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Abstract

The Ornstein-Uhlenbeck (O-U) process is of practical importance in many

application areas such as statistics, meteorology and financial engineering.

While transition probabilities of the O-U process are readily accessible,

quantifying its dynamic behavior is numerically cumbersome. The purpose

of this paper is to develop numerical procedures for evaluating distributions

of first passage times and the historical maximum of the O-U process via the

Ehrenfest process approximation. It is shown that a sequence of Ehrenfest

processes with appropriate scaling and shifting converges in law to the O-

U process. Accordingly, first passage times and the historical maximum of

the Ehrenfest process converge in law to those of the O-U process. Through

analysis of the spectral structure of the Ehrenfest process, efficient numerical

algorithms are developed, thereby providing effective approximation tools for

capturing the dynamic behavior of the O-U process. Some numerical results

are also exhibited.
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0. Introduction

The Ornstein-Uhlenbeck (O-U) process {XOU(t) : t ≥ 0} is a Markov diffusion pro-

cess on the real continuum −∞ < x < ∞. Its probability density function f(x, t) =

d
dx

P [XOU(t) ≤ x] is governed by the forward diffusion equation

∂

∂t
f(x, t) =

∂2

∂x2
f(x, t) +

∂

∂x
[x f(x, t)] . (0.1)

A basic function describing this process is the conditional transition density g(x0, x, τ ) =

d
dx

P [X(t + τ ) ≤ x|X(t) = x0] given by

g(x0, x, τ ) =
1√

2π
√

1 − e−2τ
exp

{
−(x− x0 e−τ )

2

2 (1 − e−2τ )

}
, −∞ < x <∞. (0.2)

Its stationary or ergodic density is given by

f∞(x)
def.
= lim

t→∞
f(x, t) =

1√
2π

e−
x2

2 , −∞ < x <∞. (0.3)

The O-U process has many applications to statistics, including the studies of “good-

ness of fit” of a set of observations to a distribution function, see e.g. Anderson and

Darling [1] and the studies of stopping time for sample sequences, see e.g. Armitage,

McPherson and Rowe [2]. The process also plays an important role in meteorology

describing random behavior of the temperature, see e.g. Keilson and Ross [11]. During

the past three decades, the usefulness of the O-U process has been reinforced in the

area of financial engineering where spot interest rates are often represented by the O-U

process, see e.g. Vasicek [18]. As we saw in (0.2) and (0.3), the O-U process itself is

quite tractable. However, simple related processes and random variables for capturing

its dynamic behavior become numerically intractable.

The O-U process is often approximated by the Ehrenfest urn model where both

the state space and the time axis are discretized, see e.g. Karlin and Taylor [8].

For capturing the dynamic behavior of the O-U process, however, this approach is

rather cumbersome. In this paper, we propose to utilize the continuous time Ehrenfest

process for approximating the O-U process where only the state space is discretized.

The underlying spectral structure enables one to develop efficient numerical procedures

for computing distributions of first passage times and the historical maximum of the

O-U process, which are of considerable importance in applications.
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A finite Markov chain in continuous time of practical interest arises from the sum of

K independent identical chains {Jj(t) : t ≥ 0}, j = 1, ..., K, each on state space {0, 1}
governed by transition rates ν01 = ν10 = 1

2
. The Markov chain of interest



NK (t) : NK (t) =

K∑

j=1

Jj(t), t ≥ 0



 (0.4)

on state space {0, 1, ..., K} is called the Ehrenfest process and has transition rates

νn,n+1 =
1

2
(K − n), 0 ≤ n ≤ K − 1, and νn,n−1 =

1

2
n, 1 ≤ n ≤ K. (0.5)

Consequently the local growth rate of the variance is given by

νn,n+1 + νn,n−1 =
K

2
, (0.6)

which is independent of n, and the local velocity is given by

νn,n+1 − νn,n−1 =
K

2
− n. (0.7)

For the associated stationary chain {NKS(t) : t ≥ 0}, one has

cov [NKS(t), NKS(t + τ ) ] =
K

4
e−τ , (0.8)

and asymptotic normality.

The O-U process is characterized by its Markov property, normal distribution, and

exponential covariance function. Because of the properties of the Ehrenfest process

specified in (0.5) through (0.8) together with its asymptotic normality, one then expects

that a sequence of processes {XV (t) : t ≥ 0}, V = 1, 2, 3, ..., defined by

XV (t) =

√
2

V
N2V (t) −

√
2V (0.9)

converges in law to the O-U process as V → ∞. The purpose of this paper is to prove

this convergence in law, to develop systematically the properties of {N2V (t) : t ≥ 0}
and to quantify its dynamic behavior numerically, which in turn provides a numerical

foundation for capturing the dynamic behavior of the O-U process.

The structure of this paper is as follows. In Section 1, the spectral representation of

the Ehrenfest process {N2V (t) : t ≥ 0} is established following Karlin and McGregor [4,

5, 6, 7]. Section 2 summarizes the first passage time structure of birth-death processes
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from Keilson [10], and then that of the Ehrenfest process is studied in detail in Section

3. In particular, it is shown that the first passage time T0V of {N2V (t) : t ≥ 0} from 0 to

V converges in law to the distribution conjugate to the extreme-value distribution. We

also evaluate the historical maximum of {N2V (t) : t ≥ 0}. In Section 4, the convergence

in law of XV (t) to XOU(t) as V → ∞ is proven for all t ≥ 0 and some related results are

obtained. Section 5 is devoted to development of numerical algorithms for evaluating

transition probabilities, first passage times, and the historical maximum of the O-U

process via the Ehrenfest process approximation. Numerical results are also exhibited,

demonstrating speed and accuracy of the Ehrenfest process approximation procedure.

