslam et al., 2008; Lokker et al., 2008; He, 

2009; Didegah & Thelwall, 2013). Many other studies have demonstrated that articles with a greater number 

of references tend to be cited more often (Chen, 2012; Rigby, 2013; Bordons et al., 2013).  

Although more specific characteristics of references, such as the ratio of self-citations and the age and 

subject distributions, also appear to be related to the number of article citations, they have rarely been 

considered in previous research, probably because of the difficulty in obtaining data. However, a few studies 

have included the recency of the references as one of the latent factors in the multiple regression model 

predicting citation rates. Stewart (1983) and Peters and van Raan (1994) took the proportion of references 

within 3 and 5 years (Price index), respectively, as the recency measure, and both found these variables to be 

a moderate predictor. Haslam et al. (2008) demonstrated that the newer the mean year of references, the more 

citations were obtained by the article. 

Regarding the other characteristics of references, Peng and Zhu (2012) and Didegah and Thelwall (2013) 

showed that an article whose references have a higher impact (a greater ratio of highly-cited documents in, 

Peer
evaluation

Self-
evaluation

Funding
acquisision

Method
/results

Akcan et al.
(2013) Clinical medicine 192

Kruskal-Wallis
test; Rank
correlation

C

Aksnes (2006) General 1549 Rank
correlation B

Bornmann et al.
(2011)

Atmospheric
science 315 Chi-squre test A

Callaham et al.
(2002)

Emergency
medicine 204 CMR B B

Cronin & Shaw
(1999)

Library and
inf science 716 Chi-squre test C

Fanelli (2013) Hypthesis-testing 2545 NBMR B

Leimu &
Koricheva (2005) Ecology 228 t-test; ANOVA;

Correlation C

Lortie et al.
(2013)

Ecology and
evolutionary
biology

1332 Generalized
linear model C

Patterson &
Harris (2009)

Physics in
biomedicine 1095 Correlation A

Rigby (2013) Biochemistry 3596 LMR (Log(C+1)) B

Influencing factors b)

Work Target field Sample size
(n) Analysis a)



or higher mean citations of, the references) have a tendency to acquire higher citations. Lariviere and Gingras 

(2010a) analyzed the effects of interdisciplinarity on citation impact of articles indexed in Web of Science in 

2000 in 14 subject areas, defining the indicator of interdisciplinarity of an article as the percentage of its cited 

references of subject areas other than that of the article. The pattern of dependence of the citation rate of 

articles on their degree of interdisciplinarity was different in each subject area, but in all subject areas the 

citation rate of articles became low at both extremes of high and low interdisciplinarity. Didegah and Thelwall 

(2013) showed internationality of references was one of the significant predictors in their analysis of 

determinants of citation rates in the field of nanoscience and nanotechnology. 

Some studies indicated a positive association between the number of citations and article length (number 

of pages) (Stewart, 1983; Peters & van Raan, 1994; Leimu & Koricheva, 2005; van Dalen & Henkens, 2001; 

van Dalen & Henkens, 2005; Haslam et al., 2008; Peng & Zhu, 2012), while others showed no significant 

correlation (Walters, 2006; Davis et al., 2008; Slyder et al., 2011; Rigby, 2013). On the other hand, Lokker 

et al. (2008), He (2009), and Chen (2012) showed a negative correlation between article length and citations, 

but it could be due to influences of other explanatory variables used in their multiple regression models. 

Table 6 summarizes the studies mentioned here excluding those included in Table 1. 

 

Table 6 Outline of studies investigating other attributes as citation-influencing factors. 

a) LMR:Linear multiple regression, CMR:Categorical multiple regression 

  Log(C+1) shows the independent variable of LMR. 

b) A:Strong or definite predictor  B:Weak predictor or predictive power dependent on the model, C:Not-

significant or negative predictor 

 

Questions about self-citations. Do self-citations largely contribute to highly-cited articles? Moreover, are 

articles co-authored by large numbers of authors cited many times because the authors will each cite these 

articles? If the answers to these questions are affirmative, then self-citations should be excluded in analyses 

of factors influencing the citation impact of articles. However, studies by Aksnes (2003b) and Glänzel, Thijs, 

& Schlemmer (2004) indicated that the ratio of self-citations to non-self-citations tended to decrease with an 

increase in total citations received by articles from their analyses of longitudinal data of a large quantity. 

#Refer-
ences

Interdis-
ciplinarity

of
references

Article
length

Bordons et al.
(2013)

Pharmacology &
Pharmacy

1,971 and 2,858
(Two samples) CMR A

Larivière &
Gingras (2010a) General All WoS articles

in 2000
Simple
comparison B

Leimu &
Koricheva (2005) Ecology 228 t-test; ANOVA;

Correlation A

Rigby (2013) Biochemistry 3596 LMR (Log(C+1)) A C
Slyder et al.
(2011)

Geography &
Forestry 213 t-test; ANOVA;

Correlation C

Work Target field Sample size
(n) Analysis a)

Influencing factors b)



Furthermore, Glänzel & Thijs (2004) and Aksnes (2003b) also observed that the more authors of an article 

there are, the lower is the self-citation ratio. From these results, it appears that self-citations need not be 

excluded in analyses, at least in the case of statistical analyses from a macroscopic view. 

 

Purpose of this Research 

 

The purpose of this study is to examine whether there are general trends across subject fields regarding 

the factors that affect the number of citations of articles and the extent to which each factor influences citation 

rate. We focus on those factors that are not directly related to the quality or content of articles. For this 

purpose, a systematic analysis is done for several selected subject fields separately to examine whether some 

common features about principal influential factors across fields are noticeable. We limit the sample articles 

to original papers published in English journals because citation rate is known to be dependent on the type 

and language of articles.  

On the basis of these considerations, the following strategy is adopted in this research: 

(1) several journals (all using English language only) are selected in each of several different fields; 

(2) from the selected journals, original articles published in the same year are sampled; 

(3) for each of the selected subject fields, several negative binomial multiple regression models are 

examined alternatively; 

(4) the number of citations received by the articles is set as the response variable; 

(5) a wide range of factors that potentially influence citation rates are used as the explanatory variables; 

and, 

(6) journals are included as dummy explanatory variables depending on the effect of the journals’ 

citation impacts. 

Using this method, it is possible to separate the effects of the potential factors on the number of citations 

and to evaluate the contribution of each factor.  

Because the factors directly related to the quality or content of articles are not considered, the models 

obtained are not expected to predict citation rates with very high accuracy. This study aims not to obtain a 

model with high explanatory power, but rather to determine a baseline of the citation rate expected from 

bibliometric factors. If a common baseline can be found across different subject fields, the deviation of each 

article from this baseline would be regarded as a more adequate indicator of the impact of the article than 

those reported to date. 

  Our multiple regression models include the following factors as explanatory variables, considering the 

results of the studies described in the preceding section “Literature Review.” 

- Factors regarding collaboration: number of authors; number of institutions; number of affiliation countries. 

- Factors regarding author’s reputation: number of articles published by the first author before publication 

of the target article; number of citations that the articles had received by the time of publication of the 



target article; active years of the first author before publication of the target article. 

