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Many-body correlations of quasiparticle random-phase approximation in nuclear matrix elements
of neutrinoless double-β decay
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We show that the correlations of the quasiparticle random-phase approximation (QRPA) significantly reduce
the nuclear matrix element (NME) of neutrinoless double-β decay by a new mechanism in the calculation for
150Nd → 150Sm. This effect is due mainly to the normalization factors of the QRPA ground states included in
the overlap of intermediate states, to which the QRPA states based on the initial and final ground states are
applied. These normalization factors arise according to the definition of the QRPA ground state as the vacuum
of quasibosons. Our NME is close to those of other groups in spite of this new reduction effect because we do
not use the proton-neutron pairing interaction that is usually used for reproducing the experimental NME of the
two-neutrino double-β (2νββ) decay, without those normalization factors, and reduces the NME appreciably.
Our method can reproduce the experimental 2νββ NME for 150Nd → 150Sm with the quenching axial-vector
current coupling without approaching the breaking point of the QRPA. The consistency of QRPA approaches
taking different virtual paths under the closure approximation is also discussed, and an extension of the QRPA
ground state is proposed.
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I. INTRODUCTION

Studies of neutrinos have entered a very exciting era.
Neutrino oscillation [1–4] provided proof that the neutrino
was massive, and most of the neutrino oscillation parameters
have been determined, leaving only some uncertainties [5].
Many experiments to observe neutrinoless double-β decay
(0νββ) are in progress (see, e.g., Ref. [6]) and are expected
to clarify whether the neutrino is a Majorana particle. If this
decay is observed, it also implies that the lepton number is
not conserved. Furthermore, if the transition probabilities of
0νββ decay are measured, they can be used to determine
the effective neutrino mass with the help of theoretical
calculations of the corresponding transition matrix elements.
The determination of the effective neutrino mass by this
method is particularly important because neutrino oscillation
experiments do not give the absolute values of the neutrino
masses.

One reason for the importance of the neutrino mass is that
the neutrino has been assumed to be massless in the standard
theory (see, e.g., Ref. [7]). Furthermore, the neutrino affects
the fluctuation of the mass distribution in the universe (see,
e.g., Ref. [8]). (This relation provides us with another possible
method of determining the neutrino mass.) The neutrino also
plays an important role in energy and momentum transport in
supernova explosions (see, e.g., Ref. [9]). The determination
of the neutrino mass is one of the most important subjects in
modern physics because the neutrino mass significantly affects
particle and nuclear physics and astrophysics.

The challenge for nuclear theory is to calculate the nuclear
component of the 0νββ transition matrix element, which is
called the nuclear matrix element (NME). This is because all
the nuclei that researchers plan to use in experiments have mass
number A � 48 [6]; therefore, approximations are essential
for obtaining the relevant nuclear wave functions. Several
approximate methods are currently used to calculate the NME;
unfortunately, however, we are faced with a discrepancy

among those NMEs, which vary by a factor of two to three for
more than a dozen decay instances [10].

In this paper, we examine a new mechanism for carrying
nuclear many-body correlations to the NME in the quasiparti-
cle random-phase approximation (QRPA) approach. The new
mechanism manifests itself in the overlap of the two QRPA
states obtained on the basis of the initial and final ground
states. This overlap is not equal to 1 in the QRPA approach
because the components of the nuclear wave functions that
do not contribute to the transition matrix element from the
initial or final state to intermediate states are not included
in the QRPA wave functions. In contrast to transition matrix
elements from a ground state to QRPA states, we need
the explicit wave functions of the QRPA ground states for
calculating the overlaps included in the NME. The QRPA
ground state is defined as the vacuum of QRPA quasibosons
in our calculations, and the QRPA states are constructed by
making creation operators for the QRPA states to act on the
QRPA ground states. This study is the first to calculate the
overlaps based on the above definition of the QRPA ground
states and apply them to the NME. It will be shown that
the normalization factors of the QRPA ground-state wave
functions significantly reduce the NME.

This paper is organized as follows: Section II shows the
basic equations of the NME under the closure approximation.
In Sec. III, the overlap equations that are used in the
calculations in this paper are presented. Section IV shows the
equations of the 0νββ transition matrix elements and matrix
elements of two-particle transfer. In Sec. V, the results of the
calculations required before the NME calculation are described
with the computational parameters. Renormalization of the
QRPA correlations is also discussed. The NME calculation is
shown in Sec. VI, and the results are compared with the NMEs
of other groups. In Sec. VII, the consistency of the QRPA
approach is discussed in relation to multiple virtual paths
of 0νββ decay under the closure approximation. Simplified
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calculations are shown in Sec. VIII for showing the validity
of our claims. The conclusion and a plan for future work are
presented in Sec. IX.

II. NUCLEAR MATRIX ELEMENTS AND VIRTUAL PATHS
OF 0νββ DECAY UNDER CLOSURE APPROXIMATION

The original equation of the NME (see, e.g., Ref. [11]) is

M (0ν) =
∑

a

∑
pn

∑
p′n′

V
(0ν)
pp′,nn′ (Ea)

×〈F (A,Z + 2) |c†pcn|a (A,Z + 1)〉
× 〈a (A,Z + 1) |c†p′cn′ |I (A,Z)〉, (1)

where |I (A,Z)〉 and |F (A,Z + 2)〉 denote the initial and
final states of the 0νββ decay, respectively (Z is the proton
number), and |a(A,Z + 1)〉 denotes the intermediate nuclear
state. Furthermore, {p,p′} and {n,n′} are the proton and
neutron single-particle states, respectively, and their creation
and annihilation operators are denoted as {c†p,c

†
n} and {cp,cn},

respectively. In this paper, we use the 0νββ transition operator
consisting of only the Gamow–Teller and Fermi terms; its
matrix element is given by

V
(0ν)
pp′,nn′ (Ea) = V

GT (0ν)
pp′,nn′ (Ea) + V

F (0ν)
pp′,nn′ (Ea) , (2)

V
GT (0ν)
pp′,nn′ (Ea) = 〈pp′|h+(r12,Ea)σ (1) · σ (2)τ+(1)τ+(2)|nn′〉,

(3)

V
F (0ν)
pp′,nn′ (Ea) = −(

g2
V /g2

A

)〈pp′|h+(r12,Ea)τ+(1)τ+(2)|nn′〉,
(4)

where σ (1) and τ+(1) represent the Pauli spin and charge-
changing (neutron → proton) operators, respectively, and the
number in parentheses distinguishes the two particles in the
two-body matrix element. Furthermore, gV and gA are the vec-
tor and axial-vector current coupling constants, respectively,
r12 is a distance variable between the two particles, and Ea is
the energy of the intermediate state a. We use the approximate
neutrino potential [12]

h+ (r12,Ea) � R

r12

2

π

{
sin

( c

�
μamer12

)
ci

( c

�
μamer12

)

− cos
( c

�
μamer12

)
si

( c

�
μamer12

) }
, (5)

μamec
2 = Ea − (

Mic
2 + Mf c2

)
/2, (6)

neglecting the effective neutrino mass relative to the major
momentum transfer of the propagating neutrino. The functions
ci and si are the cosine and sine integrals, respectively, which
are defined as

si (x) = −
∫ ∞

x

sin (t)

t
dt,

(7)

ci (x) = −
∫ ∞

x

cos (t)

t
dt,

and Mi and Mf indicate the masses of the initial and final
nuclei, respectively. R is the mean nuclear radius.