1. Spectral Representation of the Ehrenfest Process

We consider 2V independent and identical Markov chains {Jj(t) : t ≥ 0}, j =

1, ..., 2V, in continuous time on {0, 1} governed by the transition rate matrix

ν =


 0 1

2

1
2 0


 . (1.1)

The corresponding infinitesimal generator Q is then given by

Q = −ν
D

+ ν; ν
D

=




1
2

0

0 1
2


 . (1.2)

Let q(t) = [qij(t)] , 0 ≤ i, j ≤ 1, be the transition probability matrix of {Jj(t) : t ≥ 0 }
so that d

dt
q(t) = Qq(t). Since q(0) = I which denotes the identity matrix, taking

the Laplace transform of this matrix differential equation yields s q̂(s) − I = Q q̂(s) or

q̂(s) =
[
sI −Q

]−1

where q̂(s) =

∫ ∞

0

e−stq(t) dt. From (1.2), one then finds that

q(t) =


 q00(t) q01(t)

q10(t) q11(t)


 =


 f(t) g(t)

g(t) f(t)


 , (1.3)

where

f(t) =
1

2

(
1 + e−t

)
; g(t) =

1

2

(
1 − e−t

)
. (1.4)

For analytical convenience, we introduce two generating functions :

α0(t, u)
def.
= q00(t) + q01(t)u = f(t) + g(t)u (1.5)
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and

α1(t, u)
def.
= q10(t) + q11(t)u = g(t) + f(t)u. (1.6)

Let {N2V (t) : t ≥ 0 } be defined by

N2V (t)
def.
=

2V∑

j=1

Jj(t). (1.7)

Then {N2V (t) : t ≥ 0 } is a birth-death process on N = {0, 1, ..., 2V } governed by the

upward transition rates λn and the downward transition rates µn, where

λn =
1

2
(2V − n) ; µn =

n

2
, n ∈ N . (1.8)

We note that

νn
def.
= λn + µn = V, n ∈ N , (1.9)

which is independent of state n. This birth-death process is called the Ehrenfest

process, see e.g. Feller [3]. Let P
2V

(t) = [p2V :mn(t)] m,n ∈ N be the transition prob-

ability matrix of {N2V (t) : t ≥ 0 }. As in (1.5) and (1.6), we introduce the following

generating functions :

βm(t, u) =

2V∑

k=0

p2V :mk(t)uk, m ∈ N . (1.10)

From the independence of {Jj(t) : t ≥ 0}, one then has

βm(t, u) = α0(t, u)
2V −m α1(t, u)

m = {f(t) + g(t)u}2V −m{g(t) + f(t)u}m. (1.11)

In a series of papers [4, 5, 6, 7], Karlin and McGregor analyze the spectral repre-

sentation of the transition probability matrix P (t) = [pmn(t)] for birth-death processes

and use the results to evaluate various probabilistic quantities. More specifically, for

a general birth-death process governed by upward transition rates λn, n ≥ 0, and

downward transition rates µn, n ≥ 1, the infinitesimal generator Q associated with

P (t) has a vector eigenfunction y(x) = [yn(x)]n∈N with eigenvalue −x, i.e.

Qy(x) = −x y(x). (1.12)
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Starting with y0(x) = 1, this then leads to




−λ0 y0(x) + λ0 y1(x) = −x y0(x)
µn yn−1(x) − (λn + µn) yn(x) + λn yn+1(x) = −x yn(x), n ≥ 1

. (1.13)

It then follows that yn(x) is a polynomial of degree n with leading coefficients

(
n−1∏
j=0

λj

)−1

.

Let f(x, t) be a vector function defined by

f(x, t) = P (t) y(x). (1.14)

From the Kolmogorov forward equation, one then finds that

∂

∂t
f(x, t) =

∂

∂t
P (t) y(x) = P (t)Qy(x) = −xP (t) y(x)

so that from (1.14)

∂

∂t
f(x, t) = −x f(x, t). (1.15)

Since f(x, 0+) = y(x), the vector partial differential equation (1.15) has the unique

solution

f(x, t) = e−xty(x). (1.16)

Combining with (1.14), Equation (1.16) then implies that

∑

n∈N
pmn(t) yn(x) = e−xtym(x), m ∈ N . (1.17)

There exists a measure ψ(x) on [0,∞) such that {yn(x)}n∈N becomes a set of orthog-

onal polynomials with respect to ψ(x), see Karlin and McGregor [4]. Accordingly one

has
∫ ∞

0

ym(x) yn(x) dψ(x) =
δmn

πn

, m, n ∈ N , (1.18)

where δmn = 1 if m = n, δmn = 0 if m 6= n, and πn =
n−1∏

j=0

λj/
n∏

j=1

µj , n ≥ 1, with

π0 = 1.

