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Abstract

Based on a new supercurrent generation mechanism proposed for the cuprate superconductivity

[1–4], we re-derive the ac Josephson effect including the current flow through the leads connected

to the Josephson junction and the impressed electromotive force. It is noted that the actual

experimental boundary condition where the Josephson frequency 2eV0/h (h is Planck’s constant, e

is the absolute value of electron charge, and V0 is the dc voltage across the Josephson junction) is

measured is different from the one assumed by Josephson, and 2eV0/h is obtained by the electron

tunneling instead of the Cooper pair tunneling. It is also indicated that the standard textbook

description for the Josephson relation, “if a dc voltage V0 is applied, the time-variation of φ occurs”

[5–8] (φ is related to the tunneling current as Js = Jc sinφ) should be rephrased, “ if the time-

variation of φ is introduced, a voltage difference V0 appears”.

We show that by adding the Rashba spin-orbit interaction to the BCS Hamiltonian, the spin-

twisting itinerant motion of electrons is stabilized in the BCS superconductors; thus, it is suggested

that the present new supercurrent generation mechanism is also relevant to the BCS superconduc-

tors, i.e., the true origin of the supercurrent generation in the BCS superconductors may also be

the spin-twisting itinerant motion of electrons.

PACS numbers:
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FIG. 1: Schematic set-up of the Kamerlingh Onnes’s experiment. A specimen of mercury, S, is

connected to leads, L1 and L2, and the voltage drop is measured by feeding a current through the

leads.

I. INTRODUCTION

In 1911, Kamerlingh Onnes discovered the phase transition in mercury to a state that

exhibits electric current flow without a voltage drop (Fig. 1) [9, 10]. This state is called the

superconducting state, and has been a focus of attention in physics and materials science

since then. A successful microscopic theory for this phase transition was put forward by

Bardeen, Cooper and Schrieffer (BCS) [11]. The BCS theory explained the superconducting

phase transition as due to the energy gap creation by the Cooper pair formation. The

superconducting transition temperature Tc can be calculated as the temperature where the

energy gap by the Cooper pair formation is created.

In 1986 a novel high temperature superconductivity was discovery in the cuprate [12]. The

superconducting phenomenon in this family of materials is markedly different from the BCS

one [11]. Most notably, the superconducting transition temperature Tc is not determined

by the energy gap formation by the electron pairing, but it appears to correspond to the

temperature where the supercurrent vortices of the coherence length are stabilized [13],

suggesting that the cuprate belongs to a different class of superconductors in which the

coherence-sized supercurrent loop plays a central role.

Recently, a theory for the cuprate superconductivity in which the coherence-sized per-

sistent loop current is the protagonist of superconductivity was developed [1–4]. For the

generation of the persistent loop current, the fact established in the dynamical Jahn-Teller

problem was used: when a wave function is multi-component, the twisting of the basis of the

components creates a persistent circular motion in the ground state due to the single-valued

requirement of the wave function [14]. The single-valued requirement of the wave function
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is one of the postulates Schrödinger imposed to evaluate hydrogen atomic spectrum, and

explained the stability of the atom [15]. The solution of the dynamical Jahn-Teller prob-

lem indicates that if the same postulate is applied to the multi-component wave function

problem, a zero point circular motion becomes possible. This zero point circular motion

may be regarded as the consequence of the appearance of a ‘fictitious magnetic field’ from

the Berry phase due to the existence of a singularity in the multi-component wave function

[16, 17], but its true physical meaning is the forced whole system motion generated by the

single-valued requirement of the total wave function.

If we take the spin degree-of-freedom as the source of the multi-component wave function,

the supercurrent is generated by the forced whole system motion induced by the spin-twisting

itinerant motion of electrons. The resulting loop current is called, the “spin-vortex-induced

loop current (SVILC)” [1–4]. A theory was put forward in which a macroscopic persistent

current is generated as a collection of SVILCs and a method was developed to calculate this

superconducting wave function [3, 4].

The superconducting wave function in the new theory is given in the following form

Ψ(r(1), · · · , r(N)) = Ψ0(r(1), · · · , r(N))e−
i
2

∑N
α=1 χ(r(α)) (1)

where r(j) is the coordinate of the jth electron and N is the total number of electrons.

Ψ0 is a currentless multi-valued wave function, where the multi-valuedness arises from the

spin-twisting of the itinerant electrons. The phase factor e−
i
2

∑N
α=1 χ(r(α)) arises to impose the

single-valued requirement of the total wave function [3, 4].