Under the closure approximation, to replace Ea in M (0ν)

[Eq. (1)] with an average energy Ēa , the NME can be calculated
in multiple ways. Some of the possible equations are

M (0ν) �
∑
pn

∑
p′n′

V
(0ν)
pp′,nn′ (Ēa)〈F (A,Z + 2)|c†pcnc

†
p′cn′ |I (A,Z)〉 (8)

�
∑

a

∑
pn

∑
p′n′

V
(0ν)
pp′,nn′ (Ēa)〈F (A,Z + 2)|c†pcn|a(A,Z + 1)〉〈a(A,Z + 1)|c†p′cn′ |I (A,Z)〉 (9)

�
∑

a

∑
pn

∑
p′n′

V
(0ν)
pp′,nn′ (Ēa)〈F (A,Z + 2)|c†pc

†
p′ |a(A − 2,Z)〉〈a(A − 2,Z)|cn′cn|I (A,Z)〉 (10)

�
∑

a

∑
pn

∑
p′n′

V
(0ν)
pp′,nn′ (Ēa)〈F (A,Z + 2)|cn′cn|a(A + 2,Z + 2)〉〈a(A + 2,Z + 2)|c†pc

†
p′ |I (A,Z)〉. (11)

The first one is the typical equation used in practical calculations other than the QRPA approach. The last three equations
correspond to different virtual paths in the nuclear chart; see Fig. 1 in Ref. [13]. The spaces of the intermediate states
should be such that they cover the space obtained by the first (inverse second) step of 0νββ decay from the initial (final)
state, e.g., {c†pcn|I (A,Z)〉}. In the QRPA approach (hereinafter, all the nuclear states are those of the QRPA), we can
use

M (0ν) �
∑
aI aF

∑
pn

∑
p′n′

V
(0ν)
pp′,nn′ (Ēa)〈F (A,Z + 2)|c†pcn|aF (A,Z + 1)〉〈aF (A,Z + 1) |aI (A,Z + 1)〉

× 〈aI (A,Z + 1)|c†p′cn′ |I (A,Z)〉 (12)

�
∑
aI aF

∑
pn

∑
p′n′

V
(0ν)
pp′,nn′ (Ēa)〈F (A,Z + 2)|c†pc

†
p′ |aF (A − 2,Z)〉〈aF (A − 2,Z)|aI (A − 2,Z)〉

× 〈aI (A − 2,Z)|cn′cn|I (A,Z)〉 (13)
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�
∑
aI aF

∑
pn

∑
p′n′

V
(0ν)
pp′,nn′ (Ēa)〈F (A,Z + 2)|cn′cn|aF (A + 2,Z + 2)〉

×〈aF (A + 2,Z + 2)|aI (A + 2,Z + 2)〉〈aI (A + 2,Z + 2)|c†pc
†
p′ |I (A,Z)〉, (14)

where aI and aF denote the QRPA states obtained on the
basis of the initial and final ground states, respectively.
The usual equation is Eq. (12) with the intermediate states
obtained by the proton-neutron QRPA. The equations using
two sets of intermediate states seem suitable to the QRPA
approach because it is easy to calculate the charge-changing or
two-particle-transfer transition matrix elements. In this paper,
we use Eq. (13) with the like-particle QRPA because the
like-particle QRPA is known to be a good approximation
for well-deformed rare-earth nuclei. This is one reason for
calculating 150Nd → 150Sm in this paper. The choice of either
Eq. (14) or Eq. (13) is arbitrary. An analogous idea for
using the two-particle transfer path is discussed in Ref. [14]
and also suggested in Ref. [15]. The decay 150Nd → 150Sm
is known to have a large phase-space factor [16,17], so
the reliable NME is highly valuable from an experimental
viewpoint.

III. OVERLAP

In Ref. [13], we investigated how to calculate the overlap of
two QRPA states based on different nuclei by calculating up
to negligible-order terms in the expansion of the overlap with
respect to the backward amplitudes of the QRPA solutions.1

Here we note the equations of the overlap that include only
the relevant terms and are used in the calculations in this
paper.

Hereinafter we omit the mass number and proton number
of the nuclear states and introduce creation operators of the
QRPA states, O

I†
a and O

F †
a :

|aI 〉 ≡ |aI (A − 2,Z)〉 = OI†
a |I 〉,

(15)|aF 〉 ≡ |aF (A − 2,Z)〉 = OF †
a |F 〉.

O
I †
a and O

F †
a are expressed by using the forward XIa

μν

(XFa
μν ) and backward Y Ia

−μ−ν (YFa
−μ−ν) amplitudes of the QRPA

solutions as

OI†
a =

∑
μ<ν

(
XIa

μνa
I†
μ aI†

ν − Y Ia
−μ−νa

I
−νa

I
−μ

)
,

(16)
OF †

a =
∑
μ<ν

(
XFa

μν aF †
μ aF †

ν − YFa
−μ−νa

F
−νa

F
−μ

)
,

where −μ indicates that the sign of the z component of the
angular momentum of the quasiparticle state μ is inverted, and
these quasiparticle states are ordered to choose μ and ν such
that μ < ν.

1The authors of Ref. [18] write “the convergence of which (our
expansion) may not be fast” without showing any calculation.

The QRPA ground states, i.e., the initial and final states of
0νββ decay, are defined, e.g. [19], as

OI
a |I 〉 = 0, OF

a |F 〉 = 0 for all a, (17)

and these ground states can be expressed, e.g. [20], as

|I 〉 = 1

NI

∏
Kπ

exp
[
v̂

(Kπ)
I

]|i〉,
(18)

|F 〉 = 1

NF

∏
Kπ

exp
[
v̂

(Kπ)
F

]|f 〉,

whereNI andNF are the normalization factors, and |i〉 and |f 〉
denote the Hartree–Fock–Bogoliubov (HFB) ground states. K
denotes the z component of the angular momentum, and π is
parity. Throughout this paper, the nuclei under consideration
are assumed to have axial and reflection symmetry. We can
write v̂

(Kπ)
I and v̂

(Kπ)
F as

v̂
(Kπ)
I =

∑
μνμ′ν ′

C
(Kπ)I
μν,−μ′−ν ′a

I†
μ aI†

ν a
I†
−μ′a

I†
−ν ′ ,

(19)
v̂

(Kπ)
F =

∑
μνμ′ν ′

C
(Kπ)F
μν,−μ′−ν ′a

F †
μ aF †

ν a
F †
−μ′a

F †
−ν ′ ,

aI
μ|i〉 = aF

μ |f 〉 = 0. (20)

By using the quasiboson approximation (see, e.g., Ref. [21]) to
ignore the exchange terms, C

(Kπ)I
μν,−μ′−ν ′ and C

(Kπ)F
μν,−μ′−ν ′ , which

are called the correlation coefficients [22], are obtained:

C
(Kπ)I
μν,−μ′−ν ′ = 1

1 + δK0

∑
a

Y Ia∗
−μ′−ν ′

(
1

X(Kπ)I∗

)
a,μν

,

(21)

C
(Kπ)F
μν,−μ′−ν ′ = 1

1 + δK0

∑
a

Y Fa∗
−μ′−ν ′

(
1

X(Kπ)F∗

)
a,μν

,

where the matrix X(Kπ)I∗ (X(Kπ)F∗), which consists of XIa∗
μν

(XFa∗
μν ), is used, and the summations include only those QRPA

solutions a having (Kπ ). See Sec. II C of Ref. [13] for the
definition of the matrix notation.

The correlation coefficients are proportional to the back-
ward amplitudes of the QRPA solutions and bring the QRPA
many-body correlations to the QRPA ground states. Note
that v̂

(Kπ)
I and v̂

(Kπ)
F are operators of the z component of

the angular momentum with 0 and positive parity because
we always consider only even-even nuclei; (Kπ ) implies that
these operators consist of the products of two operators with
(Kπ ) and (−Kπ ).

The overlap is expanded with respect to v̂
(Kπ)
I and v̂

(Kπ)
F :

〈aF |a′
I 〉 � 1

NINF

{〈f |OF
a O

I†
a′ |i〉 + 〈f |v̂(Kπ)†

F OF
a O

I†
a′ |i〉

+ 〈f |OF
a O

I†
a′ v̂

(Kπ)
I |i〉}, (22)

034318-3



J. TERASAKI PHYSICAL REVIEW C 91, 034318 (2015)

where (Kπ ) is that of the QRPA states aF and a′
I , and

NI = 〈i|
∏
Kπ

exp
[
v̂

(Kπ)†
I

]
exp

[
v̂

(Kπ)
I

]|i〉1/2

�
[

1 +
∑
Kπ

{
5∑

n=1

1

n!
(1 + δK0)n {Tr(C(Kπ)IC(Kπ)I†)}n + 1

2
(1 + 7δK0) Tr(C(Kπ)IC(Kπ)I†)2

}]1/2

,

NF = 〈f |
∏
Kπ

exp
[
v̂

(Kπ)†
F

]
exp

[
v̂

(Kπ)
F

]|f 〉1/2

�
[

1 +
∑
Kπ

{
5∑

n=1

1

n!
(1 + δK0)n {Tr(C(Kπ)F C(Kπ)F †)}n + 1

2
(1 + 7δK0) Tr(C(Kπ)F C(Kπ)F †)2

}]1/2

. (23)

C(Kπ)I and C(Kπ)F are matrices consisting of C
(Kπ)I
μν,−μ′−ν ′ and C

(Kπ)I
μν,−μ′−ν ′ , respectively. If the good quantum numbers of the two

QRPA states differ, the overlap vanishes. The terms proportional to {Tr(C(Kπ)IC(Kπ)I†)}n are calculated up to n = 5 in Eq. (23)
because it is easy to calculate them (the analytical expression including all orders can also be used); however, the terms with
n > 2 are very small in our numerical calculation.