- Factors regarding cited references: number of references; Price index (ratio of references within the last 

five years before the citation occurred). 

- Factors regarding visibility of the articles: article length (normalized number of pages); number of figures; 

number of tables; number of mathematical equations; journal in which the article is published (dummy 

variable). 

   Details of these explanatory variables, and also of the response variable, are presented in the following 

section.  

 

Data Sources and Methods 

 

To achieve the purpose mentioned above, we tried to identify the primary factors affecting citation rates 

of research articles using the citation frequency data obtained from sample articles published in the same 

year. We analyzed the factors influencing citations for each of six subject fields to investigate whether a 

prediction model with some generality could be found across the fields. 

 

Target fields and sampled articles 

 

The following six subject fields were selected as targets. We will use the abbreviations shown in 

parentheses in the descriptions hereafter. 

- Condensed Matter Physics (CondMat) 

- Inorganic and Nuclear Chemistry (Inorg) 

- Electric and Electronic Engineering (Elec) 

- Biochemistry and Molecular Biology (Biochem) 

- Physiology (Physiol) 

- Gastroenterology (Gastro) 

From journals included in the Journal Citation Reports (JCR) Subject Category corresponding to each 

of these fields, four journals were chosen as the sources from which the articles were sampled, using the 

JCR Science Edition 2004. The followings were considered when selecting the journals: 

- Journals to which only one subject category is assigned (that is, journals with more than one subject 

category were not selected) 

- Journals of English-language only 

- Journals with both top-ranked and moderately ranked impact factors in each field 

- Journals that are not concentrated in one or two publishing countries in each field 

Using Web of Science (WoS), we randomly sampled 50–60 research articles (“articles” as classified by 

WoS) published in 2000 from the individual journals selected. We excluded proceeding papers, short 



articles (2 pages or less), and articles in which the author (AU) or affiliation (C1) data were lacking. The 24 

journals selected (4 per field) and the numbers of sample articles are shown in Table 7. 

The sampling method above should eliminate the influences on citation rates by publication year, article 

type, and language. 

 

Table 7 Selected subject fields and journals. 

a) The journal titles at the time of 2000, although some were changed after that. 

 

Obtaining citation frequency data 

 

The citation frequencies received by the sample articles were measured in October 2006 and December 

2011 using WoS, and therefore, the length of the citing window is 6–7 years and 11–12 years, respectively. 

The citation frequencies corresponding to these two citing windows are hereafter called C6 and C11. 

These citation frequencies include self-citations1. As described in the last part of the preceding section, 

the possibility that inclusion of self-citations biases the results of such a macroscopic analysis as this 

research is not high. However, it has been reported that self-citations tend to be concentrated in a short 

Journal Title a
Publishing

Country
Sampled
papers

Physical Review B USA 55
Journal of Physics - Condesed Matter GBR 56
European Physical Journal B DEU 60
Physica B NLD 59
Inorganic Chemistry USA 53
Journal of the Chemical Society - Dalton
Transactions GBR 54

Inorganica Chimica Acta CHE 60
Transition Metal Chemistry NLD 60
IEEE Transactions on Microwave Theory and
Techniques USA 59

IEEE Transactions on Circuits and Systems I
- Fundamental Theories and Applications USA 60

Signal Processing NLD 59
IEE Proceedings - Circuits, Devices and
Systems GBR 51

Journal of Biological Chemistry USA 60
Journal of Molecular Biology USA 60
European Journal of Biochemistry GBR 60
Journal of Biochemistry (Tokyo) JPN 60
Journal of General Physiology USA 60
Journal of Physiology - London GBR 58
Pflugers Archive European Journal of
Physiology DEU 58

Japanese Journal of Physiology JPN 60
Gastroenterology USA 59
Gut GBR 56
American Journal of Gastroenterology USA 58
Journal of Gastroenterology JPN 60

Subject Field

Condensed Matter
Physics

Inorganic and
Nuclear Chemistry

Electric and
Electronic
Engineering

Biochemistry and
Molecular Biology

Physiology

Gastroenterology

(CondMat)

(Inorg)

(Elec)

(Biochem)

(Physiol)

(Gastro)



period after publication (Aksnes, 2003b); therefore, we use considerably long citing windows (more than 

five years after publication). 

 

Obtaining data about factors potentially affecting citation rates 

 

In this study, the following attributes were considered as the factors potentially affecting the citation 

frequency of the sample articles. 

 - Authors’ collaborative degree 

(a) Authors: Number of authors of the article 

(b) Institutions (Insts): Number of institutions the authors are affiliated with 

(c) Countries: Number of countries where the institutions are located 

 - Cited references 

(d) References (Ref): Number of references cited in the article 

(e) Price: Price index (percentage of the references whose publication year is within 5 years before 

the publication year of the article). 

 - Article’s visibility 

(f)  Figures: Number of figures in the article 

(g) Tables: Number of tables in the article 

(h) Equations (Eqs): Number of numbered equations in the article 

(i)  Length: Number of normalized pages of the article 

 - Authors’ past achievements 

(j) Published articles (Publ): Number of articles published by the first author of the article up to the year 

2000 

(k) Cited: Number of citations received by the published articles (Publ) up to the year 2000 

(l) Age: Active years (elapsed years from the year of the first article publication to the year 2000) of the 

first author 

(m) Rate of publication (RatePubl): Number of articles published per annum by the first author during 

his/her active years (= Publ/Age) 

(n) Median of the number of citations (MedCites): Median of the number of citations received per annum 

by each published article 

The attributes (j), (k), and (l) are collectively called “cumulative achievement indicators,” and the 

attributes (m) and (n) are called “efficient achievement indicators.” 

- Publishing journal 

(o) Jnl-1; Jnl-2; Jnl-3: Dummy variables representing the individual journals publishing the articles 

Values of these attributes for the sample articles were acquired according to the procedures discussed 

below. 



Data on Authors, Insts, Countries, Refs, and Price were obtained from the downloaded WoS records. 

For Authors and Insts, the numbers of entries in the AU and C1 fields of WoS, respectively, were counted. 

Countries were measured from country names described at the end of the C1 entries2. The values of Price 

were obtained from the reference list in the WoS CR field of the article by counting references with 

publication years between 1996 and 2000 (i.e., within 5 years before publication of the article). 

Figures, Tables and Eqs were directly counted from the original documents. Figures included figures, 

charts, diagrams, and pictures. Length was defined as the number of converted pages under normalization 

of 6,400 characters per page, and the value for an article was determined by measuring, from sampled 

pages, the average characters per page of the journal publishing the article. 

We faced a difficultly in calculating the values of authors’ past achievements (Publ, Cited, Age, 

RatePubl, and MedCites) because of the existence of homonym authors. The results of the WoS search with 

the author names of the sample articles during 1970–20003 were found to be contaminated by a large 

number of homonym authors’ articles. To eliminate these articles, we developed a model for author 

disambiguation based on the similarity of each retrieved article to its originating article (the sample article 

whose author name was used for the search) and extracted the retrieved articles to be discriminated as 

“true” (Onodera et al., 2011). With this procedure, we obtained data about Publ, Age, and RatePubl for 

only the first authors of the 1,395 sample articles, as time did not permit us to collect data for all the authors 

(about 6,000 individuals).  