Let us explain the mechanism in which the supercurrent is generated from the spin-

twisting itinerant motion of electrons in more detail. In order to make the twisting of the

spin direction apparent, we change the basis from {c†j↑|vac〉, c†j↓|vac〉} to {a†j|vac〉, |b†j|vac〉},

where c†jσ denotes the creation operators for the localized state at site j with spin σ, |vac〉

is vacuum, and j runs through all lattice sites of the system; the creation operators a†j and

b†j are related to c†jσ by

a†j = e−i
χj
2

(
cos

ζj
2
e−i

ξj
2 c†j↓+sin

ζj
2
ei
ξj
2 c†j↑

)
b†j = e−i

χj
2

(
−sin

ζj
2
e−i

ξj
2 c†j↓+cos

ζj
2
ei
ξj
2 c†j↑

)
(2)

where variables ξj and ζj are the azimuth and polar angles of the spin at the jth site,
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Sj = (Sxj , S
y
j , S

z
j ), where Sxj , Syj , and Sz are expressed using ξj and ζj as

Sxj = Sj cos ξj sin ζj; Syj = Sj sin ξj sin ζj; Szj = Sj cos ζj. (3)

The single particle wave functions are expressed as

|γ〉 =
∑
j

(
Da
γa
†
j +Db

γb
†
j

)
|vac〉 (4)

and the many-electron wave function is constructed as a sum of Slater determinants com-

posed of them. The above wave function (molecular orbital) is differet from the one appears

in the conventional molecular orbital theory since the singularities arising from the twisting

of the spin-directions are taken into account from the beginning; i.e., a†j and b†j are singu-

lar at the centers of the spin-vortices. The obtained many electron wave function is given

in the form of Eq. (1), where the correlation effect is included in Ψ0. The phase factor

e−
i
2

∑N
α=1 χ(r(α)) arises from e−i

χj
2 in a†j and b†j in Eq. (2).

The twisting of the spin direction is detected by the nonzeroness of the winding number

of ξ along loop C` defined by

w`[ξ] =
1

2π

N∑̀
i=1

[
ξC`(i+1) − ξC`(i)

]
=

1

2π

∮
C`

∇ξ · dr (5)

where C` is a loop in the x-y plane. N` is the total number of sites on the loop C`, and

C`(i) is the ith site on it with the periodic condition C`(N` + 1) = C`(1). The presence of

the spin-vortices means that w`[ξ] is nonzero for some loops.

If the electron wave function is obtained only by the energy minimization, we obtain the

phase differences of ξ, such as ξi − ξj [4]. From these phase differences, we can construct ξ

and calculate w`[ξ]. If the loop C` encircles a spin-vortex with the winding number w`[ξ], ξ

has a jump of value by 2πw`[ξ]. This phase jump causes a sign change of the phase factor

e±i
ξj
2 in |γ〉 through a†j and b†j in Eq. (2) if w`[ξ] is an odd number. This sign change is

compensated by e−i
χj
2 to make |γ〉 single-valued. In other word, since e−

i
2

∑N
α=1 χ(r(α)) gives

rise to a whole system motion, the sign change generates a nontrivial whole system motion.

The single-valued requirement of |γ〉 is achieved by imposing the following constraint

w`[ξ] + w`[χ] = even number for any loop C`, (6)

where w`[χ] is the winding number of χ for the loop C`. If the above condition is satisfied,

the change of ±ξj − χj after the circular transportation along C` is a multiple of 4π; then,
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the sign change is compensated as e
i
2

(±ξj−χj) → e
i
2

(±ξj−χj+4πw) = e
i
2

(±ξj−χj) (w is an integer);

consequently, a†j and b†j become single-valued.

Denoting the energy functional that depends on ∇χ as E[∇χ], the constrained minimiza-

tion is performed to obtain ∇χ. For this purpose, the method of Lagrange multiplier is used

with the following functional

F [∇χ] = E[∇χ] +

Nloop∑
`=1

λ`

(∮
C`

∇χ · dr− 2πw̄`

)
, (7)

where λ`s are the Lagrange multipliers, Nloop is the number of independent loops (i.e., any

loops in the system can be constructed from them), and w̄` is a value of w`[χ] that satisfies

the condition in Eq. (6). Different current patters are obtained by different combinations of

w̄`, ` = 1, · · · , Nloop. They form metastable states protected by the winding numbers w`[χ]’s.

Including the electromagnetic vector potential Aem, the functional E[∇χ] is given by

E[∇χ] = 〈Ψ|H[Aem]|Ψ〉 = 〈Ψ0|H[Aem − ch̄

2e
∇χ]|Ψ0〉, (8)

where H[Aem] is the Hamiltonian of the system. The phase factor e−
i
2

∑N
j=1 χ(r(j)) is trans-

ferred from the wave function to the Hamiltonian in the rightmost expression in Eq. (8).