By using Eq. (16) and the correlation coefficients, the components of Eq. (22) are obtained:

〈f |OF
a O

I†
a′ |i〉 =

∑
μ<ν

XFa∗
μν

∑
μ′ν ′

XIa′
μ′ν ′ 〈f |aF

ν aF
μ a

I†
μ′ a

I†
ν ′ |i〉, (24)

〈f |v̂(Kπ)†
F OF

a O
I†
a′ |i〉=

∑
μνμ′ν ′

∑
μ1<ν1

∑
μ2<ν2

C
(Kπ)F∗
μν,μ′ν ′ XFa∗

μ1ν1
XIa′

μ2ν2
〈f |aF

ν ′ a
F
μ′a

F
ν aF

μ aF
ν1

aF
μ1

aI†
μ2

aI†
ν2

|i〉

−
∑
μν

∑
μ1<ν1

∑
μ2<ν2

YFa∗
−μ1−ν1

XIa′
μ2ν2

{
C

(Kπ)F∗
−ν1−μ1,μν − C

(Kπ)F∗
−μ1−ν1,μν + C

(Kπ)F∗
μν,−ν1−μ1

− C
(Kπ)F∗
μν,−μ1−ν1

+C
(Kπ)F∗
−ν1ν,−μ1μ

− C
(Kπ)F∗
−μ1ν,−ν1μ

− C
(Kπ)F∗
−ν1ν,μ−μ1

+ C
(Kπ)F∗
−μ1ν,μ−ν1

+ C
(Kπ)F∗
μ−ν1,−μ1ν

− C
(Kπ)F∗
μ−μ1,−ν1ν

−C
(Kπ)F∗
μ−ν1,ν−μ1

+ C
(Kπ)F∗
μ−μ1,ν−ν1

}〈f |aF
μ aF

ν aI†
μ2

aI†
ν2

|i〉, (25)

〈f |OF
a O

I†
a′ v̂

(Kπ)
I |i〉 =

∑
μ<ν

∑
μ′<ν ′

∑
μ1ν1

∑
μ2ν2

XFa∗
μν XIa′

μ′ν ′C
(Kπ)I
μ1ν1,μ2ν2

〈f |aF
ν aF

μ a
I†
μ′ a

I†
ν ′ a

I†
μ1

aI†
ν1

aI†
μ2

aI†
ν2

|i〉

−
∑
μ<ν

∑
μ′<ν ′

∑
μ1μ2

XFa∗
μν Y Ia′

−μ′−ν ′
{−C

(Kπ)I
μ1μ2,−ν ′−μ′ + C

(Kπ)I
μ1μ2,−μ′−ν ′ − C

(Kπ)I
−ν ′−μ′,μ1μ2

+ C
(Kπ)I
−μ′−ν ′,μ1μ2

−C
(Kπ)I
μ1−μ′,μ2−ν ′ + C

(Kπ)I
μ1−ν ′,μ2−μ′ + C

(Kπ)I
μ1−μ′,−ν ′μ2

− C
(Kπ)I
μ1−ν ′,−μ′μ2

+ C
(Kπ)I
−μ′μ1,μ2−ν ′ − C

(Kπ)I
−ν ′μ1,μ2−μ′

−C
(Kπ)I
−μ′μ1,−ν ′μ2

+ C
(Kπ)I
−ν ′μ1,−μ′μ2

}〈f |aF
ν aF

μ aI†
μ1

aI†
μ2

|i〉. (26)

Equations (22)–(26) are used to compute the overlap. The
explicit equation of 〈f |aF

ν aF
μ a

I†
μ′ a

I†
ν ′ |i〉 is given in Ref. [13].2

The justification of the approximations used in the above
equations is discussed in detail in Ref. [13]. Here we make
a few remarks on those approximations. The unnormalized
overlap [the right-hand side of Eq. (22) except for the
normalization factors] is truncated at the first order with respect
to C(Kπ)I or C(Kπ)F , whereas N 2

I and N 2
F are expanded up

to the fourth order (and partially more). This difference arises
from the special characteristic that the initial and final states are
the ground states of different nuclei; the high-energy excitation

2The superscripts I in the second line of Eq. (49) in Ref. [13] should
read F .

components of the operators in Eq. (22) that do not affect
the Fermi surface region make almost no contribution to the
unnormalized overlap. The normalization factors, however, do
not have this characteristic.

If the values of (Kπ ) in v̂
(Kπ)†
F and v̂

(Kπ)
I in Eq. (22) are not

equal to those of O
F †
a and O

I†
a′ , the contributions of those terms

are very small. This has been checked in the test calculation in
Ref. [13]; it is also an expected property because operators with
different good quantum numbers commute with each other in
the QRPA order, and roughly the only difference between |f 〉
and |i〉 is the configuration at the Fermi surface.

In Eq. (23), the exchange terms that are not expressed in
the form of the trace of matrix multiplication are neglected.
The exchange terms are smaller than the terms included in
Eq. (23) called the quasiboson terms; this was checked in the
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test calculation in Ref. [13]. Note that the exchange terms have
more selection rules based on the good quantum numbers than
the quasiboson terms do [see Eqs. (25) and (26)]; therefore, the
number of exchange terms is much smaller than the number
of quasiboson terms. This is the main property enabling the
approximation to neglect the exchange terms (there is no
reason that each exchange term is significantly larger than
the quasiboson terms).

The generalized expectation values of the product of the
many quasiparticle creation and annihilation operators in
Eqs. (25) and (26) are calculated systematically by using the
algorithm of the proof of the generalized Wick’s theorem [20]
without distinguishing the direct and exchange terms; thus,
these equations include both types of terms.

IV. MATRIX ELEMENTS OF 0νββ TRANSITION
OPERATOR AND TWO-PARTICLE TRANSFER

A. Matrix elements of 0νββ transition operator

We showed the equation of the 0νββ transition operator
used in this paper in Sec. II. In this section, we show the
equation of the matrix element of that operator for compu-
tation. The quasiparticle and single-particle wave functions
are always numerically expressed in a B-spline mesh (see,
e.g., Ref. [23,24]) in a cylindrical box in our calculations;
therefore, the wave functions of the relative and center-of-mass

motions are not trivial. Thus, we calculate the two-body
matrix elements of the 0νββ transition operator using the
product wave functions of the two single-particle states in
the laboratory frame. Note that p and p′ (n and n′) in the
equations for M (0ν) in Sec. II cover all the proton (neutron)
states, so both the direct and exchange matrix elements are
included; see Eq. (8).

The single-particle wave functions used in our calculations
are expressed as

�i (r1) = 1√
2π

∑
σ=±1/2

Fi (σ ; z,ρ) ei(jz
i −σ)φ|σ 〉, (27)

taking into account the axial symmetry of the nuclei con-
sidered. The label i implies (πi,j

z
i ,ni), where jz

i is the z
component of the angular momentum of the single-particle
state, and ni is a label distinguishing single-particle states
in the (πi,j

z
i ) subspace. σ is the z component of the spin,

and |σ 〉 is a spin wave function. The variables (z,ρ,φ) are
the cylindrical coordinates (ρ and φ represent the radius and
angle in the xy plane, respectively). The function Fi(σ ; z,ρ)
is treated numerically in our calculations and has reflection
symmetry:

Fi (σ ; −z,ρ) = (−)l
z
i πiFi (σ ; z,ρ) , lzi = jz

i − σ. (28)

Fi(σ ; z,ρ) is real in computation without losing generality. By
using the wave function of Eq. (27), V GT (0ν)

pp′,nn′ (Ēa) [Eq. (3) with
the closure approximation] can be written as

V
GT (0ν)
pp′,nn′ (Ēa) = 1

(2π )2

∫ ∞

0
dρ1ρ1

∫ ∞

0
dρ2ρ2

∫ ∞

0
dz1

∫ ∞

0
dz2

×
⎡
⎣ ∑

σp,σp′=±1/2

F∗
p(σp; z1,ρ1)F∗

p′(σp′ ; z2,ρ2)Fn(σp; z1,ρ1)Fn′(σp′ ; z2,ρ2)
{I(

z1,ρ1,z2,ρ2; −jz
p + jz

n

)

