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Abstract
Graduate School of Business Sciences

Doctor of Philosophy

Modeling and Analysis of the Effects of Information Contexts induced

by the Structure of the Information

by Makoto Yoshitake

This thesis explores an understanding of the fundamentals of information and

develops a new framework of its mathematical description, i.e., model of context–

dependent, absolutely relative information at the fundamental level, on the basis

of physical phenomena. Today, the most dominant picture of information in gen-

eral must be a so-called container/conduit–model, which explains information as

a parcel carried from the sender to the receiver via a conduit. This model suc-

cessfully explains many kinds of information phenomena. However, this model

has not attained enough success on the matter of understanding of fundamen-

tal aspects of information such as relativeness, contextuality of information. In

this thesis, the relativeness and contextuality of information are considered to be

essential, inherent properties of information phenomena, and a mechanism that

realizes such features materially/extensionally is explored as a foundational model

of information phenomena.

The present study grounds information phenomena on physics by modeling the

process of extensional information articulation as a generalization of the theory

of the extensive measurement in metrology. The model operationally defines the

information phenomena that this thesis studies, eliminating speculativeness as

much as possible. The model is demonstrated in the case of, so to speak, the

attribute extraction from the universe. The scene of the attribute extraction may

be considered to be a representative of fundamental information phenomena. In

this concrete model of an information phenomenon, it is shown that the attributes

as information may be obtained extensionally, that is, by mere physical interactions

between the system under consideration and the universe, in a canonical manner.

http://www.tsukuba.ac.jp
http://www.gssm.otsuka.tsukuba.ac.jp/
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Information, or its meaning, must be canonically extracted from the information

phenomena with universality, to be utilized by the system that receives the infor-

mation. Information is something useful afterward for the system. To be identified

and used after a time interval, information must be universal, and be canonically

obtained. The universality of the attribute is understood as a mathematical limit

of the sequence of structures of (proto–)attributes. Each of the structure is formed

by inclusion relations of the set of (proto–)attributes. These structures may form

a sequence in their inclusion order. The actual attributes are understood as cer-

tain elements of the limit structure of this sequence. Limit has universality in

mathematical sense. Thus attributes are understood as having universality to be

qualified as information. The canonicy is attained by the Galois connection be-

tween the structure formed by the sets of (proto-)objects and the structure formed

by the sets of (proto-) attributes and by the project limit of such structures. The

actual object and attributes for the information gathering system under consid-

eration are determined simultaneously in the mathematical dual relation that is

formed by the connection. This model naturally explains the arbitrariness of the

articulation of the attributes and the contextuality of the attributes.

To describe the inherent contextuality and other fundamental features of informa-

tion, the language of category theory is proposed in this study. Basics of category

theory are introduced, and it is shown that its features, such as the relativity

represented by arrows, the structural contextuality of the elements, the structural

universality, and the existence of the subobject classifier in some categories, are

endowed with the properties suitable to investigate the information phenomena.

The validity of this proposal is demonstrated also in the case of the attribute ex-

traction. By using the language of topos, a kind of category, for modeling the

attribute extraction, a new, internal description is obtained and this description

provides a new understanding of the attribute as information.

The essential relativity of information causes some difficulty in understanding

information itself, that is, a mysterious concept of information dismantled of its

context. This thesis provides an understanding of it by using the algebra known

as torsor. Torsor is utilized in an algebraic model for representation in this study.

Use of torsor enables us to make no direct mention of the represented thing.

This property of the model is suitable at the fundamental level of information

phenomena studied in this thesis because the represented thing is assumed to be

vague before it is articulated. The thesis presents how to interpret a representation
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phenomenon to the algebraic structure of the model. The correspondence relations

of the elements, the two-sidedness of representation and the closure concept play

significant roles in the construction of the toy model. Through the examples, it is

shown that the axioms of torsor tend to hold and correspond to some consistency

requirement for the representation.

As is shown in this thesis, the relativeness and contextuality of information are

considered to be underlying every information phenomenon. Therefore the un-

derstanding obtained in this study, and the model developed in this study are

expected to contribute to explaining a wide range of information phenomena. Be-

sides the attribute extraction studied in this thesis, which is a typical information

phenomenon, there might still be other information phenomena to be investigated.

Information phenomenon that is originated in some structure other than the in-

clusion structure, e.g., network structure, might be a candidate, if it would exist.

The language of category theory, which naturally involves the relativeness and the

contextuality, is expected to be used more widely in the studies of information.

The characteristics of information understood in this thesis, such as the essential

contextuality and the bootstrapping capturing process at the information level

might be a matter of interest of the researchers in other disciplines such as lin-

guistics, communication theory, robotics, and many others. This thesis may make

some contribution in these fields.
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Chapter 1

Introduction

1.1 Anomalous information phenomena?

The word “information” has been given different meanings by various writers in

the general field of information theory1. There are long lasting discussions on the

concept of information and the way to study information scientifically. We only

name a few general references: [4–8, 12].

There must be no dispute that one of the most successful theory, or the most

dominating model of information is by Claude Elwood Shannon [24, 25]2. Although

Shannon prudently restrained himself from applying his theory to the fields other

than the engineering of communication, as is known well, “Information Theory”

originated with Shannon seems to have dominated as a foundational theory for

information related disciplines – computer science, physics, communication theory,

probability theory, statistics, and others [26].

Thus, today, the most prevailing folk picture of information is akin to so called

the container/conduit–model3 (Figure.1.1), originated from Shannon’s model. The

container/conduit model reflects our tendency to regard information as something

1In this thesis, “information” is defined operationally in Chapter 3. As is mentioned in [7], for
a science like information science it is of course important how fundamental terms are defined. In
scientific discourse, theoretical concepts are not true or false elements, but more or less fruitful.
To avoid worthless disputes over the speculative definitions, the (class of) “information” in this
thesis is presented as what is obtained by the process presented in Chapter 3.

2See 2.2.2
3This word is used in ordinary, broad sense as described in the following sentences, not strictly

corresponding to the term in linguistics [91].
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1.1 Chapter 1

like a parcel to be delivered from the sender to the receiver. Meaning, content,

or significance of the information is thought to be packaged in the representation

of the information, i.e., signs, words, messages, etc., and to be passed through

a conduit to the receiver. This picture certainly touches the matter of heart,

even though it cannot escape censure for its superficiality. Thus, as is already

mentioned above, “Information Theory” that is based on the container/conduit–

model has been developed to a high–degree and has made a great success to bring

the so–called “Information Age”.

Figure 1.1: Container/Conduit model

However, if we keenly observe our daily experiences, especially around the scenes

of information acquisition, we may find that the container/conduit–model is not

enough. The following episodes are presented to help the readers to conjure up

what is happening in their information lives. These episodes might be anomalous,

or, pathological in the view of the container/conduit–model, but the readers may

find that these episodes have something in common with ordinary, daily experi-

ences of the readers themselves.

1.1.1 Episode 1: Arbitrariness of articulation of the uni-

verse

Suppose that there is a green apple. We, as experienced humans, can recognize

that this fragment of the universe (i.e., the apple) is green. We have information

that the apple is green. But how about an infant or a brand-new tabula rasa

autonomous robot just thrown out into the physical universe? When such a system

tries to gather and utilize information about its surrounding universe, how can it

obtain the information? They do not know what the green is, or, how green

something is.

2



Chapter 1 1.1

One may wonder if it is determined by the sensory system embedded in the system

under consideration—our eyes, the retinae, the visual cortex, and other organs

enable us to see the green. Yet this is not completely true. Yes, the visual system

actually captures some optical stimuli from the surrounding universe. In general,

the stimuli captured by the system that is gathering and utilizing information are

actually restricted by the capability of its sensory subsystems. However, the way

in which the information system articulates4 the stimuli is another matter. In the

case of the color system for example, it is known that the color system differs from

race to race, from language to language [92]5. Some may distinguish green from

blue and others may not.

Thus even the information telling that “this is green” does not seem to come as a

package delivered uniformly to all.

1.1.2 Episode 2: Contextuality of words

The meaning of a word is understood in the context of a language. The word pro-

nounced as [b�æt] , i.e., /bat/6, is different from the word pronounced as [v�æt],

i.e., /vat/ in English, because there is a phonemic opposition, that is, a distinction

between [b] and [v] in English. The word pronounced as [b�æt] might have the

identical meaning as the word pronounced as [v�æt] in the context of the language

that has no phonemic opposition between [b] and [v]. In other words, informa-

tion that a word provides is not determined by the word alone. It is determined

in a context which consists of other words in the language system to which the

word is supposed to belong. The word /kani/ means a 〈〈rabbit〉〉 in Finnish, but

it means a 〈〈crab〉〉 in Japanese7. There ought to be other contexts – cultural,

social, communicative, conversational, and many others – that affect the informa-

tion. Information differs in different contexts. It is a source of misunderstandings,

puns, double meanings and other ordinary information phenomena.

4Throughout this thesis, the author always uses the word articulate in a similar sense to
phonetics, that is, “divided into segments.”

5Their emphasis is on the cognitive commonalities not only within a color system but also
among different color systems, though.

6In this section, single slash is intended to indicate a representation and double angles indicate
a content. Thus, /xxx/ represents 〈〈xxx〉〉.

7It should be better to use other symbols such as phonetic symbols for /kani/ here to be
precise, but the priority has given to the readability.

3



1.1 Chapter 1

The container/conduit–model seems not to consider the context seriously. The

words container and conduit imply that this information mechanism excludes sur-

rounding circumstances. The container contains the definite information, and the

conduit transfers it exactly as it is. There seems no room for context–dependency

in the container/conduit–model.

1.1.3 Episode 3: One stimulus, multiple information

When a child finds a blot on the wall in an airport and the blot has a form like

/P/, the child may regard the blot as 〈〈pee〉〉. But another child may regard the

blot as 〈〈er〉〉. And the other child may regard the blot as 〈〈rho〉〉. One can think

of a blot as a Latin letter, a Cyrillic letter, or a Greek letter. But what on earth

are we talking about? The letter that one of the children found is different from

the letters found by the other children. Can we say that we are talking about the

same blot? It might just happen to be this simple case. But imagine a blot which

has a more complex form such as a sequence of ideographs8 and Arabic letters,

and suppose that one does not have enough knowledge of the writing system of the

language. When a child finds that a part of the blot is similar to a certain letter,

can one articulate the part from the blot with confidence? Even the articulation

of a letter is no easy task.

This might also be considered as a context–dependency, but it has a different as-

pect. In this case, information differs evidently between the receivers/informees.

Whether the theory regards the receivers as a part of the context or not, a funda-

mental theory of information ought to explain this difference.

1.1.4 Episode 4: Information and physical process

The definition of information seems very difficult to deal with. Physical interac-

tions might be considered to be a good point to departure. No one would deny

that information has a physical base. But it is not easy to define information even

on the physics base. There seems to be a certain spectrum of informational nature

of physical interactions. A falling heavy body makes a dent on the surface of the

floor. We, humans, tend to regard this as a mere physical consequence. The falling

8For instance, Chinese characters, or Kanji.
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Chapter 1 1.2

body or the falling may not be regarded as information for the floor. In contrast

to this, let us consider a typical information phenomenon: in many countries, a

change of a traffic signal to the red will make cars stopped. This situation may

be intuitively informational. The change of the traffic signal may be regarded as

information for the cars or the car-driver composite systems.

If information is always transferred as a package, this means that there are two

distinctive types of physical interactions, one in which “the package of information

is emitted,” and the other in which “the package of information is not emitted.”

Even though the emission is not literally a physical process, this distinction seems

strange to the author of this thesis. A fundamental study of information ought to

explain the differences among such information related phenomena in the view of

information, even if the phenomena are not apparently causally related, that is,

not well-suited to be studied in physics.

1.2 Vicious Circularity of the Foundation of In-

formation

Such information phenomena described in 1.1 seem ubiquitous in the depth of

every information and moreover they actually are considered to form elementary,

fundamental processes in every information phenomena. Information processes

described in the above episodes are concerned with the origin of distinction for

the system that is gathering and using information.

Making distinctions into the universe, namely, articulating the universe, by the

system is understood to be the basics of information. A human may find an

optical distinction between a certain closed area in the space and the background,

and she/he may catch the information that the area is distinctive from the rest

of the space. The area might correspond to be a green apple. An English speech

recognition system may find a phonetic distinction between the word /bat/ and

/vat/ and distinguish them. Every information is based on the distinction.

But the distinction itself is considered to be also based on the information of the

differences within the distinction. A difference found in the world is a lack of

uniformity of the universe. That is, where there is a lack of uniformity, there is

distinction. To make a distinction, the system must find differences. In other
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words, differences must appear as information for the system. Some of the readers

may think that the differences are inherently found by the system as a physical ex-

istence. As a matter of fact, the visual system of the human has its own resolution,

and the ocular ability of the human to capture the world is inevitably restricted

by this resolution. However, the resolution that humans utilize as information is

much coarser than the physical resolution of their visual systems. In contrast to

the homology of the construction of physical visual systems among humans, the

difference of the systems of visual information9 is not negligible.

Information requires distinction and the distinction requires information. There

seems to be a vicious circularity for the fundamental understanding of information.

Thus our understanding of information should inevitably be suspected of a circular

reasoning when we are naively assuming the distinction underlying information.

If you consider it from the other point of view, such information phenomena like

the above episodes of the scene of making distinction to capture information will

be shed light on the foundation of information.

1.3 Difficulties of Fundamental Studies of Con-

textuality of Information

Foundational information sciences study information in general. As a scientific dis-

cipline, information sciences tend to consider information as some kind of objective

existence that is isolated from the circumstances of each occasion of phenomena.

They mainly focus on the universal characteristics of information which need not

be bothered with the details of the circumstances of each occasion of phenomena,

namely, contexts. Information is assumed not to be bearing its context in such

information sciences.

Seemingly, such information phenomena described in 1.1 are very diverse, sepa-

rately isolated and too much depend on the individual situation/context. Infor-

mation in these phenomena seems lacking the universality that the foundational

information sciences search for. Therefore such phenomena tend to be out of the

scope of the target of foundational sciences.

9For instance, the color system.
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Besides the difficulty of finding out the universality of context–dependent infor-

mation phenomena, information as a contextual existence has another difficulty to

investigate. “Information as a contextual existence” means that we should always

take the individual, various context into consideration when we study informa-

tion. If the whole information bears its context, each information phenomenon

might inevitably be individual, separately isolated. The universality as the fruit

of scientific endeavor must, if exists, reside in information whose context is ripped

off.

However, it is difficult to understand, even imagine, information without its con-

text. Many of us usually have the image of information with its context. In-

formation is always accompanied by the background scene (in the case of visual

information), surrounding silence or some noise (in the case of auditory informa-

tion), other symbols (in the case of alphabet), other words in the same language

(in the case of language), and so on. The information we imagine is inseparable

from its context.

Information is a difference, as an anthropologist Gregory Bateson [37] defined:

“information is . . . difference which makes a difference.” It is a convincing defi-

nition because, as the author has already written above, information is based on

distinction, i.e., difference. Information without context might be pure difference.

Difference is something in between. Thus information is inherently relative.

Even if we could attain ideation of “information without context,” this relativistic

nature of information would raise another difficulty of the fundamental studies of

information. There are few ways even to describe the relativeness itself. It must

be very hard to study information fundamentally without good tools that may

describe, analyze and operate its relativeness naturally and properly.

1.4 Fundamental Information Studies on Con-

text – Thus Far

Fundamental information studies seem to have not hitherto tackled the essential

context–dependency of information squarely. There may be considered several

reasons such as the followings.

7
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Firstly, as we will see in Chapter 2, most of the preceding scientific studies assume

distinctiveness of the information carrier10 as a self-evident truth. The distinction

is regarded as some kind of a gift from Heaven (via the physical construction of the

system) in such studies. The vicious circularity which underlies beneath informa-

tion phenomena and the essential context-dependence of information phenomena

are put out of their scope of the studies in most cases.

Secondly, the multi-layered-ness, or, simply saying, the “complexity” of informa-

tion phenomena easily hides the elementary context–dependent process. Informa-

tion phenomena present a multi–layered structure. Optical stimuli form a shape

of blot, the blot is interpreted as a letter of some alphabet, some such letters form

a word, words becomes sentences, sentences mediate communication, and so on.

Each of the studies of information has a specific layer of information phenomena

that attracts the attention of the researchers in that field and that is investigated

intensively. Because of its fundamentality, the context–dependence of information

phenomena concerning with fundamental distinction makes an appearance even in

the studies that pays no attention to it. In prior studies, the context–dependence

is analyzed and understood at this specific layer of information phenomena. The

layer has its own interest, and such interest at the “higher level” of the layers hides

the elementary context–dependent process at the most fundamental level.

In fact, each related discipline at these higher levels addresses the context depen-

dencies at its own level. For example, in the linguistics related disciplines, the

more pragmatic the focused field of study is, the greater importance is attached to

the contextuality. As is emphasized in Saussure’s semiology [59, 68], a sign must

be articulated from other signs to signify something. These other signs as “back-

ground” may be considered to form the context of the particular sign. Thus, even

at the level of signs, the contextuality makes an appearance. In theories in prag-

matics, information beyond “what is said” is explicitly modeled as constituents of

the theory. Austin’s perlocutionary act [61], Searle’s Background [62, 65], Gricean

conventional implicature [64], Sperber and Wilson’s contextual implication [66],

though from the different respective viewpoint, all of them tackle to information

not included the utterance itself.

Although the phenomena addressed at these studies at the higher level of informa-

tion may be considered as an appearance of the fundamental contextuality, from

10This is not a term that has a strict meaning. Information carrier here loosely means the
(physical/material) source of the information.
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the standpoint of this thesis, prior theories for these phenomena are naturally not

enough general to be a fundamental information theory. They assume the distinc-

tion between the main part and the context part of a phenomenon. In other words,

they analyze contextual phenomena in a postmortem fashion. But for the system

itself, before the context part has been established by information, there seems no

main part. The distinction required for information seems to require information.

Vicious circularity is there. This should be resolved at the fundamental level of

information.

Thirdly and lastly, without assuming the fundamental distinction, the basis of

study, the starting point of investigation, the parts of the model for mechanism, of

information seems hard to establish. Once you decide to pursue the way to resolve

the matter, you will find that you must grope in the dark to search for the theory

that forms the basis of the study, the methods that might be effective, and the

tools that might be useful.

1.5 Beyond conduit models

In this thesis, we explore an understanding of the fundamentals of information.

The aim of this study is to understand the essential contextuality of information

in a non–speculative manner, resolving the difficulties mentioned in 1.3, by reveal-

ing a mechanism of information phenomena. Assuming the systems in general11,

we focus on the universality that the system utilizes as information, and on the

canonicity that enables the system to capture information. Contexts are under-

stood as those that are constructed structurally, and a new framework is developed

for a mathematical description of information as a context–dependent, absolutely

relative information phenomena to the system concerned.

To attain that aim, we concentrate on a particular aspect, or a particular stage, of

information phenomena in this thesis. As a semiotician Umberto Eco [60] depicts

(see Figure.1.212), we can consider that there is a continuum at each end of an

11That is, the systems presupposed in this thesis include natural systems such as animals and
humans, and also include artificial systems.

12Table has been rearranged and the illustration has been added by the author.
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information phenomenon13. The continua are usually out of the scope of scientific

information studies. However, as the readers will see, the present study focuses on

this boundary14 of the continuum and the articulated units, if its focus is attempted

to be shown in this figure. This act of articulating is considered to be underlying

every information phenomenon. The words like “fundamental” and “foundational”

in this thesis are used in such a sense. Information is often anatomized into data

plus meaning15. This picture of information gives us an impression of independence

of the meaning from the data (and vice versa). Although this picture is indeed

effective for postmortem analysis of information, it will be abandoned in the view

of this study. From the aspect that the present study addresses, data and meaning

are articulated from the continuum at each end in an intertwined manner, as will

be shown in Chapter 3. Although this thesis is seemingly considering a limited

part of information phenomena, the study from the aspect that is addressed in

this thesis is anticipated providing better understanding of information in general,

because of its fundamentality.

Figure 1.2: Model of sign–function and its underlying code [60]

13The usage of the word information varies even among the researchers. Eco [60], for instance,
states his own view. However, the readers need not to be bothered with the difference between
the semiotics and other information sciences here. They are boldly considered to be the same in
this section.

14In the expression in [60], it is described as the lower threshold of natural boundary of semi-
otics.

15For instance, see the General Definition of Information in [14].
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To eliminate speculativeness as much as possible, this study operationally defines

the process of information phenomena at the “receiving” system. From the other

point of view, information in this thesis is defined by physical operations16 that will

be presented in Chapter 3. Information must have a physical support [93]. More

modestly, a class of information must have a physical support. Though there seems

no definitive agreement on what information is, one may agree that information

is induced by a physical phenomenon. That is, at a certain level of investigations,

information may be considered to be physical phenomena related to a class of

physical interactions between a certain part of the physical universe17 and another

part of the universe. In this thesis, we will call such an interaction as information

phenomenon, and the latter part of the universe will be called an Information

Gathering and Using/Utilizing System, abbreviated to IGUS18 [94, 95]. We will

use this abbreviation to specify such a subsystem of the universe. An IGUS is also

merely a physical phenomenon in the universe. Ultimately, this physical world is

just a bunch of physical interactions. Thus, in summary, information in the view

of this thesis are considered to be (abstracted) physical interactions between an

IGUS and the universe.

From this viewpoint, an information theory might be regarded as a kind of phe-

nomenological theory of physical sciences19 (Recall the episode in 1.1.4). Phe-

nomenological theory here means a theory that expresses empirical observations

of phenomena, in a way that is consistent with fundamental theory, but without

paying detailed attention to their fundamental significance. The fundamental the-

ory is physics here, and there are many phenomena among the word “information”

that are not always directly explained effectively in the words of physics. Though

this view may naturally arouse much discussion, in this thesis, the author will use

the word phenomenological in this sense because this word seems to be convenient

to transfer the grand view of this thesis concisely to the readers.

16Since the argument in Chapter 3 is primarily based on the macroscopic physics, information
phenomena in this thesis are assumed to be macroscopic one. Although the possibility of a direct
application of this study to the microscopic phenomena is not denied, quantum phenomena as
information have not been sufficiently investigated in this study yet.

17Throughout this thesis, the word universe is consistently used to emphasize this uniformity—
the status prior to being articulated. In contrast to the word universe, in most of the case, the
word world used in this thesis implicates the existence of IGUS(es) capturing it.

18Note that those that regard a physical phenomenon as information for a certain IGUS are
another IGUSes—human beings as IGUSes in many cases. This special kind of IGUS will be
called a human-IGUS in Chapter 3. In general, such IGUSes are not restricted to humans.

19Note that it should not be confused with “a kind of phenomenological theory in physical
sciences.”
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On this extensive, physics basis20, the study in this thesis focuses on the emergence

of both of information and the distinction that form the information, that is, what

is represented as information and what represents the information. The emergence

is explicated in a bootstrapping way through a connection between them. This

thesis especially focuses on the scene of, so to speak, attribute extraction21, as a

representative of fundamental information phenomena. Attributes are information

that is used to distinguish and classify objects. Since information and distinction

are inseparable, the understanding of the information phenomena of the attribute

extraction is significant.

The connection between what is represented as information and what represents

the information is established as the connection between the structures of contexts.

That is, the context of information is captured structurally in this study. There

are two contexts that ought to be taken into consideration. One is in the IGUS

side, and the other is in the universe side22. Although the former context may be

considered to be in connection with the significance of the information, and the

latter context may be considered to be in connection with the representation of the

information, it will be found that these two contexts may not affect the information

phenomenon independently. Information is relative to both of these contexts. In

the case of the attributes, it is understood that the connection is established

between the structure formed by the sets of (proto–)objects and the structure

formed by the sets of (proto–)attributes. The actual object and attributes are

determined in the mathematical dual relation that is formed by the connection.

Each of the objects or the attributes is understood as relative existence embedded

in their respective context.

Information, or its meaning/significance23, must be canonically extracted from the

information phenomena with universality, to be utilized by the IGUS. Information

is something useful afterward for the IGUS. To be identified and used after an in-

terval, information ought to be universal, and be canonically obtained (in contrast

to the arbitrariness of articulations).

20The word physics here is not intended to mean a science that deals with matter and energy,
and their interactions. By this word, the author means the physical processes and phenomena of
a particular system under consideration.

21In other words, attribute capturing or attribute attribution.
22To be more exactly, the latter is also in the IGUS. It is an image of a part of the universe

that reflects the circumstances in the universe.
23Do not mind the definition of the meaning of the word meaning or significance, here. Later,

it will be defined (implicitly, though) in the language of the model developed in this thesis.
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In this study, universality and canonicity are analyzed by, and realized as, a math-

ematical model. This thesis introduces the language of category theory and torsor,

as tools for the investigation of information. The language of category theory has

many advantageous features to this study. It may naturally describe the relative-

ness of information, provides the precise definition of the universality, and enables

us to handle complex structures of information more easily. The torsor enables us

to manipulate the torso-like characters24 of information – the fact that torso has

no head may be considered to correspond to the information without its context.

With such a mathematical language, we can understand information more deeply

with rigor.

In the view of this study, communication, i.e., information transfer, is regarded

as an information phenomenon, that is, an interaction between a system and its

environment, not between the sender/informer and the receiver/informee. In this

fundamental, elemental view, communication is a process in that an IGUS as a

sender causes an event in the universe, and also in that the event causes something

within another IGUS as a receiver. Indeed, there is no sender and receiver as in the

container/conduit–model, instead, the IGUS simply “observes”25 the surrounding

universe to obtain information. Sometimes the observed event might be the one

which is originated by another IGUS. And in such a case, as a result, the observed

information is regarded as “communicated” one.

Thus this thesis will provide a new understanding of information by focusing on

the mechanism of the emergence of information and by modeling the mechanism

in the language of mathematics. This model will be considered to include the

container/conduit–model as a special case, therefore the author expects that the

understanding developed in this study may be regarded as deeper than before.

24This is just wordplay. What it means precisely will be revealed in Chapter 5
25This is just a personification to stimulate the imagination of the readers.
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1.6 Summary of Contributions

In this thesis, the author:

• Defines information phenomena as extensive process (in Chapter 3);

• Demonstrates the validity of the above definition by the “attribute” infor-

mation extraction, in a manner that clarifies the universality of the attribute

as information and the canonicity of the extraction (in Chapter 3);

• Proposes the language of category theory as a description language of infor-

mation phenomena (in Chapter 4);

• Demonstrates the validity of the language of category theory by providing

an internal description of an origin of the “attribute” (in Chapter 4);

• Introduces torsor as a language of information without context (in Chapter

5).

The contents of the Chapter 3, 4, 5 are basically based on the papers [1], [2], [3],

respectively.
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Chapter 2

Review of the concept of

information and its context

2.1 Introduction

As is known well, information is studied in many disciplines. For example, a soci-

ologist Niklas Luhmann [114] defines social systems as systems of communication,

naturally mediated by information, and whole society as the most encompassing

social system, i.e., the information system. Others say that the dynamic evolu-

tion of the physical world is (mere) a/the computation of information ([96], more

recently [97], etc.). In the first place, the concepts of, for instance, information,

its meaning, and its context have no generally agreed respective definitions.

In this chapter, we review the major discussions of information concepts in the

studies that have information scientific flavor, focusing on ideas relevant to context.

This review should clarify the possibility of explicating the context as a scientific

research. Each of the description is detailed to some extent, to elucidate the point

of the review and to offer the readers a glimpse into the discussion of information

concept. Referred studies are limited to those that can be regarded a classic in

each field, in order to avoid stepping into the latest, fragmented technical details

that are too much for our purpose.
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2.1.1 Concept of Information

The usage of the concept of information is very broad and complex. It ranges

from bit [24] to society [114]. It is discussed both in the objectivistic view and

in the subjectivistic view. It has been studied in natural and social sciences, in

humanities, and in various interdisciplinary approaches. Merely a few general

references for the concept of information are listed here again:[4–8].