From (1.14) and (1.17), {pmn(t)}m∈N may be recognized as the generalized Fourier

coefficients of the m-th component fm(x, t) of f(x, t) associated with {yn(x)}n∈N and

ψ(x) for each m ∈ N . Accordingly, one finds from (1.17) that

pmn(t) = πn

∫ ∞

0

e−xtym(x) yn(x) dψ(x), m, n ∈ N . (1.19)
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For the case of the Ehrenfest process, these entities are identified, see Karlin and

McGregor [6], as

yn(x) =
1(
2V
n

)
2V∑

j=0

(
2V − x

n− j

)(
x

j

)
(−1)j, n ∈ N , (1.20)

dψ(x) =

(
2V

n

)
2−2V , x = 0, 1, ..., 2V, (1.21)

and

p2V :mn(t) =

(
2V
n

)

22V

2V∑

j=0

(
2V

j

)
ym(j) yn(j) e−jt. (1.22)

In this case, the polynomials {yn(x)}n∈N are called the Krawtchouk polynomials. It

is clear from the independence of {Jj(t) : t ≥ 0} that the ergodic distribution eT of

{N2V (t) : t ≥ 0} is given by

e = [en]
T
n∈N ; en =

(
2V

n

)
2−2V , n ∈ N . (1.23)

We note from (1.22) and (1.23) that

lim
t→∞

p2V :mn(t) =

(
2V
n

)

22V

(
2V

0

)
ym(0) yn(0) = en, m, n ∈ N (1.24)

as expected.

2. First Passage Times and the Historical Maximum of General

Birth-Death Processes

In this section, we first summarize, from Keilson [10], the first passage time structure

of a general birth-death process {N (t) : t ≥ 0} governed by upward transition rates

λn (n ≥ 0) and downward transition rates µn (n ≥ 1). Let Tmn be the first passage

time of {N (t) : t ≥ 0} from state m to state n. Formally, we define

Tmn = inf { t : N(t) = n |N(0) = m } . (2.1)

Let smn(τ) = d
dτ

P [ Tmn ≤ τ ] and define the Laplace transform σmn(s) = E
[
e−s Tmn

]
.

For notational convenience, we denote Tm,m+1 by T+
m , and s+m(τ) and σ+

m(s) are defined

similarly. From the consistency relations, one has

σ+
n (s) =

νn

s+ νn

[
λn

νn

+
µn

νn

σ+
n−1(s)σ

+
n (s)

]
, n ≥ 1,



8 Sumita, Gotoh and Jin

where νn = λn + µn. This then yields

σ+
n (s) = λn

[
s+ νn − µn σ

+
n−1(s)

]−1
, n ≥ 1; σ+

0 (s) =
λ0

s+ λ0
. (2.2)

It is clear that

σ0n(s) = σ0 n−1(s)σ
+
n−1(s), n ≥ 0. (2.3)

From (2.2), it can be readily seen by induction that

σ0n(s) =
1

gn(s)
, n ≥ 1; g0(s) = 1. (2.4)

where gn(s) is a polynomial of order n. It then follows from (2.2) that

gn+1(s) =
1

λn

[(s + νn) gn(s) − µn gn−1(s)] , n ≥ 0, (2.5)

where g−1(s) = 0 and g0(s) = 1. By comparing (2.5) with (1.13), it can be seen that

polynomials yn(x) and gn(s) are related to each other by

yn(x) = gn(−x), n ≥ 0. (2.6)

It should be noted from (2.3) and (2.4) that

σ+
n (s) =

gn(s)

gn+1(s)
, n ≥ 0. (2.7)

From (2.6), {gn(s)} are orthogonal polynomials. Accordingly the zeros of gn(s) are

distinct, the zeros of any two successive polynomials interleave, and the zeros are all

negative, see e.g. Szegö [17]. Consequently, from (2.7), σ+
n (s) can be written as

σ+
n (s) =

n∑

j=0

rn+1,j

αn+1,j

s+ αn+1,j

, (2.8)

where −αn+1,j are the zeros of gn+1(s), rn+1,j = lim
s→−αn+1,j

s+αn+1,j

αn+1,j

gn(s)
gn+1(s) ≥ 0 and

n∑
j=0

rn+1,j = σ+
n (0+) = 1. This implies that s+n (t) is a mixture of exponential densities

and is completely monotone. The downward first passage times T−
n,n−1 = T−

n and Tn0

can be treated similarly.

We next turn our attention to the historical maximum of {N (t) : t ≥ 0} in the time

interval [0, θ] given that N(0) = n0. More specifically, let M(n0, θ) be defined as

M(n0, θ) = max
0≤t≤θ

{N(t) |N(0) = n0 } . (2.9)
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Then the following dual relation holds between Tn0 n+1 (n0 ≤ n) and M(n0, θ).

Fn0θ(n)
def.
= P [M(n0, θ) ≤ n ] = P [ Tn0 n+1 > θ ]

def.
= Sn0 n+1(θ). (2.10)

Hence one has

Fn0θ(n) =





0 n < n0

Sn0 n+1(θ) n ≥ n0.
(2.11)

For the corresponding stationary process {NS(t) : t ≥ 0 } , the distribution function

Fθ(n) of the historical maximum is then given by

Fθ(n) =
∑

m≤n

em Sm n+1(θ), (2.12)

where eT = [ em ] is the ergodic distribution of {N(t) : t ≥ 0 } .

3. First Passage Times and the Historical Maximum of the Ehrenfest

Process

As we saw in Section 1, the Ehrenfest process {N2V (t) : t ≥ 0} is a birth-death

process on N = {0, 1, ..., 2V } governed by transition rates λn and µn specified in (1.8).

The recursive formula in (2.5) then becomes

gn+1(s) =
2

2V − n

[
(s+ V ) gn(s) − n

2
gn−1(s)

]
, (3.1)

with g−1(s) = 0 and g0(s) = 1. From (1.20) and (2.6), gn(s) are given explicitly by

gn(s) =
1(
2V
n

)
2V∑

j=0

(
2V + s

n − j

)(−s
j

)
(−1)j, 0 ≤ n ≤ 2V. (3.2)

In order to evaluate the first passage times smn(τ) (m < n) with corresponding Laplace

transforms σmn(s) = σ+
m(s) · · ·σ+

n−1(s) = gm(s)/gn(s) from (2.7), the zeros of gn(s) are

needed. These zeros in turn enables one to quantify the historical maximum through

(2.11). In principle, the zero search of gn(s) can be accomplished via a straightforward

bisection approach since the zeros of gn(s) and gn+1(s) interleave because of the

underlying orthogonality. In case of the Ehrenfest process, the amount of effort required

for the zero search can be considerably reduced by the following properties.