− (−)j
z
p′+jz

n′ πp′πn′I(
z1,ρ1, − z2,ρ2; −jz

p + jz
n

)}
(−)σp−σp′ + 2

∑
σp

F∗
p(σp; z1,ρ1)F∗

p′(−σp; z2,ρ2)Fn(−σp; z1,ρ1)

×Fn′(σp; z2,ρ2)
{I (

z1,ρ1,z2,ρ2; −jz
p + jz

n + 2σp

) + (−)j
z
p′ +jz

n′ πp′πn′I (
z1,ρ1, − z2,ρ2; −jz

p + jz
n + 2σp

)}⎤⎦
× 2δπpπp′πnπn′ ,1δjz

p+jz
p′ ,j z

n+jz
n′ , (29)

I (z1,ρ1,z2,ρ2; I ) = 4π

∫ π

0
d� cos (I�) h+(r12,Ēa), (30)

where I is an integer. Note that r12 depends on �, as shown by

r12 = {
ρ2

1 + ρ2
2 − 2ρ1ρ2 cos � + (z1 − z2)2

}1/2
. (31)

Equation (5) with R = 1.1A1/3 fm is used for the neutrino potential. The matrix element of the Fermi operator is given by

V
F (0ν)
pp′,nn′ (Ēa) = −g2

V

g2
A

1

(2π )2

∫ ∞

0
dρ1ρ1

∫ ∞

0
dρ2ρ2

∫ ∞

0
dz1

∫ ∞

0
dz2

∑
σpσp′

F∗
p(σp; z1,ρ1)F∗

p′(σp′ ; z2,ρ2)Fn(σp; z1,ρ1)

×Fn′(σp′ ; z2,ρ2)
{I (

z1,ρ1,z2,ρ2; −jz
p + jz

n

) + (−)j
z
p′+jz

n′ (−) πp′πn′I (
z1,ρ1, − z2,ρ2; −jz

p + jz
n

) }
× 2δπpπp′πnπn′ ,1δjz

p′ +jz
p,j z

n+jz
n′ . (32)
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Obtaining the equation for computation requires one more step because the neutrino potential has a singularity. We introduce
the coordinates (P,ρ) and (Z,z), which are obtained from (ρ1,ρ2) and (z1,z2), respectively, by a rotation by π/4 (see
Fig. 1):

P = 1√
2

(ρ1 + ρ2) , ρ = 1√
2

(−ρ1 + ρ2) , Z = 1√
2

(z1 + z2) , z = 1√
2

(−z1 + z2) . (33)

The singularity of the neutrino potential occurs along z1 = z2 and ρ1 = ρ2 when � = 0 [see Eqs. (5) and (31)]. We can integrate
the integrand of Eqs. (29) and (32) from z = 0 to the left or top boundary of the square in Fig. 1 by using the Gauss–Legendre
quadrature. The z coordinates of this boundary are denoted by the function B1(Z) in the equation below. The integral in the
region of z < 0 can be handled analogously. The same geometry can be applied to the integral in the (ρ1,ρ2) plane, and the upper
boundary of the ρ integral is denoted by B2(P ). In our computation, the data for the single-particle wave functions are provided
on a B-spline mesh, as mentioned above; therefore, we obtain the values of the wave functions on the Gauss–Legendre mesh
points using a B-spline interpolation formula [23,24].

On the basis of the above method, we can use the following equation for the Gamow–Teller matrix element:

V
GT (0ν)
pp′,nn′ (Ēa) = 1

(2π )2

∫ ∞

0
dZ

∫ ∞

0
dP

∫ B1(Z)

0
dz

∫ B2(P )

0
dρρ1ρ2

×
⎡
⎣ ∑

σp,σp′=±1/2

{F∗
p(σp; z1,ρ1)F∗

p′(σp′ ; z2,ρ2)Fn(σp; z1,ρ1)Fn′(σp′ ; z2,ρ2)

+F∗
p(σp; z2,ρ1)F∗

p′(σp′ ; z1,ρ2)Fn(σp; z2,ρ1)Fn′(σp′ ; z1,ρ2)

+F∗
p(σp; z1,ρ2)F∗

p′(σp′ ; z2,ρ1)Fn(σp; z1,ρ2)Fn′(σp′ ; z2,ρ1)

+F∗
p(σp; z2,ρ2)F∗

p′(σp′ ; z1,ρ1)Fn(σp; z2,ρ2)Fn′(σp′ ; z1,ρ1)}
× {I(√

2z,ρ1,0,ρ2; −jz
p + jz

n

) − (−)j
z
p′+jz

n′ πp′πn′I(√
2Z,ρ1,0,ρ2; −jz

p + jz
n

)}
(−)σp−σp′

+ 2
∑
σp

{F∗
p(σp; z1,ρ1)F∗

p′(−σp; z2,ρ2)Fn(−σp; z1,ρ1)Fn′(σp; z2,ρ2)

+F∗
p(σp; z2,ρ1)F∗

p′(−σp; z1,ρ2)Fn(−σp; z2,ρ1)Fn′(σp; z1,ρ2)

+F∗
p(σp; z1,ρ2)F∗

p′(−σp; z2,ρ1)Fn(−σp; z1,ρ2)Fn′(σp; z2,ρ1)

+F∗
p(σp; z2,ρ2)F∗

p′(−σp; z1,ρ1)Fn(−σp; z2,ρ2)Fn′(σp; z1,ρ1)}{I(√
2z,ρ1,0,ρ2; −jz

p + jz
n + 2σp

)

+ (−)j
z
p′ +jz

n′ πp′πn′I(√
2Z,ρ1,0,ρ2; −jz

p + jz
n + 2σp

)}⎤⎦ 2δπpπp′ ,πnπn′ δjz
p+jz

p′ ,j z
n+jz

n′ , (34)

where ρ1 and ρ2 (z1 and z2) are functions of P and ρ
(Z and z) [see Eq. (33)]. The corresponding equation for
the matrix element of the Fermi operator can be derived
analogously.

The integral intervals are separated in such a way that the
singularity of the integrand is set at the edge, and the values
of the integrand at the edge are not used in the Gaussian
quadrature. The advantage of this method is clear when it is
compared to calculations using integral paths not separated at
the singular points, as shown in Fig. 2. A multipole-multipole
expansion [18] can also be used to avoid the difficulty arising
from the singularity.

B. Matrix elements of two-particle transfer

As mentioned in Sec. II, we use Eq. (13) in this paper.
The necessary transition matrix elements in this equation are

calculated according to

〈aI |c−n′c−n|I 〉 = (−XIa∗
nn′ + XIa∗

n′n
)
sn′vn′snvn

+ (
Y Ia∗

−n−n′ − Y Ia∗
−n′−n

)
un′un, (35)

sn = jz
n/

∣∣jz
n

∣∣ . (36)

We use the canonical basis [19] associated with the initial
HFB ground state for the neutron single-particle states in this
equation. The factors un and vn are transition matrix elements
defined in the transformation from the canonical to canonical
quasiparticle basis. Equation (36) is our phase convention. For
the proton single-particle states in 〈F |c†pc

†
p′ |aF 〉, we use the

canonical basis associated with the final HFB ground state.
Thus, the wave functions of the protons and neutrons in the
equations for V

GT (0ν)
pp′,nn′ and V

F (0ν)
pp′,nn′ are associated with different

HFB states. These bases should be sufficiently large.
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FIG. 1. (Color online) Integral region (inside the square) and
integral paths (the lines from z = 0 to the left or top boundary of
the square) for calculating the matrix elements of the 0νββ transition
operator. The integral with respect to Z is made after the integral with
respect to z. The same geometry is applied to a (ρ1,ρ2) plane.

The final stage of the calculation of the NME is to obtain
the trace of the product of the four matrices; see Eq. (13).

V. PREPARATORY CALCULATIONS

A. Hartree–Fock–Bogoliubov ground states

The Skyrme (SkM∗ [25]) and volume pairing [26] en-
ergy density functionals are used in our calculations. The
strengths of the volume pairing energy density functional
are −218.521 MeV fm3 (protons) and −176.364 MeV fm3

(neutrons) for 150Nd and −218.521 MeV fm3 (protons) and
−181.655 MeV fm3 (neutrons) for 150Sm. These strengths are
adjusted so as to reproduce the experimental data obtained
from the masses [27] using the three-point formula [28] with
deviations of less than 200 keV in the HFB calculations; see
Table I. We use the HFB code explained in Refs. [29–32]. The
radius and height (z > 0) of the cylindrical box used in our

-1.66

-1.65

 30  35  40  45  50  55

V
G

T
(0

v)
pp

′ ,n
n′

N eff
mesh

x10-3

FIG. 2. (Color online) V
GT (0ν)
pp′,nn′ (Ēa), an arbitrarily chosen non-

negligible one, as a function of effective number of mesh points
per dimension N eff

mesh. [(N eff
mesh)2 is equal to the number of mesh points

for the (z1,z2) plane, and this number is equal to that for the (ρ1,ρ2)
plane.] This test calculation was performed by using the setup for
26Mg → 26Si used in Ref. [13] [max(z1) = max(ρ1) = 10 fm]. The
circles show the result using the scheme shown in Fig. 1, and the
triangles show the result using the integral paths from an edge of
the square in Fig. 1 to the edge at the opposite side, including the
singular points. In the calculations for 150Nd → 150Sm, it is difficult
to use N eff

mesh�50 because too much memory is required.

