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Abstract

The conical algorithm is a global optimization algorithm proposed by Tuy in 1964 to solve
concave minimization problems. Introducing the concept of pseudo-nonsingularity, we
give an alternative proof of convergence of the algorithm with the ω-subdivision rule. We
also develop a new convergent subdivision rule, named ω-bisection, and report numerical
results of comparing it with the usual ω-subdivision.
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1 Introduction

The concave minimization is a typical multiextremal global optimization problem, in which a
locally optimal solution is not always globally optimal. From the viewpoint of computational
complexity, it is known to be NP-hard [10]. To solve this intractable but valuable problem,
Tuy made use of valid cuts and in 1964 proposed a first systematic solution method [12],
called the conical algorithm, which turned out later to have no guarantee of convergence
[16]. Bali [1] and Zwart [17] tried to modify the algorithm independently using the same
device as in [12], i.e., ω-subdivision, in the early 1970s. According to ω-subdivision, cones
generated in the algorithm are subdivided along a direction ωωω which is given as a byproduct
in the bounding process. The convergence of the algorithm with ω-subdivision, however, had
remained an open question for a quarter century. During that time, a number of subdivision
rules were proposed to guarantee the convergence [11, 13, 14], but none of them surpassed
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ω-subdivision in empirical efficiency. In 1998 and 99, Jaumard-Meyer [6, 7] and Locatelli [8]
respectively proved the convergence of the algorithm with ω-subdivision in different ways,
and finally settled the argument over the convergence.

Preceding Jaumar-Meyer and Locatelli by almost ten years, Tuy showed in [13] that the
algorithm with ω-subdivision converges if a certain nonsingularity condition holds for any
nested sequence of generated cones. This result is not exploited in either [6, 7] or [8], and
besides it is still an open question whether the condition actually holds or not. In this paper,
we introduce a similar nonsingularity condition and show that it does hold for every nested
sequence of cones. Using this condition, we derive a convergence result under a more general
scheme of cone subdivision, including ω-subdivision. Based on the scheme, we propose a new
subdivision rule, named ω-bisection, which allows the algorithm to locate a correct solution
just as ω-subdivision does.

The organization of the paper is as follows. In Section 2, we first define the d.c. feasibility
problem, which needs to be solved to obtain an optimal solution of a concave minimization
problem, and then illustrate how the conical algorithm solves it. In Section 3, we define the
pseudo-nonsingularity, a substitute for Tuy’s nonsingularity condition, and show that it holds
for any nested sequence of cones generated in the conical algorithm. In Section 4, using this
condition, we derive the convergence result and give an alternative proof of convergence for
the conical algorithm with ω-subdivision. In Section 5, on the basis of our discussion so far,
we develop the ω-bisection rule for subdividing cones, and show that the conical algorithm
with ω-bisection converges to a correct solution of the d.c. feasibility problem. Lastly, in Sec-
tion 6, we report the result of numerical comparison between the algorithm with ω-bisection
and the usual one with ω-subdivision, and conclude the paper.

2 D.c. feasibility and the conical algorithm

Let f : S(⊂ Rn)→ R be a concave function and denote its upper level set for a real number α
by

C(α) = {x ∈ S | f (x)≥ α}.

Also let D⊂ Rn be a polyhedron defined as

D = {x ∈ Rn | Ax≤ b},

where A∈Rm×n and b∈Rm (n<m). We assume that D has nonempty interior and is included
in the interior of S, and hence f is continuous on D. Both C(α) and D are convex sets, but
their difference D\C(α) is not convex in general. The problem we consider is to search for a
point in this d.c. set (difference of two convex sets) within a prescribed tolerance ε ≥ 0, i.e.,

(DC) : find a point x ∈ D\C(α) if there is one, or else prove that D⊂C(α− ε),
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which is called the d.c. feasibility problem. For the sake of simplicity, we assume that both
C(α) and D are bounded sets. As a consequence, C(γ) is also bounded for any number γ other
than α , since all nonempty level sets of a concave function have the same recession cone (see
e.g. Theorem 8.7 in [9]).

Associated with (DC) is the concave minimization problem∣∣∣∣∣ minimize f (x)
subject to x ∈ D.

