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Introduction 

Malignant glioma has a poor prognosis despite a combination of treatments that include surgery, 

radiotherapy and chemotherapy. The median survival time of patients with glioblastoma is only 

14.6 months despite the combination of radiotherapy at 60 Gy for over 6 weeks and 

temozolomide following removal of the malignant glioma.
1
 This poor prognosis is in part due to 

its radiochemoresistance and infiltrative tumor growth. To improve the prognosis, this malignant 

glioma requires cytoreductive surgery
2
 without injury to normal tissues.  

Perioperative fluorescence imaging (photodynamic diagnosis, PDD) has been applied for 

decades in an effort to enhance this surgery.
3-11

 Tumor fluorescence derived from 5-

aminolevulinic acid (5-ALA) contributes to improving the complete resection rate (from 36% to 

65%), as well as increasing the rate of 6-month progression-free survival after surgery (from 

21% to 41%).
4, 5

 5-ALA is an intermediate of the heme biosynthesis pathway. In many tumor 

cells, including glioblastoma, an excess of the exogenous pro-drug ALA results in the 

accumulation of protoporphyrin IX (PpIX), most likely due to low ferrochelatase activity.
12, 13

 

However, some mechanisms of tumor-specific fluorescence (such as the fundamentals of PDD) 

are not clear. Although porphyrins such as hematoporphyrin derivative (HpD)
14-16

 or talaporfin 

sodium
17

 show tumor-specific accumulation, the mechanism of this is not well known. 

Recently, we reported on the proton-coupled folate transporter (PCFT) SLC46A1, which was 

originally identified as heme carrier protein 1 (HCP-1)
18

 and upregulates the cellular uptake of 

HpD. SLC46A1 is expressed in cancer cells such as rat gastric cancer-like cells (RGK), human 

gastric cancer cells (AGS), human lung cancer cells (A549) and human uterine cervical 

carcinoma cells (HeLa), but not in rat normal gastric mucosal cells.
19

 The expression of 

SLC46A1 could be an important factor for developing photodiagnosis and photodynamic therapy. 
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SLC46A1 is expressed mainly in the duodenum or kidney, in the liver in response to hypoxia 

and in the brain (though here only to a small degree at the choroid plexus).
20

 SLC46A1 

expression in glioma has not been reported, and no relationship with its malignancy grade has 

been shown.  

In this study, we investigated the expression of SLC46A1 in surgical specimens and cell lines of 

glioma by immunohistochemistry and reverse transcription-PCR (RT-PCR). We also clarified 

the relationship between SLC46A1 and fluorescence intensity (HpD uptake) in vitro by RT-PCR 

and a cellular uptake assay. 

Materials and methods 

Immunohistochemistry  

Following an institutional review board-approved protocol, formalin-fixed tumor samples were 

obtained from 24 cases of glioma. The definitive diagnosis of each sample was made from 

paraffin-embedded material according to the WHO 2007 guidelines (9 cases of WHO grade IV, 

9 cases of grade III and 6 cases of grade II) (Fig. 1B).  

The DAKO LSAB Kit for mouse and rabbit primary antibody (DAKO, Glostrup, Denmark) was 

used. Tissue sections were deparaffinized and incubated with 10% normal goat serum in 

phosphate-buffered saline (PBS) for 20 min. Sections were heated in TE buffer (pH 9.0) in a 

microwave oven for 10 min, incubated until they reached room temperature and then washed in 

flowing water. Intracellular peroxidase deficiency was created by immersing the sections in 0.3% 

hydrogen peroxide-containing methanol for 20 min. After two washes with PBS, the sections 

were reacted with primary antibody (rabbit polyclonal HCP-1: Abcam, Plc.) in 1% bovine serum 
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albumin in PBS at 4°C overnight. Immunostained sections were further stained using the Dako 

LSAB2 kit (Dako Japan Co., Tokyo, Japan) according to the manufacturer’s guidelines. 

Immunoperoxidase staining was stopped after a certification of stained color. Nuclei were 

stained with hematoxylin, and the specimens were mounted in an encapsulating agent. The 

intracellular SLC46A1 immunostaining was assessed using a semiquantitative scale (0: not 

detected; 1: weak; 2: moderate; 3: strong) (Fig. 1A). The number of nuclei positive for the MIB-

1 labeling index was determined by counting at least 1,000 tumor cells. 

Cell culture 

The human glioblastoma cell lines U87 and U251 were obtained from the American Type 

Culture Collection (Rockville, MD), and T98G cells were obtained from the RIKEN cell bank. 

U251 cells were cultured in DMEM (Life Technologies Co., Carlsbad, CA), and U87 and T98G 

cells were cultured in DMEM with high glucose at 37°C under 5% CO2. These media contained 

10% inactivated fetal bovine serum (FBS, Life technologies) and 1% penicillin/streptomycin 

(Life technologies).  