Data on the articles that cited “true” retrieved articles until 2000 were purchased from Thomson Reuters 

to calculate the values of Cited and MedCites.  

The values of Publ, Cited, RatePubl, and MedCites were calculated using full counting and fractional 

counting (giving each author a credit equal to the inverse of the number of authors); however, only the 

results that used fractional counting will be shown hereafter because a significant difference was not found 

between the two counting methods (fitness to the negative binomial regression was somewhat better with 

fractional counting). 

 

Negative binomial multiple regression analysis 

 

We used negative binomial multiple regression (NBMR) analysis to investigate the extent to which the 

citation rates of articles are influenced by the individual potential factors introduced in the preceding 

subsection. The NBMR analysis has been demonstrated to successfully work for predicting citations in 

several studies (van Dalen & Henkens, 2001; van Dalen & Henkens, 2005; Walters, 2006; Bornmann & 

Daniel, 2008; Davis et al., 2008; He, 2009; Chen, 2012; Didegah & Thelwall, 2013), because the citation 

frequency as a response variable is a non-negative integer, its distribution is remarkably skewed, and the 

variance is usually larger than the mean. A linear multiple regression (LMR) model with a logarithm of 

citation frequency (in many cases, log (C+1)) as the response variable has also been frequently utilized 



(Stewart, 1983; Basu & Lewison, 2005; Figg et al., 2006; Davis & Fromerth, 2007; Davis, 2009; Haslam et 

al., 2008). However, we adopted the NBMR model because it provided us with results much better than 

those of the LMR model (see the subsection “Comparison of fitness of NBMR to LMR” in the 

“Discussion” section). 

   In the NBMR analysis, the value of the response variable yi for a case i is supposed to be subject to 

negative binomial distribution, as follows (here, Γ(·) is a gamma function): 
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The expected value (μi) of yi is estimated from the following regression equation: 

ln(μi) = β0+β1Xi1+β2Xi2+…+βpXip .                    (2) 

Estimated values of the partial regression coefficients β0, β1,…, βp and parameter θ are given on the basis of 

the input data { Xi1, Xi2,…Xip; yi }. The value of θ is supposed to be independent of i. 

   In this study, the NBMR analysis was performed for each of the six subject fields, considering that not 

only the distribution of citation frequencies but also the distributions of the attributes’ values used as the 

explanatory variables differed by field. However, we expect the results to have some generality across 

fields, as stated in the section “Purpose of this Research.” 

   The response variable yi in Equation (2) is C6 or C11. The explanatory variables Xi1, Xi2,…Xip are the 

attributes (a)–(o), introduced in the preceding subsection. We set three regression models (Models A, B, 

and C) that were different from each other regarding selection of the explanatory variables about the 

authors’ achievements, as follows: 

Model A: Authors, Insts, Countries, Refs, Price, Figures, Tables, Eqs, Length, Publ, MedCites, Jnl-1, 

Jnl-2, and Jnl-3. 

Model B: Authors, Insts, Countries, Refs, Price, Figures, Tables, Eqs, Length, Cited, RatePubl, Jnl-1, 

Jnl-2, and Jnl-3. 

Model C: Authors, Insts, Countries, Refs, Price, Figures, Tables, Eqs, Length, Age, RatePubl, MedCites, 

Jnl-1, Jnl-2, and Jnl-3. 

The reasons these three models were examined will be described later (see the subsection “Some 

preliminary analysis” in the “Results” section). 

   Considering that the degree of citedness differs by journal, we introduced dummy variables 

representing the journals in which the individual sample articles were published into the explanatory 

variables of the NBMR analysis. As described earlier, the sample articles were extracted from four journals 

in each subject field. Hence for articles from a “baseline” journal, all values of the three dummy 

variables—Jnl-1, Jnl-2, and Jnl-3—were set at 0, and for articles from the other three journals, a value of 1 

was given to one of the three dummy variables (corresponding to the journal) and the value of 0 was given 



to the other two. The baseline journal was taken as the one having the lowest average citation frequency in 

each field. 

   The Advanced Regression Model of SPSS/PASW Version 18 was used to perform the NBMR analysis. 

Variable selection was not chosen in regression, and variables showing a significant relation to C6 or C11 

were identified from the regression results. 

 

Results 

 

Some preliminary analysis 

 

Means and standard deviations of the variables. The means and standard deviations of the two response 

variables (C6 and C11) and 14 explanatory variables are shown in Table 8. While the means of C6 differ by 

a maximum factor of 4.5 among the fields, the factor decreases to 2.6 for C11. This is because the ratio 

C11/C6 of the Elec field, the field with the lowest degree of citedness, is considerably higher (greater than 

3) compared to those of the other five fields (less than 2). 

 

Table 8 Means and standard deviations (in parentheses) of the response and explanatory variables. 

 

   Among the explanatory variables, Eqs, Publ, and Cited show especially large variations in the mean 

values across the fields. For instance, the mean of Eqs is 10–20 for the CondMat and Elec fields, while 

none of the sample articles in the Gastro field includes equations. Compared to Publ and Cited, which are 

the cumulative achievement measures of authors, RatePubl and MedCites, as the efficient achievement 

measures, show considerably less variation in the mean values among the fields. 

   As shown here, the distributions of the response and explanatory variables are significantly different 

Field
n
C6 10.7 (12.3) 10.7 (11.4) 5.6 (8.6) 21.3 (19.3) 15.8 (14.8) 25.0 (32.0)
C11 19.5 (24.0) 19.0 (22.4) 17.3 (30.9) 35.0 (33.2) 26.4 (25.3) 45.8 (67.6)
Authors 3.37 (2.06) 4.27 (1.97) 2.68 (1.52) 4.88 (2.13) 4.14 (2.16) 6.61 (2.99)
Insts 1.86 (0.86) 1.70 (0.80) 1.44 (0.71) 1.81 (0.85) 1.55 (0.73) 1.67 (0.95)
Countries 1.39 (0.56) 1.29 (0.55) 1.17 (0.43) 1.28 (0.54) 1.18 (0.44) 1.15 (0.42)
Refs 27.3 (13.1) 34.3 (18.6) 18.9 (17.2) 41.7 (16.1) 36.7 (15.4) 31.0 (14.3)
Price 32.4 (19.6) 26.6 (15.8) 33.0 (21.0) 40.1 (18.8) 36.6 (18.1) 33.9 (20.4)
Figures 5.89 (3.79) 4.83 (2.88) 8.63 (4.88) 6.49 (2.31) 6.66 (3.24) 3.55 (2.39)
Tables 0.87 (1.56) 2.98 (1.88) 1.18 (1.59) 1.45 (1.45) 0.91 (1.33) 1.74 (1.58)
Eqs 13.27 (17.46) 2.13 (4.22) 19.25 (20.53) 0.80 (3.13) 1.24 (3.93) 0.00 (0.00)
Length 7.28 (3.18) 7.10 (2.72) 8.28 (3.43) 10.70 (3.40) 9.94 (4.11) 6.20 (2.16)
Publ 6.41 (12.68) 10.74 (29.01) 3.58 (5.17) 2.54 (4.66) 3.48 (5.39) 7.69 (19.04)
Cited 35.2 (226.6) 98.1 (492.3) 6.1 (17.7) 26.6 (75.3) 24.7 (60.6) 53.9 (315.1)
Age 7.09 (6.76) 8.73 (8.40) 4.61 (5.93) 5.41 (5.94) 5.90 (6.77) 8.36 (7.43)
RatePubl 0.85 (1.13) 0.92 (1.40) 0.69 (0.96) 0.38 (0.40) 0.57 (0.55) 0.86 (1.09)
MedCites 0.074 (0.197) 0.072 (0.119) 0.046 (0.182) 0.171 (0.259) 0.122 (0.269) 0.049 (0.134)

236 233230 227 229 240
Physiol GastroCondMat Inorg Elec Biochem



among fields. This suggests that it is inappropriate to use sample articles from multiple subject fields to 

investigate factors affecting citations and such investigations should be done within a limited field. 