(1)

It is known, e.g., [13, 14, 15], that a globally ε-optimal solution x∗ of (1) can be computed
according to the following two-phase scheme:

Let z1 ∈ D be an initial feasible solution of (1). Also let i← 1.

Phase 1 (local phase). Starting from zi, search the vertices of D for a local mini-
mizer of f . Then a vertex xi is obtained such that f (xi)≤ f (zi) and f (xi)≤
f (x) for every vertex x adjacent to xi.

Phase 2 (global phase). Solve (DC) for α = f (xi). If D⊂C(α− ε), then x∗←
xi and terminate: x∗ is a globally ε-optimal solution of (1). Otherwise, a
feasible solution z ∈ D is obtained such that f (z) < f (xi). Let zi+1 ← z,
i← i+1, and go to Phase 1.

Alternating between these two phases generates a sequence of vertices {xi | i = 1,2, . . .} of D
such that f (xi+1)< f (xi). Since the number of vertices of a polyhedron is finite, it terminates
after finitely many repetitions if (DC) can be solved in finite time. Our goal is therefore to
solve (DC) in finite time, using the conical algorithm outlined below.

OUTLINE OF THE CONICAL ALGORITHM

Let γ = α−ε , and v be a vertex of D such that f (v)> γ . In the above two-phase scheme, such
a vertex can be easily found in the process of searching for xi because xi is a local minimizer
and f (xi) > γ when ε > 0. By perturbing b slightly if necessary, we may assume that v is a
nondegenerate vertex of D. The system defining D is then partitioned into

Bv = bB, Nv < bN ,

where B ∈ Rn×n, N ∈ R(m−n)×n are submatrices of A, and bB ∈ Rn, bN ∈ R(m−n) are the
corresponding portions of b. Let

Λ = {x ∈ Rn | Bx≤ bB}, M = {x ∈ Rn | Nx≤ bN}.
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Then we have
D = M∩Λ .

Since the vertex v is nondegenerate, it is an interior point of M. It should also be noted that
Λ is a polyhedral cone with vertex v and has exactly n edges. Let d1, . . . ,dn be directions of
the edges of Λ . These vectors are obtained immediately from a general solution of the linear
system Ax+w = b, where w ∈ Rm is the vector of slack variables.

To simplify the explanation, let us translate the origin 0 to v, and again denote by Nx≤ bN

the resulting system that defines M. We may assume in the sequel that bN > 0 because 0 has
moved to the interior of M. Let q j denote the γ-extension of d j, i.e.,

q j = ext(d j)≡ θ jd j, j = 1, . . . ,n,

where
θ j = sup{θ | f (θd j)≥ γ}.

Then we have

Λ = con(Q)≡ {x ∈ Rn | x =
n

∑
j=1

λ jq j, λλλ ≥ 0},

where
Q = [q1, . . . ,qn] ∈ Rn×n.

Note that q j’s are linearly independent and Q is invertible. Therefore, q j’s determine a unique
hyperplane, which is the boundary of

G = {x ∈ Rn | eQ−1x≤ 1},

where e ∈Rn is the all-ones row vector. Obviously, G∩Λ is a simplex with n+1 vertices q j’s
and 0, all belonging to C(γ). From the convexity of C(γ) we see that

G∩Λ ⊂C(γ).

Accordingly, if M∩Λ is a subset of G, we can conclude that (DC) is solved because

D = M∩Λ ⊂ G∩Λ ⊂C(γ) =C(α− ε).

The process of checking whether M∩Λ ⊂ G is usually called bounding. We also refer to G
as the γ-valid cut1 for the cone Λ .

If M∩Λ is not a subset of G, then either a point x ∈ D \C(α) is found or Λ needs to be
divided into subcones for further examinations. In the latter case, an appropriate direction u
is selected from Λ \{0}. There exists a vector λλλ ′ ≥ 0 such that u = ∑n

j=1 λ ′jq and λλλ ′ ̸= 0. Let

1In some literature, the term “γ-valid cut” refers to the closure of the complement of G.
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J = { j | λ ′j > 0}. Then Λ is subdivided along u into |J| subcones:

Λ j = con(Q j), j ∈ J,

where Q j is referred to as a child of Q and defined as

Q j = [q1, . . . ,q j−1,ext(u),q j+1, . . . ,qn].