In this chapter, we do not argue the issues such as the precise definition of the term

information, information is whether an existing “thing”or interpreted and emerged

“event”, objectivity/subjectivity/intersubjectivity of information, and so on. This

is because the concept of information is defined appropriately, if necessary, in each

study that is referred in this chapter, and because, in most cases, the concept of

information seems to be agreed with the common sense of the expected readers

and such a rough understanding is expected not to introduce any difficulty. Those

who are interested in such a topic should consult above mentioned references,

especially [7].

In the following sections, though the definitive definitions are not required, we use

several labels to indicate that each of them is used in a theory–neutral, limited

meaning, in order to make explanation concise:

<Information> (Mental)1 change of a certain kind which is occurred in a sub-

ject, i.e., receiver of the information, with the observation of the external

world;

<(Information) Carrier> External thing/event which is the source of the in-

formation;

<(Information) Context> Information is affected by many factors. The fac-

tors other than the information carrier are vaguely called (information) con-

text. In a narrow sense, in contrast to the carrier without which information

may not exist, the context is what may be changed without affecting the

fact that the information itself is received by a subject, as long as the same

carrier is observed. In a broad sense, context includes something like the

background which enables to make a difference on the carrier, or a difference

identifying the carrier itself.

1Note that this study does not assume that the subject always has mentality. The receiver
of the information might be a “thing” in this study.
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With wording of this chapter, the arbitrariness of the distinction between the

carrier and the context is inevitable to some extent. In the researches that focus

on the distinction, we must define the meaning of these words more precisely in

each more restricted circumstance.

2.1.2 Viewpoints in this survey

To compare various theories from diverse fields in a unified way reflecting the

author’s view, we should bear some key questions in mind:

In each area surveyed,

1. What constituent of the theory is corresponding to the <Context>?

— In each surveyed theory, the author identifies a constituent of the theory

as the <Context>. Regardless of the role of the constituent in the theory,

it is bravely interpreted.

2. Which difference in the Bateson’s words is the constituent corresponding to?

— As is mentioned in Section 1.3, Gregory Bateson [37] defines information

as follows: “information is . . . difference which makes a difference.” The

identified <Context> will correspond to one of (or, both of) the Bateson’s

differences. His first difference is related to identification, or articulation

of the <Information Carrier>. The difference enables the <Carrier> to be

identified and to try to fulfill its duties. His second difference is related

to the <Information> received. By the difference, <Information> will be

differently received, even if it is carried by the same <Carrier>.

3. Is it exogenous or endogenous?

— Exogenous here means the <Context> is given from the outside of

<Information Carrier>. In contrast to this, endogenous <Context> means

that it is formed by the <Carrier> itself.

In addition to answering these questions, the role of the <Context> in respective

area, and the possibility of the synthetic (rather than analytic) applications are

discussed.
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2.1.3 Survey Areas

Referring to the other surveys [7, 9, 10, 14], the author sorts out the following

areas that seems to be fairly related to this thesis:

• Syntactic Approaches to Information

– Thermodynamics

– Mathematical theory of communication

– Algorithmic information theory

• Cybernetics

• Semantic Approaches to Information

– Bar-Hillel=Carnap “Semantic theory of Information”

– Dretske “Theory of Semantic Information”

– Barwise and Perry “Situation theory and Situation Semantics”

– Barwise and Seligman “Information Flow”

For a general, more comprehensive survey, the readers should consult [7].

2.2 Syntactic Approaches to Information

In syntactic approaches, the concept of information often leads us to quantitative

understanding of information at the sacrifice of the aspects which are popularly

understood as meaning. In this section, following three major roots of such infor-

mation measurement theories are surveyed:

1. Thermodynamics,

2. Shannon’s Mathematical Theory of Communication,

3. Algorithmic Information Theory.

For more general introduction in the respective field, besides the mentioned in the

following, please refer to the standard texts in each field such as [20, 22, 23] for

thermodynamics, [26] for Shannon’s theory.
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2.2.1 Thermodynamic Entropy and Second Law

In nineteenth century, physicists were unveiling the heat phenomena, and became

to understand that the origin of heat is the randomness of the movement of the

elements included in the system.

Nicolas Léonard Sadi Carnot [16] studied the efficiency of heat engines on a math-

ematical footing, and argued the relation among heat, power and engine-efficiency

in a cycle, which is called by his name today. He found a law: “No engine op-

erating between two heat reservoirs can be more efficient than a Carnot Engine

operating the same two reservoirs.”

Rudolf Clausius [17] situated on the work of Carnot, introduced the concept of

entropy, or energy lost to dissipation. He could state the basic ideas of the second

law of thermodynamics using entropy: “In an isolated system, a process can occur

only if it increases the total entropy of the system.”

Ludwig Boltzmann [18] connected the entropy with probability. He introduced

the formula for the entropy S:

S = k logW (2.1)

where k ∼ 1.38065 × 10−23JK−1 is Boltzmann’s constant, and the logarithm is

taken to the natural base e. W (Wahrscheinlichkeit = probability) is the frequency

of occurrence of a macrostate, a macroscopic state of a system. More precisely, W

is counted as the number of possible microstates corresponding to the macrostate

— the number of (unobservable, but identifiable) microscopic “ways” the (observ-

able) macroscopic thermodynamic state of a system can be realized by assigning

different positions and momenta to the various molecules.

Kinetic understandings of heat phenomena won a sweeping victory, but also raised

some annoying questions. Among them, Maxwell’s demon is an 1867 thought ex-

periment by the Scottish physicist James Clerk Maxwell, meant to raise questions

about the possibility of violating the second law of thermodynamics. Leó Szilárd

[19], and later, Léon Brillouin [21] suggested “solutions” emphasizing the impor-

tance of the role of measurement and memory of the observer.
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2.2.1.1 <Context> in Thermodynamics

In physics, information is a measure of the order (or disorder) of physical phenom-

ena, which is derived from statistical considerations. Namely, the definition of the

information in physics is the Boltzmann’s formula 2.1 or similar formulae, which

calculates a quantity from particular physical situation. Thermodynamics enables

us to discuss the physical phenomena that are in fact <Information Carriers> via

analyzing thermal phenomena reflecting the randomness of affairs. Observation

of physical states, distinguishability of micro/macro state, memory of observer,

and so on, are understood as necessities to analyze information, and with these

theoretical components, the entropy is found out as the concept corresponding

to the information. <Information> in general sense is grasped as the transfer or

correlation between the <Carrier> and the subject, and all the discussions and

explanations are reduced to ones of the entropy.

In thermodynamics, <Information Context>may be said to correspond to the heat

reservoirs of the system, physical surroundings of the system, the memory of the

observer, and the ways to articulate the state of the system into some macro states.

They may be regarded as ones that function as static exogenous/transcendental

standard. That is, they are corresponding to the Bateson’s first difference. For ex-

ample, Carnot’s heat reservoir works as a background to make the occurrences of

thermal phenomena identifiable. This background as a static zero-level is necessar-

ily required as presuppositions and rarely play an explicit role in the model. Thus

we can say that the <Information Context> in thermodynamics is separated from

the system under consideration, and that the system (i.e., <Information Carrier>

and <Information>) is discussed excluding the <Context> in thermodynamics.

2.2.2 Mathematical Theory of Communication

Claude Elwood Shannon and Warren Weaver describe a today’s most well-known

common communication model [25]. The model is consisted of the sender-channel-

receiver and signals are transferred (with disturbances by noises) from the sender

to the receiver (Figure.2.1).
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Figure 2.1: Shannon’s schematic diagram of a general communication system

Shannon used the word information to mean the number of different messages

possibly transferred through the channel as in the following quote:

The word information, in this theory, is used in a special sense that

must not be confused with its ordinary usage. In particular, informa-

tion must not be confused with meaning. [25].

Information in Shannon’s sense was a measure of orderliness (as opposed to ran-

domness) in that it indicated the number of possible messages from which a par-

ticular message to be sent was chosen. One can say that Shannon initiated a new

science of information by providing a precise definition of information, a way of

measuring it, and theoretical results about the limits to its transmission [4].

Shannon’s theory of information entropy, which measures information quantita-

tively, is as follows2. To develop his theory, Shannon examines the output of a

discrete information source that generates a message as a Markov process. Each

possible message that can be generated has associated with it a probability pi of

its occurrence and there are n such messages. Shannon searches for a function

H(p1, p2, . . . , pn) that will quantify our reduction in uncertainty on receiving the

message subject to the following desiderata:

1. H should be continuous in pi.

2. If all the pi are equal, the H should be a monotonic increasing function of n.

2Following description in this paragraph is essentially an excerpt of [10].
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3. Each event (symbol generation) should be capable of being linearly decom-

posed into two or more constituent events with their own proportional prob-

abilities [24].

Shannon concludes that the only function satisfying the criteria is of the form:

H = −K
n∑
i=1

pi log pi (2.2)

where K is a constant according the units chosen (i.e., the base of logarithm used).

2.2.2.1 <Context> in Mathematical Theory of Communication

In Shannon’s communication theory, <Information Context> is the set of all pos-

sible messages. In his theory, (the quantity of information)=(the <Carrier>’s

capability of transferring different messages) and his information corresponds to

Bateson’s first difference. Bearing the communication, i.e., engineering, in mind,

one seems seldom care about the <Context> of the communication system, but

it is embedded as the agreement of the sets of messages at Transmitter and at

Receiver. It is trivial on the engineered communication system, but in general, it

is clear that this is not the case, if you imagine a conversation between two persons

who have different mother tongues.

That is, <Context> in the Shannon’s theory is static, given, exogenous. Shan-

non’s entropy, i.e., quantity of information is related to <Information Context>

because the probability pi of message occurrence is measured against the whole

messages, namely, the <Context>. The set of all messages works as a back-

ground for distinguishing a particular message. But as already mentioned, when

all the messages are given, as typically in an engineered communication system,

<Information Context> is determined and fixed, so the <Context> rarely be-

comes an explicit constituent of the theoretical model.
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2.2.3 Algorithmic Information Theory

Algorithmic information theory was born out from the gaps between intuitive

notions concerning regularity and answers provided by the standard probability

theory. In order to illustrate these gaps, consider a coin-toss experiment in which

a fair coin is flipped 23 times in a trial. Now imagine we obtained the following

results from three trials [10]:

Trial 1: 1 0 1 1 0 0 0 1 1 1 1 0 0 1 1 0 0 0 1 1 0 1 0

Trial 2: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Trial 3: 0 0 1 1 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 1 0 0 0

Probability theory tells us the probability of obtaining the sequence shown in

Trial 1 is 2−23, and the value is same for Trial 2 and 3. However there is something

unsettling about accepting that the first and second results are equally probable.

The first result “looks” more random. The third trial may at first glance appear

random, but there is also regularity in this sequence. It is a list of the integers

0 to 8 in binary format3. These gaps between the value of probability and the

intuitive notions on regularity can not be resolved by the use of a probability

method assuming equiprobable occurrences. The information embedded in the

order in the sequences is mostly ignored there. Something that takes into account

the generation process is required. Algorithmic information theory represents an

attempt to meet that need.

The theory was proposed separately by Ray J. Solomonoff [27–29], Andrey Niko-

laevich Kolmogorov [30], and Gregory John Chaitin [32].

2.2.3.1 Richard von Mises – “Interpretation of randomness”

Randomness lies at the heart of considerations of the algorithmic information

theory. Richard von Mises’ interpretation of randomness [33] is an important

starting point for the development of the algorithmic information theory.

Von Mises’ definition of randomness in terms of binary strings is:

We say that it (an infinite sequence of zeros and ones) possesses the

property of randomness if the relative frequency of the 1’s (and there-

fore also that of 0’s) tends to a certain limiting value which remains

3That is, the beginning of so-called Champernowne’s Number in binary format.
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unchanged by the omission of a certain number of the elements and

the construction of a new sequence from those which are left. [34].

His definition has been clarified and improved with other researchers such as

Alonzo Church and Abraham Wald. The amended version of von Mises’ definition

– Mises-Wald-Church randomness can be summarized as follows [10].

A binary string is Mises-Wald-Church random if and only if:

1. The relative frequency of all attributes of a collective approaches a definite

value between 0 and 1 in the limit as the collection length approaches infinity;

2. Every subsequence chosen according to some admissible place selection func-

tion has the same limiting relative frequency as the entire collection;

3. A place selection function is admissible if and only if it is a member of the

set of recursive functions.

2.2.3.2 Solomonoff – “Probability in inductive inference”

Solomonoff [27] examines the problem of inductive inference: “given a long series

of symbols represented by T , what is the probability that it will be followed by a

subsequence represented by an element a? That is, What is p(a|T ) ?”and reaches

the concept of a binary description.

Suppose that we have a general purpose digital computer M1 with a

very large memory. ... Any finite string of 0’s and 1’s is an acceptable

input to M1. The output of M1 (when it has an output) will be a

(usually different) string of symbols, usually in an alphabet other than

the binary. If the input string S to machine M1 gives output string T ,

we shall write

M1(S) = T. (2.3)

Under these conditions, we will say that “S is a description of T with

respect to machine M1 .” If S is the shortest such description of T , and

S contains N digits, then we will assign to the string, T , the a priori

probability, 2−N . [27].
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Under Solomonoff’s model, any observations or descriptions, namely, any informa-

tion could be represented as binary strings with a priori probability.

2.2.3.3 Kolmogorov –“Kolmogorov complexity”

Kolmogorov directly considered the issue of the quantification of information. He

attempts to define the information which is carried by object x, and tells us about

object y [30].

By means of program p which generates string y from string x, relative complexity

of y given x can be defined as follows:

Kϕ(y|x) =

{
minϕ(p,x)=y l(p)

∞, if there is no p such that ϕ(p, x) = y
(2.4)

where ϕ is a partially recursive function which associates object x and program p

with object y, and l(p) is the length of the program p.

And also, one can specify the intrinsic information of an individual object:

Kϕ(y) =

{
minϕ(p)=y l(p)

∞, if there is no p such that ϕ(p) = y.
(2.5)

That is, the information content of a string is the minimum length of a description

– an instruction or program, p, to be executed by a universal computer, ϕ.

Though there is no provision made for determining the shortest possible p, Kol-

mogorov’s formula provides the unambiguous specification of the generation of a

sequence given another sequence as input.

2.2.3.4 Chaitin – “Algorithmic incompressibility”

Chaitin determined that a random string is one of that can not be algorithmically

compressed. He considers a Turing machine that outputs a binary string [31]. In

his theory, there are two functions which play the fundamental roles.
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L, the first function, is defined on the set of all finite binary sequences

S as follows: An N -state, 3-tape-symbol bounded-tansfer Turing ma-

chine can be programmed to calculate S if and only if N ≥ L(S).

The second function L(Cn) is defined as

L(Cn) = max
S of length n

L(S) (2.6)

where the maximum is taken (as indicated) over all binary sequences

S of length n. [31].

The symbol Cn conceptually denotes the most complex binary sequence of length

n.

Chaitin argues that the patternless or random finite binary sequences of length n

are those sequences S for which L(S) is approximately equal to L(Cn). He does

not provide a rigorous proof of this, however, he attempts to “make it plausible

by proving various results concerning what may be termed statistical properties

of such finite binary sequences” [31]. These properties include familiar tests for

randomness such as Simple Normality and Von Mises Place Selection.

Chaitin’s work is essentially complementary to the work done by Solomonoff and

Kolmogorov. Chaitin proposes the following model,

Formally, a binary computing machine is a partial recursive function

M of the finite binary sequences which is finite binary sequence valued.

The argument of M is the program, and the partial recursive function

gives the output (if any) resulting from that program. LM(S) and

LM(Cn) (if the computing machine is understood, the subscript will

be omitted) are defined as follows:

LM(S) =

 min
M(P )=S

(Length of P ),

∞, if there is no such P,
(2.7)

LM(Cn) = max
S of length n

LM(S). (2.8)

In this general setting the program for the definition of a random or

patternless binary sequence assumes the following form: The pattern-

less or random finite binary sequences of length n are those sequences
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S for which L(S) is approximately equal to L(Cn). The patternless

or random infinite binary sequences S are those whose truncations Sn

are all patternless or random finite sequences. That is, it is necessary

that for large values of n, L(Sn) > L(Cn) − f(n) where f approaches

infinity slowly. [31].

L(S) is in essence Kolmogorov’s Kϕ(y).

2.2.3.5 <Context> in Algorithmic Information Theory

In the algorithmic information theory, information or quantity of information is

based on the algorithms generating each string, and is naturally endogenous. It

is a number representing the degree of randomness or order of each string gen-

erated from a given set of symbols. The algorithmic information theory defines

randomness in general endogenously, and measures the orderliness from that level.

This relation between the randomness and order is in reverse to the case of the

thermodynamics or Shannon’s entropy. The <Context> in the algorithmic infor-

mation theory is constructed by the interrelation of symbols in a string identifying

each other. This is much different from the case of Shannon’s communication

theory in which <Context> is exogenously constructed. However, the algorithmic

information theory describes the aspect of information which is comparable with

Shannon’s, and is also corresponding to Bateson’s first difference.

2.3 Cybernetics

In his Cybernetics [35], Norbert Wiener founded cybernetics and pointed out the

importance of the feedback in autonomous controlling. Although its developments

encompass various fields such as engineering, natural sciences, and social sciences,

they have common use of high level concepts such as order, organization, com-

plexity, hierarchy, structure, control, and information, investigating how these are

manifested in systems of different types, as written in [43]. Fundamental to all of

these relational concepts is that of difference or distinction. That is, cyberneticians

are not interested in a phenomenon in itself, but only in the difference between its

presence and absence, and how that relates to other differences corresponding to
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other phenomena. Using these concepts, they commonly aim at understandings of

the purposiveness, or goal-directed behavior, of a system, which are independent

of details of the system, and also try to control based on these understandings.

Since early 1970’s, a part of the cybernetics which is especially interested in orga-

nizations and social systems has been developed as the cybernetics of cybernetics

or second-order cybernetics4. It investigates the construction of models of cy-

bernetic systems itself. Second-order cybernetics is aware that the investigators

or observers are part of the system and emphasizes on the importance of self-

referentiality, self-organizing, the subject-object problem, etc.

Figure 2.2: Second-order Cybernetics [38]

Succeeding the shift from first-order cybernetics’ attention to homeostasis as an

autonomous self-regulation in mechanical and informatic systems, to second-order

concepts of self-organization and self-production in embodied and metabiotic sys-

tems, there emerges the lines of thought so-called neocybernetics [48]. Neocyber-

netics observes that cognitive systems are operationally bounded, semi–autonomous

entities coupled with their environments and other systems [48]. Some authors in

the field of information studies have been adopting the thought of neocybernetics,

especially the idea of autopoiesis [39]. Nishigaki [46, 47], for instance, advocates

the Fundamental Informatics, in the line of the neocybernetics. However, as has

been pointed out repeatedly even by the insiders of the autopoiesis school, it is still

in its gradual development, premature and not well understood [42, 45, 49, 50].

The concepts in it have been criticized and have been interpreted in diverse and

4See [44], for instance.
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even contradictory ways. Moreover, it still merely has narrow connection with the

existing empirical sciences. Though these critiques are for the autopoiesis theory

and neocybernetics in general, the situation is similar for the studies in the field of

infomation studies such as [46, 47]5. Thus, though the dynamic, monadic6 picture

of information in neocybernetics attracts the interest of the author of this thesis7,

conforming to our principle of this chapter, the review of the neocybernetics in

information sciences is left for the future.

We can say that the most fundamental contribution of cybernetics is its expla-

nation of purposiveness, or goal-directed behavior, an essential characteristic of

mind and life, in terms of control and information [43].

2.3.1 <Context> in Cybernetics

<Information Context> that is the most characteristic in cybernetics may be

the one that is constructed by feedbacks. Feedbacks are generated according to

the output, and may be interpreted as a self-created <Context> which affects

the “meaning” of the input of the system (i.e., an endogenous <Context> corre-

sponding to Bateson’s second difference). In second-order cybernetics, an observer

is a part of the <Context> of the observed system, and there is a self-referential

relation between the observer and the system. Second-order cybernetics points

out that the observer, primarily as a receiver of information, inevitably affects the

“meaning” of information. There is a mutual construction of <Context> between

the observed system and the observer.

5See [49], for an example of criticism of Nishigaki’s theory as an autopoiesis theory.
6In the Leibnizian sense.
7This is the reason why neocybernetics is mentioned in this section without a review in the

view of the present study.
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2.4 Semantic Approaches to Information

There are linguistic or logical semantic theories in which <Context> plays an

important role, in addition to the linguistic pragmatics which are briefly mentioned

in Chapter 1.

2.4.1 Bar-Hillel=Carnap – “Semantic theory of Informa-

tion”

Yehosua Bar-Hillel and Rudolf Carnap developed a semantic theory of information

[51, 52] in which they distinguish between information and amount of information

within a linguistic framework.

In Shannon’s communication theory, the amount of information is measured as

statistical rarity, i.e., the frequency of their occurrence in a transmission. In con-

trast to his theory, in their semantic theory of information, Bar-Hillel and Carnap

measure the amount of information by a logical or inductive probability function

over the contents of the sentence under consideration. Information content of a

statement, which is a concept introduced by them, is the class of those possible

states of the universe, which are excluded by the statement. They also introduced

concepts such as:

State-descriptions It is a conjunction containing for every atomic sentence that

can be formed in a language, either its affirmation or its negation but not

both.

(It gives a complete description of a possible state of the universe of in-

dividuals with respect to all the properties and relations expressed by the

predicates of the system.)

L-true (logical true) When the truthfulness of a statement in a given seman-

tical system is known by reference to either the logical form or to the de-

scriptive terms in the statement, without referring to extra-liguistic facts,

the sentence is called L-true.

State-descriptions, L-true, and other various “L-” concepts are introduced to dis-

criminate the (logical) meanings which are determined only within a semantical
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linguistic system, without referring to the outer world from the “factual” mean-

ings. Using these concepts, Bar-Hillel and Carnap provided various explicata for

the presystematic concept (or concepts) of amount of semantic information.

To roughly grasp their idea, their derivation of the amount of information is briefly

followed here [58]:

Let m(i) be the logical probability of the statement i (Logical probability is the

estimate of statistical probability, and it is the measure of the degree of confirma-

tion). Then the quantity 1 −m(i) is the measure of the content of i, which may

be called the content measure of i, denoted cont(i). Thus,

cont(i) = 1−m(i).

However, this measure does not have additivity properties, because cont is not

additive under inductive independence. Thus insisting on additivity on condition

of inductive independence, the authors propose another set of measures for the

amount of information, which they call information measures for the idea of the

amount of information in the statement i, denoted inf(i), and which they define

as:

inf(i) = log
1

1− cont(i)
= − logm(i)

This is analogous to the amount of information in Shannon’s mathematical theory

of communication but with inductive probability instead of statistical probability.

2.4.2 Dretske – “Theory of Semantic Information”

Fred I. Dretske developed a theory of semantic information [53] based on the

distinction between information and meaning.

It is common to think of information ..., as something that depends on

the interpretive efforts – and, hence, prior existence – of intelligent life.

According to this view, something only becomes information when it is
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assigned a significance, interpreted as a sign, by some cognitive agent.

...

This is one way of thinking about information. It rests on a confusion,

the confusion of information with meaning. Once this distinction is

clearly understood, one is free to think about information (though

not meaning) as an objective commodity, something whose generation,

transmission, and reception do not require or in any way presuppose

interpretive process. [53].

The flow of such information should be based on the following Xerox principle.

Xerox principle If A carries the information that B, and B carries the informa-

tion that C, then A carries the information that C [53].

In combination with Shannon’s communication theory, Dretske states three con-

ditions that a definition of information must satisfy, namely:

(A) The signal carries as much information about s as would be generated by s’s

being F .

(B) s is F

(C) The quantity of information the signal carries about s is (or includes) that

quantity generated by s’s being F (and not, say, by s’s being G)

Moreover, he defines the information contained in a signal that simultaneously

satisfies these three conditions:

Information content A signal r carries the information that s is F = The con-

ditional probability of s’s being F , given r (and k), is 1 (but, given k alone,

less than 1).

The parenthetical k is meant to stand for what the receiver already knows (if

anything) about the possibilities that exist at the source.
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So, for example, if one already knows that s is either red or blue,

a signal that eliminates s’s being blue as a possibility (reduces this

probability to 0) carries the information that s is red (since it increases

this probability to 1). For someone who does not know that s is either

red or blue (given what they know, it could be green), the same signal

might not carry the information that s is red. [53].

Notice that, in this definition, the letter s is understood to be an indexical or

demonstrative element referring to some item at the source. The definition defines

what philosophers might call the signal’s de re (versus de dicto) informational

content.

2.4.3 Barwise and Perry – “Situation theory and Situation

Semantics”

Kenneth Jon Barwise and John Perry originated situation theory and situation

semantics [54]. At the heart of situation semantics lies, as the name suggests, the

notion of situation. According to Perry [56], in its earliest forms, the central ideas

of the situation semantics were:

• Partiality – Situations are contrasted with worlds; a world determines the

answer to every issue, the truth-value of every proposition. A situation

corresponds to the limited parts of reality we in fact perceive, reason about,

and live in. What goes on in these situations will determine answers to some

issues, but not all.

• Realism – Basic properties and relations are taken to be real objects, uni-

formities across situations and objects, not bits of language, ideas, sets of

n-tuples or functions. In Situations and Attitudes [54], courses of events are

partial functions from sequences of locations, relations and objects to truth-

values. Complex properties and various types of objects were full-fledged

objects, entering into courses of events.

• The Relational Theory of Meaning – The meaning of an expression φ is

conceived as a relation between a discourse situation, a connective situation,

33



2.4 Chapter 2

and a described situation, written

d,c [[φ]]e .

The meaning of “I am sitting next to David,” for example, would obtain

between courses of events d (discourse situation); c (speaker connections),

and e (described situations) if there are individuals a and b such that i) in

d, a is the speaker of the sentence; ii) in c, a’s use of “David” is used to refer

to b; iii) in e, a is sitting next to b.

Driven by these ideas, [54] embodied the basics of realistic model-theoretic seman-

tics of natural language.

The basic idea of situation semantics is that in thought and action

we use complexes of objects and properties to directly and indirectly

classify parts and aspects of reality, or situations. This sort of realistic

classification is more basic than linguistic classification, and underlies

it. [56].

Consider a simple dialogue:

‘What happened in the woods this afternoon?’

‘Jackie broke her leg.’

The question concerns a certain situation, a bit of reality: the events in

the woods this afternoon. The answer directly classifies the situation

in terms of an object (the dog Jackie) and a property (acquiring a

broken leg). We classify situations by what goes on in them; which

properties objects have, and the relations they stand in to one another

in virtue of the events that comprise the situation. [56].

Consider the issue of whether Jackie broke her leg at a certain time t. The possi-

bilities or state of affairs can be represented as:

σ : 〈〈breaks− leg, t, Jackie, 1〉〉
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or

σ′ : 〈〈breaks− leg, t, Jackie, 0〉〉 ,

corresponding to whether she did or did not. The factuality of whether or not

Jackie broke her leg will naturally be determined by what goes on in the whole

world. But also much smaller situations will determine the state of affairs. Let s

be the situation in the woods this afternoon. Then,

s |= σ

i.e., s supports σ. In situation theory, various objects are built from the basic

interplay of situations and states of affairs, permitting complex and abstract ways

of classifying situations.

The points of situation theory are summarized as follows8:

• It captures the meaning of representations (utterance, diagrams, etc.) cre-

ated by humans as a continuum over the information existing in the nature.

• It captures the situation individually in which a certain representation means

a particular information. (context dependency of meaning)

• It captures every representation as a respective situation which has various

properties.

2.4.4 Barwise and Seligman – “Information Flow”

Information Flow is the mathematical model proposed by Kenneth Jon Barwise

and Jerry Seligman [55] as a formalization capturing the information flowing in

any sorts of distributed systems ranging from physically distributed control sys-

tems to abstract ones. This theory first presents a model which shows the gap

between the information sender and receiver. The basic idea of this model is that

information exchange within a distributed system results from regularities that

enable the information possessed by one component of the distributed system to

be understood by another component. Such a notion is formalized in Channel

Theory.