From the stationary condition δF [∇χ]/δ∇χ = 0, the current density is obtained as

j = −cδE[∇χ]

δAem
=

2e

h̄

δE[∇χ]

δ∇χ
= −2e

h̄

Nloop∑
`=1

λ`
δ

δ∇χ

∮
C`

∇χ · dr. (9)

This is the supercurrent density in the new theory which is expressed as a sum of loop

currents. The criterion of the current generation around loop C` is that δE[∇χ]
δ∇χ 6= 0 is

satisfied for the change of ∇χ within the constraint of the winding number w`[χ]; if such

loops are connected through a macroscopic region, a macroscopic current is possible.

As seen in Eq. (8), the vector potential Aem always appears as a part of the sum

Aeff = Aem − ch̄

2e
∇χ (10)

This is gauge invariant due to the fact that∇χ is optimized; when, the vector potential with a

different gauge A′em = A′em+∇g is employed, the optimized∇χ becomes∇χ′ = ∇χ+ 2e
ch̄
∇g;

thus, the sum remains the same. We may regard Aeff as the effective vector potential in the

superconducting state.
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The new theory explains the flux quantum hc/2e. In order to see this, we compare the

gauge invariant Aeff with the gauge invariant combination Aem+ ch̄
2e
∇θ appears in the current

expression of the Ginzburg-Landau theory

j = −(2e)2ρs
2m∗c

(
Aem +

ch̄

2e
∇θ
)
, (11)

where m∗ is the effective mass of electron and ρs is the superconducting carrier density. The

macroscopic wave function for the Ginzburg-Landau equation is expressed as ΨGL = ρ
1/2
s eiθ.

The comparison leads to the identification χ = −θ. In the new theory, it is shown that the

macroscopic wave function for the phenomenological Ginzburg-Landau equation is given by

(ρe/2)1/2e−iχ where ρe is the electron density given by ρe = 2ρs [4]. Then, the flux quantum

is obtained as Φ0 = hc/2e [4].

In the following, we re-derive the ac Josephson effect using the new theory described

above. A similar argument was already given in [1]. However, the present re-derivation is

a significantly improved one due to the development of the theory afterward; it is much

more elaborated by including the current flow through the leads connected to the Josephson

junction and the impressed electromotive force in the Hamiltonian. In the course of re-

derivation, it is noted that the boundary condition for the actual measurement of the ac

Josephson effect is different from the one assumed by Josephson for the prediction. We also

consider the possible application of the new supercurrent generation mechanism to the BCS

superconductors. It is shown that the new theory is applicable if the Rashba spin-orbit

interaction [18] is add to the BCS theory.

II. RE-DERIVATION OF THE AC JOSEPHSON EFFECT INCLUDING THE

CURRENT FLOW FROM THE LEADS

First, we note that the relation in Eq. (10) means that the time-component partner of

Aeff ,

ϕeff = ϕem +
h̄

2e
χ̇ (12)

is also gauge invariant, where ϕem is the electromagnetic scalar potential. We regard ϕeff

as the effective scalar potential in the superconducting state, and relate it to the chemical

potential µ as µ = −eϕeff .
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FIG. 2: Schematic set-up of the Josephson junction for which Josephson assumed in the predictions.

’SL’ and ‘SR’ indicate the superconductor parts of the junction. The weak link is denoted as ‘I’ .

Let us state the Josephson’s prediction. He predicted that the current given by

Js = Jc sinφ, (13)

would flow through the junction made of two superconductors coupled by a weak link as

a consequence of the Cooper pair tunneling, where Jc is the critical current and φ is the

difference of the phase of the macroscopic wave function for superconductivity [19, 20].

Further, he predicted that if a dc voltage V0 exists across the weak link, φ would show

the time-dependence

dφ

dt
=

2eV0

h̄
, (14)

thus, an ac current of amplitude Jc and the frequency

νJ = 2eV0/h (15)

would be generated [19]. Josephson employed the barrier tunneling formalism [21] and

considered the electron-pair tunneling between the two superconductors for his prediction;

thus, the situation assumed by him is the one depicted in Fig. 2.

On the other hand, in the actual experimental situation where Josephson frequency is

measured, a dc current is fed through the leads connected to the junction as shown in

Fig. 3. The tunneling current is measured with the concurrent supercurrent flow in the

superconductor parts of the junction, where each superconductor part plays the similar role

as the specimen in Fig. 1. The weak link acts as a coupler between such two dc current

flowing superconductors.