It is easy to see that

int(Λ i)∩ int(Λ j) = /0 if i ̸= j; Λ =
∪
j∈J

Λ j.

In other words, the cones Λ j’s constitute a partition of Λ . This process of dividing Λ is called
branching. After branching, the bounding process is again applied to each subcone Λ j.

3 Pseudo-nonsingularity of the algorithm

Suppose the conical algorithm is infinite and generates a nested sequence of cones:

Λ = Λ1 ⊃ ·· · ⊃Λk ⊃Λk+1 ⊃ ·· · , (2)

where Λk+1 is a cone obtained by subdividing Λk along a direction uk. For each k, the cone
Λk is spanned by an invertible matrix Qk, i.e.,

Λk = con(Qk)≡ {x ∈ Rn | x =
n

∑
j=1

λ jqk
j, λλλ ≥ 0},

where qk
j is the jth column of Qk and lies on the boundary of C(γ). Let us denote the γ-valid

cut for Λk by
Gk = {x ∈ Rn | eQ−1

k x≤ 1}.

As seen in the previous section, we have M∩Λk ⊂C(γ) if M∩Λk ⊂ Gk. This can be checked
by solving an auxiliary problem ∣∣∣∣∣ maximize eQ−1

k x
subject to x ∈M∩Λk.

(3)

Let ωωωk be an optimal solution of (3) and ζ k the optimal value, i.e., ζ k = eQ−1
k ωωωk. If f (ωωωk)<

α , then ωωωk is obviously a solution to (DC), and the conical algorithm terminates. Since the
sequence (2) is infinite, that is not the case and we assume that

f (ωωωk)≥ α ≥ γ, k = 1,2, . . . . (4)
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Similarly, if ζ k ≤ 1, then M∩Λk ⊂ Gk, and we can conclude that Λk contains no solution to
(DC). In that case, Λk is discarded from further consideration. However, we assume here that

ζ k > 1, k = 1,2, . . . . (5)

The conical algorithm is known to be convergent if the direction uk of subdividing Λk coin-
cides with ωωωk for every k. This subdivision rule is called ω-subdivision, and the convergence
result was established independently by Jaumard-Meyer in 98 [6, 7] and by Locatelli in 99
[8]. Almost ten years earlier than those, Tuy showed that the algorithm with ω-subdivision
converges if the sequence (2) is nonsingular2 [13] (see also [5, 14]), i.e., there exists a subse-
quence {kr | r = 1,2, . . .} and a constant L such that

∥eQ−1
kr
∥ ≤ L, r = 1,2, . . . . (6)

Unfortunately, it remains an open question whether (6) holds or not. In the rest of this section,
we introduce another problem equivalent to (3) and show that the coefficients of its objective
function satisfies a condition similar to (6). For this reason, we say that the sequence (2) is
pseudo-nonsingular, from which we will derive a convergence result under a more general
cone subdivision rule.

LINEAR PROGRAM EQUIVALENT TO (3)

The auxiliary problem (3) is a linear program of the form

(Pk)

∣∣∣∣∣ maximize eQ−1
k x

subject to Nx≤ bN , Q−1
k x≥ 0.

Since the inversion of Qk is not always numerically so stable, (Pk) is usually solved in the
following form ∣∣∣∣∣ maximize eλλλ

subject to NQkλλλ ≤ bN , λλλ ≥ 0.
(7)

Even if Qk fails to be invertible, (7) can be defined and has an optimal solution λλλ k. The
optimal solution of (Pk) is then given by ωωωk = Qkλλλ k. The dual problem of (7) is as follows∣∣∣∣∣ minimize µµµbN

subject to µµµNQk ≥ e, µµµ ≥ 0.
(8)

2Instead of “nonsingular”, Tuy used the term “nondegenerate” derived from an analogous concept in [4].
However, since it is easily confused with nondegeneracy in linear programming, we use “nonsingular” in view
of its relation to the invertibility of Qk. Also the definition here follows that in [5].
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This problem also has an optimal solution µµµk, and by the assumption (5) we have

eλλλ k = µµµkbN = ζ k > 1.