8Loose translations of [57]
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In Channel Theory, a channel connecting components that participating in the

information exchange by means of mappings among types and tokens. The inter-

acting components might have their own vocabulary, i.e., they might have different

types and tokens and thus different classification between types and tokens; they

might have different constraints regulating the behavior of the information that

they are conveying. Capturing all the above notions, mathematical formulations

are defined as follows:

In Channel Theory, each component of a distributed system is represented by a

classification A = (tok(A), typ(A), |=A), consisting of a set of tokens tok(A), a set

of types typ(A), and a classification relation |=A⊆ tok(A)× typ(A) that classifies

tokens to types.

The flow of information between components in a distributed system is modeled

by the way the various classifications that represent the vocabulary and context

of each component are connected with each other through infomorphisms. An

infomorphismf = (f∧, f∨) : A � B from classification A to classification B is a

contravariant pair of functions f∧ : typ(A) → typ(B) and f∨ : tok(B) → tok(A)

satisfying the following fundamental property, for each type α ∈ typ(A) and token

b ∈ tok(B):

α

|=A

�
f∧
// f(α)

|=B

f(b) b�
f∨
oo

(2.9)

The distributed system A consists then of an indexed family cla(A ) = {Ai}i∈I
of classifications together with a set inf(A ) of infomorphisms all having both

domain and codomain in cla(A ).
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A basic construct of Channel Theory is that of a channel—two classifications A

and B connected through a core classification C via two infomorphisms f and g:

typ(C)

|=Ctyp(A)

|=A

4

f∧
99

typ(B)

|=B




f∧
ee

tok(C)4
f∨

yy



f∨

%%
tok(A) tok(B)

(2.10)

This basic construct captures the information flow between components A and B.

2.4.5 <Context> in Semantic Theory of Information

As presented in this section, all of the theories of semantics of information attack

to the situated meaning, that is, meaning in <Context>, in the framework of logic.

Semantic theory of Information by Bar-Hillel and Carnap presents a way to expli-

cate logically/scientifically the meaning of information. In their theory, <Context>

for a particular sentence is divided into the logical <Context> which is deter-

mined by the interrelation of sentences in the semantical system, and the factual

<Context>. The logical <Context> in this theory is, on the contrary to the

Shannon’s case, endogenous, but it is static and fixed, as is in the Shannon’s case.

Dretske attributes information to the regularities among states of affairs. By

doing this, information may be separated from the meaning, and discussed as

objective commodities. According to Dretske, information is always relative to “a

receiver’s background knowledge”(i.e., k). That is, information recognized by a

receiver depends on the receiver’s background knowledge, i.e., <Context>. Such

a <Context> corresponds to Bateson’s second difference, is exogenous and can

yield some multiple interpretations under the constraint that the state of affair is

fixed.
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Situation semantics by Barwise and Perry explicitly addresses the situations,

namely, <Context>. In situation semantics, the meaning of an expression is con-

ceived as a relation between a discourse situation, i.e., <Context>. Their theory

and a further developed theory – Channel Theory – by Barwise and Seligman are

based on the idea of regularities between types of situations. Information is not

a property of facts but it is constraint or <Context> dependent. In contrast to

Dretske’s concept of information which is within a cognitivistic framework, the

theory of situation semantics defines information within a realistic and not just

cognitivistic framework. Information contents are not dependent on the knowledge

of the receiver, Dretske’s k, but on types of situations. However it can be said that

all these theories address the exogenous, dynamic situations, i.e., <Contexts> and

the contents of information are interpreted according to the <Context>.

2.5 Summary of the context in various informa-

tion theories

Figure.2.3 presents the summary of how <Information Context> is addressed in

information theories reviewed in this chapter.

Figure 2.3: Summary of the context in information theories
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All these prior works may be considered to be those which address some of the

fundamental aspects of information, albeit in an insufficient manner. In the first

three theories, the context constitutes the base of the quantitative measure in each

theory, such as the probability space. It is for the Bateson’s first difference, i.e.,

difference which makes difference. In the thermodynamics and the mathematical

theory of communication, the context is formed exogeneously with those that are

assumed to be distinguishable without any other information beforehand. In the

Algorithmic Information Theory, the context is constructed endogenously by the

interrelation of symbols in a string identifying each other. However, the distinc-

tion of the symbols is assumed also in the Algorithmic Information Theory. Thus

these theories may be considered to be those that do not undertake the vicious

circularity seriously as a foundational theories of information. The context in the

cybernetics is constructed endogeneously by feedbacks. Although this is interest-

ing from our perspective, disappointingly, the cybernetics mainly concerns only

with the Bateson’s second difference. The distinction of the inputs, which corre-

sponds to the Bateson’s first difference, is considered to be assumed. The semantic

approaches adopt logic as their base. Logic naturally presumes the distinction of

its statements. In other words, the state of affairs that the logical statement de-

scribes is assumed to be distinguishable. Since the state of affairs corresponds to

the Bateson’s first difference, they may be considered to be concerned only with

the Bateson’s second difference.

As the readers will see, in this thesis, both of the Bateson’s differences are incor-

porated into the model of information phenomena as essential constituents. Each

of the differences is born in respective endogenous context that is built within the

IGUS hysteretically9. This may bring a fresh view for the fundamental role of

contexts in information phenomena.

9In other words, each of the contexts is built in dependence not only on current information
related stimulus for the IGUS but also on past stimuli that have been received by the IGUS.
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Chapter 3

Extensional Information

Articulation from the Universe

3.1 Information as physical phenomena

Many researches point out the essential relativeness of information1. It is natural,

especially in the physical view adopted in this study, because an IGUS2 (part of

the universe) inevitably interacts with surrounding systems (other parts of the

universe) in its own way. But then, at the fundamental level, how can an IGUS

articulate a specific uniformity (e.g., the color of green) in a part of the universe?

The meaning of the word articulate here is “to divide into fragments meaningfully

arranged.” In principle, nothing other than the IGUS itself can provide information

on how to articulate the universe.

Recall the episode in 1.1.1. The episode indicates that even the color of green might

not be obvious information. We consider such an issue in this chapter. How does

an IGUS articulate and categorize its surrounding environment, and how does it

assign an identifier for the properties of the part, i.e., a collection of attributes, to

the articulated part of the environment? How can such information be obtained,

or generated by a physical system? After all, this universe is a bunch of physical

interactions. A system that is going to utilize information from the universe must

extract the information through these physical interactions. In other words, if

1For instance, see the Locality Principle and other ontological principles in [15].
2Information Gathering and Using/Utilizing System. See 1.5.
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we borrow terminology from logic, we might be able to say that the system must

extract the information fully extensionally.

To our knowledge, few studies have been conducted to investigate the fundamentals

of information in such a view.

One might consider that, in physics, information is tightly connected to physical

phenomena that are obviously extensional. The distinction between the physi-

cal phenomena and the informational phenomena is subtle. Even in the study

of physics, the materiality or the thinginess of nature has been pushed away in

recent decades. Many authors have already declared that reality basically is an

informational phenomenon (for example, [11, 13, 97–101]).

However, as is shown in the episode in 1.1.4, a fundamental study of informa-

tion has to deal with non–causal phenomena on which ordinary physics does not

study. Physics mostly focus on the information phenomena as we, human–IGUSes

understand. Physics scarcely ever describes information for a material in a way

such as for human–IGUSes. In other words, it scarcely describes information for

a material immanently. Thus, in the view of this chapter, such an extensional

approach to the fundamentals of information should cover broader scope than the

information studies in physics.

In information theories, the approach developed by Alexander Chechkin (see [15])

might be regarded as one of such studies that have the nearest viewpoint.

His approach is based on two main notions: an object and information

about object. In his theory, properties of objects are represented (and

denoted) by subsets of those objects that has this property, i.e., each

property is a subset of all objects and each subset is a property of

objects. It is the classical set-theoretical approach to the concept of

property. [15].

To represent properties of objects extensionally, it seems natural to use the sets

of objects, as Chechkin. Needless to say, in many studies in various disciplines,

a property of objects, or equivalently in this chapter, an attribute of objects,

is treated as a set of objects. The attribute green is (represented by) all the

green-ish objects. When someone asks “what is green?,” one may answer by

indicating something greenish and saying “this is green.” Something green is one
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of the greenish objects one has ever met, and the attribute “green” can be defined

by all the greenish objects one has ever met. Borrowing a term in linguistics,

synchronically, this may be sufficient. That is, at a fixed point of time, all the

greenish objects that one has ever sensed can represent the attribute green for

him/her.

However, if one defines the attribute green by a certain (fixed) set of green-ish

objects, there will be no room for a green thing newly accepted. Something newly

accepted cannot reside in the set of green-ish objects, which is already fixed as

“the definition of the attribute green.” Diachronically, an attribute is not merely

that which is equivalent to a set of objects. There is a case in which modeling an

attribute as a set of object is not appropriate.

This study addresses such a case. We will pursue the understanding of information

as a universal structure that is fully extensionally obtained from finite physical

interactions.

Note that, such an understanding may also demystify a kind of the bootstrapping

process of information extraction from the universe. From the extensional view-

point of this study, as already mentioned, information is naturally considered to

be essentially relative to the (information receiving) system, the same as physical

interactions are essentially relative. Information relative to the system implies the

existence of the context, that is, another referred information within the system.

But, then, how can a system articulate the universe without any contextual in-

formation (i.e., so to speak, criteria), at the most fundamental level of, or, at the

very beginning of, information process? In other words, how can a system have

information of its own without any presupposed another information? Though

this study might be very focused and not general enough, it may be considered as

an attempt to understand information from such an absolutely relative viewpoint.

Extracting/creating information from the universe via physical interventions has

been discussed in the measurement theory in metrology (see [102], etc.). The

theory is called the extensive measurement theory, which will be described in detail

in Section 3.2. The purpose of the study in this chapter is to develop a general

model of extensional information articulation process as a generalization of the

extensive measurement theory.
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In this chapter, the author

• presents a model of the process of extensional information articulation as a

generalized extensive measurement;

• provides a detailed example of a step of the extensional informational artic-

ulation process—a model of attribute creation.

The structure of this chapter is as follows. In Section 3.2, the extensive measure-

ment in metrology is explained in detail. Referencing the steps in the extensive

measurement, a model for information articulation process as a generalized mea-

surement is developed in Section 3.3. Section 3.4 exemplifies the concepts of the

developed process by a model for attribute creation. Section 3.5 concludes this

chapter.

3.2 Extensive Measurement

A prototype suitable for describing how a system extracts information from the

physical universe exists in the metrological measurement theory.

Suppose that we try to measure an attribute of a physical thing, for example, the

weight. First, we prepare an apparatus for measuring the attribute (a measuring

instrument): an equal arm beam balance. We place a thing a on the left pan and

another thing b on the right pan, and we observe which pan drops (we observe if it

is balanced). Thus we can introduce an order relation between the attributes of two

things a and b. When balanced, two things are virtually the “same” in the aspect

of the attribute, the weight. By these equivalences, we can use copies to represent

each specific weight, instead of using particular instances (e.g., using sands instead

of apples). We can also define the concatenated or composed attributes of two or

more things by placing them in the same pan. To evaluate the attribute, we select

a thing as the unit, and if another thing is found to be equivalent with n-copies

of the unit thing, the attribute value of the latter thing can be determined as n

(given in the unit).

Such measurement processes have been generalized and abstracted in the extensive

measurement theory.
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The extensive measurement (see [102], etc.) was formulated by Herman von

Helmholtz [103], Otto Ludwig Hölder [104], and others. The extensive measure-

ment relates the physical measurement situations/operations to a mathematical

model. The mathematical model has three primitives [102]: a nonempty set A, a

binary relation % on A, and a binary operation ◦ : A×A→ A. The interpretations

of these primitives are: A is a set of objects or entities that exhibit the attributes

in question; a % b holds if and only if a exhibits, in some prescribed qualitative

fashion, at least as much of the attribute as b; and a ◦ b is an object in A that

is obtained by concatenating (or composing) a and b in some prescribed, ordered

fashion.

In this article, our main concern is the way in which the extensive measurement

theory builds such a mathematical model from the operations in the real physical

world.

The general steps in the extensive measurement are summarized as follows [105]:

1. Suppose that there is a collection I of things or events in the real world (in

which all things/events are identifiable by the measurer), and let the elements

(i.e., things or events) in the collection I be countable. (Countability and

identifiability enable to make n-copy of an element, later.)

2. A comparator m is introduced as a measuring instrument. It can compare

an element in I with another one. That is, the comparator m shows that

whether the compared elements are indistinguishable or distinguishable from

the comparator’s viewpoint (that is, in the aspect of the attribute under

consideration). Introduce an equivalence relation ∼Im. Elements a and b in I

have a relation a ∼Im b if and only if the comparator m shows that they are

indistinguishable, and under this equivalence relation ∼Im, all the elements

in I can be partitioned into equivalence classes X = {α, β, γ, . . .}. Note that

the equivalence class consists of real physical tokens (e.g., apples). There

can be a collection of comparators M for a measurer and the relation ∼Im is

relative to each comparator m ∈M .

3. Assume that one can define a physical relation %Im that has a total order, and

a physical operation for concatenation (or composition) ◦Im that is associative

and strictly increasing. “Physical” here means that the relation and the

operation are presented as physical phenomena in the real world. From
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any pair of the equivalence classes α and β, choose any elements a and b,

respectively. Equivalence classes α and β have a relation α %Im β if and only

if the comparator shows a distinctive state: “when a is on the right pan and

b is on the left pan, the right pan sinks (or they are balanced),” for example.

Choosing the elements a, b and c respectively from the any equivalence classes

α, β, and γ, the concatenation is defined as: the concatenation of equivalent

classes α and β, α ◦Im β, is a physical state in which a and b are on the

same pan; and α ◦Im β = γ if and only if c is on the other pan and they

are balanced. By an abuse of notation, we also write α ∼Im β if and only if

α %Im β and α -Im β holds.

4. Choose an equivalence class α from X. For any positive integer n, define

nα inductively as follows: 1α = α, (n + 1)α = (nα) ◦Im α. This nα is called

n-copy of α. A copy of α can be found operationally. As for the weight, for

instance, put x1 ∈ α on a pan and find x2 ∈ α which is balanced with x1.

Now what is being considered is “the attribute, weight,” hence x2 can be

anything, say, a pile of sand, for example. In this way, infinitely many copies

of the weight of x1, x3, x4, . . ., can be made in theory. Then one can define

2α as a unity of x1 and x2, 3α as a unity of x1, x2, and x3, and so on.

5. The Archimedes’ condition is required between the elements in X. The

Archimedes’ condition is: for any pair of equivalent classes α and β, there

exists a positive number n such that nα �Im β. Here α �Im β means α %Im β

and not α ∼Im β. Though this condition has issues logically (because it

cannot be described in first order predicate logics) and practically (because

it implies infinite operations), it has great values to construct the theory.

6. Corresponding to the above physical situations, a mathematical model, i.e.,

a formal system is set up. On the mathematical set A, introduce a totally

ordered algebraic relation %m that is derived from the corresponding relation

in I, and a connective and strictly increasing operation ◦m that is also derived

from the corresponding operation in I. (Thus, they have operational meaning

in the real physical world.)

7. Introduce a measure, ϕ : A → R as follows: (I) Select an element u from

X as a unit, that is, ϕ(u) = 1. (II) Construct ϕ satisfying following two

conditions: (II-i) ϕ(nx) = nϕ(x), (II-ii) If and only if x %Im y, ϕ(x) ≥ ϕ(y)

holds. The precision of ϕ can be arbitrarily increased by the countability
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and the Archimedes’ condition on the elements of I. Suppose that x is not

equivalent to the unit u. If x � u, then the Archimedes’ condition assures

there exists a positive integer k such that (k+1)u % x % ku. By this and (II-

i),(II-ii) above, ϕ((k + 1)u) = k + 1 > ϕ(x) ≥ k = ϕ(ku) holds. Thus, ϕ(x)

is obtained within the error 1. Here an error is defined as the upper bound

of the difference between the true value and the measured value. Then,

taking 2-copy of the each side of the equation above, (2k+ 2)u % 2x % 2ku.

With the Archimedes’ condition, this means (2k + 2)u % 2x % (2k + 1)u

or (2k + 1)u � 2x % 2ku holds. Applying the function ϕ and simplifying

the equations with the conditions (II-i),(II-ii) yields k + 1 ≥ ϕ(x) ≥ k + 1
2

or k + 1
2
> ϕ(x) ≥ k. Thus ϕ(x) is obtained within the error 1

2
. Thus, by

considering the virtual n-copy on the mathematical model A, the function

ϕ can be obtained with arbitrary precision.

Thus, we can obtain a measure of attribute associated with the measuring instru-

ment, and the measure can have arbitrary precision, even if it is for a measurement

in the potential future.

3.3 Extensional Information Articulation as Gen-

eralized Measurement

In the view of this study, the extensive measurement in metrology is considered

to be a sort of the information articulation of the physical universe.

In this section, we reconfirm the points of the extensive measurement (3.3.1), clar-

ify the implicit assumptions in the extensive measurement from the viewpoint of

information articulation (3.3.2), consider the requirements imposed on the IGUSes

(3.3.3), and finally, develop a model of the process of extensional information ar-

ticulation (3.3.4).

3.3.1 Review of the extensive measurement

The points of the extensive measurement described in Section 3.2 are summarized

as follows:
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a. Introduction of a physical apparatus, i.e., a measuring instrument (e.g., equal

arm beam for the weight), representing the physical intervention(s): The mea-

suring instrument is introduced by the third person (the measurer) and ob-

served by her/him. This naturally means that the measurer can identify and

manipulate the instrument.

b. Identification of target objects by a third person (the measurer): In a measure-

ment, the target objects are identified by the measurer beforehand.

c. Identification of required physical operations and their structures: Relations

such as equivalence relation and operations such as concatenation are intro-

duced physically, in other words, they are introduced with an operational se-

mantics.

d. Introduction of n-copy : Beyond actual physical tokens, multiple copies/alterna-

tives for (potential) repetitive operations are modeled to be obtained physically.

e. Establishment of maps between physical operations and mathematical opera-

tions and relations.

f. Establishment of the measure, that is, the map from the mathematical structure

representing the physical situation to the real number.

g. The Archimedes’ condition: Universality of the measurement even for the po-

tential measurements in the future is theoretically secured by the Archimedes’

condition (and the concatenation operation). The Archimedes’ condition the-

oretically assures the arbitrary precision of the measurement. Moreover, with

the concatenate operation, it theoretically secures the universality of the mea-

surement, in the sense that it enables to measure beyond a particular physical

situations specified (by the actual physical tokens) as a measurement.

These points need to be re-interpreted and reconsidered for the extensional infor-

mation articulation. This will be done in the next section.

3.3.2 Implicit Assumptions in Extensive Measurement

As Baird [106] pointed out, a measuring instrument plays two roles in information

phenomena. (1) To begin with, a measuring instrument has to do something

physically. It has to incorporate physical interactions related to the quantity to
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be measured. An equal arm beam balance, for example, is under the influence of

gravity. In addition, the measuring instrument moves in a particular way reliably

in the physical interactions. That is, it moves in an approximately same manner

in the approximately same situations. The action of the instrument has been

separated from human agency and built into the reliable behavior of an artifact.

This is simply a physical matter. (2) A measuring instrument also has to provide

representations. The results of measuring something must be located in an ordered

space of possible measurement outcomes. A representation of this ordered space

has to be built into a measurement instrument. This can be as simple as the scale

to show the balance on an equal arm beam balance.

The latter role presupposes human agency, e.g., the existence of a measurer. The

representations are for the measurer. If one considers the extensive measurement

process as simply an information phenomenon, there are several implicit assump-

tions originated in this presupposition.

Reflecting on the points listed in Section 3.3.1, major implicit assumptions related

to the subject of the present study are:

a. Identities of objects in I are secured by the measurer. That is, the measurer

is assumed to be able to identify the objects to be measured. In addition, the

identities of objects are almost stable. That is, in most cases, the identity of

each object under consideration is kept during the measurement (at least).

b. The comparatorm (a part of the universe) is identified by the measurer. That is,

an attribute corresponding to a comparator can be identified by the measurer.

Moreover, the comparator can be manipulated by the measurer. Manipulation

here means, (1) putting the object(s) into the situation to be measured by

the comparator, (2) capturing the information on the object(s) the comparator

displays. That is, the physical interactions between the comparator and the

measurer are distinguished (and utilized) by the measurer.

c. The measurer has abilities to construct the suitable representations (sets for

collection of objects, equivalence relations, real numbers for measured values,

and so on).

To generalize the extensive measurement process to the information articulation

process, these assumptions are reconsidered and turned into the requirements for

the IGUS in the next subsection.
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3.3.3 Requirements for the IGUS

The implicit assumptions of the extensive measurement in Section 3.3.2 do not

hold in general information articulation processes.

In an information articulation process, an IGUS plays the role of the measuring

instrument and the measurer simultaneously. There is no outsider who can ob-

serve and manipulate. There are merely physical interactions. Hence we need to

reconsider the assumptions to generalize the extensive measurement.

First of all, before articulating the physical universe by information, there is no

identity for everything in principle. We should not assume any privileged physical

interactions. It is impossible, at least initially, for an IGUS to identify a fragment

of the universe (FoU for short, from now on), because the IGUS has no clue,

i.e., information to distinguish a part of the universe from the others3. Note that

identification here means that to conceive several physical interactions as united

even if there is a spacio-temporal separation of these interactions. An IGUS is

assumed to extract information to identify an FoU all by itself.

In addition to this, what an IGUS can rely on as a basis of differentiation is

the IGUS itself only. There is no specific physical apparatus such as measuring

instruments to be used by an IGUS to articulate the universe. If there is such an

apparatus, the apparatus should be regarded as a part of the IGUS. The physical

construction of the IGUS itself may be used to articulate the universe. We should

assume that an IGUS compares FoUs by its own capabilities, and these capabilities

might not be distinguished by the IGUS itself (even for this distinction, information

might be required). The IGUS might correlate one of the capabilities with one of

its own actions, and the capability may be identified indirectly through the action.

Finally, an IGUS is assumed to play the role of the measurer. An IGUS is assumed

to have abilities to construct the suitable representations of physical entities that

are operated during the information phenomenon.

These revised presuppositions impose physical requirements on IGUSes. Though

the outcome might not novel—after all, the IGUS in this chapter has similar

construction with information agents already proposed—the reasoning may attract

some interest.

3In this sense, one may call an FoU as a proto–object.
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a. An IGUS is assumed to be able to directly indicate an FoU by a certain physical

interaction i. Only during interaction, the IGUS can indicate a specific FoU just

as it is. When the interaction is lost, the IGUS cannot identify the same FoU

(if there is no further information). Using a term in linguistics, diachronically

indistinguishable interactions are assumed to work for indicating FoUs. Such

kind of interactions will be called as the indicative interactions in this article.

The most distinguishable character of the indicative interactions may be their

durability. Durability is essentially relative. This durability is related to the

similarity detections by the IGUS (see the next item). The “source” of the

indicative interaction should be the IGUS. In this sense, metaphorically, the

indicative interaction can be regarded as an “active” interaction of an IGUS,

and the physical implementation of such an interaction is often called as an

actuator of the IGUS. An IGUS may have representations of each FoU paired

with the indicative interaction i. Note that this representation is rather loose.

If the IGUS activate the same interaction i, the exactness of the indication is

governed by chance. That is, the IGUS cannot “specify” the FoU by using the

indicative interaction alone.

b. Another particular physical interaction p is assumed. An FoU a picked out

by an indicative interaction i is compared with another FoU b picked out in

the same way (during i is kept). The interaction p tells the IGUS that, from

the viewpoint of the IGUS, the compared FoUs are whether indistinguishable

or not. Thus this interaction p detects a similarity between a and b. Using a

term in linguistics, synchronically indistinguishable interactions are assumed to

work for detecting the similarities among FoUs. Such kind of interactions will

be called as the comparing interactions in this article. Most of the case, this

interaction can be regarded as, metaphorically speaking, a “passive” interaction

of an IGUS, and the physical implementation of such an interaction is often

called as a sensor of the IGUS.

c. And memory is required to store the effects of interactions (physical difference

made by another part of the universe), keep them, and utilize them later if

necessary.

Thus, an IGUS in this chapter is a kind of so-called sensorimotor system (e.g.,

[107]). But note that we should not use a personification to avoid confusions. An
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IGUS in general is, ultimately, a mere bunch of physical interactions4.

3.3.4 A Model of Extensional Information Articulation Pro-

cess

The formulation of the extensive measurement tells us the importance of the dis-

tinction between the physical world and the mathematical model, and the impor-

tance of the linkage of them.

In general information articulation processes, information is related to a universal

structure constructed from FoUs. FoUs are tentative entities, but if the IGUS can

extract something universal, that is, existent or operative almost everywhere and

under almost all conditions, this universality may be utilized (as information).

In the case of the extensive measurement, the universality is simply condensed

in a homomorphism ϕ : A → R, assuming the Archimedes’ condition. But in

general information articulations, the differences induced within an IGUS may

form various structures, and the IGUS may utilize these various structures. Any

models of information articulation process should incorporate such an extraction

of universality from rather vague FoUs, at some generic level.

Following the formulation of the extensive measurement, a model of the process

of extensional information articulation by an IGUS satisfying the requirements

mentioned in Section 3.3.3 is developed. The model is presented, with one-to-one

correspondence to the steps in the Section 3.2, as follows:

1. As already mentioned, there is no a priori thing or object. An IGUS may

indicate an FoU by an indicative interaction. An FoU is, as it were, proto-

information. A collection of FoUs, I, may be made physically or within the

IGUS (as representation of a collection of physical FoUs).

2. Comparator (i.e., Sensor) for indifferences m ∈M is introduced. It is a pair

of the indicative interaction and the comparing interaction. The comparator

can compare an FoU with another one. That is, the comparator m shows

that the compared FoUs are whether indistinguishable or distinguishable

from the comparator’s viewpoint. This distinction induces an equivalence

4In this sense, memory also should have been more elaborated in the language of physical
interaction. But the authors omit unnecessary details for the present study.
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relation ∼Im. In addition, the FoUs are partitioned into equivalence classes,

tentatively. (Recall that an FoU is not identified by the IGUS at this stage.

It is only indicated during the indicative interaction, and at best, has a

representation loosely related to the actual physical FoU.) There may be a

collection of comparators M for an IGUS and the relation ∼Im is relative to

each comparator m ∈M .

3. Assume that one can define a physical relation RI
M between the (tentative)

equivalence classes of FoUs. Suffix for the comparator is replaced/general-

ized by the set of comparators because a combination of the comparators is

commonly used for articulating one piece of information.

4. Characterize the physical relation RI
M by the physical operations/interac-

tions on the equivalence classes of FoUs, if possible.

5. Try to deduce a universal structure constructed physically from the equiv-

alence class of FoUs and RI
M . If this step is not successful, the universal

structure is inquired in the formal side, i.e., in the mathematical model

(step 7).

6. Corresponding the above physical situations, relate the equivalence classes

of the FoU to a set X in the mathematical model. The set X must have the

structure reflecting the physical relation RI
M . (Thus, they have operational

meaning in the real physical world. )

7. Introduce the homomorphisms between X and another (known) mathemat-

ical structure K, which represents the articulated information. Deduce a

universal structure from the K. The universal structure may be a model of

the information that is captured (and to be utilized) by the IGUS.

This is a model for describing the process itself, and, simultaneously, this is a model

for analyzing information phenomena as information articulation processes. In the

latter case, note that the subject of these statements is also an IGUS (typically,

human-IGUS) that is investigating the information phenomena.
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3.4 Attributes as Limit

In this section, as a significant instance of the extensional information articulation,

the attributes extraction from the universe is considered.