 

Correlations of the response variables with the explanatory variables. Prior to the NBMR analysis, we 

examined the correlations between the response variables (C6 and C11) and the individual explanatory 

variables. The Spearman’s rank correlation coefficients (ρ) of C6 with the explanatory variables are shown 

in Table 9. This table mentions the coefficient values only if they are significant (p < 0.05). Similar results 

were obtained for the response variable C11. 

 

Table 9 Spearman's rank correlation coefficients between C6 and the explanatory variables. 

(Only correlation coefficients whose p value is less than 0.05 are shown.) 

 

   Refs, Price, and Length positively correlate at a significant level in all, or almost all, fields. Insts, 

Figures, Cited, RatePubl, and MedCites show a significant positive correlation in half or more fields. (Age 

is also significant in three fields but may not have a definite tendency since the ρ-value is positive in some 

cases and negative in others.) The absolute ρ-value is less than 0.4 in most cases and 0.6 at maximum; 

hence, a very strong correlation is not found between the response and explanatory variables. 

 

Correlations between the explanatory variables. Table 10 demonstrates the extent to which a correlation 

exists within an individual pair of explanatory variables, showing the numbers of fields in which the 

Spearman’s rank correlation coefficient is significant (p < 0.05). 

 

Table 10 Correlations between the explanatory variables. 

Variable CondMat Inorg Eng Biochem Physiol Gastro
Authors 0.204 **
Insts 0.199 ** 0.171 ** 0.246 **
Countries 0.134 * 0.283 **
Refs 0.254 ** 0.395 ** 0.312 ** 0.494 ** 0.382 **
Price 0.376 ** 0.357 ** 0.188 ** 0.555 ** 0.488 ** 0.392 **
Figures 0.375 ** 0.153 * 0.442 ** 0.132 *
Tables 0.153 *
Eqs
Length 0.138 * 0.439 ** 0.130 * 0.363 ** 0.601 ** 0.349 **
Publ 0.215 ** 0.239 **
Cited 0.190 ** 0.277 ** 0.242 **
Age 0.190 ** -0.169 ** -0.225 **
RatePubl 0.191 ** 0.166 * 0.285 **
MedCites 0.219 ** 0.196 ** 0.178 **



Figures mean the numbers of fields for which the Spearman's rank correlation coefficient is significant 

(p < 0.05), and figures in parentheses mean the number of fields for which the significant correlation 

coefficient is negative. 

 

   There is a definite positive correlation within the following three variable groups, each of which is 

enclosed with a bold line in Table 10: the group of five variables on authors’ achievements (Publ, Cited, Age, 

RatePubl, and MedCites); the group of three variables on collaborative degree (Authors, Insts, and 

Countries); and the group of three variables on article visibility (Refs, Figures, and Length). Within the first 

group, however, the fields of a significant correlation are relatively less between the two efficient 

achievement variables, RatePubl and MedCites. In addition to the above combinations, Length shows a 

significant positive correlation with Tables and Eqs in more than half the fields. On the other hand, Price has 

a tendency to negatively correlate with Tables, Eqs, and Age.  

Further details for the combinations of variables showing a significant correlation in more than half the 

fields are shown in Table 11. The three cumulative achievement variables (Publ, Cited, and Age) have the 

strongest correlation with each other, thus their ρ-values are greater than 0.7 for most cases, while the 

correlation between each of these variables and each of the two efficient achievement variables (RatePubl 

and MedCites) is not as strong, except for that between Publ and RatePubl. Within the groups (Authors, 

Insts, and Countries) and (Refs, Figures, and Length), moderately strong correlations (ρ = 0.5–0.7) are 

observed in many cases, but a stronger correlation is not found. 

Although not a small number of explanatory variables are found to have a significant correlation with 

the response variable as shown in Table 9, these explanatory variables are thought to be not always 

significant in the NBMR analysis because there exist associations among the explanatory variables in many 

cases as described here. Thus, either Refs or Length (or both) might not be selected as a predictor of the 

citation frequency in the NBMR analysis, even though both show a significant correlation with C6 and C11 

in all fields, since there is also a considerably strong correlation between the two variables. 

It should be avoided to use a regression model involving variables having a strong correlation with each 

other because of the possibility of the problem of multicollinearity. Accordingly, we decided not to 

simultaneously include explanatory variables whose ρ-values are greater than 0.7 in most fields in a 

regression model: 

- More than one of Publ, Cited, and Age is not included in the model 

Authors Insts Countries Refs Figures Length Price Tables Eqs Publ Cited Age RatePubl
Insts 6
Countries 6 6
Refs 1 3 2
Figures 3 (1) 3 (2) 5
Length 3 (1) 3 (1) 1 6 6
Price 1 2 1 2 1 2
Tables 3 1 1 3 (1) 3 3 (3)
Eqs 2 (2) 1 3 2 4 2 (2) 3 (1)
Publ 1 (1) 2 1 1 (1)
Cited 1 3 2 1 6
Age 3 2 1 (1) 3 (3) 1 6 6
RatePubl 1 1 1 1 2 1 6 6 5
MedCites 1 1 4 (1) 1 (1) 5 6 6 3



- Publ and RatePubl are not included together in the model 

Subject to this decision, we designed the three regression models, Models A, B, and C (as mentioned in 

the subsection “Negative binomial multiple regression analysis” of the “Data and Methods” section). 

MedCites was not included in Model B despite the above-mentioned conditions not prohibiting its 

inclusion, because Cited, similar to MedCites in nature, was one of the explanatory variables of Model B. 

Variables within the groups (Authors, Insts, and Countries) and (Refs, Figures, and Length) were not 

separated, as the ρ-values of the variables within those groups are less than 0.7 in any case. 

 

Table 11 Spearman's rank correlation coefficients for the explanatory variable pairs which show significant 

correlations in many fields. 

** 1% significant, * 5% significant 

a) In Gastro field, Eqs = 0 for all sample articles. 

 

Results of NBMR 

 

Goodness of fit of regression: comparison among the models. There are several measures of goodness of fit 

of the NBMR model (See Chap. 4 (p.85–113) of Long, 1997). From those measures, the Akaike 

information criterion (AIC) and the adjusted pseudo coefficient of determination (pseudo Rc2) are selected 

to compare among the three models (Table 12).  