For the dual solution µµµk, let us define another linear program

(P′k)

∣∣∣∣∣ maximize µµµkNx
subject to Nx≤ bN , Q−1

k x≥ 0,

which is equivalent to (Pk) in the following sense.

Lemma 3.1. An optimal solution of (P′k) is ωωωk = Qkλλλ k, and the optimal value is equal to ζ k.
Conversely, if x′ is an optimal solution of (P′k), then x′ is an optimal solution of (Pk).

Proof. Problem (P′k) is equivalent to∣∣∣∣∣ maximize µµµkNQkλλλ
subject to NQkλλλ ≤ bN , λλλ ≥ 0.

(9)

The dual problem is ∣∣∣∣∣ minimize µµµbN

subject to µµµNQk ≥ µµµkNQk, µµµ ≥ 0.
(10)

It is obvious that λλλ k and µµµk are feasible for (9) and (10), respectively. From the complemen-
tary slackness between (7) and (8), we see that

µµµk(bN−NQkλλλ k) = 0,

which reduces to the duality µµµkNQkλλλ k = µµµkbN between (9) and (10). Similarly, the converse
can also be shown.

Let us investigate the relationship between (Pk) and (P′k) in more detail. Let

Λ+
k = {x ∈ Rn | x = ∑

j∈Jk

qk
jλ j, λλλ ≥ 0}, Jk = { j | λ k

j > 0}.

Apparently, Λ+
k is the minimal face of Λk containing the optimal solution ωωωk of (Pk) and (P′k).

Lemma 3.2. It holds that
µµµkNx≥ eQ−1

k x, ∀x ∈Λk. (11)

In particular,
µµµkNx = eQ−1

k x if x ∈Λ+
k . (12)
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Proof. If x ∈Λk, there exists a λλλ ′ ≥ 0 such that x = Qkλλλ ′, and we have

eQ−1
k x = eλλλ ′ ≤ µµµkNQkλλλ ′ = µµµkNx, (13)

by noting µµµkNQk ≥ e. Furthermore, if x ∈ Λ+
k , then λ ′j = 0 for each j ̸∈ Jk, and besides we

have
µµµkNqk

j = 1, ∀ j ∈ Jk,

by the complementary slackness between (7) and (8). The equation in (12) follows from these
together with (13).

Let
Hk = {x ∈ Rn | µµµkNx≤ 1}.

Immediately from Lemma 3.2, we see the relationship between this halfspace Hk and the γ-
valid cut Gk:

Gk∩Λ+
k = Hk∩Λ+

k ⊂ Hk∩Λk ⊂ Gk∩Λk ⊂C(γ). (14)

PROOF OF PSEUDO-NONSINGULARITY

Let us give here the formal definition of pseudo-nonsingularity.

Definition 3.1. The nested sequence of cones {Λk | k = 1,2, . . .} is said to be pseudo-nonsin-
gular if there exists a constant L such that

∥µµµkN∥ ≤ L, k = 1,2, . . . . (15)

The conical algorithm is also said to be pseudo-nonsingular if every nested sequence of cones
that it generates is pseudo-nonsingular.

Note that this definition requires the norm in (15) to be bounded from above for every k, unlike
the original nonsingularity (6).

To show the pseudo-nonsingularity of the sequence (2), we only have to show the existence
of a constant L satisfying (15). For this purpose, however, we need a further lemma.

Lemma 3.3. The optimal value ζ k of (Pk) and (P′k) is nonincreasing in k, i.e.,

ζ k ≥ ζ k+1 > 1, k = 1,2, . . . .