TABLE I. Average pairing gaps of protons (�p) and neutrons
(�n) in the HFB calculations and those obtained from the mass data
using the three-point formula (�exp

p for protons and �exp
n for neutrons).

Nucleus �p (MeV) �n (MeV) �exp
p (MeV) �exp

n (MeV)

150Nd 1.494 0.925 1.464 1.023
150Sm 1.869 1.058 1.692 1.195

HFB calculations are both 20 fm, and 42 B-spline mesh points
are used per dimension. The cutoff quasiparticle energy is
60 MeV. We obtained quadrupole deformations β of 0.279
for 150Nd and 0.209 for 150Sm. Two sets of experimental
data for the deformations are known: (β for 150Nd, β for
150Sm) = [0.367 (86), 0.230 (30)] [33] and [0.2853 (21),
0.1931 (21)] [34]. Our values are closer to the latter. The total
root-mean-square radius of the HFB solutions is �5.0 fm for
both 150Nd and 150Sm.

B. Quasiparticle random-phase approximation calculations

We use the QRPA code described and tested in Ref. [35].
The calculations are performed for K = 0 − 8 and π = ±
for convergence of the NME. The dimension of the two-
canonical-quasiparticle space [see Eq. (16)] for expressing
the QRPA Hamiltonian matrix is �58 000 for K = 0,1 and
�10 000 to 25 000 for other K values. This dimension is
controlled by a pair of cutoff occupation probabilities v

ph
cut and

v
pp
cut applied to the occupation probabilities of the canonical

basis states; see Ref. [35]. The dimensions of the four modes
of K = 0,1 and π = ± are much larger than those of the
other (Kπ ) values because the former (Kπ ) modes have
spurious solutions [19] in QRPA calculations based on the
deformed mean and pair fields; the translational invariance is
also broken by the nuclear wave functions. Those dimensions
are determined from our experiences with separation of the
spurious solutions and convergence of sum rules in the mass
region of A ≈ 150 [35,36]. Smaller dimensions can be used
as K increases, as long as K does not have spurious solutions.

The γ vibrational solution for 150Nd appears at an energy
of 1.766 MeV, whereas the experimental value is 1.062
MeV [37,38]. The calculated B(E2; 0+ → 2+) is 0.0380 e2 b2,
and the experimental value is 0.069 (3) e2 b2 [37]. The QRPA
with the setup in this paper is better near the center of the
well-deformed rare-earth region (A � 164) [36]. However, the
fact that the QRPA energy is higher than the experimental data
implies that the QRPA solutions are far from the breaking
point of the QRPA. To our knowledge, there are no data
for the two-particle transfer strength for 150Nd → 148Nd or
150Sm → 148Nd, which are relevant to Eq. (13).

The proton-neutron pairing energy density functional is not
used in our QRPA calculations. Many QRPA approaches (see,
e.g., Ref. [18]) introduce this energy density functional so as to
reproduce the NME of two-neutrino double-β (2νββ) decay,
and the NMEs of both 0ν and 2νββ decay are significantly
reduced. The pairing correlations are generally significant
only near chemical potentials; therefore, most studies of
the proton-neutron pairing correlations independent of the
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0νββ decays have concentrated on the N = Z line and its
narrow vicinity (see, e.g., Ref. [39]). The calculations of
Ref. [40] show that the proton-neutron pairing gap vanishes
at N − Z = 6 for A = 60 to 70. Although we do not know
of any studies of the dynamical effects of the proton-neutron
pairing correlations around A = 150 independent of double-β
decay, strong proton-neutron pairing correlations such as those
of QRPA solutions reproducing the 2νββ NMEs (close to the
breaking point of the QRPA) do not seem understood easily in
those nuclei with N − Z = 30.

The spurious QRPA solutions of K = 0,1 (π = ±) are
not included in the sets of intermediate states. The spurious
solutions emerge because the HFB ground states break the
symmetries of the Hamiltonian, and the symmetries are
retrieved in the QRPA order. There are no spurious states
independent of the ground states.

C. Calculation of matrix elements of 0νββ transition operator

The two-proton and two-neutron spaces are also truncated
in the calculations of the matrix elements of the 0νββ transition
operator by introducing another cutoff occupation probability
vtr

cut for the canonical single-particle states. If (v2
μ > vtr

cut
2 or

v2
μ′ > vtr

cut
2) and (1 − v2

μ > vtr
cut

2 or 1 − v2
μ′ > vtr

cut
2) (the same

condition is applied to another pair of νν ′), then those μμ′

and νν ′ states are used for V
(0ν)
μμ′,νν ′ (Ēa). The underlying idea

is that, if both canonical single-particle states μ and μ′ are
almost unoccupied or occupied, they are not used (the same
idea is applied to νν ′).

Figure 3 shows the dependence of the (Kπ ) = (0+)
component of the NME on the number of two-canonical
single-particle states, N tr

2sp (summation of the numbers of
the μμ′ and νν ′ states). Roughly speaking, the difference in
M (0ν)(0+) for the rightmost two points is half that for the
second and third points from the right, and the N tr

2sp value
of the rightmost point is twice that of the second point from
the right. Extending this relation phenomenologically, we can
estimate the error by truncation of our best value, that is,
the rightmost point, to be around 4%. We use vtr

cut
2 = 10−4,

which corresponds to N tr
2sp � 24 000 in Fig. 3, without any

effective operator method throughout the NME calculations in
this paper because the above estimated error by truncation is

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 5  10  15  20  25

M
(0

v)
(0

+
)

N 2sp
tr x1000

FIG. 3. (Color online) (Kπ ) = (0+) component of NME as a
function of N tr

2sp.

small. The factor μa [Eq. (6)] of 18.51 taken from Ref. [11]
is used in our calculations. See, e.g., Ref. [11] and Fig. 3 in
Ref. [41] regarding justifications of the closure approximation
and possible values of Ēa .

D. Overlap calculations

A truncation of the canonical quasiparticle states is intro-
duced in Eqs. (25) and (26), as in Ref. [13]. The set of pairs of
canonical quasiparticle states μν connected by jz

μ + jz
ν = K

and πμπν = π is truncated by the condition v2
μ > vov

cut
2 and

v2
ν > vov

cut
2; those μν satisfying this condition are used. We use

vov
cut

2 = 10−3 according to the test associated with Fig. 3 in
Ref. [13].

To obtain a realistic NME, we need to avoid the following
problem. Using all the QRPA solutions gives rise to a too-small
NME of �0.07; this is much smaller than one-tenth of
the values of other groups (these values will be shown in
Sec. VI B). The reason for this problem is that the QRPA
correlations are overestimated by the Skyrme and volume
pairing energy density functionals. Because these energy
functionals correspond to a contact interaction, the high-
momentum components do not decrease. This property causes
a known problem in which the QRPA correlation energy [42]

EQRPA
cor � 1

2

∑
a

(
Ea − ETDA

a

)
(37)

diverges [43]. Here, Ea and ETDA
a denote the QRPA and

Tamm–Dancoff approximation [19] energy of solution a,
respectively, and the number of solutions must be the same
for the two calculations. We illustrate our example of EQRPA

cor
in Fig. 4. The semi-experimental correlation energy can be
defined as

Eexpt
cor = Eexpt − EHFB, (38)

where Eexpt is the experimental mass, and EHFB is the HFB
energy of the ground state. E

expt
cor for 150Nd is −1.696 MeV,

and that for 150Sm is −3.661 MeV. In the current calculation,
this problem decreases the NME unphysically because the
normalization factors of the QRPA ground states are too large.