Now we shall calculate the current through the junction by employing the actual exper-

imental boundary condition. We consider a simplified model in which the current feeding

7
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FIG. 3: Schematic set-up of the Josephson junction for which experimental measurements are

actually performed. The dc current is fed from the lead connected to the junction, thus, the dc

current exists in the superconductors SL and SR.

from the leads is taken into account by adding an external path that connects the two su-

perconductors as shown in Fig. 4. The external path contains the part that generates the

impressed electromotive force.

The Hamiltonian for this model is expressed as

Ĥ = K̂Link + K̂Ex + ĤSuper. (16)

ĤSuper is the Hamiltonian for the two superconductors in the junction; it yields the

solution that describes the dc currents through them with the time-independent optimized

∇χ. This ∇χ ensures the current flow through each superconductors without a voltage

drop.

K̂Link denotes the hopping term between the two superconductors through the weak link

given by

K̂Link = −
∑

k∈SL,j∈SR,σ

T Link
kj exp

(
−i e
h̄c

∫ k

j

Aem · dr
)
c†kσcjσ + h.c.

= −
∑

k∈SL,j∈SR

T Link
kj exp

(
−i e
h̄c

∫ k

j

Aem · dr + i
χk + χL − χj − χR

2

)
×
[
cos

ξk − ξj
2

(a†kaj + b†kbj)− i sin
ξk − ξj

2
(a†kbj + b†kaj)

]
+ h.c. (17)

where k ∈ SL and j ∈ SR denote the lattice points in the left and right superconductors,

respectively. In order to make the presence of χ apparent, we employ creation operators, a†j

and b†j, and annihilation operators, aj and bj. T
Link
kj is non-zero for k and j that are located

in the edges of the superconductors contacted with the weak link. χL and χR are time-
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VIEF

Link

J
Ex

FIG. 4: Schematic set-up we consider for the Hamiltonian in Eq. (16). VIEF denotes the voltage pro-

duced by the impressed electromotive force. A dc supercurrent flows through each superconductor

in the junction as in the specimen in the Onnes’s experiment depicted in Fig. 1.

dependent part of χ in the left and right superconductors, respectively; χj and χk describe

the dc current flow in the two superconductors, and are time-independent.

K̂Ex is the term for the current feeding through the leads connected to the junction;

it also contains the impressed electromotive force through the vector and scalar potentials

AEx and ϕEx; they are not the real potentials but describe the impressed electromotive force

through the “electric field” EEx given by

EEx = −∇ϕEx − 1

c

∂

∂t
AEx. (18)

The expression for K̂Ex is

K̂Ex = −
∑

k∈SR,j∈SL

TEx
kj exp

(
−i e
h̄c

∫ k

j

AEx · dr + i
χk + χR − χj − χL

2

)
×
[
cos

ξk − ξj
2

(a†kaj + b†kbj)− i sin
ξk − ξj

2
(a†kbj + b†kaj)

]
+ h.c. (19)

where TEx
kj is non-zero for k and j that are located in the edges of the superconductors

connected to the leads. The integration is done along the external path.

The current through the weak link is expressed as

JLink =
∑

k∈SL,j∈SR

JLink
kj sin

(
e

h̄c

∫ k

j

Aem · dr +
χR + χj − χL − χk

2
− αkj

)
(20)

where JLink
kj = −2eT Link

kj Akj/h̄ with Akj and αkj defined through

Akje
iαkj =

〈
cos

ξk − ξj
2

(a†kaj + b†kbj)− i sin
ξk − ξj

2
(a†kbj + b†kaj)

〉
. (21)
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Similarly, the current through the external path is expressed as

JEx =
∑

k∈SR,j∈SL

JEx
kj sin

(
e

h̄c

∫ k

j

AEx · dr +
χL + χj − χR − χk

2
− αkj

)
(22)

where JEx
kj = −2eTEx

kj Akj/h̄.

In the experiment, a dc current is fed. Thus, the phase in JEx is time-independent,

yielding

0 =
e

h̄c

∫ k

j

∂

∂t
AEx · dr +

χ̇L − χ̇R
2

=
e

h̄c

∫ R

L

∂

∂t
AEx · dr +

χ̇L − χ̇R
2

, (23)

where j ∈ SL and k ∈ SR are replaced by common values L and R, respectively.

From Eq. (12) we have

−eϕeff
L = −eϕem

L −
h̄

2
χ̇L; −eϕeff

R = −eϕem
R −

h̄

2
χ̇R (24)

We identify the gauge invariant quantities −eϕeff
L and −eϕeff

R as the chemical potentials µL

in SL, and µR in SR, respectively. Then, the relation in Eq. (23) becomes

0 = − e
h̄

∫ R

L

EEx · dr− µL − µR
h̄

, (25)

which means that the impressed electromotive force gives rise to the chemical potential

difference µL − µR.