We focus on the step 7 in the extensional information articulation process, be-

cause this step for extracting the universality is especially worthy to investigate

in information science. Other steps in the information articulation process might

be investigated in different disciplines. For example, the steps for detecting sim-

ilarity of FoUs, the step 1 and 2, can be abstracted using the Curie’s principle

in physics. As Joe Rosen [108] explicates, symmetry looms in the foundation of

science. Major ingredients of that foundation, reproducibility, predictability and

reduction are all symmetry. Hence, physical interactions can be represented at a

generic level by the words of symmetry. Thus, we can abstract away the source of

equivalence classes of FoUs by assuming certain symmetries.

To focus on the step 7, in this section, following conditions for the IGUS are

supposed:

1. The IGUS has collections of FoUs each of which forms an equivalence class.

Each of the equivalence relations is induced by certain symmetry of the

physical interaction (comparing interaction) of the IGUS;

2. The inclusion relation between the collections of FoUs is considered as the

relation RI
M in the step 3;

3. The IGUS has enough physical capabilities to meet the requirements for

implementing the model described in the following.

By supposing the first condition, the steps 1 and 2 in the extensional information

articulation process are skipped; the step 3 is took by the second condition; the

steps 4 and 5 are abandoned; the set X in the step 6 is equipped with an order

relation induced by the inclusion relation supposed as the second condition; and

the last condition ensures taking the step 7 (Figure.3.1).
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Figure 3.1: IGUS constructs a structure from FoUs

Let us return to the situation described in the Section 1.1.1: Suppose that there is

a green apple. The question is: how can a tabula rasa IGUS articulate this part of

the universe as the green apple? Let us assume that the IGUS can capture some

similarities of parts of the universe through certain symmetries of the interactions.

But this does not mean that a particular attribute, e.g., green, can be carved out

of the universe by the IGUS. The IGUS must distinguish each attribute by the

differences induced within itself.

We, human-IGUSes, often use the Aristotelian concept to specify a certain object

out of this uniform universe. In Aristotelian classical category, features of the cat-

egory members are binary, primitive, universal, abstract and innate, all members

of the category have equal status and the categories have clear boundaries (see for

example, [63, 67]). A concept is defined via a set of necessary and sufficient prop-

erties. That is, a concept has two sides: its extension, i.e., a collection of objects,

and its intension, i.e., a collection of attributes (which represents the equal status

of objects), and these two sides reciprocally define the concept (for a formal model

of such “concept”, see [109]).

But as already mentioned, for a tabula rasa IGUS, there is no attributes and

objects beforehand. An IGUS must extract them all by itself. A model is required

to describe and analyze such a bootstrapping attributes extraction process.

The model presented in this section is developed in three steps.

First, the projective limit is used as a mathematical model to attain universality

from finite physical interactions between the universe and the IGUS. In some field
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in physics such as physical cosmology, researchers have similar problems to explain

the situation in which universal information is extracted from finite observations,

and our model is along with the line of Sorkin [111].

Second, structural reduction of information is introduced. All of the universal

elements obtained in the projective limit are not necessarily used as attributes to

specify a part of the universe. Elements for minimal construction of attributes are

modeled as irreducible elements of the lattice in the limit.

Third, in the same way as in Formal Concept Analysis [109], Galois correspondence

between the inclusion structure of equivalence classes of FoUs and the inclusion

structure of attributes obtained in the limit establishes the objects and attributes

for the IGUS.

Though the following description includes minimum mathematical information

for interested readers, the use of mathematics in this section is to exemplify more

concretely the possibility of the extensional information articulation, and is not

intended to present a mathematically rigorous formulation.

3.4.1 Universality

An IGUS, which was initially a tabla rasa, incrementally obtains collections of FoUs

each of which forming an equivalence class. The collections of equivalence classes

of FoUs at the stage t is denoted as St. Between the equivalence classes A,B in

St, there exists a natural inclusion relation ⊆: A ⊆ B if and only if for any a ∈ A,

a ∈ B. Here, a is a representation of FoU in the IGUS. It is natural to simply

think that a certain uniformity of FoUs, that is, an attribute is represented by each

equivalence class (as Chechkin). However, it has some drawbacks as mentioned in

the Section 3.1.

To obtain a required universality of attributes and reflect the proper relationship

between them, we should move to down-sets of St, which is denoted as Dt, and

the sequence of them. Dt is the down-set of St if, whenever X ∈ Dt and Y ∈ St
and Y ⊆ X, we have Y ∈ Dt. Recall that X, Y here are equivalence classes of

FoUs.
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Because there is a mathematical fact that the family of down-sets ordered by set

inclusion forms a lattice isomorphic to the original lattice [69], Dt can be considered

to be virtually the same as St, in the context of this chapter.

Thus an IGUS is assumed to have a sequence D0 = ∅, D1, D2, . . ., which incre-

mentally increases according as the IGUS has more experiences, that is, more

interactions with the universe. The universality is extracted from this virtually

infinite sequence.

From T -indexed family of sets, {Dt}t∈T and appropriately defined functions ftu :

Du → Dt, one can construct a mathematical structure called a projective system(
Dt, (ftu)t6u

)
. ftu can be defined as:

ftu(x) =
∨
{η : gtu(η) 6 x, η ∈ Dt} , (3.1)

where gtu : Dt ↪→ Du is the inclusion map preserving the top and the bottom in

Dt, and the symbol
∨

denotes the least upper bound.

For a projective system, a universal concept, that is, the projective limit is defined:

lim←−−
t∈T

Dt =
{

(xt)t∈T : xt ∈ Dt, t 6 u=⇒xt = ftu(xu)
}
. (3.2)

What characterizes the projective limit is its universality. For a projective system

(Dt, ftu)t,u∈T , a set D and a family of maps (pt : D → Dt)t∈T are given, and for

any t, u ∈ T satisfying t 6 u, if pt = ftu ◦ pu, then there exists a unique map

ρD : D → lim←−−
t∈T

Dt that satisfies pt = πt ◦ ρD for any t ∈ T , where πt is the

projection map for t–th component of lim←−−
t∈T

Dt. This is a realization of universality

in a mathematical model (Figure.3.2).

The projective limit gradually changes as the IGUS is affected by new interactions.

But as far as the interactions do not induce a significant structural change in Dt,

the limit remains the same. In this sense, the attributes modeled as this struc-

tural limit can be said to be universal, and this corresponds to the mathematical

universality mentioned above.

Finite sequence up to Dt, i.e., (Ds)s6t∈T can be considered to be a finite ap-

proximation of the projective limit lim←−−
t∈T

Dt. By construction from the family of
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Figure 3.2: Universal structure for attributes

down-sets, the finite sequence up to Dt can be easily retrieved from Dt, hence Dt

can be identified with (Ds)s6t∈T as a finite approximation of lim←−−
t∈T

Dt.

Metaphorically speaking, suppose that each Dt is an approximate value of the

ratio of the circumference of a circle to its diameter, π, that is, D0 = 3, D1 =

3.1, D2 = 3.14, D3 = 3.141, . . .. Then the projective limit is the value π. The

universal value π is represented extensionally as

π = {3, 3.1, 3.14, 3.141, . . .} (3.3)

However, note that the projective limit above in general is for the structures, not

simply for values. In the present study, the projective limit is the limit of inclusion

structures of (down-sets of) the equivalence classes of FoUs.

3.4.2 Specifiability

In the sense described in Section 3.4.1, each elements x, y ∈ lim←−−
t∈T

Dt, is universal.
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However, not all of them are required to specify a part of the universe as an

attribute5. There seems, so to speak, an economic principle.

The projective limit obtained in Section 3.4.1 can be assumed to have the structure

mathematically called lattice. There is a fact that in a lattice, any element of the

lattice can be obtained as a certain combination of its specific part of elements [70].

These special elements, which form the basis of the lattice, are mathematically

called the meet irreducible elements of the lattice.

Therefore, these meet irreducible elements of the projective limit (of the family

of down-sets of the collections of equivalence classes of FoUs) may be regarded

as attributes derived from the structural differences induced within the IGUS by

the physical interactions. We will call them as s-attributes (“s” for structural) if it

is required to emphasize on the distinction from other ordinary uses of the word

“attributes” (Figure.3.3).

Figure 3.3: Several specific elements — irreducible elements — in the limit
structure are used as “attributes”

When one of the meet irreducible elements of the projective limit is labeled as

attribute a, roughly speaking, all of the FoUs belonging to the element of the

projective limit have this attribute a. More precisely, we might be able to say that

an FoU hereditarily succeeds to the labeling as attribute a, because an element of

the projective limit is a set of the down-sets Dt each of which consists of a set of

equivalence classes of FoUs.

In this way, an IGUS can equip enough s-attributes to (virtually) specify the

equivalence classes of FoUs, i.e., particular parts of universe. Besides, the IGUS is

now able to handle attributes extensionally, because the s-attributes are virtually

represented extensionally. “Virtually” here is placed for worrying that this model

of the attributes seems rather conceptual because the s-attributes are defined “in

5They may be called as proto–attributes corresponding to proto–objects.
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the limit.” However, even if it is merely conceptual, by understanding in this way,

we can define a clear concept of the approximation of an attribute in Dt, that is,

the projection of an s-attribute in lim←−−
t∈T

Dt. These approximations can clearly be

handled extensionally. Moreover, there might be a physical implementation of the

limit, which provides extensionality of the attributes directly.

3.4.3 Duality and Galois Connection

As described in the above subsections, an IGUS can obtain a set of s-attributes that

are somewhat universal, and the IGUS can handle the s-attributes extensionally.

But recall that actual physical FoUs are merely loosely related to the representa-

tion within the IGUS. At this stage, there is no specific object with which these

s-attributes are associated. As for information phenomena, the known objects are

a part of the structure built in an IGUS through the previous information from the

external world. Models mentioned above might be a subpart of the structure which

enable to classify (and, first of all, identify) the objects in the external world. In

this chapter, the author shows that the universal elements of the structure formed

by the known objects, that is, attributes may be considered as models above, and

also shows the way of classifying the objects by the attributes.

In general, to investigate information phenomenologically on the physical basis,

we have to face with the opposition between the two systems – an IGUS and the

universe. The problem is the way in which an IGUS may induce the physical/struc-

tural differences within itself in harmony with the differences found in the universe

by the IGUS. An IGUS might induce its internal differences arbitrarily, but what

functions as information is the differences induced with this harmonization.

The whole picture of this information capturing from the universe by an IGUS

may be drawn as a duality between the external world and the system. To be

more precise, it may be drawn as a duality between the structure found in the

external world and the structure built within the system. In this view, one should

use the theoretical framework based on the mathematical concept called duality to

investigate the interrelations between the invisible, incomprehensible, indivisible

universe and the information world which is (turned into) visible, comprehensible

for each IGUS.
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Duality is a general mathematical idea representing the relationship

having following features. A general theoretical structure found in

analyzing various phenomena is as follows:

1. prepare known objects that are able to reproduce the essential

properties of the structure or the behavior of theoretical (un-

known) objects that should be described, analyzed, classified, and

interpreted;

2. as for the focusing aspect, classify the known objects as models

or samples that faithfully reconstruct the unknown object under

consideration;

3. then interpret the meaning of the original objects from the inter-

relations of the models.

Without such a process, it may be difficult to approach the essentials

of the unknown objects in the fickle, evasive real world. Naturally,

a certain guarantee should exist to use known objects as proxies of

the unknown real objects. There should be a balancing or an adjust-

ing mechanism between the process from the unknown objects to the

models and the reverse process from the models to the unknown ob-

jects. The duality is none other then the requirement for not forming

a gap more than assumed when one proceeds back and forth between

the models and the unknown objects. [71]6.

Precise duality, that is, one to one correspondence between the unknown objects

and the models does not exist by nature. The balancing/adjusting mechanism

mentioned above may be well-described by a concept in category theory – ad-

junction, which will be explained in the next chapter. The canonicity and the

universality of information might be understood well by adjunction.

The connection between the s-attributes obtained and the specific part of the

universe may be established by the Galois connection on the model. The Galois

connection is an adjunction. Physically, it may be established by the indicative

interactions that are correlated with the representation of FoUs within the IGUS.

Through this correlation, the indicative interactions are also correlated with the s-

attributes. Therefore, the IGUS can activate the indicative interaction correlated

with one of the s-attributes and indicate some part of the universe. The part

6Excerpt and translated with a slight modification by the author.
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of the universe may or may not strictly agree with the FoUs initially indicated.

But, anyway, this indication is stable for the IGUS in comparison with the initial

indication to the FoUs, because it has its ground within the IGUS itself. And if

the indication correlated with the s-attributes specify a part of the universe, the

part of the universe is/becomes the object corresponding to the s-attributes.

This situation is mathematically modeled as the Galois connection between the

lattice of equivalence classes of FoUs and the lattice of the s-attributes. See [109]

for general formulation in detail (Figure.3.4).

Thus, in this model, a universal structure, i.e., the projective limit, is built from

the structures of the inclusion relation of the FoUs, and using extensionality of the

universal structure, via the Galois connection, another universal structure—(the

inclusion relation of) the pairs of objects and attributes. The IGUS has now got

the extensionally specifiable attributes and objects, In this way, the information

phenomena may be understood as the transformation of extensional structures,

that is, the transformation of extensional differences.

62



Chapter 3 3.4

Figure 3.4: Steps to obtain “objects”
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3.5 Conclusive remarks on this chapter

It has not been well investigated to understand the fundamentals of information as

fully extensional physical phenomena. Studies of information in physics, and a few

studies in information theory, e.g., Chechkin’s (see [15]) indeed treated information

extensionally. However, these treatments have seemed to be not thorough enough.

They did not provide any general enough models that could be used in a funda-

mental level of information phenomena, such as the articulation of information

from the universe.

In this chapter, we have developed a model of the process of extensional informa-

tion articulation, generalizing the theory of the extensive measurement in metrol-

ogy. In addition to this, a model of the attribute creation process has been pre-

sented as a detailed example of a step of the extensional informational articulation

process.

The former model provides an abstract model to represent a concrete information

articulation process extensionally. By establishing the relation between the com-

ponents in the model and those in an actual, concrete situation, an information

phenomenon may be sorted out and analyzed as an extensional information ar-

ticulation. Thus, this model may play the similar role as that of the extensive

measurement theory in metrology.

The latter model has exemplified the concepts of the former model. It has demon-

strated a concrete formulation along the line of the former model, i.e., the model of

the process of extensional information articulation, and presented the possibility

of a new understanding of the attributes in which attributes are extracted fully

extensionally from the universe. The outline of the model is summarized as in

Figure.3.5.
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Figure 3.5: Model of the process of extensional information articulation
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An internal description of an

origin of the attribute

4.1 Introduction

If one places importance on the existence of physical basis underlying information

phenomena to understand information fundamentally as in [1] , it is inevitably a

physical difference within the system that captures each information from/in the

universe. The difference within the system is induced by the physical difference in

the universe, and the induction is restricted by the physical ability of the system.

Hence a theory of information which aims at such a fundamental understanding

should describe, analyze, and interpret the differences as information and the

mechanism of the transfer of the differences. A difference is something in between.

Since this between-ness or intermediary-ness is considered to be one of the main

characteristics of information, it is desirable to use a suitable language to describe

such a character directly.

One of such a mathematical gadget might be category theory [72–74]. A category

consists of the objects and the arrows between the objects. In category theory, the

leading role is played by the arrow between the objects. What is in the spotlight

is the arrows, i.e., between-ness.

In this chapter, the author attempts to show that the usefulness of the language

of category theory, especially the topos, for investigating the information phenom-

ena. By connecting the requirements for the language to investigate information
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phenomena and the features of elements in category theory, and by exhibiting the

use of category theory to study a typical information extraction phenomenon, that

is, the attribute extraction for classification, the effectiveness of category theory

in the study of information will be shown.

Information acquisition by an IGUS may be better formulated in the language of

category theory [72–74], topos [75–77] in particular. Though detailed discussions

will be evolved in the following sections, the reasons are roughly:

• The components of the category theory are suitable for representing the

relational aspect of information, i.e., difference which makes difference;

• Elements in a category is treated contextually ;

• “Information” acquired by/at the informee system is understood as a struc-

tural universality built within the system from fickle stimuli of outer world.

The structural universality is immanent in the category theory;

• There exists a subobject classifier (in every topos);

• Topos is a generalization of the category sets;

• One may successfully explain a mechanism of the extraction of information

called attribute from the outer universe in the language of category theory.

The structure of this chapter is as follows: In Section 4.2, the properties of the

category theory and topos which seems to be useful for information studies are

briefly surveyed. The author clarifies the connection of the viewpoint for informa-

tion in this study and the features of the category theory in this section. Then, a

mechanism of the extraction of attributes by an IGUS is explained in the language

of topos in Section 4.3 as a demonstration of the usefulness of the category theory.

Section 4.4 concludes this chapter.

4.2 Category theory as a language for informa-

tion phenomena

Category theory seems to be, though not perfect, suitable for investigating infor-

mation phenomena. In this section, concepts in category theory are introduced
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minimally. Readers should consult [72–74, 78], and other textbooks for detailed

definitions.

Definition 4.1. A category C consists of a family of objects Ob(C) and for each

pair of objects, A,B in Ob(C), a set C(A,B) of arrows1 from A to B, together

with a way of composing arrows that match

◦ : C(A,B)× C(B,C)→ C(A,C).

This data is to satisfy:

1. composition is associative. If h ◦ (g ◦ f) is defined, (h ◦ g) ◦ f as well and

h ◦ (g ◦ f) = (h ◦ g) ◦ f .

2. there are identities for each object, so there are identity arrows idA in C(A,A)

for A in Ob(C), such that if f ∈ C(A,B),

idB ◦ f = f = f ◦ idA.

(An arrow is also written as f : A → B if f ∈ C(A,B), and the composite

of the arrows f ∈ C(A,B) and g ∈ C(B,C) is written as g ◦ f or simply gf .)

The object A of an arrow in C(A,B) is called the domain of the arrow, and the

object B is called the codomain of the arrow.

In this thesis, we will use the term arrow mainly, but sometimes use the term

morphism interchangeably with arrow. And by abuse of notation, Ob(C) is often

written as C when there seems no risk of confusion.

An arrow f ∈ C(A,B) is isomorphism or invertible in C if there is an arrow

g ∈ C(B,A), such that g ◦ f = idA and f ◦ g = idB. Objects A,B ∈ Ob(C) are

isomorphic in C if there is an arrow f ∈ C(A,B) that is an isomorphism in C.

In category theory, isomorphic objects are regarded as “essentially same.”2

...(snip)..., isomorphic objects “look the same”. ... (snip) ... these

arrows, which establish a “one-one correspondence” or ‘matching” be-

tween the elements of the two objects, preserve any relevant structure.

1also called morphisms.
2This is not a mathematically defined term here.
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This means that we can replace some or all of the members of one

object by their counterparts in the other object without making any

difference to the structure of the object, to its appearance. ...(snip)...

An object will be said to be “unique up to isomorphism” in posses-

sion of a particular attribute if the only other object possessing that

attribute are isomorphic to it. A concept will be “defined up to iso-

morphism” if its description specifies a particular entity, not uniquely,

but only uniquely up to isomorphism. [75].

An “arrow between categories” is called a functor.

Definition 4.2. A functor F : C → D is given by:

• An object–map, assigning an object FA of D to every object A of C.

• An arrow–map, assigning an arrow Ff : FA → FB of D to every arrow

f : A→ B of C, in such a way that composition and identities are preserved:

F (g ◦ f) = Fg ◦ Ff, F idA = idFA.

An “arrow between functors” is called a natural transformation.

Definition 4.3. Let F,G : C → D be functors. A natural transformation

t : F → G

is a family of morphisms in D indexed by objects A of C,

{tA : FA→ GA}A∈Ob(C)

such that, for all f : A→ B, the following diagram commutes:

FA

tA
��

Ff // FB

tB
��

GA
Gf
// GB

.

That is, tB ◦ Ff = Gf ◦ tA. This condition is known as naturality.
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Categories, functors between categories, and natural transformations between

functors are the main characters in category theory. Various concepts are built on

them.

The merits of using category theory as a language for information studies are

summarized as follows:

1. Arrows as comparison

2. Being contextual

3. Capability for representing structural universality

4. Existence of the subobject classifier

5. Topos as a generalization of the category of sets

6. Existence of a successful application

Following subsections explain each of these merits in detail.

4.2.1 Arrows are comparison

The components of category theory are suitable for representing the relational

aspect of information. First of all, an arrow is often interpreted as comparison.

“The basic belief of category theory is that whenever we conceive of a

collection of ‘objects’ - things we don’t want to take apart - we should,

at the same time, decide how these ‘objects’ are to be compared. We

then formalize a category. In other words, for any given category C we

should think of the arrows of C as those gadgets which compare the

objects.” [72].

“... one of the reasons for the usefulness and importance of Category

Theory is that it gives an abstract mathematical setting for analogy

and comparison, allowing an analysis of the process of abstracting and

relating new concepts.” [79].
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As mentioned in the above quotes, an arrow in category theory may naturally be

interpreted as a difference. In category theory, the arrows are in the foreground

and the objects are in the background, therefore the arrows in category theory are

considered to be suitable for describing the difference carried by information.

4.2.2 Category is contextual

As many researchers in various fields such as linguistics has been addressed, infor-

mation has contextual aspects. For example, in the episode 1.1.2, the meaning of

a word is understood in the context of a language.

All the elements in category theory are defined structurally in a context of the

category they reside. For example, let us see the definition of a monic, a special

arrow which is often considered to represent “a part of the target object.” A monic

f : A→ B in a category C is defined as follows.

Definition 4.4. An arrow f : A → B in a category C is called a monic when,

for every object C ∈ Ob(C) and every pair of arrows g, h : C ⇒ A, the following

property holds: (f ◦ g = f ◦ h)=⇒(g = h).

As this definition states, a monic is defined within the structure it constructs

with other arrows g, h within the same category. Any other featured elements in

category theory are defined in similar contextual ways. Thus one can expect that

the structural property of category theory enable us to naturally represent the

contextual aspect of information.

4.2.3 Structural universality

In the view of this thesis, information acquired by/at the informee system may be

understood as a universality built within the system from the fickle stimuli of outer

world. Information may be considered to be used to cast anchor in the fluctuate,

fickle universe to capture and utilize properties of the universe which can be shared

among IGUSes. To be utilized timelessly and to be shared as information, there

must be a canonical way of capturing the properties of the universe by an IGUS.

The universality arises here. The IGUS may articulate the universe in any degree
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of arbitrariness by its own criteria. But such an arbitrarily articulated fragment

of the universe is not reproducible in general. Hence it may not be usable as

information with other IGUSes and even by the IGUS itself. However, if there

is a canonical way of articulating the universe by the IGUS (and the way is in

common with other IGUSes), the phenomena might be reproducible as information

phenomena. The canonicity yields the universality required for information. This

universality is inevitably structural because it should be understood as something

embedded structurally in the physical base of the IGUS.

The structural universality is immanent in category theory. In category theory, one

can discuss the universality in a mathematically rigorous manner. Thus category

theory may be regarded to capture this universality of information coherently as

structural one.

In category theory, universal arrows are defined as follows.

Definition 4.5. Let G : D → C be a functor, and C an object of C. A universal

arrow from C to G is a pair (D, η) where D is an object of D and an arrow

η : C → G(D) of C, such that, for every pair (D′, f) with D′ an object of D and

an arrow f : C → G(D′) of C, there exists a unique arrow f̂ : D → D′ of D such

that f = G(f̂) ◦ η.

Diagrammatically:

C

f ""

η // G(D)

G(f̂)
��

D

f̂
��

G(D′) D′

.

In other words, every arrow f to G factors uniquely through the universal arrow

η.

Universal arrows are ubiquitous in mathematics. Most familiar example might be

bases of vector spaces. Let V ctK denote the category of all vector spaces over

a fixed field K, with arrows of linear transformations, while U : V ctK → Set is

a functor sending each vector space V to the set of its elements (such a functor

is often called the forgetful functor, because it forgets the structure of the vector

space). For any set X there is a familiar vector space VX with X as a set of basis

vectors. VX consists of all formal K–linear combinations of the elements of X.

Let us consider an arrow ι : X → U(VX), the function which sends each x ∈ X
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into the same x regarded as a vector of VX . For every other vector space W , it

is a fact that each function f : X → U(W ) can be extended to a unique linear

transformation f̂ : VX → W with U(f̂) ◦ ι = f . This familiar fact states exactly

that ι is a universal arrow from X to U . For other examples of the universal arrow

or the concept of the universality in mathematics, readers should consult [74] and

other appropriate textbooks of category theory.

Closely related to the concept of universality, there is a structural concept called

adjunction.

Definition 4.6. Let C,D be categories. Given C
F

�
G
D, where F and G are

functors, an adjunction from C to D is given by a pair of natural transformations

η : 1C ⇒ GF (unit), (4.1)

ε : FG⇒ 1D (counit), (4.2)

satisfying the triangle identities axioms:

F
Fη //

1F ""

FGF

εF
��
F

G
ηG //

1G ""

GFG

Gε
��
G

. (4.3)

That is, εF ◦ Fη = 1F and Gε ◦ ηG = 1G. We say that F is left adjoint to G, and

G is right adjoint to F .

Let us consider comparing the categories C and D by functors F,G:

C
F

�
G
D. (4.4)

Recall that arrows are comparison in category theory. In this comparison, there

are several levels of “similarity” or “sameness” between the two categories.

In the first level, these functors are going back and forth and returning to the

“exact starting place”:

1C = GF, (4.5)

FG = 1D. (4.6)

Categories C and D are isomorphism in this case. This is the first level of similarity
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and categories C and D may be considered to be “essentially the same.”

In the second level, these functors are going back and forth and returning to the

starting point up to isomorphism:

1C ∼= GF, (4.7)

FG ∼= 1D. (4.8)

Categories C and D are equivalent in this case. This is the second level of similarity.

Categories C and D might be considered to be “different”, but the difference is on

the essentially same objects only.

The adjunction, the third level of “similarity” may be interpreted as “Categories

C and D might be considered to be ‘similar’ or ‘essentially the same’ within the

permissible level measured by η and ε.” Comparing with the isomorphism or

equivalent case, the unit η and the counit ε may be considered to be showing the

gap between the 1C and GF , FG and 1D, respectively.

The adjunction structure can be found everywhere and, as is shown below, this

“gap permitting similarity” is closely related – actually, equivalent – to the univer-

sality concept in category theory. To see this equivalence, another version of the

definition of adjunction might be appropriate. If the above mentioned definition

is regarded as the definition, the following definition becomes a proposition that

holds, and vice versa.

Definition 4.7. Let C,D be categories. An adjunction from C to D is a triple

(F,G, θ), where F and G are functors

C
F

�
G
D (4.9)

and θ is a family of bijections

θC,D : C(C,G(D))
≡→ D(F (C), D), (4.10)

for each C ∈ Ob(C) and D ∈ Ob(D), natural in C and D.
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As explained in [112], universality and adjunctions are equivalent. We only men-

tion here the fact that the following propositions hold.

Proposition 4.8. (Universals define Adjunctions) Let G : D → C. If for every

object C of C there exists a universal arrow ηC : C → G(F (C)), then:

1. F uniquely extends to a functor F : C → D such that η : 1C → GF is a

natural transformation.

2. F is uniquely determined by G (up to unique natural iso), and vice versa.

3. For each pair of objects C of C and D of D, there is a natural bijection:

θC,D : C(C,G(D)) ≡ D(F (C), D). (4.11)

Proposition 4.9. (Adjunctions define Universals) Let G : D → C be a functor,

D ∈ Ob(D) and C ∈ Ob(C). If, for any D′ ∈ Ob(D), there is a bijection

φD′ : C(C,G(D′)) ≡ D(D,D′) (4.12)

natural in D′ then there is a universal arrow η : C → G(D).

Therefore the following two situations are equivalent in the sense that each deter-

mines the other uniquely.

• We are given a functor G : D → C, and for each object C of C a universal

arrow from C to G.

• We are given functors F : C → D and G : D → C, and a natural bijection

θC,D : C(C,G(D)) ≡ D(F (C), D). (4.13)

This means that universality and adjunctions are equivalent in category theory.

