	Date 15. 5. 7
微積分演習第4回	
微分方程式、	
=2-t-2 (17C)	
力学が機構分が必要になった	
女世 チンナサノオ別に老さていて	
ノ天:コペタレニクス ケッタラー 3法則	BH o tal
(103)大一人 アリストティス	* (3//742)
のかりーュートン(万有号)かのはか)	
第一法則 情性の法則	
第一法則慣性の法則第2 张代 空間の中の記	5
da 速度	
$\frac{d^2d}{dt^2}$ mix \mathcal{E}	
T m 12 - T	
$m \cdot d\mathcal{X} = F$	
+	
コペルニクス「大陽か中心にある」	
コペルニクス「太陽かり中心にある」トスカネリ「地球がかりまればか」―>コロ	
74'	ノゴ・ベスプッチ

コペルニクス「太陽かい中心にある」
トスカネリ「地球がからまればあ」 → コロンプスが統領へ
アメリゴ・ベスプッテ
アリスアルコス
落ちゅい? しま

落了 加 位置 又付

mil = -mg

) 地表

$$g = a_1 + 2a_2t + 3a_3t^2 + 4a_4t^3 + \cdots$$

 $g = 2a_2 + 3 \cdot 2a_3t + 4 \cdot 3a_4t^2 + 5 \cdot 4a_5t^3 + \cdots$

$$2a_2 = -9$$

 $a_2 = -\frac{1}{2}g$, $a_3 = 0$, $a_4 = 0$, ----
 5.7
 $x = a_0 + a_1 t - \frac{1}{2}gt^2$

実際には空気がある。

手が空気抵抗だけの場合

$$\begin{array}{l} \mathcal{A} = a_0 + a_1 t + a_2 t^2 + \dots + a_n t^n \\ \dot{\mathcal{A}} = a_1 + 2a_2 t + 3a_3 t^2 + \dots + na_n t^{n-1} + \dots \\ \dot{\mathcal{A}} = 2a_2 + 3 \cdot 2a_3 t + 4 \cdot 3a_n t^2 + \dots + (n-1)na_n t^{n-2} + \dots \end{array}$$

$$-ka_1 = 2a_2$$

 $-2ka_2 = 3.293$
 $-3ka_3 = 8.396$

$$2 = a_0 + a_1 t - \frac{k}{2}a_1 t^2 + \frac{k^2}{3!}a_1 t^3 - \frac{k^3}{4!}a_1 t + \cdots$$

$$= a_0 + a_1 \left(t - \frac{k}{2} + \frac{k^2}{3!} - \frac{k^3}{4!} + \cdots\right)$$

$$= a_0 + \frac{a_1}{k} \left(kt - \frac{k^2}{2} + \frac{k^3}{3!} + \frac{k^2}{4!} + \cdots\right)$$

$$= a_0 + \frac{a_1}{k} - \frac{a_1}{k} \left(1 - kt + \frac{k^2}{2} - \frac{k^3}{3!} + \cdots\right)$$

$$= a_0 + \frac{a_1}{k} - \frac{a_1}{k} e^{-kt}$$

$$\mathcal{L}(t)$$
 $a' = a\mathcal{L}$ $a' \neq t \leq b' \neq t \leq 2$

$$x = b_0 + b_1 t + b_2 t^2 + b_3 t^3 + \cdots$$

 $5c = b_1 + 2b_2 t + 3b_3 t^2 + \cdots$

$$b_1 = ab_0$$

$$2b_2 = ab_1$$

$$3b_3 = ab_2$$

$$2b2 = ab_1$$

 $3b3 = ab_2$
 $2 = bo + ab_0 + ab_0$