The time-derivative of the phase of JLink is calculated as

φ̇Link
kj =

e

h̄c

∫ k

j

∂

∂t
Aem · dr +

χ̇R − χ̇L
2

=
e

h̄c

∫ L

R

∂

∂t
Aem · dr +

χ̇R − χ̇L
2

= − e
h̄

∫ L

R

Eem · dr− µR − µL
h̄

(26)

where the electric field in the weak link Eem is given by

Eem = −∇ϕem − 1

c

∂

∂t
Aem. (27)

We denote the voltage across the junction by V ;∫ R

L

Eem · dr = V (28)

The above voltage should be equal to the voltage generated by the impressed electromo-

tive force. Thus, we have ∫ R

L

EEx · dr = −V, (29)
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which yields,

eV = µL − µR (30)

from Eq. (25).

Then, φ̇Link
kj becomes

φ̇Link
kj =

2eV

h̄
(31)

This corresponds the Josephson relation give in Eq. (14) with V = V0.

Since JEx is a dc current, JLink must be also a dc current in the quasi-stationary condition.

One way to achieve this is to put φ̇Link
kj = 0, i.e., V = 0. This yields,

JLink
dc =

∑
k∈SL,j∈SR

JLink
kj sinφ0

kj (32)

where φ0
kj is constant. This describes the dc Josephson effect [22].

It is known that there is an another way to have a dc current [23, 24]. It is achieved by

choosing

φLink
kj = −2eV0

h̄
t+

2eV1

h̄ω
sinωt+ φ0 (33)

for all pairs of (k, j) that satisfy JLink
kj 6= 0.

Then, JLink is given by

JLink
ac = sin

(
−2eV0

h̄
t+

2eV1

h̄ω
sinωt+ φ0

) ∑
k∈SL,j∈SR

JLink
kj

= Jc

∞∑
n=−∞

Jn

(
2eV1

h̄ω

)
sin

(
nωt− 2eV0

h̄
t+ φ0

)
(34)

where Jc =
∑

k∈SL,j∈SR J
Link
kj , and the identity eiz sin θ =

∑∞
n=−∞ Jn(z)einθ is used.

The above current expression indicates that if the condition

nω =
2eV0

h̄
(35)

is satisfied, a quasi-stationary current flows. This explains that Josephson frequency 2eV0
h

observed in the ‘inverse ac Josephson effect’, where an oscillation field is supplied, externally,

or a spontaneous appearance of the oscillating field occurs due to the electromagnetic wave

emission [23, 24]. Note that 2 in 2eV0
h

is a consequence that there are two contributions
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with the same magnitude in Eq. (26). If the same calculation is done for the Cooper pair

tunneling, we obtain nω = 4eV0
h̄

, which disagrees with the experimental result, indicating

that the origin of the Josephson effect is not the Cooper pair tunneling.

The new theory explains the absence of the ‘normal ac Josephson effect’ (‘the ac current

generation with amplitude Jc and frequency νJ by applying the dc voltage V0’) [25–29].

Josephson predicted the occurrence of this effect, however, it has not been observed. In

the new theory, the absence is explained as due to the fact that the supercurrent in the

superconductors in the junction is always dc.

In standard textbooks, the Josephson relation in Eq. (14) is described that “if a dc voltage

V0 is applied, the time-variation of φ” occurs [5–8]. However, the actual experimental result

is that “ if a time-variation of φ is introduced, a voltage difference V0 appears”, which agrees

with the present re-derivation.

Characteristic behaviors of the maximum supercurrent through the Josephson junctions

in a magnetic field are also explained by the new theory [1]. There are subtle differences

between the currently-accepted theory and the new theory; they may be used to check the

validity of the new theory.

III. MODIFICATION OF THE PAIRING STATES IN THE BCS SUPERCON-

DUCTORS BY THE RASHBA SPIN-ORBIT INTERACTION: APPEARANCE OF

THE SPIN-TWISTING ITINERANT MOTION OF ELECTRONS

We show in this section that the new supercurrent generation mechanism can be applied

to the BCS superconductors if the Rashba spin-orbit interaction [18] is added to the BCS

Hamiltonian. By this addition, the pairing states of the Cooper pair are modified to those

generate circular itinerant motion with twisting spin direction. Then, the forced whole

system motion protected by the topological winding numbers arises as will be shown below.