   The smaller the AIC, or the larger (the nearer to 1) the pseudo Rc2, the better is the fit of the model. 

Determining which model is better, as seen in Table 12, is dependent on the field, but a large difference is 

not seen among the models in every field. Model C appears slightly better than the other two models 

because of the higher stability across the fields. 

 

Table 12 Goodness of fit measures for three regression models. 

Variable pair CondMat Inorg Eng Biochem Physiol Gastro
(Authors , Insts ) 0.555 ** 0.550 ** 0.441 ** 0.474 ** 0.436 ** 0.169 **
(Authors , Countries ) 0.376 ** 0.324 ** 0.243 ** 0.274 ** 0.281 ** 0.134 *
(Insts , Countries ) 0.647 ** 0.627 ** 0.613 ** 0.498 ** 0.541 ** 0.487 **
(Refs , Figures ) 0.113 0.412 ** 0.196 ** 0.342 ** 0.497 ** 0.287 **
(Refs , Length ) 0.548 ** 0.634 ** 0.478 ** 0.614 ** 0.711 ** 0.705 **
(Figures , Length ) 0.494 ** 0.693 ** 0.486 ** 0.660 ** 0.763 ** 0.598 **
(Eqs , Length ) 0.421 ** 0.099 0.352 ** 0.160 * 0.376 ** - a
(Price , MedCites ) 0.273 ** -0.169 * 0.122 0.196 ** 0.069 0.146 *
(Publ , Cited ) 0.821 ** 0.862 ** 0.731 ** 0.811 ** 0.818 ** 0.845 **
(Publ , Age ) 0.731 ** 0.779 ** 0.816 ** 0.762 ** 0.749 ** 0.638 **
(Publ , RatePubl ) 0.687 ** 0.785 ** 0.835 ** 0.706 ** 0.706 ** 0.743 **
(Publ , MedCites ) 0.308 ** 0.321 ** 0.126 0.328 ** 0.238 ** 0.167 *
(Cited , Age ) 0.747 ** 0.841 ** 0.817 ** 0.825 ** 0.756 ** 0.735 **
(Cited , RatePubl ) 0.442 ** 0.553 ** 0.470 ** 0.495 ** 0.467 ** 0.473 **
(Cited , MedCites ) 0.622 ** 0.625 ** 0.538 ** 0.691 ** 0.570 ** 0.473 **
(Age , RatePubl ) 0.180 ** 0.335 ** 0.544 ** 0.334 ** 0.259 ** 0.073
(Age , MedCites ) 0.310 ** 0.461 ** 0.383 ** 0.435 ** 0.283 ** 0.262 **



(a) AICs (Akaike information criteria) 

(b) Adjusted pseudo R-squared measures 

 

Factors affecting citations: comparison among the models. Table 13 shows the number of fields in which 

each explanatory variable is significant in estimation of the response variable C6 or C11 for the three 

models, wherein these numbers were counted when the significant probability p for the regression 

coefficient of the explanatory variable is less than 0.1. 

 

Table 13 Significance of the explanatory variables for predicting the citation counts. 

Figures mean the numbers of fields for which the regression coefficient is significant (p < 0.1), and figures 

in parentheses mean the number of fields for which the significant regression coefficient is negative. 

 

   Price is the explanatory variable showing the most obvious effect in all fields, predicting higher 

citations if it has a higher value. Refs, Authors, and Figures also have a positive influence on citation 

frequency in some fields. These features are not dependent on the models. 

   Of the authors’ achievement measures, for which the selection of the explanatory variables was made 

Model A Model B Model C Model A Model B Model C
CondMat 1511.3 1511.2 1515.6 1783.5 1782.5 1787.1
Inorg 1466.4 1475.9 1470.9 1721.7 1728.3 1725.8
Eng 1214.0 1211.4 1211.9 1687.2 1685.5 1686.8
Biochem 1811.4 1814.9 1814.1 2054.3 2059.1 2056.8
Physiol 1613.9 1613.2 1612.1 1872.4 1871.1 1868.2
Gastro 1814.7 1811.0 1813.4 2088.1 2084.9 2087.5

Response variable: C 6 Response variable: C 11Field

Model A Model B Model C Model A Model B Model C
CondMat 0.261 0.261 0.251 0.236 0.239 0.228
Inorg 0.332 0.304 0.322 0.318 0.299 0.310
Eng 0.276 0.285 0.287 0.283 0.288 0.288
Biochem 0.441 0.433 0.438 0.424 0.413 0.421
Physiol 0.531 0.533 0.537 0.483 0.485 0.493
Gastro 0.487 0.495 0.492 0.488 0.495 0.492

Field Response variable: C 6 Response variable: C 11

Response variable: C 6 Response variable: C 11
Model A Model B Model C Model A Model B Model C

Authors 2 3 2 3(1) 2 2
Insts 1(1) 2(2) 1 1 2(1)
Countries 1 1 1 1 1 1
Refs 3 3 3 3 3 3
Price 6 6 6 6 6 6
Figures 1 1 1 2 2 2
Tables 1 1 1 1 1 1
Eqs 1(1) 1(1) 1(1) 1(1) 2(2) 1(1)
Length 1 1 1 2(1) 2(1) 2(1)
Publ 2(1) - - 2(1) - -
Cited - - - -
Age - - - - 1(1)
RatePubl - 2 4(1) - 2 3(1)
MedCites 1 - 2 2 - 2

Explanatory
variable



according to the regression models, the three cumulative achievement measures (Publ, Cited, and Age) are 

found not to influence citations in most cases. On the other hand, the two efficient achievement measures 

(RatePubl and MedCites) have a positive influence in some fields. Therefore, Model C, including both 

these variables, is preferable to the other two. 

 

Good predictors of citation rates: results of Model C. From the results mentioned above, Model C appears 

to be more appropriate compared to Models A and B in terms of both goodness of fit and selected 

explanatory variables. Accordingly, we will describe the results using Model C.  

 

Table 14 The x-standardized regression coefficients (sjβj's) of NBMR for the Model C. 

(a) Response variable: C6 

  ** 1% significant, * 5% significant, + 10% significant 

(b) Response variable: C11 

  ** 1% significant, * 5% significant, + 10% significant 

 

Table 14 shows the results of the NBMR analysis applied to the sample articles of each of the six 

CondMat Inorg Eng Biochem Physiol Gastro
n 230 227 229 240 236 233
θ 1.44 2.15 1.25 2.95 3.11 1.90
s j βj

Authors 0.174 * 0.052 -0.115 0.116 * -0.012 0.096
Insts -0.161 + 0.119 0.166 0.003 0.083 -0.107 +
Countries -0.074 -0.099 -0.040 -0.030 -0.053 0.107 +
Refs 0.273 ** 0.062 0.190 * 0.122 * 0.089 0.103
Price 0.331 ** 0.233 ** 0.250 ** 0.391 ** 0.354 ** 0.251 **
Figures -0.048 0.083 0.036 -0.018 0.141 + 0.099
Tables -0.007 -0.085 -0.085 0.015 -0.050 0.281 **
Eqs -0.033 -0.129 * -0.025 0.009 -0.042 -
Length 0.079 0.239 * 0.124 0.094 0.134 -0.150
Age 0.056 -0.035 0.008 -0.009 -0.071 -0.005
RatePubl 0.099 + -0.112 + 0.194 * 0.025 0.058 0.118 *
MedCites -0.002 0.144 ** 0.102 0.071 + 0.041 -0.022
Dummy1 0.254 ** 0.122 0.549 ** 0.123 * 0.453 ** 0.333 **
Dummy2 0.049 0.000 0.628 ** 0.274 ** 0.462 ** 0.792 **
Dummy3 0.338 ** 0.028 0.101 0.303 ** 0.264 ** 0.627 **