10 Sumita, Gotoh and Jin

Theorem 3.1. Let hn(s) = gn(s − V ), n ≥ 0. Then hn(s) = (−1)n hn(−s), n ≥ 0,

i.e.

hn(s) is





odd when n is odd,

even when n is even.

Proof. Equation (3.1) can be rewritten in terms of hn(s) as

hn+1(s) =
2

2V − n

[
s hn(s) − n

2
hn−1(s)

]
, n ≥ 0, (3.3)

with h−1(s) = 0 and h0(s) = 1. The result then follows by induction on n.

The next corollary is immediate from Theorem 3.1.

Corollary 3.1.

(a) If gn(−x) = 0, then gn(x− 2V ) = 0.

(b) If n is odd, then gn(−V ) = 0.

Theorem 3.1 implies that the zeros of hn(s) are symmetric about 0 and, correspondingly

from Corollary 3.1, the zeros of gn(x) are symmetric about −V . Hence we need to find

only d(n−1)/2e zeros, where dxe is the minimum integer which is greater than or equal

to x. Furthermore, since hn(s) is either odd or even, there are only 1+d(n−1)/2e terms

in each hn(s), while gn(s) has (n + 1) terms as can be seen from (3.2). Consequently

the computational time of the zero search can be reduced approximately by a factor of

4. This property of the Ehrenfest process is due to the fact that the local growth rate is

constant as specified in (0.6). Indeed, the results similar to Theorem 3.1 and Corollary

3.1 are available for general birth-death processes whenever νn = λn + µn = ν for all

n.

We next show that gV (s) has negative odd integers as its root. A preliminary lemma

is needed.

Lemma 3.1. For m, n ∈ N , one has gn(−m) = gm(−n).

Proof. Because of an elementary property of binomial coefficients, one sees that
(
2V −n
m−j

)(
n
j

)
(
2V
m

) =
(2V − n)!

(m− j)! (2V − n−m+ j)!
· n!

j! (n− j)!
· m! (2V −m)!

(2V )!

=

(
2V −m
n−j

)(
m
j

)
(
2V
n

) ,

and the result follows from (3.2).
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Theorem 3.2.

gV (s) =

V∏

j=1

s+ 2j − 1

2j − 1

Proof. Corollary 3.1 b) states that gn(−V ) = 0 whenever n ∈ N is odd. Hence from

Lemma 3.1, one has gV (−n) = gn(−V ) = 0 whenever n ∈ N is odd. Since gV (s) is a

polynomial of degree V , the theorem follows.

We are now in a position to evaluate the limiting behavior of T0V as V → ∞.

For a random variable X with FX(x) = P [X ≤ x ] , − ∞ < x < ∞, suppose

the corresponding Laplace transform ϕX(s) = E[ e−sX ] =

∫ ∞

−∞
e−sx dFX(x) has the

convergence strip containing the imaginary axis on the complex plane. Then the

conjugate transform Y of X is defined as

FY (y) = P [Y ≤ y ] =

∫ y

−∞
e−sx dFX(x)

ϕX(s)
, −∞ < y <∞. (3.4)

The reader is referred to Keilson [9] for more detailed discussions of the conjugate trans-

form. The next theorem shows that T0V with certain shifting and scaling converges in

law to a conjugate transform of an extreme-value random variate.

Theorem 3.3. Let Y be a random variable having the probability density function

fY (τ) =
1√
π

exp

{
−1

2
τ − e−τ

}
, −∞ < τ <∞. (3.5)

Then 2T0V − log V converges in law to Y as V → ∞.

Proof. Let Z = 2T0V − logV . Then from Theorem 3.2 and (2.4), one sees that

ϕz(s) = E[ e−sz ] = V s σ0V (2s) = V s

V∏

j=1

2j − 1

2s + 2j − 1
.

By simple algebra, this then leads to

ϕz(s) =
V

1
2

22V

(
2V

V

)
V

s− 1
2

V∏

j−1

j

s− 1
2 + j



 . (3.6)

The factor inside the braces converges to Γ(s+ 1
2) as V → ∞, while the rest converges

to 1
Γ( 1

2 )
= 1√

π
, i.e., ϕz(s) → Γ(s+ 1

2 )

Γ( 1
2 )

as V → ∞. It is known that Γ(s+1) is the Laplace

transform of the extreme value distribution with p.d.f. exp{−τ−e−τ}, −∞ < τ <∞,

and thus the theorem follows.
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We saw in (2.8) that the upward first passage time T+
m is a finite mixture of

exponential variates for general birth-death processes. In case of the Ehrenfest process,

the fact that the exit rate of each state νn = λn + µn = V is constant enables one to

show that T+
n can also be expressed as an infinite mixture of Gamma variates of odd

order.

Theorem 3.4. For the Ehrenfest process, T+
n and T−

n (n ∈ N ) are infinite mixtures

of Gamma variates of odd order with Laplace transforms Γ(V, 2j + 1), j = 0, 1, 2, ...