Let us add the Rashba spin-orbit interaction given by

Hso = λEem · (σ × p̂) (36)

to the BCS theory [18], where λ is the spin-orbit coupling parameter, Eem is the electric

field, σ is the vector of Pauli matrices, and p̂ is the momentum operator [18].
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We take the electric filed in the z direction Eem = (0, 0, Eem), and expressed Hso as

Hcyl
so = λEem

[
e−iφ

(
∂

∂ρ
− i

ρ

∂

∂φ

)
| ↑〉〈↓ | − eiφ

(
∂

∂ρ
+
i

ρ

∂

∂φ

)
| ↓〉〈↑ |

]
, (37)

where ρ and φ are cylindrical coordinates related to the Cartesian x and y coordinates as

x = ρ cosφ and y = ρ sinφ, respectively.

In the BCS ground state the pairing occurs between (k, ↑) and (−k, ↓), and the state

vector is given by ϕkσ = 1√
V e
−ik·r|σ〉 where |σ〉 is the spin state vector with σ =↑ or ↓, V is

the volume of the system, and r is the spatial coordinate. Using the creation operators c†kσ

for ϕkσ, the BCS state vector is given by

|BCS〉 =
∏
k

(uk + vkc
†
k↑c
†
−k↓)|vac〉, (38)

where uk and vk are real variational parameters that satisfy u2
k + v2

k = 1 [11]. This particle

number non-fixed state vector facilitates calculations involving the electron pair-correlation

that yields an energy gap in single-particle excitations. Since the particle number distribu-

tion has a sharp peak at the mean-value N , the obtained wave function can be practically

regarded as that for a state with N particles. We regard that the state vector in Eq. (38) is an

approximate wave function for N electrons with neglecting the particle number distribution.

In the following, we consider a ring-shaped system of radius R in the x-y plane. The

position in this ring is specified by the angle φ as (x, y) = (R cosφ,R sinφ) or the length `

defined by ` = Rφ, (0 ≤ φ < 2π). The Rashba spin-orbits interaction for electrons in this

ring is given by

Hring
so = −iλEem

(
e−iφ

d

d`
| ↑〉〈↓ |+ eiφ

d

d`
| ↓〉〈↑ |

)
. (39)

The kinetic energy is given by

Hring
0 = − 1

2m∗
d2

d`2
, (40)

where m∗ is the electron effective mass, where h̄ is taken to be unity.

If we neglect the spin-orbit interaction, the electron pairing will occur between the states

ϕk↑(`) and ϕ−k↓(`), where ϕkσ(`) is given by

ϕkσ(`) =
eik`√
2πR
|σ〉. (41)
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In the presence of the Rashba spin-orbit interaction, we anticipate that electrons will

create spin-vortices and loop currents in the manner similar to the spin-vortex supercon-

ductivity theory [3, 4]. Then, by ansatz, we consider the pairing of two states, ϕak(`) and

ϕb−k(`), where ϕak(`) and ϕbk(`) are given by

ϕak(`) =
eik`−i

χa(`)
2

√
2πR

(
cos

ζ(`)

2
e−i

ξ(`)
2 | ↑〉+ sin

ζ(`)

2
ei
ξ(`)
2 | ↓〉

)
ϕbk(`) =

eik`−i
χb(`)

2

√
2πR

(
− sin

ζ(`)

2
e−i

ξ(`)
2 | ↑〉+ cos

ζ(`)

2
ei
ξ(`)
2 | ↓〉

)
. (42)

Here, χa and χb are angular variables with period 2π added to make the above wave functions

single-valued. The single-valued requirement of the wave function becomes non trivial when

ξ changes for the excursion around the ring. We will show below that the ϕak(`) and ϕb−k(`)

pairing is more stable than ϕk↑(`) and ϕ−k↓(`) paring if the ring is sufficiently large.

Let us denote the closed path along the ring by C. Then, the winding number of ξ for C

is calculated as

wC [ξ] =
1

2π

∮
C

∇ξ · dr =

∫ 2π

0

dξ

dφ
dφ. (43)

After the excursion φ = 0 → 2π, ξ becomes ξ(2πR) = ξ(0) + 2πwC [ξ]. If wC [ξ] is an odd

integer, the phase factors in Eq. (42) change signs as e±i
ξ(0)
2 → e±i

ξ(2πR)
2 = −e±i

ξ(0)
2 . The

angular variables χa and χb are added to compensate this sign-change to make ϕak(`) and

ϕbk(`) single-valued. The condition for the compensation is given by

wC [ξ] + wC [χa] = even number; wC [ξ] + wC [χb] = even number. (44)

Note that ϕak(`) and ϕbk(`) become time-reversal partners if the condition χa = −χb is

satisfied.