-50

-40

-30

-20

-10

 0

 0  5  10  15  20  25

E
Q

R
P

A
co

r

Number of QRPA solutions

150Nd
2+

x1000

FIG. 4. (Color online) EQRPA
cor as a function of the number of

QRPA solutions for (Kπ ) = (2+), 150Nd. At each QRPA solution
number, the lowest energy solutions are used.
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TABLE II. QRPA solutions selected for obtaining the QRPA
ground states used in the overlaps and their properties. Note that
the solutions with negative K values make the same contributions to
the correlation energy and the QRPA ground states.

Nucleus Kπ Ea (MeV)
(
Ea − ETDA

a

)
/2 (MeV) N a

back

150Nd 1+ 2.263 −0.061 0.013
2+ 1.766 −0.171 0.062

2.730 −0.085 0.024
3.259 −0.094 0.026

2− 1.984 −0.094 0.060
2.557 −0.129 0.050

3+ 3.270 −0.075 0.015
3− 3.790 −0.042 0.015

3.897 −0.046 0.028
4+ 6.301 −0.063 0.013

150Sm 0− 2.829 −0.149 0.023
3.111 −0.105 0.017

1+ 3.152 −0.083 0.022
1− 2.418 −0.219 0.014

2.858 −0.136 0.016
2+ 1.551 −0.252 0.119

2.370 −0.080 0.023
2.756 −0.030 0.010
2.934 −0.116 0.019
3.507 −0.073 0.018
3.712 −0.061 0.013

2− 1.890 −0.176 0.132
2.461 −0.091 0.033
2.675 −0.107 0.031
3.399 −0.075 0.015

3+ 3.602 −0.116 0.024
3− 3.202 −0.054 0.018

3.534 −0.049 0.056

To avoid this over-correlation problem, first, we calculate
the backward norms of the QRPA solutions:

N a
back =

∑
μν

∣∣Y a
−μ−ν

∣∣2
. (39)

We then select the QRPA solutions that have the largest
backward norms, excluding those possibly having numerical
errors due to spurious components, so as to reproduce the semi-
experimental correlation energy, and use them to calculate the
QRPA ground states used in the overlaps. The reason for this
choice is that the backward amplitudes of many high-energy
solutions are redundant, as Fig. 4 shows. This modification
implies that Eq. (17) is required only for the selected QRPA
solutions, and C

(Kπ)I
μν,−μ′−ν ′ and C

(Kπ)F
μν,−μ′−ν ′ are changed by

restricting the summation in Eq. (21). Those QRPA solutions
are listed in Table II (K � 0). (Kπ ) = (0+) is avoided, as
mentioned above, and |K| > 4 are not included because their
backward norms are very small. All of those solutions have
backward norms larger than 0.01, and their contributions to
the correlation energy range from −0.03 MeV to −0.25 MeV.
The correlation energy obtained is −1.721 MeV for 150Nd
and −3.688 MeV for 150Sm. We do not reduce the number of
QRPA intermediate states.

 0

 2

 4

 6

 8

 0  1  2  3  4  5  6  7  8

M
(0

v)

max |K |

FIG. 5. (Color online) NME obtained by our method (filled cir-
cles) and that obtained using the HFB ground states in the calculations
of the overlaps (open circles).

VI. NUCLEAR MATRIX ELEMENT

A. Discussion of our nuclear matrix element

Figure 5 illustrates the result of our NME calculation; a
partial NME defined as

M (0ν) =
max|K|∑

K ′=−max|K|

∑
π

M (0ν)(K ′π ) (40)

is shown as a function of max |K|. (K ′π ) indicates that of
the intermediate states. The lower ones are the result obtained
by using our method, and the higher ones are the result of
a reference calculation obtained by using the HFB ground
states instead of the QRPA ground states in the calculations of
the overlaps. It is seen that max |K| = 8 is sufficient, and
our best value is 3.604. The reference value of the upper
curve is 6.620, which is 84% larger than our best value.
The most important information in this figure is that the
QRPA correlations significantly reduce the NME through the
overlaps, which are calculated by using the QRPA ground
states. In the reference calculation, only Eq. (24) is used with
NI = NF = 1 in the overlap calculations.

Figure 6 shows the ratios of the |K| components of
two NMEs: M (0ν)(|K|) and M (0ν)(|K|)unc. The former is

 0.52

 0.54

 0.56

 0  1  2  3  4  5  6  7  8

|M
(0

v)
(|

K
|)

/M
(0

v)
(|

K
|)

un
c|

|K |

FIG. 6. (Color online) Ratio of |K| component of the NME to
that obtained using the HFB state instead of the QRPA ground state
in the overlap calculations.
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defined as

M (0ν)(|K|) =
∑
π

M (0ν) (Kπ ) ×
{

1, K = 0
2, K �= 0,

(41)

and the latter, with subscript unc indicating uncorrelated, is
defined by the same equation but using the HFB ground state
instead of the QRPA ground state in the overlap calculations.
The relative bump indicates the effect of the QRPA correlations
through the unnormalized overlap. This is seen from an
approximate equation for the overlap,

1

NFNI

〈f |
∏
K1π1

exp
[
v̂

(K1π1)†
F

]
OF

a OI†
a exp

[
v̂

(K1π1)
I

]|i〉
� 1

NFNI

〈f | exp
[
v̂

(Kπ)†
F

]
OF

a OI†
a exp

[
v̂

(Kπ)
I

]|i〉, (42)

where Kπ denotes those of the QRPA state a. For K > 4, this
equation leads to

1

NFNI

〈f |OF
a OI†

a |i〉, (43)

and 〈f |OF
a O

I†
a |i〉 is the uncorrelated overlap. Therefore, the

flat portion of Fig. 6 for |K| > 4 is equal to 1/(NFNI ), and
the relative bump indicates the effect of v̂

(Kπ)†
F and v̂

(Kπ)
I in

the unnormalized overlaps. This effect is at most a few percent
at the limited K values; thus, the greatest effect of the QRPA
correlations through the overlaps appears in the normalization
factors.

NFNI = 1.860 in the calculation yielding M(0ν) = 3.604
is much larger than 1 because the contributions of many QRPA
solutions are accumulated. According to the equations of the
correlation coefficients [Eq. (21)], a simplified estimation

N ∼ exp

[
1

2

∑
a

N a
back

]
(44)

is possible. This N represents either NI or NF . By using
this equation and the values of N a

back in Table II , we obtain
NFNI ∼ 2.4. Therefore, the large normalization factors are
not surprising.

It is worth noting again that the high-energy components
of the excitations included in OF

a O
I†
a do not contribute to

the unnormalized overlap because the initial and final ground
states have different proton and neutron configurations at the
Fermi surfaces. Therefore, the effect of the large normalization
factors manifests itself in the NME.

We also performed a calculation using 27 (150Nd) and 79
(150Sm) QRPA solutions (K � 0) with the largest N a

back so as
to have twice the correlation energy for comparing the effects
of the QRPA correlations in the ground states used in the
overlaps. The NME of this calculation was 2.990, which is
17% lower than our best value. Thus, low-energy solutions
with large backward norms are more important than the same
number of solutions with higher energy and smaller backward
norms. However, the NME does not converge as the number of
QRPA solutions used for the ground states increases greatly,
as mentioned in Sec. V D.

TABLE III. Our NME and those of other groups for 150Nd →
150Sm. PnQRPA denotes proton-neutron QRPA, and LikeQRPA
represents like-particle QRPA. IBM-2 indicates interacting boson
model-2, and GCM is the generator coordinate method. The values
obtained with gA = 1.25 or close to it are listed, if that value
is available. M (0ν) = 3.14 and 2.71 of PnQRPA (Skyrme, volume
pairing) were obtained with SkM∗ and modified SkM∗, respectively.

Method M (0v) Ref.

PnQRPA (CD-Bonn, G matrix) 3.34 [44]
PnQRPA (Skyrme, volume pairing) 3.14, 2.71 [18]
IBM-2 2.321 [14,45]
Projected HFB 3.24 ± 0.44 [46]
Energy density functional 2.190 [47]
(Gogny, GCM, projection)
Relativistic (GCM, projection) 5.60 [48]
LikeQRPA 3.604 Current paper

B. Nuclear matrix elements of other groups

Our M (0ν) value and those obtained by other groups are
summarized in Table III. Only those obtained by using the
most current methods are listed. The major difference is the
approximation for the nuclear wave functions, as noted in
the table; however, there are also many other differences. The
value of Ref. [44] in the table was obtained by a proton-neutron
QRPA calculation with gA = 1.25 (M (0ν) = 2.55 when gA =
0.94). The interaction used was the nuclear Brueckner G
matrix derived from the charge-dependent Bonn one-boson
exchange potential. The overlaps were calculated by using
a simplified method [49]. The number of proton-neutron
quasiparticle pairs, which determines the dimension of the
proton-neutron QRPA equation, was 921 for (Kπ ) = (0+),
150Nd and 150Sm. The particle-hole matrix elements in the
QRPA equation were multiplied by the factor gph = 0.90. This
factor is fit to the experimental position of the Gamow–Teller
giant resonance in the intermediate nucleus, of which the
parent nucleus is 76Ge. The particle-particle matrix elements
were multiplied by another factor, gpp. This factor was fit to the
experimental value of the 2νββ decay NME of 0.07 MeV−1 for
76Ge [50]. The Ēa used was 7 MeV. Self-consistent Bonn-CD
short-range correlations were included. The finite-nucleon-
size effects and higher-order weak currents were also included
according to Refs. [51–53].