Proof. The recursive formula for σ+
n (s) in (2.2) can be rewritten as

σ+
n (s) =

r+n ε(s)

1 − r−n ε(s)σ
+
n−1(s)

; ε(s) = σ+
0 (s) =

V

s+ V
, n ≥ 1, (3.7)

where r+n = 1− n
2V

is the probability of going up given exit from n and r−n = n
2V

is that

of going down given exit from n. For Re(s) > 0, Equation (3.7) has a series expression

σ+
n (s) = r+n ε(s)

∞∑

j=0

{
r−n ε(s)σ

+
n−1(s)

}j

and the result follows by induction for σ+
n (s). For σ−

n (s), it suffices to note that

σ+
n (s) = σ−

2V −n(s), completing the proof.

4. Convergence of the Ehrenfest Process to the O-U Process

As we saw in (0.2), the state probability density of the O-U process {XOU(t) : t ≥ 0 }
with initial condition XOU(0) = x0 is normally distributed with mean x0 e−t and

variance 1 − e−2 t for any t > 0. The corresponding Laplace transform with respect to

x is then given by

γ(x0 , s, t) = exp

{
−x0 e−ts+

1

2
(1 − e−2 t) s2

}
. (4.1)

In this section, we show that the Ehrenfest process N2V (t) of (1.7) with suitable scaling

and shifting converges in law to XOU(t) as V → ∞, for all t > 0.

Let {XV (t) : t ≥ 0 } be a stochastic process defined by

XV (t) =

√
2

V
N2V (t) −

√
2V . (4.2)
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We note that {XV (t) : t ≥ 0 } has a discrete support on { r(0), ..., r(2V ) } where

r(n) =

√
2

V
n −

√
2V , n = 0, 1, ... (4.3)

Clearly r(n+1)−r(n) =
√

2
V

→ 0 as V → ∞. In the following theorem, we prove that,

when N2V (0) is chosen appropriately, XV (t) converges in law to XOU(t) as V → ∞.

For notational convenience, we define

ηV (x) =

⌈√
V

2
x

⌉
. (4.4)

Theorem 4.1. Let {XOU(t) : t ≥ 0 } be the O-U process with XOU(0) = x0, −∞ <

x <∞. Let {XV (t) : t ≥ 0 } be as in (4.2) with XV (0) =
√

2
V
ηV (x0) where V is chosen

large enough so that −
√

2V ≤ XV (0) ≤
√

2V . Then XV (t) converges in law to XOU(t)

for all t, t ≥ 0, as V → ∞.

Proof. Let ϕV (x0, w, t) = E
[
e−wXV (t)

∣∣∣XV (0) =
√

2
V
ηV (x0)

]
. One sees from

(1.10) and (4.2) that

ϕV (x0, w, t) = ew
√

2V βN2V (0)

(
t, e−w

√
2
V

)
(4.5)

where N2V (0) = V + ηV (x0). We wish to show that ϕV (x0, w, t) → γ(x0 , w, t) as

V → ∞. Equation (4.5) can be rewritten by (1.11) as

ϕV (x0, w, t) = ew
√

2V
[{
f(t) + g(t) e−w

√
2
V

}{
g(t) + f(t) e−w

√
2
V

}]V

×
[
g(t) + f(t)e−w

√
2
V

f(t) + g(t)e−w
√

2
V

]ηV (x0)

. (4.6)

Since f(t)+g(t) = 1, the first two factors on the right hand side of (4.6) can be written

as

ew
√

2V βV (t, e−w
√

2
V ) =

[
1 + 2f(t) g(t)

{
cosh

(
w

√
2

V

)
− 1

}]V

. (4.7)

For sufficiently small |Re(w)|, one has

f(t) g(t)

∣∣∣∣∣ cosh

(
w

√
2

V

)
− 1

∣∣∣∣∣ <
1

2
(4.8)
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so that from (4.7),

log
[
ew

√
2
V βV (t, e−w

√
2
V )
]

= V log
[
1 + 2 f(t) g(t)

{
cosh

(
w
√

2
V

)
− 1
}]

= V

∞∑

k=1

1

k
{2 f(t) g(t)}k

{
cosh

(
w

√
V

2

)
− 1

}k

.

It then follows that

log
[
ew

√
2V βV (t, e−w

√
2
V )
]

=
1

2
(1 − e−2t)w2 + o(V −1). (4.9)

The second factor on the right hand side of (4.6) can be rewritten as


1 −

{f(t) − g(t)}
(
1 − e−w

√
2
V

)

f(t) + g(t) e−w
√

2
V




ηV (x0)

=


1 −

e−tw
√

2
V

+O
(
V −1

)

1 +O
(
V − 1

2

)




ηV (x0)

=


1 −

x0 e−tw + x0O
(
V − 1

2

)

x0

√
V
2

{
1 + O(V − 1

2 )
}




x0

√
V
2

�
ηV (x0)

x0

√
V
2 �

.

From (4.4),
ηV (x0)

x0

√
V
2

→ 1 as V → ∞ while (1 + β
α
)α → eβ as α → ∞. It then follows

that
[
g(t) + f(t) e−w

√
V
2

f(t) + g(t) e−w
√

2
V

]ηV (x0)

→ exp{−x0 e−t w} as V → ∞. (4.10)

From (4.6), (4.9) and (4.10), one concludes that

ϕV (x0, w, t) → exp

{
x0 e−t w +

1

2
(1 − e−2t)w2

}

as V → ∞, completing the proof.

The next corollary is immediate from Theorem 4.1.

Corollary 4.1. For any x0, x ∈ (−∞,∞), let m = V + ηV (x0) and n = V + ηV (x).

Then
√
V

2
p2V :mn(t) → g(x0, x, t) as V → ∞

for all t, t ≥ 0.