The spin-density for ϕak and ϕbk are calculated as

(ϕak)
∗ŝxϕak = −(ϕbk)

∗ŝxϕbk =
1

4πR
cos ξ sin ζ

(ϕak)
∗ŝyϕak = −(ϕbk)

∗ŝyϕbk =
1

4πR
sin ξ sin ζ

(ϕak)
∗ŝzϕak = −(ϕbk)

∗ŝzϕbk =
1

4πR
cos ζ, (45)

where the spin operators are defined by

ŝx=
1

2
(| ↑〉〈↓ |+| ↓〉〈↑ |) , ŝy=

i

2
(−| ↑〉〈↓ |+| ↓〉〈↑ |) , ŝz=

1

2
(| ↑〉〈↑ |−| ↓〉〈↓ |) . (46)
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This indicates that the direction of spin for ϕak and that for ϕbk are mutually opposite. Thus,

the total spin-density for the ϕak and ϕb−k pair is zero.

The current-densities of ϕak and ϕbk along the ring are calculated as

(ϕak)
∗ q

m∗i

d

d`
ϕak =

q

2πm∗R

(
k − 1

2

dχa

d`
− 1

2

dξ

d`
cos ζ

)
(ϕbk)

∗ q

m∗i

d

d`
ϕbk =

q

2πm∗R

(
k − 1

2

dχb

d`
+

1

2

dξ

d`
cos ζ

)
, (47)

where q is the charge on the electron q = −e.

The current density carried by the ϕak and ϕb−k pair is thus given by

jring
pair = − q

4πm∗R

d(χa + χb)

d`
, (48)

which is zero whenϕak(`) and ϕbk(`) become time-reversal partners.

The spin-orbit interaction energy densities of ϕak and ϕbk are calculated as

(ϕak)
∗Hring

so ϕak =
λEem

2πR

[
e−i(φ−ξ)

(
k − 1

2

dχa

d`
+

1

2

dξ

d`

)
sin ζ

2
+ ei(φ−ξ)

(
k − 1

2

dχa

d`
− 1

2

dξ

d`

)
sin ζ

2

+
i

2

dζ

d`

(
sin2 ζ

2
ei(φ−ξ) − cos2 ζ

2
e−i(φ−ξ)

)]
(ϕbk)

∗Hring
so ϕbk = −λEem

2πR

[
e−i(φ−ξ)

(
k − 1

2

dχb

d`
+

1

2

dξ

d`

)
sin ζ

2
+ ei(φ−ξ)

(
k − 1

2

dχb

d`
− 1

2

dξ

d`

)
sin ζ

2

+
i

2

dζ

d`

(
sin2 ζ

2
ei(φ−ξ) − cos2 ζ

2
e−i(φ−ξ)

)]
. (49)

The spin-orbit interaction energy density for the ϕak and ϕb−k pair is thus given by

hring
so;k =

λEem

2πR

(
e−i(φ−ξ) + e−i(φ−ξ)

)(
2k − 1

2

d(χa − χb)
d`

)
sin ζ

2
. (50)

In the following, we assume that dχa

d`
and dχb

d`
are constant. To make the magnitude of

hring
so;k large, we take ζ = π/2; this means that the electron spin is lying in the x-y plane. We

also choose ξ = φ to make
(
e−i(φ−ξ) + e−i(φ−ξ)

)
in hring

so;k constant along the ring. We denote

ϕak and ϕbk with the above-mentioned choices by ϕ̄ak and ϕ̄bk.

The condition ξ = φ means that the direction of spin rotates when electrons move around

the ring with wC [ξ] = 1. Then, the conditions in Eq. (44) impose constraints

wC [χa] = odd integer; wC [χb] = odd integer. (51)

Non-zero current density appears according to Eq. (47), which is expected to be stable due

to the topological protection by wC [ξ] = 1, wC [χa] = odd, and wC [χb] = odd.
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By employing ϕ̄ak and ϕ̄bk, h
ring
so;k is calculated as

h̄ring
so;k =

λEem

2πR

(
2k − 1

2

d(χa − χb)
d`

)
. (52)

The kinetic energy density for ϕ̄tk, (t = a, b), is calculated as

(ϕ̄tk)
∗Hring

0 ϕ̄tk =
1

4πm∗R

[
k2 +

1

4

(
dχt

d`

)2

+
1

4R2
− kdχ

t

d`

]
. (53)