Proof. Suppose that Λk+1 is spanned by Qk+1 = [qk
1, . . . ,q

k
j−1,ext(uk),qk

j+1, . . . ,q
k
n]. Then we

have
ωωωk+1 = ∑

i ̸= j
λ k+1

i qk
i +λ k+1

j ext(uk).
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Let u′ denote the intersection of the ray in direction uk with the boundary of Hk. Since u′ ∈
Hk ∩Λk, it follows from (14) that u′ is a point in C(γ). On the other hand, the γ-extension
ext(uk) lies on the boundary of C(γ). Hence, ext(uk) = θu′ holds for some θ ≥ 1, and we
have

µµµkNωωωk+1 = ∑
i ̸= j

λ k+1
i µµµkNqk

i +λ k+1
j θ µµµkNu′ ≥ eλλλ k+1 = ζ k+1,

by noting that µµµkNqk
i ≥ 1, µµµkNu′ = 1 and λλλ k+1 ≥ 0. Furthermore, we have

ζ k = µµµkNωωωk ≥ µµµkNωωωk+1 ≥ ζ k+1,

because ωωωk is an optimal solution of (P′k) while ωωωk+1 is just a feasible solution.

Theorem 3.4. The nested sequence of cones (2) is pseudo-nonsingular.

Proof. Assume that ∥µµµkN∥ > 0, since otherwise there is nothing to prove, and define a half-
space

H = {x ∈ Rn | µµµkNx≤ ζ k}.

If x ∈M, then
µµµkNx≤ µµµkbN = ζ k,

which implies that M is a subset of H. Recall that the vertex v of Λ is a nondegenerate vertex
of D=M∩Λ and located at 0. Therefore, 0 is an interior point of M and the distance δ (0,∂M)

from 0 to the boundary of M does not vanish. Since δ (0,∂M) is a lower bound on the distance
δ (0,∂H) = ζ k/∥µµµkN∥ from 0 to the boundary of H, we have

∥µµµkN∥ ≤ ζ k/δ (0,∂M).

Once v is selected, δ (0,∂M) stays constant. The sequence {ζ k | k = 1,2, . . .} is nonincreasing,
as seen in Lemma 3.3, and hence

ζ k ≤ ζ 1 = max{eQ−1x | x ∈ D},

where the right-hand-side is bounded from above because D is assumed to be bounded.

Since (2) is an arbitrary nested sequence of cones, the conical algorithm is also pseudo-
nonsingular. In the next section, we will use the pseudo-nonsingularity and prove the con-
vergence of the conical algorithm under a certain class of subdivision rules, including ω-
subdivision.
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Figure 1: Geometric position between ext(uk) and yk.

4 Convergence of the algorithm with ω-subdivision

Let yk denote the intersection of the ray from 0 in direction uk with the boundary of Gk (see
Figure 1). The main result we prove in this section is the following, which guarantees that Gk

approximates C(γ) asymptotically on Λk.

Theorem 4.1. Let {Λk | k = 1,2, . . .} be a nested sequence of cones such that Λk+1 is obtained
by subdividing Λk along uk ∈Λ+

k . Then,

liminf
k→∞

∥ext(uk)−yk∥= 0. (16)

Before proving Theorem 4.1, we need to introduce two lemmas. Let

Hk = {x ∈ Rn | µµµkNx≥ 1}.

Lemma 4.2. The sequence {yk | k = 1,2, . . .} is bounded and satisfies

yk ∈ Hℓ, ℓ= 1, . . . ,k. (17)

Proof. Since yk ∈ Gk∩Λk ⊂C(γ) and C(γ) is bounded, the sequence is also bounded. Let q′j
denote the intersection of the ray in direction qk

j with ∂Hℓ. Then q′j ∈Hℓ∩Λℓ⊂Gℓ∩Λℓ⊂C(γ)
while qk

j ∈ ∂C(γ). Hence, there is a θ j ≥ 1 such that qk
j = θ jq′j. If yk = ∑n

j=1 λ ′jqk
j for some

λλλ ′ ≥ 0 with eλλλ ′ = 1, we have

µµµℓNyk = µµµℓN
n

∑
j=1

λ ′jqk
j =

n

∑
j=1

θ jλ ′jµµµℓNq′j =
n

∑
j=1

θ jλ ′j ≥ 1,

which implies that yk is a point in Hℓ.