Corollary 4.1 may be seen alternatively in the following manner. Let
(
Hej

(x)
)∞
j=0

be

the set of Hermite polynomials defined by the Rodrigues formula

Hej
(x) = e

x2

2 (−1)j

(
d

dx

)j (
e−

x2

2

)
, j ≥ 0, (4.11)
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where

∫ ∞

−∞
e−

x2

2 Hei
(x)Hej

(x) dx = δij
√

2π j!. (4.12)

The classical decomposition theorem, see e.g. Magnus, Oberhettinger and Soni [12],

states that

1√
1 − z2

e
− (x−yz)2

2(1−z2) = e−
x2

2

∞∑

j=0

Hej
(x)Hej

(y)
zj

j!
. (4.13)

Applying (4.13) to (0.2), one finds that

g(x0, x, τ ) =
e−

x2

2√
2π

∞∑

n=0

Hen
(x0)Hen

(x)
e−nτ

n!
. (4.14)

From (1.22), (2.6) and Lemma 3.1, one obtains that

√
V

2
p2V :mn(t) =

√
V

2

(
2V
n

)

22V

2V∑

j=0

(
2V

j

)
yj(m) yj(n) e−jt. (4.15)

It is known, see e.g. Szegö [17], that

lim
V →∞

√(
2V

j

)
yj(m) =

1√
j!
Hej

(x0); lim
V →∞

√(
2V

j

)
yj(n) =

1√
j!
Hej

(x).

The first factor
√

V
2

(2V

n )
22V in (4.15) converges to e−

x2

2 /
√
π as V → ∞ from Starling

formula and Corollary 4.1 follows.

It is natural to expect that a first passage time of {XV (t) : t ≥ 0 } also converges

in law to the corresponding first passage time of {XOU(t) : t ≥ 0 } as V → ∞, which

we prove next.

Theorem 4.2. Letm and n be as in Corollary 4.1. Let Tr(m)r(n) = inf { τ : XV (τ) = r(n)

|XV (0) = r(m) } and Tx0 x = inf { τ : XOU(τ) = x |XOU(0) = x0 }. Then Tr(m)r(n)

converges in law to Tx0 x as V → ∞.

Proof. Let l(x0, x, τ ) = d
dτ

P[ Tx0 x ≤ τ ] with λ(x0, x, s) =

∫ ∞

0

e−sτ l(x0, x, τ ) dτ =

E
[
e−s Tx0 x

]
. From the consistency relations, one sees that

g(x0, x, τ ) =

∫ τ

0

l(x0, x, τ − y) g(x, x, y) dy. (4.16)
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Taking the Laplace transform on both sides of (4.16) with respect to τ and solving for

λ(x0, x, s), it follows that

λ(x0, x, s) =
γ(x0 , x, s)

γ(x, x, s)
. (4.17)

For the counter part of (4.16) for the Ehrenfest process {N2V (t) : t ≥ 0 }, one has

p2V :mn(t) =

∫ t

0

smn(t− y) p2V :nn(y) dy (4.18)

where smn(τ) = d
dτ

P [Tmn ≤ τ ] with Tmn = inf
t≥0

{N2V (t) = n|N2V (0) = m }. Let

πmn(s) =

∫ ∞

0

e−sτp2V :mn(τ) dτ and σmn(s) =

∫ ∞

0

e−sτ smn(τ) dτ = E
[
e−sTmn

]
.

Corresponding to (4.17), Equation (4.18) then yields that

σmn(s) =
πmn(s)

πnn(s)
=

√
V
2 πmn(s)

√
V
2 πnn(s)

. (4.19)

Hence from (4.17), (4.19) and Corollary 4.1, one has σmn(s) → λ(x0, x, s) as V → ∞,

i.e. Tmn converges in law to Tx0,x as V → ∞. It is clear that Tmn = Tr(m)r(n) almost

surely, completing the proof.

Similarly, we can prove that the historical maximum defined in (2.9) also converges in

law to that of the O-U process.

Theorem 4.3. Letm be as in Corollary 4.1. Let M(r(m), θ) = max
0≤t≤θ

{XV (t)|XV (0) = r(m) }
and M(x0, θ) = max

0≤t≤θ
{XOU(t)|XOU(0) = x0 }. Then M(r(m), θ) converges in law to

M(x0 θ) as V → ∞.

Proof. For the O-U process, for x > x0, one sees that Fx0,θ(x) = P[M (x0, θ) ≤ x] =

P[Tx0,x > 0] = Sx0,x(θ). Hence

Fx0,θ(x) =





0 if x < x0

Sx0,x(θ) if x ≥ x0,
(4.20)

where Sx0,x0(θ)
def.
= lim

∆→0
Sx0,x0+∆(θ) = P [XOU(τ) ≤ x0, 0 ≤ τ ≤ θ |XOU(0) = x0 ].

The theorem then follows from Theorem 4.2 and (2.11).

Remark 4.1. Using (4.17), Keilson and Ross [11] tabulate distribution functions of

first passage times of {XOU(t) : t ≥ 0}. Their approach, however, involves elaborate
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zero searches on the complex plane for each value of x0 and x separately. As we will see

in the next section, our approach enables one to mechanize the underlying procedures

once zeros of orthogonal polynomials are found. Because of this mechanization, the

distribution of the historical maximum can also be computed efficiently.