CondMat Inorg Eng Biochem Physiol Gastro
n 230 227 229 240 236 233
θ 1.27 1.86 1.04 2.58 2.44 1.69
s j βj

Authors 0.175 * 0.052 -0.143 0.136 ** -0.019 0.095
Insts -0.169 + 0.085 0.175 -0.006 0.113 + -0.098
Countries -0.094 -0.092 -0.066 -0.021 -0.043 0.162 *
Refs 0.213 ** 0.046 0.343 ** 0.123 * 0.102 0.099
Price 0.313 ** 0.200 ** 0.225 ** 0.393 ** 0.314 ** 0.199 **
Figures -0.065 0.108 0.095 -0.034 0.139 + 0.165 +
Tables 0.022 -0.012 0.008 0.044 -0.039 0.362 **
Eqs 0.000 -0.130 * -0.074 0.032 -0.079 -
Length 0.123 0.256 * 0.137 0.085 0.148 -0.236 *
Age 0.053 -0.020 0.041 0.024 -0.107 * -0.018
RatePubl 0.115 + -0.125 * 0.164 * 0.010 0.073 0.099
MedCites -0.012 0.126 * 0.066 0.081 + 0.026 -0.025
Dummy1 0.248 ** 0.096 0.577 ** 0.125 * 0.407 ** 0.335 **
Dummy2 0.040 0.006 0.534 ** 0.270 ** 0.411 ** 0.814 **
Dummy3 0.325 ** -0.004 -0.002 0.315 ** 0.205 ** 0.648 **



subject fields. In this table, the x-standardized regression coefficients of the explanatory variable j, which 

are the partial regression coefficients βjs multiplied by the standard deviations of the variable sjs, are 

reported so that relative strength of influence on the response variable can be compared among the 

explanatory variables. The estimated values of the parameter θ are also shown in this table. 

Table 14 demonstrates that the effect of the individual explanatory variables on the two response 

variables, C6 and C11, is very similar. 

Price is revealed to be the most important influencing factor on citations in terms of high significance 

and greatness of the x-standardized regression coefficient. Next Refs is a strong, or moderately strong, 

predictor in half the fields. For Authors, Figures, RatePubl, and MedCites, there are some fields in which 

they have a positive significant influence on the response variable, with the exception of RatePubl, which is 

a negative significant predictor of C6 and C11 in the Inorg field. The estimated citation frequencies are 

considerably affected by the journal in which the articles were published in five fields except the Inorg 

field. 

For other explanatory variables a definite effect on citations is not demonstrated. The regression 

coefficients for Insts and Length are significant in more than one field, but their values are positive in some 

cases and negative in the others. 

 

In Table 15, the citation predictabilities of the variables used in this research are compared with those 

demonstrated by the studies mentioned in Table 1 considering integratedly various variables. 

 



  



Accuracies of prediction of the citation frequencies for individual articles. Figure 1 shows the relationship 

between the observed value of C6 of the i-th article (C6i) and its expected value (μi) predicted by the 

NBMR analysis for two subject fields using Model C. These fields, Physiol and CondMat, show the best 

and the worst pseudo Rc2, respectively (see Table 12b). A tendency is seen that the greater μi is, the larger is 

the residual (C6i - μi). In the NBMR analysis, the residual is believed to become larger, roughly saying, in 

proportion to μi, since the predicted value is not μi but ln (μi) as shown in Equation (2). Therefore, the 

relationship between μi and (C6i - μi)/μi (we call this quantity “relative residual”) is demonstrated in Figure 

2 for the same two fields. From this figure it is understood that the relative residual is roughly independent 

of μ. 

 

 

Figure 1.  Relations between observed C6i's and their mean predicted values (μi's) by NBMR. 

(a) Physiology field  (b) Condensed Matter field 

 

   Figure 2 shows that the observed citation frequency of a considerable number of the articles is more 

than double its expected value, that is, (C6i - μi)/μi > 1. Although accuracy of the prediction does not seem 

to be good from the figure, it should be noted that μi does not directly predict C6i, but does the expected 

value of the negative binomial distribution for C6i, as understood from Equations (1) and (2). 

 



 

Figure 2. Relations between mean predicted values (μi's) and relative residuals. 

The relative residual of C6i is (C6i - μi) / μi. 

(a) Physiology field  (b) Condensed Matter field 

 

 The frequency distributions of C6 and C11 predicted from the NBMR analysis were obtained by the 

following procedure: 

(a) calculating the probability distribution of the citation frequency Pr(C6i = k) or Pr(C11i = k) for 

each article i based on Equation (1) 

(b) summing up the probability distributions of all articles 

The predicted frequency distributions obtained are compared to the observed distributions in Figure 3. 

This figure shows the case of the Inorg field, for which the fitness of the NBMR model is moderate in the 

six fields. Although the observed distributions fluctuate considerably, the predicted distributions fit their 

smoothed curves well. 

 



  



Figure 3. Comparison of the probability distribution of citation counts predicted by NBMR with the observed 

distribution. 

Cases of the regression by the Model C for Inorganic and Nuclear Chemistry field. 

(a) Distribution of C6  (b) Distribution of C11 

 

Discussion 

 

Important factors influencing the citations of articles 

 

   In the six fields, we were able to predict, with acceptable accuracy, the citation frequency of an article 

within the 6 years (C6) and 11 years (C11) after its publication, with 3–5 significant predictors. The pseudo 

Rc2 in the NBMR analysis was 0.25–0.54 for C6 and 0.23–0.50 for C11, depending on the fields. 

   The significant predicting factors were common to some extent across the fields and almost the same 

between C6 and C11 in a field. 

 Price index (Price) was found to be the strongest influencing factor on citations. A few studies have 

taken notice of this kind of attribute (the recency measure of the references) as an influencing factor on 

citations (Stewart, 1983; Peters & van Raan, 1994; Haslam et al., 2008). These studies found a moderate 

positive correlation between the recency of references and the citation count of articles, but any of their 

results were based on a relatively small sample (n <~ 300) taken from a single subject field. It is a 

noticeable finding in this study that the Price index is very important in every subject field when 

considering factors influencing citation rates. 

   The second important explanatory factor was the number of references (Refs), which has been reported 

to have a significant relation with citation rates by many existing studies (See the subsection “Other 

potential factors influencing citation rates” in the “Literature Review” section and Table 15). 