Lemma 4.3. Let {Λk | k = 1,2, . . .} be a nested sequence of cones such that Λk+1 is obtained
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by subdividing Λk along uk ∈ Λ+
k . Then, there exists a subsequence {kr | r = 1,2, . . .} such

that
uk2p−1 ∈Λ+

k2p−1
∩Λ+

k2p
, p = 1,2, . . . . (18)

Proof. Let us first show that, for infinitely many k,

∃ℓ≥ k+1, uk ∈Λ+
ℓ . (19)

If not, there exists a sufficiently large k such that uk ̸∈Λ+
ℓ for each ℓ≥ k+1. In other words, uk

remains as an edge direction in the descendants of Λk. Similarly, uk+1 ̸∈Λ+
ℓ+1 for each ℓ≥ k+1

while uk+1 ∈ Λ+
k+1, and so forth. Eventually, Λk+n is spanned by n vectors uk,uk+1, . . . , and

uk+n−1, at least one of which must be a point in Λ+
k+n. This is a contradiction and therefore

(19) holds for infinitely many k. Let us select such a k, denote it by k1 and denote the corre-
sponding ℓ by k2. Then, select another k≥ k2+1 satisfying (19), denote it by k3 and denote the
corresponding ℓ by k4. Continuing this process yields an infinite sequence {kr | r = 1,2, . . .},
which satisfies (18).

Now we are ready to prove theorem 4.1.

Proof of Theorem 4.1. Let {kr | r = 1,2, . . .} be a subsequence satisfying (18), and abbreviate
kr to r. We see from Lemma 4.2 that {yr | r = 1,2, . . .} is a bounded sequence and satisfies

yr ∈
r∩

ℓ=1

Hℓ.

According to the bounded convergence principle (see e.g., Lemma III.2 in [5]), we have

δ (yr,Hr+1)→ 0 as r→ ∞. (20)

Without loss of generality, suppose r is an odd number. Both yr and ext(ur) are then points
in Λ+

r ∩Λ+
r+1 because ur belongs to those two cones. From Lemma 3.2, it holds that

µµµr+1Next(ur) = eQ−1
r+1ext(ur). (21)

Since ext(ur) is a column, say the j th column, of Qr+1, we have ext(ur) = Qr+1e j for the j th
unit vector e j. This, together with (21), implies that µµµr+1Next(ur) = 1, or equivalently that

ext(ur) ∈ ∂Hr+1 = ∂Hr+1.

Note that ext(ur) is also the γ-extension of yr, and ext(ur)∈ ∂C(γ) while yr ∈C(γ). Therefore,
yr cannot be an interior point of Hr+1, and we see that (20) can be rewritten as follows:

δ (yr,∂Hr+1)→ 0 as r→ ∞. (22)
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Let x′ and y′ denote the points in ∂Hr+1 closest to 0 and yr, respectively. Since the triangle
connecting x′, 0 and ext(ur) is similar to that connecting y′, yr and ext(ur), we have

∥ext(ur)−yr∥= ∥ext(ur)∥δ (yr,∂Hr+1)/δ (0,∂Hr+1). (23)

By the pseudo-nonsingularity of {Λk | k = 1,2, . . .}, we have 1/δ (0,∂Hr+1) = ∥µµµr+1N∥< L
for some constant L. Also, ∥ext(ur)∥ is bounded because ext(ur) is a point in the bounded set
C(γ). Thus, by noting (22), we conclude that ∥ext(ur)−yr∥→ 0 as r→ ∞.

The convergence result with the usual ω-subdivision can be thought of as a corollary of
Theorem 4.1.

Corollary 4.4. Let {Λk | k = 1,2, . . .} be a nested sequence of cones such that Λk+1 is obtained
by subdividing Λk along uk = ωωωk. Then {yk | k = 1,2, . . .} has an accumulation point y0 ∈ D
such that f (y0) = γ .

Proof. By Theorem 4.1, there exists a subsequence {kr | r = 1,2, . . .} such that ∥ext(ωωωkr)−
ykr∥ → 0 as r→ ∞. We have | f [ext(ωωωkr)]− f (ykr)| → 0 by the continuity of f , and hence
f (ykr)→ γ by noting f [ext(ωωωkr)] = γ . It follows from the assumption (5) that ykr belongs
to the segment [0,ωωωkr ] in M ∩Λkr , which is a subset of the compact set D. Therefore, the
sequence {yk | k = 1,2, . . .} has an accumulation point y0 ∈ D satisfying f (y0) = γ .