Thus by using the adjunction (if possible), one may expect to naturally represent

universality and canonicity of information.

76



Chapter 4 4.2

4.2.4 Subobject classifier

Information is intimately related to classification. For instance, in Shannon’s

communication theory, described in 2.2.2, a message received at the message–

receiver is destined to be identified with one of the elements of the predefined set

of messages. Identification is a kind of classification.

To classify information, an IGUS requires a criterion for the classification, i.e.,

meta–information for the classification. However, the meta–information itself

should also be considered to be information. The message–receiver in Shannon’s

communication theory is assumed to have a set of all possible messages defined

in advance. There is no doubt that the message–receiver has obtained this meta–

information3 through some information mechanism. Similarly, an IGUS in general

must have obtained meta–information that enables a classification of current infor-

mation to be obtained. Then it must also have obtained meta–meta–information

that enables a classification of the meta–information for classification. Information

demands information for classifying it as information. However, it is unrealistic

that an IGUS incorporates such an infinite hierarchy of information required for

classification just as it is. Hence the language for describing the fundamental

mechanism of information should have a capability to represent such an infinity

in a “closed” manner.

In category theory, there is a concept called subobject classifier. This is a special

kind of object of a category. Intuitively, as the name suggests, what a subobject

classifier does is to classify subobjects of a given object according to which elements

belong to the subobject in question. In short, the subobject classifier is the object

that classifies objects.

First, let us define the subobject of an object in a category on the analogy of subset.

Any monic function f : M � S determines a subset of S, Imf = {f(x) : x ∈M}.
f induces a bijection between M and Imf , hence M ∼= Imf . Thus the domain of

a monic function is isomorphic to a subset of the codomain. This leads us to the

definition of subobjects, the categorical versions of subsets.

3In this case, the set of all possible messages is used as the meta–information for identifying,
that is, “classifying”, the message that is received by the message–receiver.
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Definition 4.10. A subobject of an object X in a category C is a monic

m : M � X.

Two monics M
m
� X,N

n
� X are called equivalent, and are written as m ∼ n,

if there is an isomorphism i : M ∼= N such that m ◦ i = n. Clearly ∼ is an

equivalence relation on the class of all monic arrows in C with codomain X. Each

m : M � X determines an equivalent class

[m] = {n : m ∼ n} .

We should redefine a subobject of X to be an equivalence class of monics with

codomain X. That is:

Definition 4.11. A subobject of an object X in a category C is an entity

[m] = {n : m ∼ n} ,

where m : M � X is a monic with codomain X.

When no confusion is likely to occur, we shall identify [m] with its representative

m, and even with the domain X of m.

Now it is time to turn to the definition of the classifier of subobjects. Again, we

should start with the case of subsets.

In set theory, there is a bijective correspondence between subsets of X and func-

tions X → 2 = {0, 1}. Given a subset M ⊆ X, the characteristic function of M ,

χM : X → 2 is defined by

χM =

{
1 if x ∈M
0 if x /∈M.

(4.14)
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The correspondence between subset and characteristic function can be “captured”

by a pullback diagram. In set theory, the pullback of two set function f and g is

defined by putting

D = {〈x, y〉 : x ∈ A, y ∈ B, and f(x) = g(x)} (4.15)

with f ′ and g′ as the projections:

f ′(〈x, y〉) = x (4.16)

g′(〈x, y〉) = y. (4.17)

If f : A → C is a function, and B a subset of C, then the inverse image of B

under f , denoted f−1(B), is that subset of A consisting of all the f -inputs whose

corresponding outputs lie in C, i.e.

f−1(B) = {x : x ∈ A and f(x) ∈ B} . (4.18)

The diagram

f−1(B)
f∗ //

� _

��

B� _

��
A

f // C

(4.19)

is a pullback square, where the arrows with curved tails denote inclusions, and

f ∗(x) = f(x) for x ∈ f−1(B).

Thus the correspondence between subset and characteristic function can be “cap-

tured” by the following diagram:

M ! //
��

��

1
��
>
��

X
χM // 2

(4.20)

where the function > is a function from 1 = {0} to 2 = {0, 1} and ! is the unique

function ! : M → 1.
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This situation (in the category of sets and functions) can be generalized to cate-

gories that have components required, such as 1, pullbacks and 2. The one element

set 1 in set theory is corresponding to the special object called terminal object in

general categories. The terminal object and pullbacks are defined as limits in

category theory, and they exist when the category has all finite limits.

Definition 4.12. An object 1 is terminal in a category C if for every object

C ∈ Ob(C) there is one and only one arrow from C to 1 in C.

Definition 4.13. Consider two morphisms f ∈ C(A,C), g ∈ C(B,C) in a category

C. A pullback of (f, g) is a triple (P, f ′, g′) where

1. P is an object of C.

2. f ′ : P → B, g′ : P → A are morphisms of C such that f ◦ g′ = g ◦ f ′,

and for every other triple (Q, f ′′, g′′) where

1. Q is an object of C.

2. f ′′ : Q→ B, g′′ : Q→ A are morphisms of C such that f ◦ g′′ = g ◦ f ′′,

there exists a unique morphism q : Q → P such that f ′′ = f ′ ◦ q and g′′ = g′ ◦ q.
See the diagram 4.21.

Q

g′′

��

q

��

f ′′

""
P

f ′
//

g′

��

B

g
��

A
f // C

(4.21)

80



Chapter 4 4.2

Now we can define the subobject classifier.

Definition 4.14. Let E be a category with all finite limits. A subobject classifier

in X consists of an object Ω together with an arrow > : 1→ Ω that is a “universal

subobject,” in the following sense: Given any object X and any subobject M �

X, there is a unique arrow χ(m) : X → Ω making the following diagram a pullback:

M //
��

m
��

1

t
��

X
χ(m) // Ω

. (4.22)

The arrow χ(m) is called the characteristic arrow of the subobject m : M � X

(or of M).

Every (elementary) topos, which is a certain class of a category, has a subobject

classifier [75, 76]. Hence, if it is possible to restrict the language that is used

for a study of information to the language of topos, the study may enjoy the

classification capability provided by the subobject classifier.

4.2.5 Topos as a generalization of the category of sets

In addition to having the subobject classifier, a topos can be, in a sense, regarded

as a generalization of the category of sets [75, 76]. The category of sets is a

topos, and it is often said that one way to understand the notion of the topos is

as a category of generalized sets. This property of the topos generally makes the

studies built on a topos easier to be considered as a generalization of earlier studies

built on sets. For instance, Shannon’s communication theory is evidently built on

the theory of sets. If someone may build a communication theory on topos, it

might be considered to be a generalization of the Shannon’s theory. However,

mathematically rigorous comparisons of the topos and the category of sets (e.g.,

[80] ) is far beyond our scope, therefore, in this subsection, we mention merely the

definition and features of the topos that might convince the readers of the analogy

between the topos and the category of sets.
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Definition 4.15. A topos is a category with:

a) finite limits and colimits,

b) exponentials,

c) a subobject classifier.

Unfortunately, the above short definition mystifies the readers who are not familiar

with some category theory, and requires a further sequence of definitions to bring

it back to the basic concepts of category theory4. Since we do not need such

detailed definitions here, as Baez summarizes in [81], let us see a bit about what

these items a)–c) amount to in the category of sets:

a) states that there are:

• an initial object (an object like the empty set),

• a terminal object (an object like a set with one element),

• binary coproducts (something like the disjoint union of two sets),

• binary products (something like the Cartesian product of two sets),

• equalizers (something like the subset of X consisting of all elements x such

that f(x) = g(x), where f, g : X → Y ),

• coequalizers (something like the quotient set of X where two elements f(y)

and g(y) are identified, where f, g : Y → X).

In fact, a) is equivalent to all this stuff. It’s a theorem that to have finite limits

and colimits is the same as to have all the things listed above.

b) states that for any objects x and y, there is an object yx, called an exponential,

which acts like “the set of functions from x to y.” This means that, as functions

which relate sets are themselves sets, a topos also has function–like being as its

objects.

4In the appendix A.2, we have the definitions for the notions that appears in this subsection
and that are not defined in the text.
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c) assures the existence of the subobject classifier Ω, mentioned already in 4.2.4.

Every topos has the subobject classifier which acts like {0, 1} in the category of

sets. Thus as in sets, objects in a topos may be classified merely using the object

and arrows.

With all these facts, a topos may be considered to behave like the category of sets.

4.2.6 Existence of a successful application

Finally, as the next section will be fully devoted to this, one may successfully ex-

plain a mechanism of the extraction of information called “attribute” from outer

universe in the language of category theory. Though it might be a mere example,

the way in which an IGUS obtains attributes from the external universe is consid-

ered to be a significant information phenomenon. In the light of its significance

and generality of this example, it may be expected that the language of category

theory as used in the example may be applied widely to the other information

phenomena.

4.3 An internal description of attributes from

the inclusion structure of extension

In this section, a formulation of a specific information phenomenon is developed in

the language of category theory. The information phenomenon formulated is the

classification of the outer world of an IGUS, which is also greatly concerned with

information in general. The process contains the attributes extraction process,

which occurs in a boot-strapping manner within the IGUS and enables to classify

the outer world. In Chapter 3, the authors ground the phenomenon in the connec-

tion to the extensive measurement theory in metrology, and by using somewhat

familiar mathematics, Chapter 3 demonstrates the validity of the scheme in the

case of the attribute extraction. We get along with the line of Chapter 3 in this

section, and expand the understanding by a new formulation.
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Figure 4.1: Model of the process of extensional information articulation

The outline of the idea developed in Chapter 3 is summarized as in Figure.3.5,

repeated here as Figure.4.1.

The problems targeted in this scheme are to yield a tolerable classification

• from finite observations;

• with the criterion of classification generated in a boot–strapping manner;

• by a self–generated universal base, i.e., attributes, that may be specify each

part of the universe according to the criterion within such a mechanism.

In this scheme, there are two main points.
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The first point is the dual adjoint structure. The dual structure naturally consists

of two structures; the structure of inclusion relation of the equivalent classes of

fragments of the universe, and the structure of inclusion relation of attributes.

The fragments of the universe are articulated under the restrictions of the capabil-

ities of the sensory motor system of the IGUS under consideration. Indifferences

between them are introduced by the sensors that determines the family of equiva-

lence classes of the fragments. This structure is tentative, because the fragments

of the universe has transitory nature. By this structure, the objects in the world

are established instead of the fragments of the universe, according as the duality

is established. In the resultant structure, the attributes extracted from the ten-

tative structure that consists of the fragment of the universe provide a base for

classification of objects.

The second point is taking the limit to obtain universal, i.e., attributes. Anyway,

the IGUS has a structure resulted from sensed stimuli; therefore a possibility is

to utilize it for extracting the characteristic values to specify the internal parts

of the structure. In Chapter 3, this is accomplished by taking the limit of the

(evolutional) sequence of structures. The characteristic values obtained from the

limit are called s–attributes in Chapter 3. Thus an IGUS may obtain a self–

generated universal base s–attributes to articulate and classify the universe in a

boot–strapping manner, Likewise, objects to be elements that is composing the

world of the IGUS may be obtained by taking the limit of the sequence of the

s–attribute structures.

Thus the IGUS has two structures, takes the limits of them, establishes the duality,

and finally fixes objects and their attributes composing its world.

Readers should consult Chapter 3 or the paper [1] for details.

In this section, the same phenomenon will be formulated by the language of cate-

gory theory. With this change of formulation, other aspects than what is demon-

strated in Chapter 3 are revealed in more obvious manner. A special emphasis is

laid on the “local” picture of the contextuality of the classification that is obtained

by the language of category theory. The focus in this chapter is the second point

mentioned above, that is, the attribute related point. The first point is merely

briefly mentioned in Section 4.3.1.
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4.3.1 Dual adjoint structure between the tentative classi-

fication of the world and attributes

For the formulation of the duality part, there is nothing special to be mentioned

in this thesis. This section is essentially a commentary on the well–known facts

in mathematics, which have been already applied in various fields other than

mathematics.

As in Chapter 3, an IGUS is supposed to be able to articulate the universe to

comprehend its environments. Articulation by an IGUS means the following steps:

1. An IGUS finds some partial uniformity in the universe;

2. The IGUS divides the universe into fragments accordingly;

3. The IGUS collects the uniform fragments of the universe and distinguishes

them from the rest of the universe (The divisions may be done in a multi-

layered way);

4. The IGUS forms (a representation of) an inclusion structure of (the repre-

sentations of) the fragments collected within itself;

5. The IGUS assigns attributes based only on the information which can be

utilized by itself, that is, only on the inclusion structure of the fragments of

the universe;

6. The IGUS finally obtains concepts and has a capability to refer to the specific

fragments of the universe indirectly.

In the mathematical model of this section, the (observed) universe is assumed to

be a topological space U , and the third step may be regarded as an introduction of

open subsets, i.e., topology, into U . More precisely speaking, we are assuming that

the world for an IGUS should be none other than the topological space generated

by a certain topology the IGUS itself has settled. In this subsection, as usual in

this thesis, we will identify the universe observed by an IGUS with the world for

the IGUS.
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The structure mentioned in the fourth step is regarded as the lattice O(U) of

open subsets of U . The lattice O(U) is complete, and forms a frame. Frame is a

complete lattice satisfying the infinite distributive law. Frames form a category

Frm with functions preserving finite meets and arbitrary joins. The category dual

of the category of frames is called the category of locales Loc.

Frm and Loc are considered to be adequate representation of the situation, be-

cause Frm and Loc are players in the pointless topology, an approach to topology

that avoids mentioning points. At this stage of the articulation of the universe,

there is no distinguishable object for the IGUS. That is, there is no distinguish-

able point for the IGUS in the model of the universe (for the IGUS). Mathematical

formulation should incorporate this situation, and it may be accomplished by the

language of pointless topology.

After all the steps above, the IGUS obtains a picture of the universe, i.e., the

world for the IGUS, which is full of objects. Mathematically, the objects (which

are elementary, that is, not regarded as something like composites) are modeled as

points, and the world is modeled as an ordinary topological space that has many

points.

The interconnection between the category Top of topological spaces whose mor-

phisms are the continuous functions and the category Frm is well discussed in

mathematics under the name of Stone–type duality. The Stone–type duality is the

duality between a subcategory of Top and a subcategory of Frm: the category

Sob of sober spaces with continuous functions and the category SFrm of spatial

frames with appropriate frame morphisms. A sober space is a topological space

such that every irreducible closed subset of X is the closure of exactly one point

of X: that is, this closed subset has a unique generic point.

By this duality, the world U within an IGUS may canonically be restricted to

a sober space. Each generic point in the sober space may be identified as an

elementary object in the world of the IGUS. Thus the IGUS becomes to be able

to canonically refer to the object in the world.

87



4.3 Chapter 4

4.3.2 Variable sets

In this subsection, for the sake of simplicity, we treat the fragments of universe

picked by an IGUS as if they were distinguishable and persistent. In other words,

the fragments of the universe are supposed to be extensive. Actually, the extension

of the universe, i.e., objects for the IGUS should be modeled to be obtained

by the duality structure and the dynamics on the structure. But to focus on

the characterization of attributes acquired by the new formulation, we will avoid

inevitable messy details.

The set P of equivalence classes of the fragments of the universe forms a partially

ordered set, also called a poset. A partial order on P is introduced as a binary

relation ≤ on P . p ≤ q if and only if the IGUS is required to add some fragments

of the universe operationally to p to form q. 5

Each p ∈ P may also be considered to be a state of knowledge. If p ≤ q, q includes

more knowledge, that is, roughly speaking, information, than p. We intentionally

confuse here the dynamic view with the static view. In other words, there is no

distinction between the diachronic view and the synchronic view. On one hand,

adding a fragment of the universe to one of the existing equivalent class is dynamic,

a change of state. Actually this dynamics builds the poset P . On the other hand,

the poset P shows the structure of the classification. This is a static view. In this

subsection, the view will be switched freely according to its conveniences.

A poset itself may be regarded as a category P . The objects are the elements of

the poset, and an arrow from p to q for p, q ∈ P exists if and only if p ≤ q. The

category that so arises is called a poset category6.

To represent the contextuality formed by finite observations, the contextuality

required for information, one may use a topos, also called a variable set [76].

5Note that, strictly speaking, it is an order relation between sets of operations of the IGUS, at
this stage. Though it is irrelevant to the following discussion in this section because the fragments
of universe under consideration have been supposed to be distinguishable and persistent, it is
important for the reader to be aware that there are delicate difficulties to define the sets of
the fragments of the universe by extension, in principle. This difficulty may be removed by the
soberification induced by the Stone–type duality described in the previous subsection.

6A poset category and the underlying poset of it are so similar that we often use the same
symbol by an abuse of notation hereafter in this thesis.

88



Chapter 4 4.3

Suppose that an IGUS encountered a kind of herring, carpet, tape, card in a clas-

sification situation. Each of them is a specific instance, which might be identified

by the spatio–temporal occurrence. They seemed similar, hence the IGUS would

bundle them into an equivalent class7:

ϕ = {herringid2 , carpetid3 , tapeid7 , cardid9} . (4.23)

The IGUS would embody a statement like

ϕ (x) = “x is red.” (4.24)

which would determine the above set as

ϕ = {x : ϕ(x) is true.} (4.25)

Note that the meaning of the words used in the predicate “is red” should not be

taken in ordinary sense here8. It is a mere label to represent the similarity among

the elements in the set. Precise statement should be such as “x is found to have

some similarity with other elements that may be characterized by an optical effect

induced in one of the sensors, and . . . .” The statement has been shortened to “is

red” for readability. In ordinary set theory, it is definitely determined whether or

not an element belongs to a set by a predicate. However, what an IGUS can utilize

to build a predicate is its mere finite observations. But, as is pointed out in 3.1,

the consequence brought by a direct connection between the finite observations of

the extension and the predicate is entirely improper, or unsatisfactory at least.

The topos, also called the variable set, has a remedy. ϕ should not be regarded as

determining a set per se, but rather as determining the collection

ϕp = {x : ϕ(x) is known at p to be true.} (4.26)

for each state p. For a given poset P of states of knowledge, the assignment of ϕp

7Each of the subscript is for the identification of the spatio-temporal occurrence of the situ-
ation. These subscripts are written here to emphasize that the situation represented by each of
the element is an instance.

8and scientifically, such a word of attribute cannot have the strictly common meaning that is
shared by all IGUSes, as the readers of Chapter 3 well understand now.
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to p determines a function P → Set. If x ∈ ϕp and p ≤ q, it is considered to be

natural that ϕ(x) is true also at q, i.e., x ∈ ϕq. Thus

p ≤ q=⇒ϕp ⊆ ϕq. (4.27)

This means that ϕ determines a functor from the category of a poset to the

category of sets: P → Set. The functor assigns the inclusion arrow ϕp ↪→ ϕq to

each p→ q in P . It is known that this functor category SetP is a topos [75][76].

4.3.3 Building a variable set step by step

In this section, following [113] which applies the topos theory to the spacetime

physics, we describe a topos–theoretic way to model an information phenomenon

in a step by step manner. The information phenomenon modeled here is the exten-

sive classification. In this process, an IGUS classifies the fragments of the universe

it obtained and yields information, i.e., “attributes” to refer to a component of the

classification by only using the fragments themselves, i.e., extensively. Mathemat-

ically, there is no mystery in the topos building process described in this section.

However, the commentary in the context of this study on the mathematical con-

structions in the process may be of value.

We refer to the case of set–subset relation (in the category Set of sets). In the set

theory familiar to us, a subset can be captured in the words of sets and functions

as follows. As already mentioned at the Equation (4.20), a set S is a subset of U ,

if and only if the following diagram forms the pullback:

S

s
��

! // 1

T
��

U
χ // 2

. (4.28)

where 1 is a one element set {0}, 2 is a two element set {0,1}, s in the inclusion

function of S into U , ! is the unique function from each element of S to 1, T is a

mono–function which sends 0 to 1, and χ is a function. The statement that the

diagram is pullback implies that T◦! = χ ◦ s, hence you can easily see that the

function χ is the characteristic function of S:
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χ(x) =

{
1 for x ∈ S
0 for x /∈ S

(4.29)

in this situation.

We will expand this understanding to the case of the category of functors from a

poset category to the category of sets: P → Set, also written as SetP . In this

category, a topos, the set varies with the element in P , therefore an object in this

category might be thought as a variable set. This category provides an interesting

generalization of ordinary sets.

In the following steps, we will focus on the set side of the functors first. That is,

we will slight the arrow part for a while. By this emphasis, we will try to make the

similarity with the Set explicit. After the similarity is recognized, we will recover

the citizenship of the arrow part and establish the construction as functors.

4.3.3.1 Functor V

Assume that the collection P of the concepts is a finite partially ordered set9.

The state of knowledge at the concept p within the context P , that is, the idea

on the world of the IGUS that has the concept p, ought to be represented by the

down–set of p. This defines the functor V : P → Set, whose object part is

for any p ∈ P ,V (p) = {r ∈ P : r ≤ p} , (4.30)

and arrow part is

for any arrow p→ q ,Vp,q : V (p)→ V (q). (4.31)

V is considered to be an object of the category SetP . Arrows of this category are

natural transformations, which will be defined later.

9As a theoretical framework of a model, we might extend this assumption to be a more general
setting, such as a discrete poset and a locally finite poset. However, because all the experiences
of an IGUS is finite, it is not so unnatural to assume that its internal model is finite.
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This encoding means that in the view10 of the IGUS in the state p, the lower

concepts of p are also in scope. In other words, “if the IGUS knows the concept

p, then it also knows the lower concepts included in p”11.

4.3.3.2 Terminal object t.o.

To establish a similar relation in the case of subset (Equation (4.28)), it is required

to find the object that plays the same role with 1 = {0} in the Equation (4.28).

In Set, every (sub)set S is provided with exactly one function from S to the one

element set, 1. To provide every (sub)object in the same manner, a special object

corresponding to the one element set is expected. Such an object is called the

terminal object.

The terminal object of the category SetP is the functor t.o. : P → Set whose

object part is

for any p ∈ P , t.o.(p) = {0} , (4.32)

and arrow part is

for any arrow p→ q , t.o.p,q : {0} → {0}when p ≤ q. (4.33)

The terminal object forms the same web of relations as in P , but every concept is

replaced with {0}.

4.3.3.3 Subobject classifier Ω

What the poset P encodes is whether a concept includes another concept or not.

Suppose that an IGUS has a concept p, and we would like to discuss the relation

between the p and another concept r for the IGUS. If r ≤ p, then the concept r

is included within the concept p. If r � p, there seems no information on r that

may be represented at p, but it is not true. Even in the case of r � p, if there is

10Functor symbol “V” is for view
11Though such a personification will appear frequently in the followings, do not take them too

literally.
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q that includes both p and r, by considering the inclusion relation p → q as the

“distance” to including r, one can represent the relation between p and r at p,

i.e., the truth–value on the inclusion of r at p. This arrow p → q is a candidate

for the truth–value at p, for r to be included. Naturally, all the arrows p→ q′ for

all q′ ≥ q should also be included in the truth–value when p→ q, because when q

includes both p and, say, r, q′ ≥ q also includes them, Moreover, there will not be

a single first concept q in the common super -concept of p and r, but a set of such

concepts. That is, there might exist many qi, i ∈ {1, 2, . . .} that includes both p

and r. These, and all the concepts that includes them, should be the inclusion

relations in the truth–value at p for r.

Let us formalize this. Let us define R(p) as the set of all inclusion relationships

that start at p,

R(p) := {all p→ p′ : p ≤ p′ in P} (4.34)

for all the objects p. Next, we define subsets S(p) ofR(p) such that, if S(p) contains

the inclusion relation p→ q, it should also contain p→ q′, for every q′ ≥ q. S(p)

is therefore a left–composable subset of R(p) since the above definition means that

if (p→ q) ∈ S(p), and there is (q → q′) ∈ P , then (p→ q′) = (q → q′) ◦ (p→ q) ∈
S(p). That is, S(p) is closed under left composition. Such a set of arrows S(p) is

called as a sieve on p or p–sieve in some literature12.

The truth–value at p that we are looking for is precisely represented as a sieve. It

is not simply a yes/no truth–value, but also tells us at p when, or how far, r will

be included in the same concept with p.

Therefore, the set of all the sieves is the set of truth–values at p. We denote this

set as Ω(p),

Ω(p) := {p–sieves} (4.35)

= {S(p) : S(p) ⊆ R(p)} . (4.36)

Such an Ω constructed in this way, that is, the subobject classifier, uniquely exists

up to isomorphism.

12Note that, in the different convention, it is called cosieve.
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4.3.3.4 Total truth arrow and characteristic arrow

A special subset of the concepts in P is, naturally, those in V (p). There is a sieve

in Ω(p) that corresponds to these particular concepts.

They are special because at p they have already “known” to the IGUS. While the

truth–value for r /∈ V (p) may be considered to be a partially true value, the sieve

for the concepts in V (p) is the totally true value. This understanding can be used

to find the sieve in Ω(p) that corresponds to the concepts in V (p) and thus the set

V (p) itself. Since these concepts is included at p and at all concepts that include

p, the truth–value sought for is the whole R(p), the maximal sieve in Ω(p) (as the

general topos theory tells us).

Thus we define the totally true arrow at p,

Tp : {0} → Ω(p) (4.37)

such that

Tp(0) = R(p) = maximal sieve on p. (4.38)

Next, let us consider V (p) ⊆ P , and name this inclusion ιp,

ιp : V (p) ↪→ P . (4.39)

As both V (p) and (the object part of) P are sets, the fact that the former is a

subset of the latter is represented as the following pullback diagram:

V (p)

ιp

��

// {0}
Tp
��

P χp // Ω(p)

. (4.40)

That is, V (p) contains those concepts r ∈ P that satisfy

χp(r) = (maximal sieve on p) = Tp(0). (4.41)
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4.3.3.5 Constructing a functor

Now we have the (prospected) set of truth–values Ω(p) at a given concept p which

is the set of sieves on p, and the structure, i.e., pullback diagram, that represents

the subset relation. Next, these results are “varied” over the poset category P so

that the functor V may be defined by a generalization of what was done for V (p).

Being in harmony with the move from V (p) to V (q), the appropriate truth–values

are given by Ω(p) and Ω(q), so that V (q) can be found by given V (p), p ≤ q and

P . That is, the following diagram commutes:

V (p)

Vp,q
��

ιp // P
idP
��

V (q) ιq
// P

. (4.42)

The lefthand side V (p)
Vp,q→ V (q) shows the components of the functor V . The

righthand side may be varied in the same way by constructing the constant functor

World : P → Set (4.43)

with

World(p) = P for any p ∈ P , (4.44)

Worldp,q = idP . (4.45)

The diagram is redrawn as

V (p)

Vp,q
��

ιp //World

Worldp,q
��

V (q) ιq
//World

. (4.46)

The functor V is a subfunctor of World, that is, there is an inclusion

ι : V →World, (4.47)

which is a natural transformation. That is, ι has components ιp.ιq that make the

above diagram commutes, i.e., ιq ·Vp,q = Worldp,q · ιp for every p, q that are related

by an inclusion relation.
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The set of truth–values for W (p) is Ω(p) while for W (q) it is Ω(q). These are also

components of the functor

Ω : P → Set. (4.48)

For each concept in P , Ω provides its set of truth–values, i.e., the sieves on that

concept. The arrow part of the Ω, the set of functions Ωp,q : Ω(p)→ Ω(q), provides

the set of sieves on q for the given set of sieves on p.

The characteristic arrow χ is a natural transformation from World to Ω,

χ : World→ Ω. (4.49)

It has components at each concept that compose as ι did above.

p

f

��

World(p)

World(f)= Worldp,q=idP
��

χp // Ω(p)

Ω(f)=Ωp,q

��
q World(q) χq

// Ω(q)

. (4.50)

The particular subfunctor V is obtained when, at each concept p in P , χ maps into

the maximal sieve at p. In other words, the function Tp above is the p–component

of the natural transformation from the terminal object t.o. for SetP to Ω.