5. Development of Algorithms and Numerical Results

We have seen that, when the initial state is arranged approximately, the stochastic

process XV (t) derived from the Ehrenfest process N2V (t) converges in law to the O-

U process XOU(t) as V → ∞ for all t > 0. First passage times and the historical

maximum of {XV (t) : t ≥ 0} also converges in law to those of {XOU(t) : t ≥ 0}. In

this section, we develop numerical algorithms for computing transition probabilities,

first passage times, and the historical maximum of {XV (t) : t ≥ 0} based on the theo-

retical results discussed in the previous sections. Numerical results are also exhibited,

demonstrating the accuracy and efficiency of these algorithms.

Before going into the discussion of numerical algorithms, it is appropriate to summa-

rize state conversions among {N2V (t) : t ≥ 0}, {XV (t) : t ≥ 0} and {XOU(t) : t ≥ 0},
see Table 5.1 below. We note that when the state of {N2V (t) : t ≥ 0} moves from 0 to

2V , the state of {XV (t) : t ≥ 0} moves from −
√

2V to
√

2V .

Table 5.1: State Conversions

Process state conversion State Space

x ∈ IR → m ∈ N m ∈ N → x ∈ IR

N2V (t) m = ηV (x) + V m N = {0, 1, ..., 2V}
XV (t) =

√
2
V
NV (t) −

√
2V

√
2
V
ηV (x) r(m) =

√
2
V
m−

√
2V {−

√
2V , ...,

√
2V }

XOU(t) x x = r(m) IR = (−∞,∞)

Remark : ηV (x) =
⌈√

V
2 x
⌉
.

5.1. Transition Probabilities and Tail Probabilities

Given x0, x, t and V , the transition probability p2V :mn(t) can be computed by

employing the state conversion in Table 5.1 and the discrete convolution algorithm
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based on (1.11). Formally one has from (1.11),

p2V :mn(t) =

n∑

r=0

am,r(t) bm,n−r(t) (5.1)

where

am,r(t) =

(
2V −m

r

)
f(t)2V −m−rg(t)r ; bm,r(t) =

(
m

r

)
f(t)rg(t)m−r. (5.2)

From (4.2) and (5.1), the transition probability density function of {XOU(t) : t ≥ 0} is

then given by

gV (m,n, t) =

√
V

2
p2V :mn(t) (5.3)

where

m = ηV (x0) + V ; n = ηV (x) + V with ηV (x) =

⌈√
V

2
x

⌉
. (5.4)

Accordingly, gV (m,n, t) approximates g(x0, x, t) of (0.2) through the state conversion

determined by (5.4).

In Figure 5.1, values of g(x0, x, t) − gV (m,n, t) are plotted for x0 = 0, − 5 ≤
x ≤ 5, t = 1, and V = 10, 20, 30, 40, 45, 47, 48, 49, 50, demonstrating the stochastic

convergence of XV (t) to XOU(t). We see that differences among gV (m,n, t) for 45 ≤
V ≤ 50 are almost negligible. Figure 5.2 exhibits graphically g(x0, x, t) represented

by solid curves and gV (x0, x, t) marked by +, ◦, ∗ for t = 1, 3, 5 respectively with

x0 = 0, − 5 ≤ x ≤ 5, and V = 50. For tail probabilities of g(x0, x, t) with respect to

x, we define

G(x0, x, τ ) =

∫ ∞

x

g(x0, y, τ ) dy. (5.5)

Values of G(x0, x, τ ) can be computed fairly accurately with speed using the Laguerre

transform. The reader is referred to Sumita [13], where 12 digit accuracy was achieved

for such computations. More readily accessible references are Sumita and Kijima [15,

16]. In order to approximate G(x0, x, τ ), a Simpson’s method is employed, i.e.

GV (m,n, τ ) =
1

2

2V −1∑

k=n

{p2V :mk(τ) + p2V :m,k+1(τ)} + p2V :m,2V (τ) (5.6)

where the last term represents the approximation for G(x0,
√

2V , τ ). Numerical results

for G(x0, x, τ ) and GV (m,n, τ ) are depicted in Figures 5.3 and 5.4, corresponding to

Figures 5.1 and 5.2.
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Figure 5.1: Difference of Transition Probabilities (x0 = 0, t = 1)
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Figure 5.2: Transition Probabilities : the O-U Process vs the Ehrenfest Process (x0 = 0, V = 50)
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Figure 5.3: Difference of Tail Probabilities (x0 = 0, t = 1)
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Figure 5.4: Tail Probabilities : the Ehrenfest Process vs the O-U Process (x0 = 0, V = 50)
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Algorithmic relationships discussed above are summarized in Table 5.2.

Table 5.2: Probability Conversions

Process Transition Probability Tail Probability

N2V (t) p2V :mn(t) via (5.1)
2V∑

k=n

p2V :mk(t)

XV (t) =
√

2
V
NV (t) −

√
2V gV (x0, x, t) =

√
V
2 p2V :mn(t) GV (m,n, τ ) in (5.6)

XOU(t) g(x0, x, t) G(x0, x, t) =

∫ ∞

x

g(x0, y, t)dy

Remark : · m = ηV (x0) + V, n = ηV (x) + V,

· p2V :mn(t) = P [N2V (t) = n |N2V (0) = m ]

· g(x0, x, t) = d
dx

P [XOU(t) ≤ x |XOU(0) = x0 ]

= 1√
2π(1−e−2t)

exp

{
−(x−x0 e−t)

2

2(1−e−2t)

}

5.2. Zeros of Orthogonal Polynomials for the Ehrenfest Process

In order to evaluate the first passage time densities smn(τ) = d
dτ

P[Tmn ≤ τ ], m < n,

with corresponding Laplace transforms σmn(s) = σ+
m(s) · · ·σ+

n−1(s) = gm(s)/gn(s)

from (2.7), the zeros of gn(s) are needed. These zeros in turn enables one to evaluate

the corresponding survival functions and the distribution of the historical maximum.