RT-PCR 

RT-PCR was performed according to the manufacturers’ guidelines. Briefly, extracts from cells 

and specimens were obtained using a cell lysis buffer. Because the cDNAs were collected with 

SuperScript III kits (Invitrogen, Carlsbad, CA), RT-PCR was performed in 35 cycles (94°C for 

30 sec, 50°C for 30 sec, 72°C for 30 sec). The SLC46A1 (HCP-1) primers were reverse, 5'- GGT 

AGA GTG AGT TGA AGA TG-3', and forward, 5'- CTG GAC CCT CTA CAT GAA CG-3'. 

The ß-actin primers were reverse, 5'-GGAGTTGAAGGTAGTTTCGTG-3', and forward, 5'-

CGGGAAATCGTGCGTGACAT-3'. The predicted size of the amplified ß-actin DNA product 



 6 

was 214 bp. The PCR products of 471/992 bp corresponded to SLC46A1.
21

 The RT-PCR 

products were electrophoresed in 2% agarose gels for 30 min. The intensity of the band area in 

electrophoresed gels was measured in ImageJ software (National Institutes of Health, MA). 

The amounts of cellular uptake of HpD 

In a 6-well dish, 1×10
6
 cells were incubated for 24 h. Then, 0.1 mM of HpD (Wako Pure 

Chemical Ind., Osaka, Japan) was added to cells at 37°C for 1 and 3 h under light shielding. HpD 

was extracted from the cells by adding 500 L of dimethyl sulphoxide (Wako Pure Chemical) 

after two washes with cold PBS. The extracts were centrifuged for 10 min at 10,000 rpm, and 

100-L supernatants were collected. The fluorescence intensities of the 100-L supernatants in a 

96-well plate were measured by a micro plate reader (Ex. 415 nm, Em. 625 nm) (Varioskan; 

Thermo Fisher Scientific K.K., Kanagawa, Japan). 

HpD fluorescence imaging 

In 35-mm glass dishes, 5×10
5
 cells were incubated for 24 h, then treated with 0.1 mM HpD at 

37°C for 1 or 3 h. After the cells were washed twice with cold PBS, the fluorescence image was 

captured using a fluorescence microscope system (Biozero; Keyence Co., Tokyo, Japan). 

Statistical analysis 

The statistical analysis was performed using KaleidaGraph software (HULINKS Inc., Tokyo, 

Japan). Statistical significance (p value) was calculated using ANOVA followed by Scheffe’s F-

test. 

Results 
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SLC46A1 expression in glioma surgical specimens 

Figure 1 shows the clinical features and SLC46A1 expression as observed by 

immunohistochemistry of 24 glioma cases. The immunostained specimens were classified into 

four groups based on the expression of SLC46A1: not detected (Fig. 1A, 0), weak (Fig. 1A, 1), 

moderate (Fig. 1A, 2) and strong (Fig. 1A, 3). SLC46A1 expression was observed in all 

specimens: 25% presented strong expression, 71% presented moderate expression, and 4% 

presented weak expression (Fig. 1B, SLC46A1). Additionally, 67% of the highly fluorescent 

specimens in the intraoperative PDD strongly expressed SLC46A1 (Fig. 1B, PDD). Regarding 

the malignancy grades, 33% of the grade IV specimens, 22% of the grade III specimens and 17% 

of the grade II specimens strongly expressed SLC46A1 (Fig. 1B, grade and SLC46A1). The 

expression of SCL46A1 in the specimens appeared to coincide with malignancy. For further 

specific evidence of SLC46A1 expression in malignant tissue, Fig. 2 shows a slice including an 

area of both malignant tissue and normal tissue. SLC46A1 was only expressed in the malignant 

area. 

To confirm SLC46A1 expression of malignant glioma, we randomly chose four frozen sections 

(2 cases of grade III, 2 cases of grade IV); all four strongly expressed SLC46A1 mRNA (by RT-

PCR) (Fig. 3). 

SLC46A1-expressing and cellular uptake of HpD 

The expression of SLC46A1 in U87, U251 and T98G cells was determined by RT-PCR. 

SLC46A1 showed different levels of expression in each cell line, increasing in the order U87 (no 

SLC46A1 mRNA) to U251 to T98G (Fig. 4). 
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Fig. 5 shows the cellular uptake of HpD by U87, U251 and T98G. The amount of HpD in the 

cells increased in the order U87 to U251 to T98G. While the HpD fluorescence images showed 

slight differences in cellular uptake (Fig. 5A), the HpD fluorescence intensity showed significant 

differences (Fig. 5B). The HpD fluorescence intensity in T98G was 2.8-fold greater than that in 

U87.  

The amounts of HpD cellular uptake coincided with SLC46A1 expression. These results suggest 

that the accumulation of HpD in glioma cells is related to the expression of SLC46A1.  

Discussion 

In this study, proton-coupled folate transporter SLC46A1 expression was quantified in surgical 

specimens and in glioma cell lines. Our findings indicate that the expression of SLC46A1 

coincides with HpD cellular uptake, and SLC46A1 seems to be related to the malignancy grade 

of glioma. In our previous study, SLC46A1 was expressed in gastric cancer cells but not in 

normal gastric cells.
19

 These results suggest that SLC46A1 could become an indicator of 

malignant area. In addition, the current study and our previous study suggest that selective 

accumulation of HpD in the tumor is dependent on SLC46A1. 