T : t.o.→ Ω, (4.51)

with

Tp : t.o.(p) = {0} → Ω(p). (4.52)
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Finally, we have everything required to give V as the subfunctor. V , World, t.o.

and Ω are objects in the category SetP . And with the natural transformations,

ι,T and χ, we may construct the diagram

V

ι
��

// t.o.

T
��

World χ
// Ω

(4.53)

and ask that the functor V makes this diagram pullback. This means that it

reduces to the diagram of sets consistently at each concept p in P . When this

requirement is met, V is a subfunctor of World.

4.3.3.6 Summary of the construction

Overall, we have achieved to express the extensional inclusion structure in terms

of lower concepts, i.e., included concepts, at each concept. This new expression

is regarded as more satisfactory in the view of foundations of information than

one with the entire structure. Each concept in the context may be evaluated its

degree of inclusion at each concept, i.e., at each state of knowledge p. This local,

internal view is well suited to describe the informational classification process of

an IGUS contextually.

As something extra, even when the inclusion structure is not a lattice, the variable

sets over it form a lattice. They satisfy a particular algebra, called a Heyting

algebra, whose operations reflect the underlying poset, i.e., context. Thus, we can

give the information structure algebraically. Though this matter is not pursued in

this thesis, this algebraic property seems to be very promising.
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4.3.4 Concrete example

In this section, the process in the previous section is demonstrated by a concrete

example. Let us consider the following inclusion structure:

Figure 4.2: Living Beings and
Water Figure 4.3: Example poset

For simplicity, we name each element in the poset by number as Figure.4.3. In

this Hasse diagram, members of each concept is included upwards. In Figure.4.2,

only additional members are specified in the diagram. All the members in each

concept are, for instance,

Concept 4 = {Dog} , (4.54)

Concept 8 = {Frog} , (4.55)

Concept 3 = {Dog, Frog} , (4.56)

Concept 7 = {Frog, Bream} , (4.57)

Concept 2 = {Dog, Frog, Bream} , (4.58)

and so on.

In the followings, as above, we will only show some instances instead of lengthy

complete data. All of the data are exhibited in the tables in the Appendix A.3.

As for the above, see Table.A.1.
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4.3.4.1 Functor V

In this case, the object part of the functor V is defined as:

V (1) = {1, 2, 3, 4, 5, 6, 7, 8} , (4.59)

V (2) = {2, 3, 4, 7, 8} , (4.60)

V (3) = {3, 4, 8} , (4.61)

V (4) = {4} , (4.62)

V (5) = {3, 4, 5, 8, 10, 14, 15, 16, 17} , (4.63)

V (6) = {6, 7, 8} , (4.64)

and so on. See Table.A.2 in the Appendix A.3 for all the data.

The arrow part of V maps an order relation f : p → q to the inclusion function

g : V (p)→ V (q). For instance, the arrow f : 3→ 2 in the category P is mapped

to an arrow in Set, i.e., the inclusion function g : V (3)→ V (2) defined as

g(3) = 3, (4.65)

g(4) = 4, (4.66)

g(8) = 8. (4.67)

4.3.4.2 Sieves and the subobject classifier Ω

Concrete sieves are rather lengthy. We only mention a few here.

In the following, each R(p) is a maximum p–sieve. Sx(p) ⊆ R(p) are other sieve

on p, and the number x suggests the characteristic concept (end–point) in that

sieve.

R(1) = {1→ 1} , (4.68)

R(2) = {2→ 2, 2→ 1} , (4.69)

S1(2) = {2→ 1} , (4.70)
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R(3) = {3→ 3, 3→ 2, 3→ 5, 3→ 1} , (4.71)

S1(3) = {3→ 1} , (4.72)

S2(3) = {3→ 2, 3→ 1} , (4.73)

S5(3) = {3→ 5} , (4.74)

R(4) = {4→ 4, 4→ 3, 4→ 2, 4→ 5, 4→ 1} , (4.75)

S1(4) = {4→ 1} , (4.76)

S2(4) = {4→ 2, 4→ 1} , (4.77)

S3(4) = {4→ 3, 4→ 5, 4→ 2, 4→ 1} , (4.78)

S5(4) = {4→ 5} , (4.79)

R(5) = {5→ 5} , (4.80)

and so on. See Table.A.3 in the AppendixA.3 for all the data.

The subobject classifier for a concept p is the set of p–sieves. For instance,

Ω(4) = {R(4), S1(4), S2(4), S3(4), S5(4), ∅} , (4.81)

where each sieve is defined above, and ∅ is the empty sieve. See Table.A.4 in the

Appendix A.3 for all the data.

Every concept in P may classified at p by Ω(p) through the characteristic arrow

χ. At 4, for instance,

χ4(x) =



R(4), for x = 4;

S1(4), for x = 1, 6;

S2(4), for x = 2, 7;

S3(4), for x = 3, 8;

S5(4), for x = 5, 10, 14, 15, 16, 17;

∅, for x = 9, 11, 12, 13.

(4.82)

All the concepts in P are classified into six groups at 4. At 4, the concept 4

is naturally a true subconcept. However, Some of the other elements are also

subconcepts partially. For example, the concept 1 and 6 have the same status of

partial inclusion to 4, represented by the sieve S1(4).
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Thus, by the language of the topos, one may describe the inclusion status locally,

from the internal view. The inclusion status may be regarded as the difference in-

duced within the context, that is, information within the context. By the language

of the topos, contextual information may be well-described from the internal view.

4.3.5 Attributes revisited

In this subsection, we revisit the attributes studied in Chapter 3 and cast new

light on that matter from this internal view.

In Chapter 3, attributes are understood as structural existence obtained from the

extensional structure. A certain limit operation explains the universal existence

other than the fragments of the universe themselves, and the universality of this

new existence, i.e., attributes, is utilized to specify each of the equivalent class of

the fragments of the universe. The most important point is that the attributes to

be used as information for classification are obtained merely from the structure of

extension.

In this subsection, we could have interpret such a discussion in Chapter 3 into a

categorical formulation. However, we take another route because merely interpret-

ing the traditional mathematics of this kind in the language of category theory

attracts little interest here.

Instead, in this new formulation, let us explore new characterization of the “at-

tributes” in more general structural setting, i.e., in this category theoretical set-

ting. By this category theoretical setting, it will be implied that the concept of

attributes may be generalized in the other structure than the inclusion relation.

Furthermore, at the end of this chapter, the readers will hopefully be convinced

that a local characterization of the attributes13 is possible as an alternative to the

global characterization of the attributes14 described in Chapter 3.

We focus on one of the functions of attributes, namely, the function of specifying

concepts. For each concept p, IGUS requires (informational) resources to specify

it. Since it is unrealistic to require the whole knowledge structure to specify

13At the stage of this thesis, the reason to pursue such a characterization is a mostly aesthetic
one. The implication ought to be explored further in future researches.

14Recall that characterizing the attributes by the projective limit requires the whole structure
of the concepts.
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each of the concepts, we should assume that, at a knowledge state p, the utilizable

resources for the IGUS are restricted to the resources around p. Thus the available

resources for the IGUS are V (p),Ω(p), p→ q, and so on.

A clue to specify p is naturally in the subobject classifier. The subobjcet classifier

classifies p in the whole context. It has sieves in it. As we have seen in previous

sections, the sieves are built from concepts and reflect the whole inclusion structure

of the concepts. Hence if the IGUS “utilizes” Ω(p), then the IGUS may specify

p with reflecting the whole context of p. A candidate that may be utilized by

the IGUS to label the concept p is the difference between Ω(p) and its neighbor

Ω(q)15, because if there is a difference, the difference indicates a specific character

of p in the context.

First, we introduce a new symbol:

Definition 4.16. ker Ωp,q = {Sp ∈ Ω(p) : Ωp,q(Sp) = {∅}} .

Roughly speaking, ker Ωp,q is a set of sieves that are “dropped” when Ω moves from

p to q. In a poset, the greater neighbour q of an element p, or, more precisely,

q ≥ p for which if p ≤ r ≤ q then r = p or r = q holds, is called a cover of p.

Intuitively, if

ker Ωp,q 6= ∅ for some q covering p, (4.83)

the IGUS has an opportunity to use these “to be dropped” sieves to specify p,

because their elimination is specific to p. If

ker Ωp,q = ∅ for any q covering p, (4.84)

there is no difference to be utilized for the specification of p at p. In this case, the

IGUS inevitably needs additional information specific to p, that is, an attribute of

p. Thus, in the view formulated in this paper, attributes may be understood as

the fillings for lack of difference.

Actually, the condition Equation (4.84): “ker Ωp,q = ∅ for any q covering p” im-

plies a necessity of an attribute specific to p. To investigate it, we introduce

15Recall that an arrow in a category is interpreted as a difference between the objects it
connects.
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another symbol:

Definition 4.17. A binary relation on the elements in P ,
d
� is defined as follows:(

p
d
� q

)
:⇐⇒ ( for any r ∈ [p) there exists a qr ∈ [q) such that r ≤ qr ),

(4.85)

where [p) := {q : p ≤ q}.

When p
d
� q, we should say that p is dangling from q.

If the poset underlying P has maximal elements, the situation is clearly described

by them. In our case, the poset should be assumed to be finite, so the condition

meets. We should introduce the notation for the set of maximal elements in [p).

Definition 4.18.

max. [p) := {p̌ ∈ [p) : [p̌) ∩ [p) = {p̌}} . (4.86)

The following proposition obviously holds.

Proposition 4.19. (
p

d
� q

)
⇐⇒ (max. [p) ⊆ max. [q)) . (4.87)

The dangling relation is a partial order relation, and we may define an equality

on it:

Definition 4.20. (
p

d
= q
)

:⇐⇒
(
p

d
� q

)
and

(
q

d
� p

)
. (4.88)

Naturally, the following proposition holds.

Proposition 4.21. (
p

d
= q
)
⇐⇒ (max. [p) = max. [q)) . (4.89)
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In the notation here, a p–sieve Sp is a subset of [p), i.e., Sp ∈ {[σp) : σp ∈ [p)},
that is closed “upwards” under ≤, i.e., if we have that

whenever q ∈ Sp and q ≤ r, then r ∈ Sp.

The following proposition is easily seen to hold:

Proposition 4.22. Let P be a finite poset category and p, q ∈ P. For the subob-

ject classifier Ωp,q of the variable set SetP , where Set is the category of sets and

functions,

(ker Ωp,q = ∅ for any q covering p) ⇐⇒
(
p

d
= q for any q covering p

)
. (4.90)

Proof. ker Ωp,q = ∅ means that there is no p–sieve
[
σqp
)

which satisfies
[
σqp
)
∩ [q) =

∅. It implies max.
[
σqp
)
⊆ max. [q) for every p–sieve

[
σqp
)
. Especially, max. [p) ⊆

max. [q) holds. Since q is a cover of p, every elements of max. [q) belongs to some

p–sieve., i.e., max. [q) ⊆ max. [p). Thus, max. [p) = max. [q) holds.

Conversely, if max. [p) = max. [q) holds for any q covering p, then obviously there

is no p–sieve
[
σqp
)

which satisfies
[
σqp
)
∩ [q) = ∅.

Therefore,

(ker Ωp,q = ∅ for any q covering p) ⇐⇒ (max. [p) = max. [q)) .

On the other hand, the Equation (4.89) says that
(
p

d
= q
)
⇐⇒ (max. [p) = max. [q)).

Thus, the Equation (4.90)

(ker Ωp,q = ∅ for any q covering p) ⇐⇒
(
p

d
= q for any q covering p

)
holds.

The proposition 4.22 explicates that the condition the Equation (4.84): “ker Ωp,q =

∅ for any q covering p” implies a necessity of an attribute specific to p. Let us

interpret the right–hand of the Equation (4.90) in the view of this thesis.

To make the things straight and simple, suppose that the poset category P forms

a finite chopped lattice16. As is known well in the lattice theory [70, 82], every

16A chopped lattice M is obtained from a finite lattice L with unit 1, and chopping the unit
element: M = L− {1}.
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elements in a lattice is specified as a meet of meet–irreducible elements17. Hence if

each of meet–irreducible elements bears a corresponding attribute, other elements

may be specified by the combination of these attributes18. That is, an attribute

corresponds to the meet–irreducible element specific to the attribute.

When p
d
= q for any q covering p, we should consider two cases:

1. there is only one covering q;

2. there are multiple covering q, q′, . . ., where q 6= q′, and so on.

The first case means that p is meet–irreducible19. In the second case, we naturally

have q
d
= q′

d
= · · · , and max. [q) = max. [q′) = · · · . However, this never happens in

the case of a lattice because if that is the case in a poset, the poset does not form

a lattice 20.

Thus, in the case of a poset category formed by a finite chopped lattice,

ker Ωp,q = ∅ for any q covering p

actually means that p corresponds to the attribute specific to p.

In the case of general finite posets, let us consider what the second case above

means. p
d
= q for any (more than one) q covering p may be considered to be

interpreted that p has redundant parts of the context to specify itself. Comparison

with the case of the lattice makes it clearer. To form a lattice, every element p of a

poset is expected to be specified uniquely by the meet of a pair of meet–irreducible

elements that are specific to p. Conversely, a pair of meet–irreducible elements

characterizes an element uniquely. This may be interpreted in the view of this

17In a lattice L, an element x ∈ L is meet-irreducible if x 6= 0 (in case L has zero), and
x = a ∧ b implies x = a or x = b for all a, b ∈ L.

18For instance, suppose that a,b,c are concepts, then the attributes of a concept c = a∧b are the
union of the attributes of a and b. The readers should consult [109] about these circumstances.

19An element in a lattice is meet–irreducible if and only if it is covered by at most one other
element.

20It is simply understood in the case of q and q′ have more than one cover. In this case, q
has at least two elements in max. [q) whose one of maximal lower bounds is q. However, because
max. [q) = max. [q′), the elements also has q′ as one of their maximal lower bounds. Thus the
greatest lower bound of these two elements in max. [q) does not exist, and the poset does not
form a lattice.
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study as follows:

In a lattice, merely two parts of the context, i.e., elements within

the lattice, are required to characterize an element, p for instance, in

the lattice. The parts are called meet–irreducible elements and they

specify the element p uniquely. Thus the meet–irreducible elements

are corresponding to the information called “attribute” which an IGUS

may utilize to characterize the world.

In case of the second case occurs, in parallel to the lattice case, the situation may

be interpreted as follows:

In a structure in general, more specifically, a partial ordering relations

in this thesis, there are many parts of the context to characterize an

element, for instance, p. However, in contrast to the case of lattices,

the element p might not be uniquely specified by these parts. If an

IGUS tries to specify p within the structure, the IGUS needs additional

information to distinguish among the elements characterized by the

same parts of the context. The role of this information is the same as

the role of the meet–irreducible elements for p in the case of lattices.

Thus, in both cases, we may say that information is required to specify at p where

the condition that ker Ωp,q = ∅ for any q covering p holds.

Although, mathematically, the above discussion is merely a change in the wording

and the expressions such as ker Ωp,q = ∅might be pretentious as just a condition for

the meet–irreducibility of p, by expressing in the language of category theory, they

provide insights into a generalization of the concept of attribute in the structure

other than the inclusion relations. As we have observed, ker Ωp,q = ∅ means the

lack of available contextual resources to specify the element p in the context. The

right–hand side of the Equation (4.90) that is specific to the poset structures may

be interpreted as the condition that states that all the sieves at every covering

have eventually same ends, because the Equation (4.89) tells that is the case

for the poset structures. The meaning of “covers” and “having eventually same

ends” must differ in every structure, and another consideration must be required.

However, thinking in line with it for other concept structures such as the network

structure may be of value.
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4.4 Conclusive remarks on this chapter

In this chapter, it is presented that the language of category theory, especially the

topos, is effective for investigating the information phenomena. Basics of cate-

gory theory is introduced, and it is shown that its features, such as the relativity

represented by arrows, the structural contextuality of the elements, the structural

universality, and the existence of the subobject classifier in some categories, are

endowed with the properties suitable to investigate the information phenomena.

Moreover, in this chapter, the author demonstrates an application of the language

of category theory to a typical, important information phenomenon. The studied

information phenomenon is the attribute extraction for classification. The cat-

egory used for modeling this phenomenon is the topos. The topos is a kind of

category, and it has especially desirable properties for modeling the information

phenomena and is considered to be a generalization of the category of sets. By

using the language of topos for modeling the attribute extraction, a new, internal

description is obtained and this description provides a new understanding of the

attribute as information.
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Torsorial Nature of

Representations

5.1 Introduction

In the episode 1.1.3, each of the children who is watching a blot on the wall finds

a different letter individually. We can say that these children have different views

for the blot. And even the way articulating the world depends on the one’s view.

That is to say, the blot may differ from child to child.

At a certain level of understanding, an IGUS1 such as the children mentioned

above can be considered to be an organizationally closed system. In cybernetics,

a system is said to be organizationally closed if its internal processes produce its

own organization, thus continuously rebuilding the system’s identity in a chang-

ing environment [41]. An IGUS as a closed information system must interpret the

differences of the physical stimuli of the outer world into information for its own

by utilizing the differences within itself, and incorporate the information into itself

[1]. In other words, an IGUS actively projects its internal view to obtain the infor-

mation of the outer world. The view is projected on the outer world to articulate

and interpret events in the outer world from the IGUS’s standpoint. Thus what

we (as IGUSes) deal with are always interpretations, i.e., representations, of the

outer world through one’s own view. The world itself or thing in itself cannot be

directly dealt with or referred to.

1Information Gathering and Using/Utilizing System. See 1.5.
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Some researchers say that information, or more specifically, representation, should

be regarded as something resides in between. To take some instances, Bateson

[37] says that “information is· · · difference which makes difference,” and Heylighen

[41] says that “a representation· · · constitutes an interface, it stands in between

Mind and Nature, in between subject and object, in between Self and World.”

Bateson gives a vague expression, while Heylighen illustrates what are adjoining

the representation.

However, thinking carefully from a certain standpoint, that is, the standpoint of

the present chapter, this is found to bring us some difficulty. Mind and Nature,

subject and object, Self and World, all of them are representations (for an IGUS)

themselves. Each of them also stands in between something. We (as IGUSes)

always talk only about something in between what we cannot directly refer to. It

is a common difficulty, part of which can easily confirmed by casting a glance at

tautologous definitions on a dictionary. To make matters worse, these representa-

tions are carved out of the world from different points of view, even when we are

talking about superficially an identical thing.

In this chapter, a toy model using an algebraic structure, namely, torsor, is intro-

duced to describe and investigate an aspect of such representations. Toy model

here means a simple mathematical model that reflects simplified but essential prop-

erties of target phenomena. It is used to illustrate a mechanism in order to make

the phenomena easier to visualize and investigate. This research constructs the toy

model by establishing a connection between the properties of representation and

the structure of the algebra. By using the torsor, the toy model aims to describe

naturally the representation related phenomena incorporating the betweenness of

representation.

The structure of this chapter is as follows: Section 5.2 reviews two important con-

cepts in this study: the betweenness of representation and the closure. In Section

5.3, the algebraic structure used in our toy model, namely, torsor, is introduced.

The toy model is described in Section 5.4. Section 5.5 exemplifies the toy model by

several cases which are simple, but may have broad scope. Section 5.6 concludes

this chapter.

110



Chapter 5 5.2

5.2 Representation as Janus-Faced Closure

Several studies capture information in ternary relations. In semiology, the central

notions are Signe–Signifiant–Signifié (Sign–Signifier–Signified), and in semiotics,

they are Sign/Representamen–Object–Interpretant. As briefly quoted in the In-

troduction 5.1, in systems theoretic study of cognitive science, Heylighen [41] says

that:

a representation belongs neither to the realm of matter, of outside

objects, of things-in-themselves, nor to the realm of pure mind or Pla-

tonic Ideas: it constitutes an interface, it stands in between Mind and

Nature, in between subject and object, in between Self and World.

(Emphasis added by the author of this thesis)

In these studies, a representation (which is almost equivalent to a sign in this

chapter) is placed between something within an IGUS and (what corresponds to)

something in the outer world.

To fix the terms and make the concept of representation discussed in this study

clearer, an ontology of representation is presented next in Section 5.2.1.

Another important concept in this study is closure. Suppose that “everything is

a representation,” then a simple thought on a representation mechanism requires

the representation of representations, the representation of the representations of

representations, · · · . That is, we need an infinite hierarchy of representations which

consists of meta-representations, meta-meta-representations, and so on. This is

not suitable for a fundamental mechanism of IGUS as a finite physical existence.

To avoid this infinite hierarchy, we introduce the closure. Closure also provides

a mechanism to extract a stable structure from the outer world that is evasive,

indeterminate and hard to figure out directly. To form a closure, the interface

nature (i.e., the betweenness) of the representation plays an essential role.

General definition of the closure is described in Section 5.2.2.
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Summing up beforehand, in this chapter, we consider a representation as what con-

stitutes an interface that stands in between the outer world and the inner world of

the IGUS under consideration. In the term of the ontology, the former corresponds

to, or, can be regarded as, the Representational form, and the latter corresponds

to the Proposition. They can be other representations, or, especially the former,

can be substrata that are never directly referred to. (The term substratum is

introduced in the next subsection.)

A solution for how to constitute a representation as an interface between substrata

is provided by the closure. A representation can be considered to be a stable closure

formed between indeterminate constituents, a part of outer world and the inner

world of the IGUS.

5.2.1 Ontology of Representation

Mizoguchi [115] defines a conceptual model of representation (mainly for engi-

neering purposes). In this subsection, the author sketches his model. Because the

rough meaning of the terms used in this model such as class and part-of relation

seem evident for our purpose, the precise definitions of the terms are omitted. For

the details of his model, readers should consult [115].

A class representation is composed of two parts, form and content (as shown

below).

-- Representation

p/o "form":Representational form

p/o "content":Proposition

where p/o stands for part-of relation/slot, “form” is a slot name and “:Represen-

tational form” is a class constraint the slot value has to satisfy. Its identity is

inherited from the form, which is usually what people sense its existence. On the

other hand, the content is the hidden part and it is a proposition that the author

of the representation would like to convey through the representation.
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Representational form has the conceptual structure shown below.

-- Representational form

- Symbol sequence

- Natural language

- Spoken language

- Written language

- Artificial language

- Musical symbol

- Mathematical symbol, etc.

- Image

- Speech

Proposition is a content of a statement of the result of one’s recognition of every

phenomenon that occurs in the real world. Events and Facts are Proposition and

they are refined as follows:

-- Proposition

- Design Proposition

- Procedure

- Music

- Symbol

- Specification

- Product Proposition

- Novel

- Poem

- Painting

It is important to clearly distinguish between a representation and a represented

thing. Any representation is not embodied or realized unless it becomes a repre-

sented thing.

-- Represented thing

- p/o "representation":Representation

- p/o "medium":Representational medium
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-- Representation medium

- Physical thing

- paper

- canvas

- Electronic thing

- CD-ROM

- etc.

Figure 5.1 depicts an example of a model of a representation—the letter “a”—

according to this ontology. (Excerpt with minor modifications from Figure 1 of

[115])

Figure 5.1: Ontology of “a”.

Since this ontology is mainly for engineering and is constructed from the standpoint

that is rather too practical for our purpose, some modifications are required.

For the present study, the focal point of this ontology is that a representation

is in between the Concrete, Represented thing and the Proposition, as depicted

in Figure 5.1. From the standpoint of this chapter, the Concrete, Represented

thing in this ontology does not exist independently of the IGUS, and cannot be

dealt by the IGUS directly. It is not even concrete in some sense. We use the word

substratum instead of this Represented thing in the term of this ontology. The word
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substratum is used to imply the vague, indeterminate material of which something

(= representation) is made and from which it derives its special qualities. A

substratum might be a thing, but in general, it is a more vague and indeterminate

“event”, i.e., a bunch of physical stimuli before being sensed by a certain IGUS.

The Propositions are what resides in an IGUS. In this chapter, they are considered

to be representations of the substrata as a part of the IGUS, or the substrata (in

the IGUS) themselves. They are also not concrete against the impression of the

word “proposition”.

Thus, from the standpoint of our study, the representation connects vague con-

stituents. To be more precisely, as described next in Section 5.2.2, the action to

represent can be considered to be an action to yield some stableness from the vague

and indeterminate constituents of the representation. The Represented thing and

the Proposition in the term of this ontology are, as it were, the result of a projec-

tion of this stable representation onto each of the original substrata.

5.2.2 Closure

The importance of the concept of closure is repeatedly emphasized in many fields

such as the systems theory, cybernetics, and complex systems theories. (See [36,

40], for example.)

Mathematical definition of the closure is as follows:

Definition 5.1. Closure is an operation C on sets, C : A→ A∗, with the following

properties:

1. A ⊆ A∗ (monotonicity)

2. (A∗)∗ = A∗ (idempotence)

3. A ⊆ B=⇒A∗ ⊆ B∗ (inclusion preservation)

A set A is called closed if A∗ = A. Intuitively, such a closure of a set means that

somehow “missing elements” are added to it, until no more of them are needed.

In this chapter, important is the case in which a closure is formed reciprocally,

i.e., adjunctively by two sets. We formalize this using the Chu space [110]. (For
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the interpretation of Chu space in this subsection, the author has referred to the

description in [83].)

Definition 5.2. A Chu space (X,S,R) consists of two sets X,S and a relation R

between them. If an element x of X has the relation R with an element s of S,

we write

x � s. (5.1)

Suppose that an IGUS has a Chu space within it. We assume that every element of

X represents the IGUS’s experience and every element of S represents the nature

or property of the experience. x � s is interpreted as representing the relation that

a certain experience x has a certain property s. Then we can have the set of all

the properties the IGUS remembers when it encounters a particular experience x:

Sx = {s ∈ S : x � s} (5.2)

and the set of all the common properties for a collection Y of some experiences:

SY = {s ∈ S : ∀x ∈ Y, x � s} . (5.3)

Similarly, for all experiences that have a particular property s in common, we can

have the set of all such experiences as

Xs = {x ∈ X : x � s} . (5.4)

For all the experiences that have all its properties in a collection T of some prop-

erties, we can also have the set of all such experiences as

XT = {x ∈ X : ∀s ∈ T, x � s} . (5.5)

Using the above sets, define two operations:

µ : PX → PS,X ⊃ Y 7−→ SY (5.6)

γ : PS → PX, S ⊃ T 7−→ XT (5.7)

and two composites:
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Y ∗ := γµ(Y ) (5.8)

T ∗ := µγ(T ) (5.9)

where PS and PX are the power set of S and X, respectively. Operations γµ

and µγ are closure operators. If Y = Y ∗, then Y is said to be closed. Similarly,

if T = T ∗, then T is also said to be closed. The closed experience set Y can be

regarded as a stable articulation of experiences, and the closed property set can

be regarded as stable composite idea.

All the closed experience sets and all the closed property sets both have a structure

called the complete lattice, and determine each other reciprocally (Galois corre-

spondence). Some researchers call the pair of the closed experience set and the

closed property set that determine each other in this structure as a formal concept

[109].

Such a closure formed by two sets plays a significant role in our toy model. Rep-

resentations can be considered to be, in a sense, a closure of its two constituents.

This construction with two sets enables dynamic yielding of views and represen-

tations. However, let us start with the introduction of an algebraic structure,

namely, torsor.
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5.3 Torsor

In abstract algebra, there exists a suitable structure to represent the above men-

tioned facets of representation, that is, a torsor 2. As we will see in the following

sections, torsor enables us to avoid directly mentioning the represented thing.

This feature is desirable for a fundamental model of information that this thesis

explores. For a brief introduction including some history of torsor, the readers

should refer to the appendix A of [84] and references cited therein.

Definition 5.3. A torsor (G, (·, ·, ·)) is a set G together with a ternary operation

G×G×G→ G; (x, y, z) 7→ [xyz] satisfying the identities: for all x, y, z, u, v ∈ G

[xy [zuv]] = [[xyz]uv] (para–associative law) (5.10)

[xxy] = y = [yxx] (identity law) (5.11)

The set of isomorphisms between two isomorphic objects naturally forms a torsor,

with the operation [fgh] = fg−1h (here juxtaposition denotes composition of

functions). This torsor becomes a group once a particular isomorphism by which

the two objects are to be identified is chosen.