The value cited from Ref. [18] was obtained by another
proton-neutron QRPA calculation with R = 1.2A1/3 fm and
gA = 1.25. The short-range correlation corrections were omit-
ted on the basis of the suggestion from recent studies [53,54]
that the realistic short-range correlations affect the double-β
matrix elements only slightly; see also Ref. [55]. The authors of
this paper used the Skyrme and volume pairing energy density
functionals. For the former functional, they modified the
parameter set SkM∗ so as to reproduce the location and fraction
of the observable strength of the Gamow–Teller resonance.
The strength of the isospin T = 0 component of the pairing
energy density functional was determined so as to reproduce
an experimental 2νββ NME. The (T = 1,Tz = 0) component
was determined in such a way that the Fermi 2νββ matrix

034318-10



MANY-BODY CORRELATIONS OF QUASIPARTICLE . . . PHYSICAL REVIEW C 91, 034318 (2015)

element vanished [56], and the (T = 1,Tz = ±1) components
were determined by using the pairing gaps of the HFB
calculations and the experimental gaps obtained from the mass
differences. The dimension of the two-quasiparticle states in
the proton-neutron QRPA equation was around 15 000. The
overlaps were calculated by using the HFB ground states.

The value of Refs. [14,45] cited in the table was obtained by
a calculation of the interacting boson model-2 (IBM-2) with
R = 1.2A1/3 fm. The wave functions were provided by the
proton-neutron IBM-2 [57], and the formulation in Ref. [58]
was used for the calculation of the NME. The finite nucleon
size was taken into account by replacing gA and gV with
dipole forms, and the short-range correlations were included
by multiplying the neutrino potential by the Jastrow function
squared.

The value of Ref. [46] cited in Table III is an average of
eight values obtained by projected HFB calculations. The dif-
ferences are the parametrization of the Jastrow-type function
used for the short-range correlations and the variations in the
multipole-multipole-type interactions. A value of gA = 1.254
was used (M (0ν) = 3.59 ± 0.50 when gA = 1.0). The average
energy of the intermediate states relative to the mean value
of the initial and final state energies was 1.12A1/2 MeV. The
finite-size effect of nucleons was introduced by a dipole form
factor.

The value of Ref. [47] in Table III was obtained by an energy
density functional (Gogny [59]) method including deformation
and pairing fluctuations explicitly on the same footing by
using the generator coordinate method (GCM) [19,60] with
projected HFB wave functions. The neutrino potential used
(gA = 0.925) includes the nucleon finite-size effect, higher-
order currents, and short-range correlations [61,62], and the
result was obtained as the sum of the Fermi and Gamow–Teller
terms. The details of the NME calculation were based on
Ref. [61], in which R = 1.2A1/3 fm was used; see also
Ref. [63].

The value of Ref. [48] was obtained by using the GCM
plus projections in a relativistic framework with gA = 1.254
without the contributions of the short-range correlations. All of
those calculations used the closure approximation. Compared
to the compilation in 2013 [18], the value of Ref. [47] is an
updated one, and the value of Ref. [48] and our value are
new. For other differences in the details, see the references
in Table III. The remarkable point of our result, which we
can state considering the many differences in the methods
described above, is that a value close to the pnQRPA values
with the similar setup is obtained without any effective
methods known to reduce M (0ν), e.g., the proton-neutron
pairing energy density functional.

VII. CONSISTENCY OF QUASIPARTICLE
RANDOM-PHASE APPROXIMATION APPROACH

We have one more fundamental point to make regarding
the QRPA approach: how the equality of Eqs. (12) and (13)
[or (14)] can be achieved. Suppose that the strength of the
Coulomb residual interaction was changed arbitrarily in the
QRPA calculation. This change would not affect the proton-
neutron QRPA solutions, whereas the like-particle QRPA

solutions would be affected. Therefore, it is impossible to
obtain the equality of Eqs. (12) and (13) without modifying
the usual QRPA approach. Apparently the same ground-state
wave functions should be used for these equations, and the
only candidate is the extended QRPA ground states

|I 〉 = 1

Npn,INlike,I

∏
Kπ

exp
[
v̂

(Kπ)
pn,I

]
exp

[
v̂

(Kπ)
like,I

]|i〉,
(45)

|F 〉 = 1

Npn,FNlike,F

∏
Kπ

exp
[
v̂

(Kπ)
pn,F

]
exp

[
v̂

(Kπ)
like,F

]|f 〉.

In this section, we use the subscript pn to indicate the
proton-neutron QRPA and the subscript like to indicate the
like-particle QRPA. The method of obtaining the components
of these equations does not change. Because these two types
of QRPA do not have coupling (therefore, there are two
QRPAs), the operators exp[v̂(Kπ)

pn,I ] and exp[v̂(Kπ)
like,I ] commute

with each other approximately. The same property holds for
the final state. Thus, we can introduce the above product wave
functions.

Let us investigate the implications of this extension.
The well-established equation for calculating the transition
strength between the ground and proton-neutron QRPA states
is

〈a|c†pcn|I 〉

� 1

N 2
like,I

∏
K ′π ′

〈i| exp
[
v̂

(K ′π ′)†
like,I

]
exp

[
v̂

(K ′π ′)
like,I

]|i〉
× 1

N 2
pn,I

∏
Kπ

〈i| exp
[
v̂

(Kπ)†
pn,I

]
Opn,I

a c†pcn exp
[
v̂

(Kπ)
pn,I

]|i〉
= 1

N 2
pn,I

∏
Kπ

〈i| exp
[
v̂

(Kπ)†
pn,I

]
Opn,I

a c†pcn exp
[
v̂

(Kπ)
pn,I

]|i〉.
(46)

Thus, this calculation is not affected by the extension. The
explicit QRPA ground-state wave function is known to be
unnecessary for calculating this equation [19].

As for the overlap used in Eq. (12), it follows that

〈aF |aI 〉 � 1

Npn,FNpn,I

1

Nlike,FNlike,I

×〈f | exp
[
v̂

(Kπ)†
pn,F

]
exp

[
v̂

(Kπ)†
like,F

]
Opn,F

a

×Opn,I†
a exp

[
v̂

(Kπ)
like,I

]
exp

[
v̂

(Kπ)
pn,I

]|i〉. (47)

The influence of the like-particle QRPA correlations cannot be
removed from this equation unless the influence is negligible.
The N a

back values of the like-particle and proton-neutron
QRPA solutions are compared in Fig. 7. A few tens of
the largest N a

back values consist of those of the like-particle
QRPA solutions. Thus, neglecting the proton-neutron QRPA
correlations in the QRPA ground states [Eq. (45)] can be
justified as long as the prescription described in Sec. V D is
used; however, neglecting the like-particle QRPA correlations
may not be a good approximation. That is, the like-particle
QRPA correlations may be necessary in the overlap in Eq. (12)
taking the double-β path.
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FIG. 7. (Color online) N a
back as functions of Ea of (a) the like-

particle and (b) proton-neutron QRPA solutions for 150Nd, (Kπ ) =
(2+).

VIII. SIMPLIFIED TEST CALCULATIONS

In this section, we show the validity of our method by
simplified calculations. One is the equivalence of the two paths
of the 0νββ decay under the closure approximation shown by
Eqs. (12) and (13), and another is the NME of 2νββ decay.

A. Equivalence of the two paths

In order to demonstrate this equivalence without large-scale
computations we use a fictitious 0νββ decay of light nuclei
26Mg → 26Si with the box size of max(z) = max(ρ) = 10 fm
and 23 B-spline mesh points per dimension. The cutoff
quasiparticle energy in the HFB calculation is 40 MeV, and
the maximum K quantum number of the QRPA intermediate
states is five.