Talaporfin sodium is a new photosensitizer for photodynamic therapy (PDT) in the lung.
22

 The 

clinical application of PDT will be expanded to other tissues in the near future.
22, 23

 For the 

treatment of malignant glioma, talaporfin sodium has progressed to a phase II clinical study, and 

the safety and therapeutic effects of talaporfin have been reported.
24-27

 While talaporfin sodium 

and HpD are porphyrin structure, SLC46A1 probably transports talaporfin sodium as well as 

HpD through structural recognition.
28

 In a vasogenic edema model, 5-ALA did not increase 

fluorescence intensity in the contralateral brain, but talaporfin did.
17

 An area of edema is thought 
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to undergo oxidative stress and could lead to talaporfin sodium accumulation in an area through 

SLC46A1. This phenomenon could make it difficult to distinguish the invaded area from a 

peritumoral edema. This could be a limitation of talaporfin sodium PDD. 

SLC46A1 is a porphyrin and folic acid transporter in the human duodenum and is regulated in 

hypoxia
18

. Porphyrin and folic acid are necessary to maintain cellular homeostasis through the 

activity of redox enzymes and the synthesis both DNA and amino acids, respectively.
28 

Because 

mitochondrial complex I and mitochondrial complex III dysfunction are critical in cancer cells, 

an electron transfer system easily generates reactive oxygen species (ROS).
29, 30 

Consequently, 

cancer cells are often oxidatively stressed. This stress causes harmful effects such as lipid 

peroxidation and apoptosis via DNA damage.
31, 32

 Activities of redox and DNA repair protect 

from this stress; thus, cancer cells should require antioxidants and the material required for DNA 

repair for its survival. The intracellular antioxidant of manganese superoxide dismutase is more 

abundant in normal cells than cancer cells.
33

 These factors may explain the expression of 

SLC46A1 in malignant cells. If we could control the expression of SLC46A1, especially 

silencing SLC46A1 in tumor cells, transportation of porphyrin or folic acid could be selectively 

controlled. This process has the potential to become the key to a new molecular targeting therapy. 

Conclusion 

Proton-coupled folate transporter SLC46A1 expression was measured in surgical specimens and 

glioma cell lines. SLC46A1 is involved in the mechanism of glioma fluorescence.  
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Figure Legends 

Figure 1. Information on the malignancy grade of specimens and the expression of SLC46A1. 

(A) The expression level of SLC46A1 expressions from immunostained specimens. The 

intracellular SLC46A1 immunostaining was assessed using a semiquantitative scale (0: not 

detected; 1: weak; 2: moderate; 3: strong). Nuclei positive for MIB-1 were determined by 

counting at least 1,000 tumor cells. (B) 24 cases of clinical indications and SLC46A1 expression 

according to the upper images. The malignancy grade was based on the 2007 WHO classification 

of tumors of the central nervous system. GBM: glioblastoma; GBMO: glioblastoma with 

oligodendroglial component; AA: anaplastic astrocytoma; AOD: anaplastic oligodendroglioma; 

AOA: anaplastic oligoastrocytoma; OD: oligodendroglioma; OA: oligoastrocytoma; PXA: 

pleomorphic xanthoastrocytoma; lt: left; rt: right; F: frontal lobe; T: temporal lobe; P: parietal 

lobe; O: occipital lobe; lat. vent.: lateral ventricle 

Figure 2. Tissue immunostained for SLC46A1 protein. While the malignant tumor area (upper 

area) was stained with antibody against SLC46A1, the normal area (bottom area) was not stained 

with this antibody. (×200) 

Figure 3. SLC46A1 mRNA expression in the specimens of four randomly selected cases of 

malignant glioma (G: grade) by RT-PCR.  

Figure 4. mRNA expression in U87, U251 and T98G cells by RT-PCR. (A) Bands of SLC46A1 

(182 bp) and β-actin (228 bp) in 2% agarose gel stained with ethidium bromide. (B) The relative 

intensity of the band area of SLC46A1 and β-actin in each cell line. 

Figure 5. Cellular uptake of HpD in U87, U251 and T98G. Cellular uptake was determined by 

HpD fluorescence intensity and fluorescence images. (A) Fluorescence images. The cells were 
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incubated with 0.1 mM HpD at 37°C for 1 and 3 h. The fluorescence images were captured by 

fluorescence microscope. Scale bars: 50 m (B) HpD fluorescence intensity. A total of 1 × 10
6
 

cells were incubated with 0.1 mM HpD at 37°C for 1 or 3 h. Then, 100 L of the extracted HpD 

cells was measured using a plate reader (Em. 415 nm, Ex. 625 nm). HpD was then extracted 

from cells using DMSO. Error bars indicate standard deviation. Two-way analysis of variance 

(ANOVA) suggested a significant effect of cell type on the HpD concentration. Statistically 

significant differences were determined by employing Scheffe’s F-test and are denoted as **p < 

0.01 (n=3). 
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Figure 5 
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