   Although there have been many studies reporting that articles with more co-authors tend to obtain 

higher citations, such claims have not been so strongly supported by several systematic multiple regression 

analyses (See the subsection “Does collaboration boost the citation rate of articles?” in the “Literature 

Review” section and Table 15). Also, in our NBMR analysis, the number of authors (Authors) was shown 

to be a (moderately) significant predictor in only two of the six fields, suggesting that the factor might not 

affect citation rates very strongly. Bornmann & Daniel (2008) reported that the correlation between the 

number of authors and that of citations diminished as the citing window became longer. This may apply to 

our case since the citing window we used was relatively long (6 or 11 years). 

   The influence of authors’ achievement variables on citations is discussed in the subsequent subsection. 

 

Is there a halo effect of authors? 

 



   Several studies have claimed that an article written by author(s) with a higher performance (more 

publications and/or higher citations) have the possibility of receiving higher citations after its publication 

(see the subsection “Is there a halo effect of authors, institutions, journals, or countries?” in the “Literature 

Review” section). 

   In this study, the effect of the five indicators concerning the authors’ past achievement on citations was 

investigated (all the indicators apply to the first author of articles). As a result, the effect of the three 

cumulative achievement indicators (Publ, Cited, and Age) was hardly found. On the other hand, the two 

efficient achievement indicators (RatePubl and MedCites) showed significant, but not remarkable, 

influence in some fields. 

   Our result that the efficient achievement indicators are better predictors of citations than the cumulative 

ones agrees with those of Danell (2011) and Hönekopp and Khan (2012). It may be because we used data 

only on first authors that the effect was not as apparent in our analysis as that shown by Danell (2011), who 

used the data on the authors of the highest performance, or Hönekopp and Khan (2012), who selected their 

sample from single-authored articles. The fact that our data were based on the first author only is thought to 

be a limitation of this study because it might weaken a halo effect of authors on citations. We attempted to 

perform the NBMR analysis for the sample articles of only one journal in each field using the achievement 

data of the most productive author in each article, but could not obtain a consistent result across fields. It 

may be due to the small size (n = 50–60) of the samples. 

 

Interaction among the explanatory variables 

 

   By comparing Table 9 with Table 14, it is understood that the explanatory variables having significant 

correlation with the response variable (citation frequency) do not always become significant predictors in 

the NBMR analysis. The typical example is Length, which is not a significant predictor for most fields in 

spite of its positive correlation with citation frequency in almost all fields. As shown in Tables 10 and 11, 

Length has a positive correlation with several other explanatory variables (Refs, Figures, Tables, and Eqs) 

in many fields, which suggests that these explanatory variables are preferred to Length in the NBMR 

analysis. 

 

Comparison of fitness of NBMR with that of LMR 

 

   The LMR analysis with log (C + 1) as the response variable is also frequently used for predicting 

citation rates, instead of the NBMR analysis used in this study. Comparison of fitness between these two 

analyses applied to the same sample is, however, not easy since there are few fitness measures commonly 

applicable to both. The variance ratio (F) usually applied to the LMR model is not available for NBMR. 

There is some difference in meaning between the coefficient of determination (R2) in the LMR model and 



pseudo R2 in the NBMR model. AIC is usable for the LMR and NBMR models, but it is questionable to 

simply compare the values obtained from the two methods. Therefore, we compared the results of the 

NBMR model to those of the LMR model applied to the same data using the following two measures: 

(a) Mean square of relative residuals  

The relative residual for a member (an article in our case) was introduced in the subsection “Results 

of NBMR” of the “Results” section. The mean square of relative residuals (MSRR) is the squared mean 

of this quantity, as follows: 
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Here, yi and μi are observed and predicted (expected) values of the response variable for the i-th member.  

   The residual (yi - μi) becomes larger roughly in proportion to μi, as described in the subsection 

“Results of NBMR.” In the LMR model with log (yi) as the response variable, the residual of yi is also 

supposed to proportionally increase with μi. Therefore, it is appropriate to compare the goodness of fit 

between the LMR and NBMR models by this measure. 

(b) The chi-square statistic of fitness 

   The predicted frequency distribution of citations was obtained from the NBMR and LMR analyses. 

(The method for the NBMR analysis is described in the subsection “Results of NBMR.”) For the 

distributions obtained, the frequencies of citations were divided into m regions (here, m = 10) so that the 

individual regions may have roughly equal expected values. When representing the observed and 

expected values in the region i (1 ≤ 𝑖𝑖 ≤m) as Oi and Ei, respectively, the chi-square statistic of fitness 

(χ2) is given as follows: 
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   The MSRRs are compared in Table 16 between the NBMR and LMR analyses, both using the set of 

explanatory variables selected in Model C. The MSRR for the NBMR model is 1/5 to 1/2 of that for the 

corresponding LMR model. 

 

Table 16 Comparison of the mean square of relative residuals (MSRR) between NBMR and LMR. 

 

C 6 C 11 C 6 C 11
CondMat 0.78 0.86 2.34 2.72
Inorg 0.60 0.64 1.27 1.43
Eng 1.37 1.29 6.36 6.78
Biochem 0.44 0.47 0.73 0.81
Physiol 0.49 0.54 0.96 1.19
Gastro 0.64 0.62 1.56 1.48

NBMR LMRField



   A similar comparison on χ2s is shown in Table 17. The χ2 values for the NBMR model do not reject the 

null hypothesis that the predicted distribution is not different from the observed one (p > 0.05) except for 

one case (C11 prediction in the Elec field), while for the LMR model the null hypothesis is strongly 

rejected in all cases (p < 0.001). 

 

Table 17 Comparison of the fitness chi squares (χ2's) and their significance probabilities (p's) between NBMR 

and LMR. 

 

   These indicate that the observed frequency distribution of citations fits far more to the distribution 

predicted by the NBMR model than the LMR model. 

   In Figure 4 the predicted distribution by the LMR model is compared to the observed one for the Inorg 

field. Comparison of this figure to Figure 3 for the NBMR model reveals the NBMR model’s obvious 

precedence. The NBMR analysis shows good fit, especially in the low citation frequency region. 

 

 

χ2 p χ2 p
CondMat 3.73 0.928 188.5 0.000
Inorg 11.56 0.239 139.0 0.000
Eng 6.34 0.501 259.5 0.000
Biochem 7.82 0.553 55.7 0.000
Physiol 12.82 0.171 43.9 0.000
Gastro 3.51 0.941 89.7 0.000
CondMat 5.52 0.786 194.7 0.000
Inorg 10.31 0.326 146.9 0.000
Eng 17.75 0.038 143.4 0.000
Biochem 6.38 0.701 65.9 0.000
Physiol 13.12 0.157 48.1 0.000
Gastro 3.73 0.928 64.9 0.000

C 6

C 11

Response
varable Field NBMR LMR



 

Figure 4. Comparison of the probability distribution of citation counts predicted by LMR with the observed 

distribution. 

Cases of the regression by the Model C for Inorganic and Nuclear Chemistry field. 

(a) Distribution of C6  (b) Distribution of C11 

 

The issue of sampling 

 

The samples used in this study consist of 50–60 research articles randomly drawn from each of four 

journals selected in the individual fields, as explained in the “Data Sources and Methods” section. Two 

issues should be mentioned concerning this point. 