It is possible to simplify the equation for calculation by
concentrating on a demonstration of the equivalence of the
two paths. First, the factor included in the overlaps,

1

Npn,FNpn,I

1

Nlike,FNlike,I
, (48)

is omitted because this factor is shared by the two equa-
tions (12) and (13). Second, the effect of the QRPA correlations
on the unnormalized overlaps is neglected because this effect
is not significant, as shown in Sec. VI A. Namely, the HFB
ground states are used in the overlaps instead of the QRPA
ground states in this section. We call the NME obtained under
this simplification test NME for distinguishing it from the
correct NME.

We use the Skyrme energy density functional (SkM∗)
and volume pairing energy density functional with the
strengths −150.0 MeV fm3 (protons) and −270.0 MeV fm3

(neutrons) for 26Mg and −270.0 MeV fm3 (protons) and
−200.0 MeV fm3 (neutrons) for 26Si. The HFB ground-state
solution for 26Mg has �p = 0.949 MeV and �n = 3.083 MeV,
and that for 26Si has �p = 2.586 MeV and �n = 1.749 MeV.
The quadrupole deformation is β = −0.118 for both 26Mg
and 26Si with a negligible difference, and the total root-mean-
square radius is �3.0 fm for both nuclei.

In the QRPA calculations, we use all of the two-
quasiparticle states possible from the quasiparticle states
obtained by the HFB calculations. The dimension of the
two-quasiparticle space is, e.g., for (Kπ )=(0+), 8459 for the

like-particle QRPA and 8406 for the proton-neutron QRPA.
Contamination of the real states by the spurious compo-
nents is unavoidable in these like-particle QRPA calculations
because of the reduced computation scale. Examining the
contamination by the transition strengths of the operators
associated with the symmetries [e.g., the particle number
operator for (Kπ ) = (0+)], we removed a few QRPA states
close to the spurious QRPA states in terms of the energy from
the calculation of the test NME at each (Kπ ) mode having
the spurious state(s). (The spurious QRPA states are always
removed.)

We obtained the test NME of −5.45 by using the path of
the two-neutron removal followed by the two-proton addition
(the like-particle QRPA) and −5.89 from the double-β path
(the proton-neutron QRPA). The absolute value of the former
test NME is 7.5% smaller than that of the latter one. If the
additional removal of the contaminated low-lying QRPA states
is not made, the test NME of the like-particle QRPA approach
is −3.35; the absolute value of this is 43% smaller than that of
the proton-neutron QRPA approach. The possible causes for
the 7.5% discrepancy are the simple removal method of the
spurious components, ignoring the QRPA correlation effect in
the overlaps, and the scale of the computation: the box size and
the number of mesh points. Considering these simplifications,
we conclude that the equivalence of the two paths under the
closure approximation is demonstrated approximately by this
test calculation.

B. Nuclear matrix element of 2νββ decay

It is possible to obtain an approximate value of the NME
of the 2νββ decay M (2ν) for 150Nd → 150Sm with the help of
calculations of other groups. The factor (48) is also included
in M (2ν) of our method, and it is equal to 1/(NFNI ) = 0.54 in
our calculation for 150Nd → 150Sm (see Secs. VI A and VII).
Therefore M (2ν) of the other group calculated without the
proton-neutron pairing interaction multiplied by that factor
is the approximate NME of our method.

Fortunately, Ref. [18] shows the M (2ν) calculated using the
Skyrme energy (SkM∗) and volume pairing energy density
functionals for that decay instance, and the values obtained
without the T = 0 proton-neutron pairing interaction are
also shown in their Fig. 2(d); those values are 0.17 (gA =
1.25) and 0.11 (gA = 1.0). Multiplying them by 0.54, we
obtain 0.09 and 0.06 for gA = 1.25 and 1.0, respectively.
The latter value agrees well with the experimental value of
0.0579 ± 0.0032; this value is obtained from the average of
three experimental half-lives [64] (for the experiments, see
Refs. [65–67]) and the phase-space factor in Ref. [16]. A more
recent experiment [68] reports M

(2ν)
eff = 0.0465+0.0098

−0.0054 (see also
Ref. [69]). This agreement indicates the validity of our method,
and it is emphasized that our QRPA solutions are not close to
the breaking point of the QRPA usually encountered by the
strong proton-neutron pairing interaction. This result is also
consistent with our claim that the effects of the proton-neutron
pairing interaction should be minor in nuclei far from the
N = Z line (Sec. V B).
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IX. CONCLUSION AND FUTURE WORK

We calculated the NME for 150Nd → 150Sm by using a
new QRPA approach. The most remarkable point is that the
overlap is calculated on the basis of the QRPA ground states
that are the vacuum of quasibosons. The QRPA correlations
included in the ground states were renormalized referring to
the semi-experimental correlation energies. Under the closure
approximation, it is possible to consider multiple virtual paths
for double-β decay. In this paper, we used the path consisting
of two-neutron removal followed by two-proton addition, and
the like-particle QRPA was used to construct the intermediate
nuclear states. K values of up to eight and π = ± were used
for the intermediate states. The simplest version of the 0νββ
transition operator, which contains only the Gamow–Teller and
Fermi terms, was used without any effective operator methods.
No finite nucleon size effect is included. We set up the calcu-
lations so as to use as large a wave-function space as possible
without effective methods for compensating for the trunca-
tions. The use of high-performance parallel computers is es-
sential. This approach is inspired by the fact that the QRPA can
exhaust the sum rules in practical calculations. The input is the
Skyrme and volume pairing energy density functionals, and the
proton-neutron pairing energy density functional is not used.

A NME value was obtained which is close to the values
of the other groups obtained with the similar setup. The
difference is that the QRPA correlations significantly reduced
the NME in our calculation because the normalization factors
of the QRPA ground states were included in the overlaps. The
normalization factors are included implicitly in any QRPA
calculations. These factors play a special role in the NME
calculation because the initial and final states are states of
different nuclei.

We argued that it was necessary to extend the QRPA
ground-state wave function to a product wave function using
the like-particle and proton-neutron QRPA calculations for
theoretical consistency. The former QRPA solutions have

larger QRPA correlations, so the current calculation is a
reasonable approximation.

We have also checked whether the different virtual paths
yield the same NME. This calculation was performed with a
smaller computational scale for light nuclei due to shortage
of our computational resource. We could, however, show
the equivalence of the two paths approximately. The exact
calculation using the proton-neutron QRPA states as the inter-
mediate states includes the cross terms of the proton-neutron
and like-particle QRPAs in the overlaps; thus, the calculation
will be slightly more complicated than the calculations in this
paper.

The approximate NME of 2νββ decay for 150Nd → 150Sm
was obtained with the help of the result of the other group.
Our method can reproduce the experimental value without the
QRPA solutions close to the breaking point of the QRPA.

Calculations for decay instances that have shell-model
values should be performed in the future. It is worth noting
here that the new mechanism introduced in this paper is not a
special characteristic of the QRPA.

ACKNOWLEDGMENTS

This study was supported by the HPCI strategic program
Field 5, and JSPS Grants-in-Aid for Research Activity start-up
under subject number 23840005 and Scientific Research(C)
under subject number 26400265. Use was made of the K
computer at AICS, RIKEN through the HPCI System Research
Project (hp120192, hp120287, hp130027, and hp140213);
Mira at ALCF, ANL (0vbbqrpa); CX400 at ITC, Nagoya Uni-
versity through the HPCI System Research Project (z48705t,
hp140001); FX10 at ITC, Nagoya University (z48530u); T2K-
Tsukuba and Coma at CCS, University of Tsukuba through
the public computer resource program for interdisciplinary
research; FX10 and CX400 at RIIT, Kyushu University
(i70299a); and SR16000 at Yukawa Institute for Theoretical
Physics (YITP), Kyoto University.

[1] Y. Fukuda et al., Phys. Rev. Lett. 81, 1562 (1998).
[2] Q. R. Ahmad et al., Phys. Rev. Lett. 89, 011301 (2002).
[3] K. Eguchi et al., Phys. Rev. Lett. 90, 021802 (2003).
[4] E. Aliu et al., Phys. Rev. Lett. 94, 081802 (2005).
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[49] F. Šimkovic, L. Pacearescu, and A. Faessler, Nucl. Phys. A 733,
321 (2004).

[50] A. S. Barabash, Phys. Rev. C 81, 035501 (2010).
[51] V. A. Rodin, A. Faessler, F. Šimkovic, and P. Vogel, Nucl. Phys.
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