Torsors are everywhere [85]. Here are some examples of the torsor.

Groups Any group becomes a torsor under the operation: [xyz] = xy−1z [86].

Integers If x, y, z are integers, we can set [xyz] = x− y + z to produce a torsor.

Miscellaneous Energies, voltages, indefinite integrals, and many others are tor-

sors (see [85]).

In this chapter, the only derived property of the torsor to which we refer is the

following.

Proposition 5.4. [xy[zuv]] = [x[uzy]v].

2There are several equivalent versions, going under different names such as heap, groud, flock,
herd, principal homogeneous space, abstract coset, pregroup and others. We use what seems to
be the most suitable term, namely, torsor (the word torsor evidently seems to be originated from
torso—something that is left unfinished).
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5.4 Toy Model – Interpretation of Torsor

In this section, a toy model to describe a certain aspect of representations is built.

More specifically, we build a model which describes some kinds of consistency of

representations. The toy model is built by fixing the interpretation of the struc-

ture of a torsor into the words describing the target representation phenomenon.

Because the structures of representation phenomena are not fully understood yet,

the interpretation determining the toy model is defined in a rather vague manner,

that is, by using the undefined but suggestive words. Precise interpretation must

be given formally or informally in each study of a specific phenomenon. Some such

examples are provided in the next section.

5.4.1 Interpretations of the Elements and Operation

Let us interpret each element of a torsor H as a representation, and the ternary

operation [xyz] ∈ H as “the representation of a substratum which yields the rep-

resentation z in the view of y, and the representation [xyz] is obtained in the view

of x,” where the word substratum is used here to express the represented thing

somewhat abstractly. Though this interpretation might seem to introduce two

sorts, view and representation, it is not the case. The word view is simply a nick-

name of representation to suggest its role. It is used for understandability, and all

the elements of a torsor are uniformly interpreted as representations of physical

situation in the real physical world.

Dictionary definition of view is a mode or manner of looking at or regarding some-

thing. But, as can be seen later on, more active picture may be appropriate in this

chapter. A view actually yields a representation. The operational meaning of the

word yield here, and a mechanism of this yield will be described in Section 5.4.4.

Note that there are two choices of standpoint when using this toy model, namely,

the local standpoint and the transcendental standpoint. In principle, all the phe-

nomena are local, closely associated with each, particular IGUS. Hence all the

elements of the torsor implicitly have an index to represent the IGUS. This is on

local standpoints. However, one (as an IGUS) can set all the views by one’s own

view. This standpoint viewing the overall situation is called the transcendental

standpoint. Appropriate standpoint depends on the case.
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Also note that though the word substratum is used explicitly in above mentioned

and following interpretations, the corresponding term does not exist in the for-

mulae of torsor. This is one of the reasons to use the torsor. Because we usually

regard representation as “re”-presentation of represented something, the descrip-

tions of the interpretation in this section follow such a custom. However, the fact

is, from the standpoint of this chapter, that the represented, i.e., the substratum,

which is the fundamental source of a representation, cannot be directly referred

to. An IGUS must refer to the substratum only via its representation. Thus for

the IGUS, the substratum is an unspecifiable existence. By using torsors, we can

argue the matters of representations without directly referring to a raw event,

“Ding an sich,” or a substratum which yields the representations.

5.4.2 Interpretation of the Identity Law

Recall that the identity law of the torsor is:

[aax] = x = [xaa] , ∀a, x ∈ H (5.12)

The first equation in the Equation (5.12), [aax] = x, can be interpreted to mean

that the representation of a substratum that yields the representation x in the view

of a is x, and the representation [aax] is obtained in the view of a. To be short,

the same view yields the same representation.

The second equation in the Equation (5.12), [xaa] = x, can be interpreted to mean

that the representation of a substratum which yields the representation a in the

view of a is x, and the representation [xaa] is obtained in the view of x. This

means that there is (at least) a substratum that yields the representation itself for

all representations (or views).

These interpretations of the identity law seem quite natural, as required properties

of the representation phenomena.
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5.4.3 Interpretation of the Para-associative Law

Recall that the para-associative law of the torsor is:

[[abc]de] = [ab[cde]], ∀a, b, c, d, e ∈ H. (5.13)

The verbatim interpretation of the requirement for the para-associative law is

somewhat messy. This is also one of the reasons for using the language of algebra.

Instead of analyzing in the words, we will use diagrams.

To begin with, the situation of [abc] is depicted as Figure 5.2, where b and a are

views and X represents a substratum, i.e., the represented, that yields c and [abc].

Comparing with the definition of the interpretation of the ternary operation [abc]:

the representation of a substratum which yields the representation c in the view

of b, and the representation [abc] is obtained in the view of a, the meaning of the

diagram seems clear. The diagram corresponds to the interpretation. A formula

form is also used with the figure form interchangeably. For the situation of Figure

5.2, we also write

X
b→ c (5.14)

X
a→ [abc]. (5.15)

Figure 5.2: Ternary operation of torsor.
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Using this diagram, the situation of the para-associative law can be depicted as in

Figure 5.3. where X1 and X2 are the substrata again, and Y is also the substratum.

X1 and X2 yield representations, but Y yields views. The view c is Y in the view

of b, and the view [abc] is Y in the view of a. The point here is the representation

[cde] is yielded in the view of c and in the view of b simultaneously. Starting

from that point, we will trace how this diagram is built. From the transcendental

standpoint, it is easy to understand.

Figure 5.3: Para-associative law.

In our interpretation, for the existence of [ab[cde]], there must exist a substratum

X2 that yields both of [ab[cde]] and [cde].

X2
a→ [ab[cde]] (5.16)

X2
b→ [cde]. (5.17)
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But [cde] itself is what is define by

X1
d→ e (5.18)

X1
c→ [cde] (5.19)

thus [cde] can be yielded by the substratum X1 other than X2. So, more precisely,

the situation is: for given (a, )b, c, d, e ∈ H,

X1
c→ [cde] (5.20)

X2
b→ x (5.21)

and

x = [cde]. (5.22)

Thus there must be a restriction for c and b to make the Equation (5.22) hold.

The coexistence of the views c and b requires the existence of the substratum Y ,

which yields c in the view of b, because (since there is no other assumption on the

existence of the view that may yield the view c and b) the coexistence of c and

b means that the representation c can be yielded by some substratum (Y ) in the

view of b (and some other substratum yields b in the view c). With the existence

of the substratum Y , [abc] can be yielded in the view of a.

Then, in the view of [abc], we can have [[abc]de] from the substratum X1. The

diagram is completed.

Thus the para-associative law can be considered as a requirement for some kind

of consistency among representations.

Naturally enough, it is not evident whether the reality conforms the para-associative

law. Whether the law holds or not may depend on the case. When the law does

not hold, it may be an indication that the representations lack some consistencies.

In that case, a representation used by an IGUS may be incomprehensible by an-

other IGUS. Investigation of such a matter on this toy model is expected to reveal

some essential properties of the representation.
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5.4.4 Role of the Closure

To make the above mentioned interpretations attainable, the concept of closure

described in Section 5.2.2 plays a significant role in this toy model. It provides a

mechanism to yield a new representation from a pair of representations or a pair

consisting of a substratum and a representation. Especially, it enables yielding

views without a meta-representation hierarchy.

As demonstrated previously in Section 5.4.3, in our interpretation, we must have

some mechanism to make the following hold

X1
c→ [cde] (5.23)

X2
b→ [cde] (5.24)

Y
b→ c. (5.25)

The view b yields both a representation [cde] and a view c. Though the substrata

used are different, they are constituents only used to explain the interpretation

and not the elements in the torsor, i.e., the toy model. Our basic assumption is

that all the constituents of the model are representation. Hence we must have a

mechanism that can be understood in the language of representation.

Closure reviewed in Section 5.2.2 can provide such a mechanism. Recall that,

as reviewed in Section 5.2.1, any representation has two constituents. In accor-

dance with this, a representation is considered to be a closure originated from two

substrata, each of which vague and indeterminate. By forming the representa-

tion, these substrata become indirectly accessible for an IGUS by referring to the

representation.

This two constituent construction enables representations to yield another repre-

sentation uniformly, that is, irrespective of view or representation. It is done by

the process like the genetic recombination: one of the constituents separates from

the other constituents, then, it links with another substratum (or a constituent

of another representation), and finally, this new pair yields another stable repre-

sentation by forming a closure. A view, namely, a representation which reflects

something internal to an IGUS, is considered to be yielded by such a view ing

process.
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Thus, we can regard the interpretation of the toy model as valid by making the

two assumptions:

• the representation as a closure formed by two constituents

• the above mentioned yielding process

behind the interpretation of the toy model. They are, as it were, an ”internal

degrees of freedom” of the toy model. In addition, they must be specified, formally

or informally, when the model is used.

5.4.5 Summary: How to Use the Toy Model

Following all the construction of the toy model mentioned above, we summarize

here the steps to use it.

1. Identify representations to examine, and assume that they satisfy the axioms

of the torsor;

2. identify the two constituents of the representations which form a closure;

3. fix the meaning of the equality in the algebra;

4. compare algebraic consequences with the reality of the phenomena.

The step three requires some notes. The equality in the torsor, such as the Equa-

tion (5.22), may be often too strong as a condition for the relation of representa-

tions, if it is interpreted literally as identity. In many cases, weaker condition (for

instance, some equivalence relation) may be more appropriate. Thus we should

select and fix the appropriate equality relation.
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5.5 Examples

In this section, we exemplify the toy model by three elementary but suggestive

cases.

5.5.1 Substitution Cipher-Group Operation

The substitution cipher is exemplified as the first case. Because substitutions or

permutations form a group (an algebraic structure in mathematics), as already

mentioned, it is evident that they also form a torsor by defining [xyz] = xy−1z

[86]. However, this case is explicitly written down here to clarify what we do.

Suppose that the set H is a collection of all the character strings, each of which con-

sisting of different letters in L. For instance, suppose that the set L = {1, 2, 3, 4, 5},
then H = {12345, 12354, . . . , 54321}, which has 5! = 120 elements. A substitution

cipher, i.e., permutation, is often represented by Cauchy’s two-line notation, one

lists the elements of L in the first row, and for each one its image under the per-

mutation below it in the second row. For instance, a particular permutation of the

set {1, 2, 3, 4, 5} can be written as: σ =
(

12345
32514

)
. Suppose that we fix the first row

of this notation as 12345. Then one can represent a particular permutation only

by a string, e.g., 32514 for above σ. In other words, we consider H is isomorphic

to the permutation S5 of five elements.
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Let us verify the para-associative law by a particular example. Suppose that

b = 13524, c = 52413, d = 32541, e = 14523. We write a = a1a2a3a4a5. As for

[cde], because e is yielded in the view of d, the substratum (which can be explicitly

represented in this case) is
(

12345
32541

)−1
14523. Then

[cde] =

(
12345

52413

)(
12345

32541

)−1

14523

=

(
12345

52413

)(
12345

52143

)
14523

=

(
12345

52413

)
54321

= 31425 (5.26)

then,

[ab[cde]] =

(
12345

a1a2a3a4a5

)(
12345

13524

)−1

31425

=

(
12345

a1a2a3a4a5

)(
12345

14253

)
31425

=

(
12345

a1a2a3a4a5

)
21543

= a2a1a5a4a3. (5.27)

In the same manner,

[abc] =

(
12345

a1a2a3a4a5

)(
12345

13524

)−1

52413

= a3a4a5a1a2 (5.28)

then,

[[abc]de] =

(
12345

a3a4a5a1a2

)(
12345

32541

)−1

14523

= a2a1a5a4a3. (5.29)

Therefore, [ab[cde]] = [[abc]de], as expected. Thus the axiom of torsor holds for

this substitution cipher (and substitution ciphers in general).
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The property of the torsor, Proposition 5.4, [ab[cde]] = [a[dcb]e] holds naturally as

follows:

[dcb] =

(
12345

32541

)(
12345

52413

)−1(
12345

13524

)
=

(
12345

41325

)
(5.30)

hence,

[a[dcb]e] =

(
12345

a1a2a3a4a5

)(
12345

41325

)−1

14523

= a2a1a5a4a3

= [ab[cde]]. (5.31)

5.5.2 Multiple Views for the Real World

To investigate formally, we assume the situation modeled by a Chu space (Sec-

tion 5.2.2), namely, the formal context in the FCA [109]. A formal concept in FCA

links a set of objects and a set of attributes. It can be regarded as a representation

in which the objects and attributes correspond to the Representational form and

Proposition, respectively.

In the situation where there are multiple IGUSes, their stable articulations of ex-

periences and stable composite ideas, namely, formal concepts, naturally differ for

every IGUS. In other words, all IGUSes have different views for the world. These

multiple views for the real world may yield different formal concepts and their

(inclusion) structures. But this incommensurability is overcome to some extent in

the actual world. For instance, if two of the structure of formal concepts yielded

from different views are isomorphic (though the isomorphism is rather strong con-

dition), one can say that these two views are compatible. The representations

based on the compatible views are also compatible, and the compatible represen-

tation is comprehensible by each IGUS not having the original view but having a

compatible view.
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5.5.2.1 Known Facts on FCA

First, some related concepts and results on FCA [109] are summarized.

Definition 5.5. A formal context K = (G,M, I) consists of two sets G and M

and a relation I between G and M . The elements of G are called the formal objects

and the element of M are called the formal attributes of the context. When an

object g is in the relation I with an attribute m, we write g � m or (g,m) ∈ I and

read it as “the object g has the attribute m.”

In the above and following definitions, the word “formal” is often omitted where

it is obvious.

Definition 5.6. For a set A ⊆ G of objects we define

µ(A) := {m ∈M |g � m for all g ∈ A} (5.32)

(the set of attributes common to the objects in A). Correspondingly, for a set

B ⊆M of attributes we define

γ(B) := {g ∈ G|g � m for all m ∈ B} (5.33)

(the set of objects which have all attributes in B).

Definition 5.7. A formal concept of the context (G,M, I) is a pair (A,B) with

A ⊆ G,B ⊆ M,µ(A) = B and γ(B) = A. We call A the extent and B the intent

of the concept (A,B). B(G,M, I) denotes the set of all concepts of the context

(G,M, I).

The two operators µ and γ form a Galois connection between the power-set lattices

of G and M . Hence we obtain two closure systems on G and M , which are dually

isomorphic to each other.

We consider a part of the whole context.

Definition 5.8. If (G,M, I) is a formal context and if H ⊆ G and N ⊆M , then

(H,N, I ∩H ×N) is called a subcontext of (G,M, I).

129



5.5 Chapter 5

Subcontexts that have some compatibility are important.

Definition 5.9. A subcontext (H,N, I∩H×N) is called compatible if the pair (A∩
H,B ∩N) is a concept of the subcontext for every concept (A,B) ∈ B(G,M, I).

In the case of finite contexts, the compatible subcontexts can be identified by

means of the arrow-relations.

Definition 5.10. If (G,M, I) is a context, g ∈ G an object, and m ∈ M an

attribute, we write

g ↗ m :⇔

{
g 6� m and

if γ({m}) ⊆ γ({n}) and γ({m}) 6= γ({n}), then g � n
(5.34)

g ↙ m :⇔

{
g 6� m and

if µ({g}) ⊆ µ({h}) and µ({g}) 6= µ({h}), then h � m
(5.35)

Thus, g ↙ m holds if and only if g does not have the attribute m, but m is

contained in the intent of every proper subconcept of (γµ({g}), µ({g})).

Definition 5.11. A subcontext (H,N, I ∩H ×N) of a clarified context (G,M, I)

is arrow-closed if the following holds: h ↗ m and h ∈ H together imply m ∈ N ,

and g ↙ n and n ∈ N together imply g ∈ H.

The next proposition holds.

Proposition 5.12. Every compatible subcontext is arrow-closed. Every arrow-

closed subcontext of a finite context is compatible.

5.5.2.2 A Model

Using known facts mentioned above, a multiple views situation is modeled by the

toy model.

In this model, we interpret the equality in the formulae of the torsor as the com-

patibility of the formal concept structure, i.e., the compatibility of corresponding

formal context. This interpretation is legitimate because if the contexts behind

the formal concept structure are compatible, then the structures are isomorphic

as for the common concepts. Thus IGUSes which have different views can agree

on the identification of concepts.
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For a given formal context C = (G,M, I), an operation α̃G : G → G ×M is de-

fined as extracting the minimum arrow-closed subcontext containing any specified

subset H0 of the formal object G. Similarly, an operation α̃M : M → G×M is de-

fined as extracting the minimum arrow-closed subcontext containing any specified

subset N0 of the formal attribute M . These operations, combined with projection,

are defined for later convenience:

α1
G := π1 ◦ α̃G : G→ G, α2

G := π2 ◦ α̃G : G→M (5.36)

α1
M := π1 ◦ α̃M : M → G, α2

M := π2 ◦ α̃M : M →M (5.37)

The view πH0 generated with any specified subset H0 of the formal object G is

defined as

πH0(C) = (H,N, I ∩H ×N) = (α1
G(H0), α2

G(H0), I ∩ α1
G(H0)× α2

G(H0))

(5.38)

i.e., πH0 = (− ∩ α1
G(H0),− ∩ α2

G(H0), I ∩ α1
G(H0)× α2

G(H0)) (5.39)

Similarly, the view ρN0 generated with any specified subset N0 of the formal at-

tribute M is defined as

ρN0(C) = (H,N, I ∩H ×N) = (α1
M(N0), α2

M(N0), I ∩ α1
M(N0)× α2

M(N0))

(5.40)

i.e., ρN0 = (− ∩ α1
M(N0),− ∩ α2

M(N0), I ∩ α1
M(N0)× α2

M(N0)) (5.41)

They satisfies the following formulas: πH ◦ πH = πH , ρN ◦ ρN = ρN , hence each of

them is a kind of projection.

Each element of the model is associated with any subset H0 of G or N0 of M . But

as a view, it works as πH0 or ρN0 , that is, it induces an arrow-closed subcontext

including the associated subset.

We can have canonical correspondence between the view defined above and the

formal context (G,M, I) and the set of formal concepts B(G,M, I). Hence by

corresponding a set of formal concepts with representation, we can handle the

view and the representation uniformly. Formal contexts brought by these views
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are arrow-closed subcontexts, hence they are comptible with the original context

C = (G,M, I). On these assumptions, the axioms of the torsor are automatically

satisfied.

5.5.2.3 A Concrete Example

Suppose that we have a context C = (G,M, I), where G = {g1, g2, g3, g4},
M = {m1,m2,m3,m4,m5} and I is defined by the Table 5.1 (excerpted from

[109]).

Table 5.1: Global context.

m1 m2 m3 m4 m5

g1 x x
g2 x x x x
g3 x x
g4 x x x

The Table 5.1 shows g1 � m1, g1 6� m2, g1 � m3, and so on.

We adopt the transcendental view for simplicity. In other words, the context C is

assumed to be global.

The arrow-closed subcontext can be easily obtained from the graph of arrows

(Figure 5.4) drawn by Definition 5.10. For example, if we start with a subset

{m2}, by chasing the links and collecting all the reachable elements, we have

({g1, g3, g4}, {m1,m2,m3,m5}, I ∩ {g1, g3, g4} × {m1,m2,m3,m5}) (5.42)

as the arrow-closed subcontext. Note that in the Figure 5.4, the links m2 to

g1 and m1 to g3 are unidirectional, and the others are bidirectional. Thus if

we start with a subset {g1}, the arrow-closed subset induced by the subset is

({g1}, {m5}, I ∩ {g1} × {m5}).

Figure 5.4: The graph of arrows.
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Suppose that each subset of G or M is assigned to an element of the torsor as in

Table 5.2.

Table 5.2: Model assignment.

Element a b c d e

H0 {g4} {g1, g2, g3} – {g1, g2}
N0 – – {m3,m5} –
H {g1, g3, g4} {g1, g2, g3} {g1, g3} {g1, g2} Obtained from d
N {m1,m2,m3,m5} {m3,m4,m5} {m3,m5} {m4,m5} Obtained from d

Then, what is the interpretation of [cde]? Since the context C is assumed to be

global, it can be regarded as the substratum for all representations. Thus e is

obtained by applying ρ{g1,g2} to C. As a result, e is a formal concept lattice of

subcontext:

({g1, g2}, {m4,m5}, I ∩ {g1, g2} × {m4,m5}) (5.43)

(It is a chain of {g1, g2} and {g2} and ∅. See Figure 5.5 d.) Recall that there is a

canonical correspondence between the view and the formal context and the set of

formal concepts.

In the same way, a formal concept lattice of subcontext in the view of c is:

({g1, g3}, {m3,m5}, I ∩ {g1, g3} × {m3,m5}). (5.44)

(It is an anti-chain of {g1} and {g3}. See Figure 5.5 c.) It corresponds to [cde].

Figure 5.5: Concept lattices for full and subcontexts.
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The context(= substratum) C in the view of b is also the formal concept lattice of

subcontext:

({g1, g2, g3}, {m3,m4,m5}, I ∩ {g1, g2, g3} × {m3,m4,m5}). (5.45)

(See Figure 5.5 b.) This lattice embeds the lattice of [cde], thus “modulo” irrelevant

elements, the Equation (5.22) holds.

The context in the view of a is the formal concept lattice of subcontext:

({g1, g3, g4}, {m1,m2,m3,m5}, I ∩ {g1, g3, g4} × {m1,m2,m3,m5}). (5.46)

This is a seven element lattice of {∅, {g1}, {g3}, {g4}, {g1, g4}, {g3, g4}, {g1, g3, g4}}
(see Figure 5.5a). This corresponds to [ab[cde]].

Similarly, since [abc] is yielded by the view a, the induced formal concept lattice

[abc] must be embedded into the lattice of a (Figure 5.5 a). Also, the formal

concept lattice [[abc]de] induced by [abc] must be embedded into the lattice of

[a]—that is, in the [ab[cde]]. Hence, the axiom [ab[cde]] = [[abc]de] holds “modulo”

irrelevant elements, as expected,

Note that although the context C is assumed to be global for simplicity in this

section, this is not mandatory. As can be understood from above procedures, a

context as a substratum can omit the irrelevant objects or attributes to the views

applied to the substratum.

The property of the torsor, Proposition 5.4, [a[dcb]e] = [ab[cde]], can verified in

the same manner.

5.5.3 Letter Recognition

The use of the toy model is not necessarily restricted to mathematically concrete

models. It can be used for more abstract situations.

Let us consider the episode described in 1.1.3. A child see a blot as the letter

“pee”, another child as “er” and the other child “rho”. One part of the situation
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can be described as what is a letter “rho” in the view of G is regarded as “pee” in

the view of E. Thus, in the term of the toy model,

[EG〈〈rho〉〉] = 〈〈pee〉〉 (5.47)

Another part of the situation can be described as what is a letter “pee” in the view

of E ′ is regarded as “er” in the view of R. In the term of the toy model,

[RE ′〈〈pee〉〉] = 〈〈er〉〉 (5.48)

therefore, in combination with the previous equation,

[RE ′[EG〈〈rho〉〉]] = 〈〈er〉〉 (5.49)

In these equations, G is a Greek letter-related view, E,E ′ (not necessarily different)

are English or Latin letter-related views, R is a Cyrillic letter-related view, and

〈〈rho〉〉, 〈〈pee〉〉, 〈〈er〉〉 are (possibly, utterance-related) representations.

In the axiom of the toy model,

[RE ′[EG〈〈rho〉〉]] = [[RE ′E]G〈〈rho〉〉] (5.50)

must be hold. Let us consider what it means in this situation.

The point is the term [RE ′E] in the right hand of the equation. It must be

considered to be a view for what is a letter “rho” in the view of G. This term

is interpreted as the representation of a substratum that yields the representation

E in the view of E ′, and the representation [RE ′E] is obtained in the view of R.

Extremely roughly speaking, since the view [RE ′E] is something obtained in the

view of R, a Cyrillic letter-related view, [RE ′E] might be also a Cyrillic letter-

related view, and hence [[RE ′E]G〈〈rho〉〉] = 〈〈er〉〉. But a closer examination is

required.

In fact, the construction of the toy model provides an insight. In the construc-

tion, all representations and views consists of two constituents. One is concrete,

belonging to the outer world, and the other is belonging to the inner world of

the IGUS. The constituents of the views like G,E,E ′, R can be considered to be

something like a space of topological configurations of the blots and something

like a space of (to be) written languages. The space of topological configurations
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of the blots is articulated enough to represent letters of a language, in accordance

with an articulation of the space of differences required to represent utterances of

a language. The latter spaces naturally vary from language to language, and both

of the spaces vary from IGUS to IGUS. As can be known, the criteria for allowable

forms of a certain letter in a certain language may slightly vary from person to

person.

Thus the view [RE ′E] can be understood to be constructed as a closure of a space

of topological configuration of blots and a space of (to be) written Russian lan-

guage, and the former space also yields a view E together with a space originated

in E ′.

Needless to say, this is one of the possibilities. More studies in the linguistics and

other related fields are required for clearer understanding. However, investigations

using the toy model in this study must be helpful in such a case.

5.6 Conclusive remarks on this chapter

In this chapter, an algebraic toy model for representation is developed. By using

torsor as the algebraic structure of the model, one can avoid directly mentioning

the represented thing, which is unrealistic at a fundamental level of understanding.

This chapter presents how to interpret a representation phenomenon to the alge-

braic structure of the model. The correspondence relations of the elements, the

two-sidedness of representation and the closure concept play significant roles in

the construction of the toy model. Through the examples, it is shown that the

axioms of torsor tend to hold and correspond to some consistency requirement for

the representation.

The mathematical formulation of the toy model presented in this chapter is nat-

urally not definitive. As is mentioned in Section 5.3, the torsorial concept has

been formulated in various equivalent forms. In addition to them, even in math-
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ematically more foundational levels, one may replace the set theory, which is the

base of the formulation of the closure and torsorial concept in the toy model in

the present chapter, with the language of category theory, the named sets, or the

like3. Each of such formulations has its own value for a toy model of representa-

tion phenomena. The point of the present study is that the representation has a

torsorial nature. Toy models in various formulations may also be used to describe

phenomena of representations. There is much room to be investigated for formu-

lating richer structures suitable for individual representation phenomenon to be

modeled.

3An instance of categorically-oriented articles discussing torsors is [87]. Regarding the named
sets, the readers should refer to the appendix A of [15] and references therein. Chu spaces, which
are used in Section 5.2.2, also are described in the same appendix as a special case of named
sets.
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Conclusion

6.1 Contributions to information sciences

An understanding of the fundamentals of information is explored in this study. In

the view of this thesis, information is

• a physical phenomenon,

• universality extracted from the surrounding universe by canonical methods,

• relative to the IGUS, and

• contextual existence.

This study grounds information phenomena on physics, introduces an appropri-

ate language for studying information, and approaches the essential relativity of

information.
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In this thesis, the author:

• defines information phenomena operationally by modeling the process of

extensional information articulation;

• demonstrates the model in the case of attribute extraction from the universe,

clarifying essential universality of attributes as information and canonicity

of the extraction process;

• proposes the language of category theory as a description language of infor-

mation phenomena;

• demonstrates the validity of the proposed language in the case of attribute

extraction from the universe, and characterizes the attributes by an internal

description; and,

• provides an understanding of information dismantled its content by using

the algebra known as torsor.

To define information in this thesis operationally, a model of the process of exten-

sional information articulation has been developed as a generalization of the theory

of the extensive measurement in metrology. As a realization of it, the attribute ex-

traction/creation from the universe has been investigated as a significant instance

of the information phenomena. We have mathematically understood that, in the

attribute extraction process, the attribute may be obtained in a boot–strapping

manner by the duality of extensively built structures, and that the universality of

the attribute as information may be realized as a limit. Galois connection, or the

adjoint structure, that forms information relieves us from the vicious circularity

hidden in the preceding understanding of information phenomena, mentioned in

Section 1.21. These fruits may be considered to be a validation of the model of

the process of extensional information articulation.