The kinetic energy density for the ϕ̄ak and ϕ̄b−k pair is given by

hring
0;k =

1

4πm∗R

[
2k2 +

1

4

(
dχa

d`

)2

+
1

4

(
dχb

d`

)2

+
1

2R2
− kd(χa − χb)

d`

]
. (54)

Using the creation operators a†k and b†−k for ϕ̄ak and ϕ̄b−k, respectively, the BCS type state

vector is expressed as

|B̃CS
ring
〉 =

∏
k

(uk + vka
†
kb
†
−k)|vac〉. (55)

Now we calculate the total energy for |B̃CS
ring
〉. The spin-orbit interaction energy is

calculated as

Ering
so = λEem

∑
k

v2
k

(
2k − 1

2

d(χa − χb)
d`

)
= −λEemN

4

d(χa − χb)
d`

(56)

and the kinetic energy is calculated as

Ering
0 =

∑
k

v2
k

1

2m∗

[
2k2 +

1

4

(
dχa

d`

)2

+
1

4

(
dχb

d`

)2

+
1

2R2
− kd(χa − χb)

d`

]
=
∑
k

v2
k

k2

m∗
+

N

16m∗

[(
dχa

d`

)2

+

(
dχb

d`

)2

+
2

R2

]
, (57)

where N =
∑

k 2v2
k is used.

Assuming that the pairing interaction energy is unaffected by the modification of the

pairing states, the total energy increase by the modification of the pairing states is calculated

as

∆Ering =
N

16m∗

[(
dχa

d`

)2

+

(
dχb

d`

)2

+
2

R2

]
− λEemN

4

d(χa − χb)
d`

. (58)

The minimum occurs at

dχa

d`
= −dχ

b

d`
= 2m∗λEem (59)
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with the minimum value ∆Ering
min = N

8m∗R2 − 1
2
m∗Nλ2(Eem)2. Thus, if the condition

R > (2m∗|λEem|)−1 (60)

is satisfied, ∆Ering
min becomes negative. This means that the modified pairing states becomes

more stable than the original one, thus, the modified pairing would occur in the ground

state.

Due to the condition in Eq. (59), the minimum energy state is currentless from Eq. (48).

A current carrying state is generated when this condition is upset. The resulting current

is a stable one protected by the topological requirements in Eq. (51). In this case, if we

introduce χ through

χa = ν + χ; χb = −ν + χ, (61)

and substituting χa and χb in Eq. (42), the resulting wave function is given in the from

of Eq. (1). This indicates that the supercurrent is generated by the spin-twisting itinerant

motion of electrons by the addition of the Rashba spin-orbit interaction.

IV. CONCLUDING REMARKS

The present work indicates that the flux quantum hc/2e and the Josephson frequency

2eV0/h are consequence of the appearance of the phase variable that generates the gauge

invariant effective vector Aeff and scalar potential ϕeff given in Eqs. (10) and (12), respec-

tively. It also suggests that although the BCS theory succeeded in explaining how Tc is

determined in a class of superconductors (the BCS superconductors), its supercurrent gen-

eration mechanism may be incorrect. It may be generated by the spin-twisting itinerant

motion of electrons.

In the BCS theory, the Meissner effect is explained using the current derived by the

perturbation theory regarding Aem as the perturbation [11]. On the other hand, the current

is derived in a non-perturbative way in the new theory as in the Ginzburg-Landau theory.

The latter current is gauge invariant, but the former is not. The restoration of the gauge

invariance in the former is achieved by including the terms that violate the particle number

conservation and the phase which violates the superselection rule for the charge [30, 31]. On

the other hand, that the Meissner effect and related supercurrent phenomena are explained
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within the particle number fixed formalism. This is more in accordance with the fact that

the number of particles in a superconductor is fixed. This will also allow to obtain the wave

functions from the microscopic Hamiltonian by solving the Schrödinger equation.

The experimental facts indicate that the supercurrent carrying state is a stable or

metastable state with an ability to adjust itself to different boundary conditions flexibly; the

explanation for this property is lacking in the BCS theory. On the other hand, the metasta-

bility of the current carrying state is explained as due to the constraint of the topological

winding number in Eq. (6) in the new theory; flexible adjustment to different boundary con-

ditions can be attributed to the fact that the condition in Eq. (6) allows numerous different

current patterns if the number of spin-vortices is large.

Although the major change occurs in the mechanism of the supercurrent generation in the

new mechanism, the Ginzburg-Landau theory and the Josephson relations (Eqs. (13) and

(14)) are unaffected. Subtle differences exist in the dependence of the maximum supercurrent

flow through the Josephson junctions on the applied magnetic field [1]; the latter may be

used to check the validity of the new theory.
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