For the Ehrenfest process, the zeros of gn(s) are related to those of hn(s) as specified

in Theorem 3.1 and the computational burden can be reduced by a factor of 4. More

specifically, one can write




h2m(s) =

m∑

j=0

w2m,2j s
2j , m ≥ 0,

h2m+1(s) =
m∑

j=0

w2m+1,2j+1 s
2j+1, m ≥ 0,

(5.7)

since h2m(s) is an even function and h2m+1(s) is an odd function from Theorem 3.1.

It then follows from (3.3), for m ≥ 0, that




w2m,0 = − 2

2(V −m) + 1

(
m− 1

2

)
w2m−2,0,

w2m,2j =
2

2(V −m) + 1

{
w2m−1,2j−1 −

(
m− 1

2

)
w2m−2,2j

}
, j = 1, ..., m− 1,

w2m,2m =
2

2(V −m) + 1
w2m−1,2m−1,

(5.8)
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and





w2m+1,2j+1 =
w2m,2j −mw2m−1,2j+1

V −m
, j = 0, ..., m− 1,

w2m+1,2m+1 =
w2m,2m

V −m
,

(5.9)

where h0(s) = w0,0 = 1.

We note that h2m+1(0) = 0 for m ≥ 0. Furthermore, hn(s) = 0 if and only if

hn(−s) = 0 for all n ≥ 0. Hence for both h2m(s) and h2m+1(s), it suffices to search

m zeros in (0,∞). For hn(s) with 1 ≤ n ≤ 4, the zeros can be obtained explicitly by

solving the underlying equations. For higher values of n, a straightforward bisection

method can be employed by exploiting the fact that zeros of hn+1(s) interleave those

of hn(s). Let ξnj (0 ≤ j ≤ n − 1) be zeros of hn(s). For notational convenience, let

−αnj (0 ≤ j ≤ n − 1) be zeros of gn(s). From Theorem 3.1, one then has

αnj = V − ξnj , 0 ≤ j ≤ n− 1. (5.10)

5.3. First Passage Times and the Historical Maximum

Let TV :mn (m < n) be the first passage time of the Ehrenfest process {N2V (t) : t ≥ 0}
with probability density function sV :mn(τ) and its Laplace transform σV :mn(s). Since

σV :mn(s) = σ+
V :m(s) · · ·σ+

V :n−1(s), one has from (2.7) that

σV :mn(s) =
gm(s)

gn(s)
= cmn

m−1∏
j=0

(s+ αmj)

n−1∏
j=0

(s+ αn,j)

; cmn =

n−1∏
j=0

αnj

m−1∏
j=0

αmj

. (5.11)

As shown in Theorem 3.10 of Sumita and Masuda [14], sV :mn(τ) is unimodal expressed

as convolutions of completely monotone density functions. Since σV :mn(s) is regular

apart from singular points −αn,j, 0 ≤ j ≤ n− 1, Equation (5.11) can be rewritten as

σV :mn(s) =

n−1∑

j=0

AV :mn:j
αnj

s+ αnj

; AV :mn:k =

m−1∏
j=0

(1 − αnk

αmj
)

n−1∏
j=0,j 6=k

(1 − αnk

αnj
)

. (5.12)
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In real domain, Equation (5.12) leads to the probability function sV :mn(τ) and its

survival function SV :mn(τ) =

∫ ∞

τ

sV :mn(y) dy given as

sV :mn(τ) =

n−1∑

j=0

Amn:j · αnje
−αnjτ ; SV :mn(τ) =

n−1∑

j=0

Amn:je
−αnjτ . (5.13)

Since TV :mn for {N2V (τ) : τ ≥ 0} is, sample-path-wise, equal to Tr(m)r(n) for {XV (τ) : τ ≥ 0},
sV :mn(τ) and SV :mn(τ) provides approximations for sx0 x(τ) and Sx0,x(τ) of {XOU(τ) : τ ≥ 0}
from Theorem 4.2 with m and n as specified in Table 5.1. For x0 = 0 and x =

0.5, 1.0, 1.5, 2.0, Figure 5.5 depicts sV :mn(τ) with state conversion specified in Table

5.1, approximating sx0x(τ) with expected unimodality. Corresponding survival func-

tions are plotted in Figure 5.6.
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Figure 5.5: First Passage Time Density Functions (V = 50)

Let M(x0, θ) be the historical maximum of {XOU(τ) : τ ≥ 0} in the time interval

[0, θ]. As in (4.20), its distribution function Fx0,θ(x) has a dual relationship with

the survival function Sx0,x(θ). Hence Fx0,θ(x) can be approximated by FV :mθ(n) =

SV :mn(θ) for x0 < x, which implies m < n. When x = x0, Sx0,x(θ) = lim
∆→0

Sx0,x0+∆(θ)

can be approximated by S
+
V :m(θ) = FV :mθ(m + 1). With m = ηV (x0) + V , and

n = ηV (x) + V , SV :mn(θ) can be computed from (5.13). In Figure 5.7, FV :mθ(n)

are plotted for x0 = 0, θ = 1, 3, 5, and V = 50, where the stochastic ordering

T01 ≺ T03 ≺ T05 is observed as expected.
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Figure 5.6: Survival Functions of First Passage Times (V = 50)
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Figure 5.7: Distributions of the Historical Maximum (V = 50, x0 = 0, θ = 1, 3, 5)
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