   One of the issues is a relatively small sample size (n = 230–240 for each field). It was difficult to obtain 

a larger sample because we used, as the explanatory variables, attributes for which a considerable effort is 

needed to acquire the data. Although it was relatively easy to obtain data on Authors, Insts, Countries, and 

Refs from the data source used (WoS), the publication year of each reference of the sample articles had to 

be examined to get the values of Price. The values of Figures, Tables, and Eqs were counted by looking 

them up in the original documents. Length was not simply the number of pages of articles, but normalized 

considering the number of characters per page in each journal. The greatest effort was gaining data on the 



five variables of authors’ achievement, which involved the search and identification of articles published 

earlier by the authors of the sample articles and measurement of the citation frequencies that the retrieved 

articles had received until the publication year (2000) of the sample articles (Onodera et al., 2011). 

   It is expected that more explanatory variables would be selected as a significant predictor of citations if 

we used larger samples. The authors’ achievement indicators might become more definite predictors. 

However, when using samples that are too large, some explanatory variables which are not so important 

may be regarded as significant. In this sense, it can be said that only the variables certainly affecting 

citation rates were chosen as significant in this study. 

Another issue involves the possibility of bias due to random sampling of a nearly equal number of 

articles from four journals. This issue can be divided into the following two questions: 

(a) Does the distribution of citation frequencies in a randomly-drawn sample differ significantly from 

that in the population, considering the high skewness in the citation distributions? 

(b) Is it reasonable to draw samples equally from journals that differ in size (i.e., number of published 

articles)? 

With regard to question (a), the distribution is not systematically biased by random sampling even if the 

distribution is highly skewed. However, it is more likely that such a sample distribution largely deviates by 

chance from that in the population depending on the extent to which a few “outliers” were drawn, 

compared with a normal case. For the 23 journals used in this study (excluding the one from which all 

articles were drawn), we compared the mean citation frequency (C11) of the sample with that of the 

population (all articles published in the journals in 2000). The number of journals with a higher and lower 

mean than that of the population were 13 and 10, respectively, indicating that the samples are unbiased. 

However, one journal with the higher sample mean and two journals with lower sample means showed a 

significant difference (p < 0.05) from the population mean. The rate of journals with a significant 

difference (3/23) is somewhat high. As for the three journals, outliers might be either over- or under-drawn. 

With regard to question (b), we designed our sampling considering the following factors. The articles 

should be uniformly selected not only from high-impact journals but also from relatively low-impact 

journals because the sample must represent the whole field. Hence we divided the journals from individual 

fields into four classes according to their JIF value so that the number of articles in each class might be 

roughly equal. We then selected one journal from each class taking into account the points mentioned in the 

“Data Sources and Methods” section. For example, in the Inorg field, the selection was made as follows: 

Range of 

JIF 
#Journals 

Article 

share 

Sampled journal 

Name JIF 

> 3 2 23.1% Inorg Chem 3.45 

2 – 3 2 22.0% Dalton Trans 2.93 

1 – 2 3 25.0% Inorg Chim Acta 1.55 

< 1 7 29.9% Trans Met Chem 0.86 



However, equal classification failed in the CondMat and Biochem fields because only one journal 

(Physical Review B and Journal of Biochemistry, respectively) had a large publication share in those fields 

(45% and 44%, respectively). In those two fields, underestimating the contribution of these journals (with 

high citation impact and a large publication share) might have biased the results. However, we assume that 

this problem is moderated by making journals dummy variables of our regression models. 

The bias could be avoided if the random sampling was conducted from all journals in a field, but we 

limited our target to the journals that were accessible to us because the original articles were necessary for 

obtaining the values of some explanatory variables (Figures, Tables, Eqs, and Length). 

 

Setting the subject fields 

 

The subject fields set in this study are based on the JCR Subject Categories commonly used in 

bibliometric research. However, our results may suggest the necessity for a more fine-grained analysis by 

dividing the fields into subfields. In every field studied, the Price index and the number of references were 

found to be significant predictors of the number of citations. As all of these three attributes are connected to 

citation behavior, such results are likely if it differs depending on subfields. In this regard, Moed (1989) 

showed some cases in which the mean values of Price index, number of references, and number of citations 

largely differ among subfields within the same field. Further investigations are needed to evaluate the 

difference in citation behavior among subfields that are narrower than the JCR Subject Categories. 

 

Conclusion 

 

We obtained the NBMR model explaining the citation frequencies of articles with a relatively long 

citing window (6 or 11 years after publication), for each of the six fields. The models for the six fields were 

to some extent similar regarding the selected predicting factors and the degree of significance of these 

predictors. Most existing studies that explain the factors influencing citation rates of articles have dealt with 

articles of either single subject field or mixed fields. Taking this into account, our study is original in that 

some generality across different fields is found regarding the important factors that influence citations. 

   Fitness of the NBMR model obtained in this study was not very high, but acceptable since the value of 

pseudo Rc2 was 0.25–0.5. This is an expected result when considering all the explanatory variables used 

here were “extrinsic” factors that have no direct relation to the quality or content of the articles. The 

purpose of our study was not to develop a model with high fitness, but to seek a model working as a 

baseline of the expected citation frequency for a given article based on such extrinsic factors. The finding 

of generality of the significant predictors of citations across different fields is promising to develop such a 

baseline. 

   One of the aims of advancement in the future is an analysis of deviations of the observed citations from 



this baseline (expected citation frequencies based on these extrinsic predictors) for individual articles. To 

what attributes of articles do the deviations relate? Are the attributes intrinsic ones connected with the 

quality or content of articles? It is difficult, however, to strictly distinguish intrinsic attributes from 

extrinsic ones. The number of institutions or countries, which is used as an extrinsic variable in this study, 

is thought to involve some intrinsic nature provided that interinstitutional or international collaboration is 

connected to research quality. In addition, many references or pages may imply the width and depth of 

research. We assumed here that the attributes whose values can be obtained from bibliographic data were 

extrinsic. 

   Another aim of advancement is to look for “intrinsic” factors (which are closely related to the quality or 

content of articles) that are associated with citations. Concerning this, Chen (2012) recently proposed the 

“structure variation” model, supposing that the potential value of an idea conveyed in an article is measured 

in terms of the degree of change in the existing intellectual structure introduced by the idea (See the 

subsection “Quantitative relations between citation rates and measures of the quality or content of articles” 

in the “Literature Review” section). Based on this model, he defined some indicators on the degree of 

structural change using a network theory and discussed the relationship between these indicators and the 

citation frequency acquired by the article in the future. 

   It remains a difficult and complicated issue to determine the principal factors affecting citation rates of 

articles. A definite conclusion is not yet obtained despite much research having been dedicated to this 

problem. We hope this article will make some contribution to relevant literature. 
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Notes 

1. Our analysis was made for both cases, including and excluding self-citations, but a significant difference 

affecting the results was not observed. Thus, we will describe the results of the former case. 

2. Addresses ending with a US state name were read as USA. England, Scotland, Wales, and Northern 

Ireland were changed to UK. Hong Kong was incorporated as China. 

3. Articles before 1970 were not provided by WoS available to us. However, a search period of 30 years is 

believed to be long enough to cover an individual’s research lifetime. 
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