1Most of the preceding understanding of information seem to place information to provide
distinction as equal to information formed by the distinction. The author considers that it is
the origin of the vicious circularity. The adjoint structure may be considered to be a relaxation
of equality as is mentioned in Section 4.2.3.
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The language of category theory may illuminate these and some of the funda-

mental features of information. It has been demonstrated that the characteristics

of category theory are well suited to describe the information phenomena. Its

structural relativity and contextuality, in particular, may enable to reflect those of

information naturally. The validity of using the language of category theory has

been demonstrated in an investigation of an information phenomenon, namely, the

attribute extraction for classification. By using the language of category theory,

especially topos, for modeling the attribute extraction, a new, internal description

is obtained and this description provides a new characterization of the attribute

as information: “an attribute exists where there is a lack of available contextual

resource to specify a certain element in the context.”

The torsor, a kind of algebraic structure, sheds a new light on the information

dismantled its context. The relativity and contextuality hitherto studied should

be understood in connection with the significance of information, that is, the

difference made by difference. This is one side of information phenomena. There

is the other side of information phenomena: the difference which makes difference.

As the author has shown in this thesis, information, which is constructed with

both these differences, is heavily made up with their contexts. Some essence of

information is behind this cosmetics. This thesis provides an answer to the problem

of what information really is like when it is dismantled of its context. An answer in

the view of this thesis is given from the algebraic perspective. That is the torsor.

Difference which makes a difference may be described adequately in the language

of torsor. Though this is not a completely novel view to see the world as Baez [85]

indicates, the torsorial model presented in this thesis provides a new perspective

on information phenomena.
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Information as fully extensional physical phenomena has not been well investi-

gated in preceding studies, despite of its fundamentality and inevitability. The

present thesis tackles this problem squarely, and has shown that there may be an

extensional understanding of the fundamentals of information, by demonstrating a

concrete mechanism. This extensional understanding suggests that the relativity

and contextuality of information are inherent because, extensionally, differences in

physical interactions are the source of information, and the differences are consid-

ered to be necessarily represented by the relations between somethings extensional.

This relations constitute a certain structure of extension, and extension charac-

terizes each other through the structure. Thus, information may not escape from

the surrounding circumstances, and be inherently relative and contextual.

Through the extensional understanding, this thesis qualitatively extends the prior

studies of information mentioned in Chapter 2. This might not be a full extension

of those prior studies2, but at least, the present study may stretch the limit of them.

Many of the prior studies assume the distinction of the occurences of the units

of information such as microstates, messages, symbols in a string, statements,

etc. to calculate the “information”. Each of them mainly focuses on only one

part of the context for the information phenomena, that is, either the information

carrier part or the received information part. This thesis considers both parts

of the context simultaneously to avoid vicious circularity of the distinction and

information. In the information process in our study, the distinction becomes

clearer as the boundary of the distinguished objects become clearer3. Distinction

is woven into the structure that the distinguished objects form, and the structure

becomes the context of the information based on the distinction4. If one disregards

this evolutional process, the distinction becomes God–given and the structure

becomes flat, as in the prior studies. And the flat structure is a special case of the

structure in this study. In this sense, the present study may be considered to be

a qualitative extension of the prior works.

2That is, this study might not incorporate prior studies completely.
3This might sound tautologous to some readers. Note that the author associates the distinc-

tion with the attributes that characterizes the object under consideration.
4And vice versa. The objects is woven into the structure that the distinction forms.
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The quantitative outcome is out of the scope of this thesis, it might be promising.

Valuations in a structure, in a finite distributive lattice which appears in Chapter

3 at least, have been studied out of different motives. For example, there is

a mathematical theorem proven by Gian–Carlo Rota [116], which states that a

valuation in a finite distributive lattice L is uniquely determined by the values

it takes on the set of join–irreducibles of L, and these values can be arbitrarily

assigned. Knuth [117], for instance, utilizes this theorem to compute generalized

entropies, which are generalizations of familiar information-theoretic quantities

such as mutual information. In the same manner, information might be discussed

quantitatively on the result of this thesis. In this aspect also, this thesis may be

regarded as an extension of the prior information theories referred in Chapter 2.

6.2 Future prospects

This study has exploratory nature and the demonstrations of concrete information

phenomena are limited. The models developed in this thesis are undoubtedly still

in its infancy. Their virtue should be displayed and validated in further various

applications. Some points that are not within the scope of this thesis remain to

be addressed in future investigations.

The demonstrations such as in Chapter 3 and in Chapter 4 should be extended

in future studies. Besides the attribute extraction, there might still be other

information phenomena that may be well investigated in the similar view of this

thesis. Besides the inclusion structure, there also might still be other structures

that may induce the other type of information than the attribute. For instance of

the latter, the network structure might be a good candidate.
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The toy model developed in Chapter 5 is also doubtlessly far from reaching full

maturity. The model is demonstrated by only a few selected cases, and the alge-

braic consequences of the model still has much opportunity to be widely explored.

However, it seems that the toy model can be expected to capture some essential

properties of the representation and have values for studying the representation

phenomena. The value of the toy model depends on valuable applications for

various studies. Although the application of the model might be restricted to the-

oretical settings, there will be many potential application fields of the toy model

because it is an abstract, formal model of representations that makes few assump-

tions5 about actual participants of the information phenomenon under consider-

ation. Body languages or gestures often cause problems that originate from the

two-sidedness of representation — one gesture may have multiple meanings that

can be determined by the each witness. Cross-cultural/intercultural communica-

tions may suffer from similar problems. To study these problems, the toy model

may be of help. The model may also be applicable to the study of information

exchanges between animals, such as ants and bees, when the researcher tries to

describe the researcher’s—human’s—view explicitly. Besides these fields in which

representation problems come to the fore, studies of our daily information ex-

changes, such as information theory, linguistics, communication theories, studies

of man-machine interfaces, etc., may be able to utilize the toy model, when they

deal with something semantical.

Explication of the construction of an IGUS is restricted in this thesis. Require-

ments for the IGUS have been clarified just for our purpose (3.3.3). The essential

functions of the IGUS in more general setting should be more fully described in an

appropriate abstraction level in future researches. The system identification of an

IGUS is also beyond the reach of this study. In the view of this thesis, an IGUS

should be considered as simply a collection of physical interactions. How can a part

of the universe recognize another part of the universe as an IGUS? In this thesis,

the author sometimes rely on the intuitive understanding of the human-IGUSes.

After all, the language of physics is (basically) for human-IGUSes. However, the

information theory, which is based on the physical interactions, i.e., extensional

entities, should be more fully developed without assuming human-IGUSes.

5Assumptions for the participants to be IGUSes.
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In this extensional view, the distinction between information and the physical

phenomena becomes further obscured. The distinctive characteristics of physical

phenomena as information might be worth pursuing from the extensional infor-

mation viewpoint. Superficially, the information phenomena might be associated

with the existence of retarded physical interactions and a choice of reactions of the

IGUS. Future work should explore the distinction, or, the difference of the inten-

sity of informationality, of physical phenomena from this extensional information

viewpoint.

There are many other approaches for investigating the problem of interrelation of

physical and informational reality. The most contrasting approach to this study

is the approach that tries to explain the reality with information only. As already

mentioned in the Section 3.1, many researches adopt such an approach from various

motives. It is true, even in the view of this study, that the physical reality for

us may be considered to be constructed by information for us humans. But it

seems also true that there exists something (i.e., the universe) in which we do not

have our own way in everything, something that is the never–exhausting source of

information. Though it is not the case that the authors had fully evaluated every

study adopting a purely informational approach, the physical approach (such as

this study) and the informational approach seem to, so to speak, complement

or adjoin each other. Future studies should address such matters to clarify the

relationship between these two approaches.

In topos and category theory in general, there are many mathematical properties

that might touch the hearts of the researchers of information. These properties

are waiting for an opportunity to be examined. Though just one application

exhibited in Chapter 4 might not be enough convincing, the language of category

theory must be promising because of its natural correspondences to the properties

of information, as shown in Chapter 4. Future studies should consider the use

of the language of category theory, and also investigate further the properties of

category theory that might contribute to the information study.
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The models developed in this thesis may have its applications in the field of ex-

ploratory data analysis by their extensional nature. Immanent universal property,

e.g., the s–attribute, of collected data can be represented structurally, i.e., ex-

tensionally by the collected data themselves. Because this information extracted

from the data can be manipulable through its extensionality, the models may be

valuable in the field of exploratory data analysis.

The understanding of information in this study might be a matter of interest of the

researchers in other disciplines such as linguistics, communication theory, robotics,

and many others. With the characteristics of information understood in this the-

sis, such as the essential contextuality and the bootstrapping capturing process at

the information level, they might have the opportunity to reconsider their under-

standing of the phenomena in their field and may reach deeper understanding in

their own discipline.

The author expects the understanding in this thesis to be developed further, and

the models to be applied in theory and in practice, to fully understand the exten-

sional aspects of fundamentals of information.
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Appendix A

Preliminaries and detailed data

A.1 Mathematical Preliminaries for Chapter 3

For details of the terms used here, readers should consult books like [88] and

references listed there. Standard books on the order theory such as [70] and [82],

and books on the set theory such as [89] may also be of help.

Definition A.1 (Partially Ordered Set). [70] Let P be a set. A partial order on

P is a binary relation 6 on P such that, for all x, y, z ∈ P ,

(1) x 6 x, (A.1)

(2) x 6 y and y 6 x imply x = y,

(3) x 6 y and y 6 z imply x 6 z,

A set P equipped with an order relation 6 is said to be a partially ordered set.

Strict inequality < is also introduced. x < y in P if and only if x 6 y and x 6= y.

When the order should be explicitly presented, a partially ordered set is denoted

as (P,6).

Definition A.2 (Dual of an Ordered Set). [70] Given any ordered set P we can

form a new ordered set P ∂ (the dual of P ) by defining x 6 y to hold in P ∂ if and

only if y 6 x holds in P .

To each statement about the ordered set P there corresponds a statement about

P ∂. In general, given any statement Φ about ordered sets, we obtain the dual
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statement Φ∂ by replacing each occurrence of 6 by > and vice versa. It is known

that if a statement Φ about ordered sets is true in all ordered sets, then the dual

statement Φ∂ is also true in all ordered sets.

Definition A.3 (Covering Relation). [70] Let P be an ordered set and let x, y ∈ P .

We say x is covered by y (or y covers x) if x < y and x 6 z < y implies z = x.

Definition A.4 (Down-set). [70] Let P be a partially ordered set and Q ⊆ P . Q

is said to be a down-set or an order ideal if, whenever x ∈ Q, y ∈ P and y 6 x,

we have y ∈ Q.

Definition A.5 (Upper/Lower Bounds). [70] Let P be an ordered set and let

S ⊆ P . An element x ∈ P is an upper bound of S if s 6 x for all s ∈ S. A lower

bound is defined dually.

If all upper bound has a least element x, then x is called the least upper bound of

S. The greatest lower bound is defined dually. The least upper bound of {x, y}
is denoted as x ∨ y (read as ‘x join y’ and the greatest lower bound of {x, y} is

denoted as x∧ y (read as ‘x meet y’. Similarly for the set S, we write
∨
S for the

join of S,
∧
S for the meet of S.

Definition A.6 (Lattice). [70] Let P be a non-empty ordered. If x∨ y and x∧ y
exist for all x, y ∈ P , then P is called a lattice.

Definition A.7 (Meet Irreducible Element). [82] An element a of an partially

ordered set is called meet-irreducible, if a = b ∧ c implies that a = b or a = c; it is

called join-irreducible, if a = b ∨ c implies that a = b or a = c.

Definition A.8 (Directed set). [88] An ordered set (or in general a preordered

set) in which every finite subset is bounded from above is called a directed set.
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Definition A.9 (Projective System). [88] Let I be a directed set. Suppose that

we are given a set Xi for each i ∈ I and a mapping ψij : Xj → Xi for each

i 6 j, such that ψii = 1Xi
and ψik = ψij ◦ ψjk (i 6 j 6 k). Then we de-

note the system by (Xi, ψij) and call it a projective system (or inverse system)

of sets over I. Let P be the subset of the Cartesian product ΠXi defined by

P = {(xi) : ψij(xj) = xi (i 6 j)}, and let pi : P → Xi be the canonical mappings.

Then we have P(1) ψij ◦ pj = pi (i 6 j); P(2) for any set X, and for any system

of mappings qi : X → Xi satisfying ψij ◦ qj = qi (i 6 j), there exists a unique

mapping p : X → P such that pi ◦ p = qi (i ∈ I). We call (P, pi) the projective

limit (or inverse limit) of the projective system (Xi, ψij) over I and denote it by

lim←−Xi.
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A.2 Mathematical Preliminaries for Chapter 4

Readers should consult [72–74, 78, 90], and other textbooks for detailed definitions.

As for topos, [75–77]. The descriptions in this section are greatly indebted to these

references.

In this section, the basic definitions appeared in Chapter 4 are reproduced for the

readers’ convenience, and the definitions of notions that are mentioned but not

strictly defined in the text are also included for completeness.

A.2.1 Definitions appeared in Chapter 4

Definition A.10. A category C consists of a family of objects Ob(C) and for each

pair of objects, A,B in Ob(C), a set C(A,B) of arrows or morphisms from A to

B, together with a way of composing arrows that match

◦ : C(A,B)× C(B,C)→ C(A,C).

The object A of an arrow in C(A,B) is called the domain of the arrow, and the

object B is called the codomain of the arrow. This data is to satisfy:

1. composition is associative. If h ◦ (g ◦ f) is defined, (h ◦ g) ◦ f as well and

h ◦ (g ◦ f) = (h ◦ g) ◦ f .

2. there are identities for each object, so there are identity arrows idA in C(A,A)

for A in Ob(C), such that if f ∈ C(A,B),

idB ◦ f = f = f ◦ idA.

(An arrow is also written as f : A → B if f ∈ C(A,B), and the composite

of the arrows f ∈ C(A,B) and g ∈ C(B,C) is written as g ◦ f or simply gf .)
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An “arrow between categories” is called a functor.

Definition A.11. A functor F : C → D is given by:

• An object–map, assigning an object FA of D to every object A of C.

• An arrow–map, assigning an arrow Ff : FA → FB of D to every arrow

f : A→ B of C, in such a way that composition and identities are preserved:

F (g ◦ f) = Fg ◦ Ff, F idA = idFA.

An “arrow between functors” is called a natural transformation.

Definition A.12. Let F,G : C → D be functors. A natural transformation

t : F → G

is a family of morphisms in D indexed by objects A of C,

{tA : FA→ GA}A∈Ob(C)

such that, for all f : A→ B, the following diagram commutes:

FA

tA
��

Ff // FB

tB
��

GA
Gf
// GB

.

That is, tB ◦ Ff = Gf ◦ tA. This condition is known as naturality.

Definition A.13. An arrow f : A → B in a category C is called a monic when,

for every object C ∈ Ob(C) and every pair of arrows g, h : C ⇒ A, the following

property holds: (f ◦ g = f ◦ h)=⇒(g = h).
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In category theory, universal arrows are defined as follows.

Definition A.14. Let G : D → C be a functor, and C an object of C. A universal

arrow from C to G is a pair (D, η) where D is an object of D and an arrow

η : C → G(D) of C, such that, for every pair (D′, f) with D′ an object of D and

an arrow f : C → G(D′) of C, there exists a unique arrow f̂ : D → D′ of D such

that f = G(f̂) ◦ η.

Diagrammatically:

C

f ""

η // G(D)

G(f̂)
��

D

f̂
��

G(D′) D′

.

In other words, every arrow f to G factors uniquely through the universal arrow

η.

Definition A.15. Let C,D be categories. Given C
F

�
G
D, where F and G are

functors, an adjunction from C to D is given by a pair of natural transformations

η : 1C ⇒ GF (unit), (A.2)

ε : FG⇒ 1D (counit), (A.3)

satisfying the triangle identities axioms:

F
Fη //

1F ""

FGF

εF
��
F

G
ηG //

1G ""

GFG

Gε
��
G

. (A.4)

Adjunction may be defined differently.

Definition A.16. Let C,D be categories. An adjunction from C to D is a triple

(F,G, θ), where F and G are functors

C
F

�
G
D (A.5)

and θ is a family of bijections

θC,D : C(C,G(D))
≡→ D(F (C), D), (A.6)

for each C ∈ Ob(C) and D ∈ Ob(D), natural in C and D.
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Definition A.17. A subobject of an object X in a category C is a monic

m : M � X.

Subobjects may be redefined to be an equivalence class of monics:

Definition A.18. A subobject of an object X in a category C is an entity

[m] = {n : m ∼ n} ,

where m : M � X is a monic with codomain X.

Definition A.19. An object 1 is terminal in a category C if for every object

C ∈ Ob(C) there is one and only one arrow from C to 1 in C.

Definition A.20. Consider two morphisms f ∈ C(A,C), g ∈ C(B,C) in a cate-

gory C. A pullback of (f, g) is a triple (P, f ′, g′) where

1. P is an object of C.

2. f ′ : P → B, g′ : P → A are morphisms of C such that f ◦ g′ = g ◦ f ′,

and for every other triple (Q, f ′′, g′′) where

1. Q is an object of C.

2. f ′′ : Q→ B, g′′ : Q→ A are morphisms of C such that f ◦ g′′ = g ◦ f ′′,

there exists a unique morphism q : Q → P such that f ′′ = f ′ ◦ q and g′′ = g′ ◦ q.
See the diagram A.7.

Q

g′′

��

q

��

f ′′

""
P

f ′
//

g′

��

B

g
��

A
f // C

(A.7)
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Definition A.21. Let E be a category with all finite limits. A subobject classifier

in X consists of an object Ω together with an arrow > : 1→ Ω that is a “universal

subobject”, in the following sense: Given any object X and any subobject M �

X, there is a unique arrow χ(m) : X → Ω making the following diagram a pullback:

M //
��

m
��

1

t
��

X
χ(m) // Ω

. (A.8)

The arrow χ(m) is called the characteristic arrow of the subobject m : M � X

(or of M).

Definition A.22. A topos is a category with:

a) finite limits and colimits,

b) exponentials,

c) a subobject classifier.

A.2.2 Notions not defined strictly in the text

The duality principle [78] ought to be mentioned:

Definition A.23. Given a category C, the dual category C∗ is defined in the

following way:

1. Ob(C∗) = Ob(C);

2. for all objects C,D in C∗, C∗(C,D) = C(D,C);

3. the composition law of C∗ is given by f ∗ ◦ g∗ = (g ◦ f)∗.

In category theory, the following metatheorem – duality principle – holds: Suppose

the validity, in every category, of a statement expressing the existence of some ob-

jects or morphisms or the equality of some composites. Then the “dual statement”

is also valid in every category; this dual statement is obtained by reversing the

direction of every arrow and replacing every composite f ◦g by the composite g ◦f .

Definition A.24. An object 0 is initial in category C if for every C ∈ Ob(C) there

is one and only one arrow from 0 to C in C.

The initial object is the dual of the terminal object.
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Definition A.25. A product in a category C of two objects C and D is an object

C × D ∈ Ob(C) together with a pair (πC ∈ C(C × D,C), πD ∈ C(C × D,D) of

arrows such that for any pair of arrows of the form (f ∈ C(X,C), g ∈ C(X,D)

there is exactly one arrow 〈f, g〉 ∈ C(X,C ×D) making

X
f

{{

g

##
〈f,g〉��

C C ×DπC
oo

πD
// D

. (A.9)

commute, that is, such that πC ◦ 〈f, g〉 = f and πD ◦ 〈f, g〉 = g. 〈f, g〉 is the

product arrow of f and g with respect to the projections πC , πD.

Coproducts are defined dually.

Definition A.26. An arrow i ∈ C(E,C) in C is an equalizer of a pair f, g ∈
C(C,D) of arrows if

1. f ◦ i = g ◦ i, and

2. whenever h ∈ C(X,C) has f ◦ h = g ◦ h in C there is exactly one arrow

k ∈ C(X,E) such that i ◦ k = h.

E
i // C

f //
g
// D

X

k

OO

h

>> . (A.10)

Coequalizers are defined dually.

Initial/terminal object, products/coproducts, equalizers/coequalizers are special

cases of the more general notions of limit and colimit of a diagram in a category.

Definition A.27. A diagram in a category C is a set of objects of C together with

a set of arrows between these objects.

We have already drawn diagrams many times.
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Definition A.28. Let D be a diagram with vertices {Di : i ∈ I} in a category C.
A cone over the diagram D is a family

{
A

fi→ Di : i ∈ I
}

of arrows from a fixed

object A to the objects in D such that, for any arrow Di
d→ Dj in D, the diagram

A
fi

��

fj

  
Di

d // Dj

. (A.11)

commutes, i.e., d ◦ fi = fj. The object A is called the vertex of the cone.

Definition A.29. A limit for the diagram D is a cone
{
A

fi→ Di : i ∈ I
}

such

that for all cones

{
A′

f ′i→ Di : i ∈ I
}

there is a unique arrow A′
g→ A for which the

diagram

A′
g //

f ′i   

A

fi
��
Di

. (A.12)

commutes for each i ∈ I. That is, for each i ∈ I, f ′i = fi ◦ g.

Colimits are defined dually.

Definition A.30. Let C and D be objects of a category C such that all binary

products with D exist. (Usually, C actually has all binary products.) Then an

exponential object is an object CD equipped with an evaluation map ev ∈ C(CD×
D,C) which is universal in the sense that, given any object X and map e ∈
C(X ×D,C), there exists a unique map u ∈ C(X,CD) such that

CD ×D ev // C

X ×D

u×idD

OO

e

;; . (A.13)

commutes, i.e., e = ev ◦ (u× idD).
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Definition A.31. A frame is a lattice L in which every (even infinite) subset {ai}
of L has a supremum ∨ai such that

b ∧
(∨

ai

)
=
∨

(ai ∧ b) (A.14)

for all b in L.

Frames form a category with functions preserving meets and joins.

Definition A.32. The category Frm of frames is the category whose objects

are complete lattices satisfying the infinite distributive law (Equation.A.14), and

whose morphisms are functions preserving finite meets and arbitrary joins.
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A.3 Concrete Example for Chapter 4

Table A.1: All the members in each concept

Concept Member Concept Member
1 {Dog, Frog, Bream, Leech} 10 {Frog, Reed}
2 {Dog, Frog, Bream} 11 {Reed, Maize, Spike weed,

Bean}
3 {Dog, Frog} 12 {Reed, Maize, Spike weed}
4 {Dog} 13 {Reed, Spike weed}
5 {Dog, Frog, Reed, Maize, Bean} 14 {Reed, Maize, Bean}
6 {Frog, Bream, Leech} 15 {Reed, Maize}
7 {Frog, Bream} 16 {Reed}
8 {Frog} 17 {Bean}
9 {Frog, Bream, Leech, Reed,

Spike weed}

Table A.2: Object part of the functor V

p V (p) p V (p)
1 {1, 2, 3, 4, 5, 6, 7, 8} 10 {8, 10, 16}
2 {2, 3, 4, 7, 8} 11 {11, 12, 13, 14, 15, 16, 17}
3 {3, 4, 8} 12 {12, 13, 15, 16}
4 {4} 13 {13, 16}
5 {3, 4, 5, 8, 10, 14, 15, 16, 17} 14 {14, 15, 16, 17}
6 {6, 7, 8} 15 {15, 16}
7 {7, 8} 16 {16}
8 {8} 17 {17}
9 {6, 7, 8, 9, 10, 13, 16}
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Table A.3: Sieves

R(1) {1→ 1} R(10) {10→ 10, 10→ 9, 10→ 5}
R(2) {2→ 2, 2→ 1} S5(10) {10→ 5}
S1(2) {2→ 1} S9(10) {10→ 9}
R(3) {3→ 3, 3→ 2, 3→ 5, 3→ 1} R(11) {11→ 11}
S1(3) {3→ 1} R(12) {12→ 12, 12→ 11}
S2(3) {3→ 2, 3→ 1} S11(12) {12→ 11}
S5(3) {3→ 5} R(13) {13→ 13, 13→ 9, 13→ 12, 13→ 11}
R(4) {4→ 4, 4→ 3, 4→ 2, 4→ 5, S9(13) {13→ 9}

4→ 1}
S1(4) {4→ 1} S11(13) {13→ 11}
S2(4) {4→ 2, 4→ 1} S12(13) {13→ 12, 13→ 11}
S3(4) {4→ 3, 4→ 2, 4→ 1, 4→ 5} R(14) {14→ 14, 14→ 5, 14→ 11}
S5(4) {4→ 5} S5(14) {14→ 5}
R(5) {5→ 5} S11(14) {14→ 11}
R(6) {6→ 6, 6→ 1, 6→ 9} R(15) {15→ 15, 15→ 12, 15→ 14,

15→ 5, 15→ 11}
S1(6) {6→ 1} S5(15) {15→ 5}
S9(6) {6→ 9} S11(15) {15→ 11}
R(7) {7→ 7, 7→ 6, 7→ 1, 7→ 9, S12(15) {15→ 12, 15→ 11}

7→ 2}
S1(7) {7→ 1} S14(15) {15→ 14, 15→ 11, 15→ 5}
S2(7) {7→ 2, 7→ 1} R(16) {16→ 16, 16→ 10, 16→ 9, 16→ 5,

16→ 13, 16→ 12, 16→ 11,
16→ 15, 16→ 14}

S6(7) {7→ 6, 7→ 1, 7→ 9} S5(16) {16→ 5}
S9(7) {7→ 9} S9(16) {16→ 9}
R(8) {8→ 8, 8→ 3, 8→ 2, 8→ 5, S10(16) {16→ 10, 16→ 9, 16→ 5}

8→ 1, 8→ 7, 8→ 6, 8→ 9,
8→ 10}

S1(8) {8→ 1} S11(16) {16→ 11}
S2(8) {8→ 2, 8→ 1} S12(16) {16→ 12, 16→ 11}
S3(8) {8→ 3, 8→ 2, 8→ 5, 8→ 1} S13(16) {16→ 13, 16→ 12, 16→ 11, 16→ 9}
S5(8) {8→ 5} S14(16) {16→ 14, 16→ 5, 16→ 11}
S6(8) {8→ 6, 8→ 1, 8→ 9} S15(16) {16→ 15, 16→ 5, 16→ 12,

16→ 11, 16→ 14}
S7(8) {8→ 7, 8→ 2, 8→ 1, 8→ 6, R(17) {17→ 17, 17→ 14, 17→ 5, 17→ 11}

8→ 9}
S9(8) {8→ 9} S5(17) {17→ 5}
S10(8) {8→ 10, 8→ 5, 8→ 9} S11(17) {17→ 11}
R(9) {9→ 9} S14(17) {17→ 14, 17→ 5, 17→ 11}
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Table A.4: Object part of the subobject classifier

p Ω(p) p Ω(p)
1 {R(1), ∅} 10 {R(10), S5(10), S9(10), ∅}
2 {R(2), S1(2), ∅} 11 {R(11), ∅}
3 {R(3), S1(3), S2(3), S5(3), ∅} 12 {R(12), S11(12), ∅}
4 {R(4), S1(4), S2(4), S3(4), S5(4), ∅} 13 {R(13), S9(13), S11(13), S12(13), ∅}
5 {R(5), ∅} 14 {R(14), S5(14), S11(14), ∅}
6 {R(6), S1(6), S9(6), ∅} 15 {R(15), S5(15), S11(15), S12(15), S14(15), ∅}
7 {R(7), S1(7), S2(7), S6(7), S9(7), ∅} 16 {R(16), S5(16), S9(16), S10(16), S11(16),

S12(16), S13(16), S14(16), S15(16), ∅}
8 {R(8), S1(8), S2(8), S3(8), S5(8), 17 {R(17), S5(17), S11(17), S14(17), ∅}

S6(8), S7(8), S9(8), S10(8), ∅}
9 {R(9), ∅}
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