Unfortunately, Theorem 4.1 does not, by itself, ensure the convergence of the algorithm
to a solution of the d.c. feasibility problem (DC). It merely implies the existence of a sub-
sequence {kr | r = 1,2, . . .} such that the γ-extension of ukr approaches the γ-valid cut Gkr

asymptotically. To achieve the convergence to a solution of (DC), we need to further restrict
the selection of the subdivision direction uk for each k. One way is obviously ω-subdivision.
In the next section, we will develop an alternative to ω-subdivision, named ω-bisection, which
bisects Λk by splitting a two-dimensional face of Λ+

k into two pieces.

5 Conical algorithm based on ω-bisection

To develop the ω-bisection, we assume in the rest of the paper that f is strictly concave, i.e.,
if x,y ∈ S and x ̸= y, then we have

f [(1−λ )x+λy]> (1−λ ) f (x)+λ f (y), ∀λ ∈ (0,1). (24)

Under this assumption, we can observe the following behavior in the sequence (2). As before,
yk denotes the intersection of the ray in direction uk with the boundary of Gk.

Lemma 5.1. Let {Λk | k = 1,2, . . .} be a nested sequence of cones such that Λk+1 is obtained
by subdividing Λk along uk lying on a two-dimensional face of Λ+

k . Then {qk
j | k = 1,2, . . .}
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has an accumulation point q0
j ∈ ∂C(γ) for each j = 1, . . . ,n. Among the q0

j’s, there exists an
accumulation point y0 of {yk | k = 1,2, . . .}.

Proof. By Theorem 4.1, we can take a subsequence {kr | r = 1,2, . . .} such that

∥ext(ukr)−ykr∥→ 0, as r→ ∞. (25)

Since the number of possible combinations is finite, ukr lies on a face of Λkr spanned by two
vectors with the same pair of subscripts, say qkr

s and qkr
t , for infinitely many r. By extracting

a further subsequence if necessary, we have

ykr = (1−λ kr)qkr
s +λ krqkr

t , λ kr ∈ (0,1/2], r = 1,2, . . . ,

and besides

qkr
s → q0

s ∈ ∂C(γ), qkr
t → q0

t ∈ ∂C(γ), ykr → y0 ∈ [q0
s ,q

0
t ], as r→ ∞,

because qk
s and qk

t are generated in the compact set ∂C(γ).
To show that y0 coincides with either q0

s or q0
t , suppose on the contrary that there exists a

number σ > 0 such that

∥qkr
s −ykr∥> σ , ∥qkr

t −ykr∥> σ , r = 1,2, . . . . (26)

For this σ , consider ∣∣∣∣∣ minimize f [(x+y)/2]− [ f (x)+ f (y)]/2
subject to x,y ∈Λ1, ∥x−y∥ ≥ 2σ .

(27)

Since the constraints are satisfied by (x,y) = (qkr
s ,q

kr
t ) and the objective function is bounded

below, (27) has an optimal solution, whose value, denoted by ν , is positive by the assumption
(24). Let

y′ = (1−2λ kr)qkr
s +2λ krqkr

t .

By the concavity of f , we have

[ f (qkr
s )+ f (y′)]/2≥ (1−λ kr) f (qkr

s )+λ kr f (qkr
t ) = γ . (28)

Note that the pair (qkr
s ,y′) is a feasible solution of (27) and the objective function value

f [(qkr
s +y′)/2]− [ f (qkr

s )+ f (y′)]/2 never falls below ν . This, together with (28), implies

f (ykr)− f [ext(ukr)] = f [(qkr
s +y′)/2]− γ

≥ f [(qkr
s +y′)/2]− [ f (qkr

s )+ f (y′)]/2≥ ν > 0,

13
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Figure 2: Process of ω-bisection when Jk = {1,2,3}.

which contradicts (25) because f is continuous. Hence, the assumption (26) is false, and we
have y0 ∈ {q0

s ,q0
t }.

ω -BISECTION RULE

On the basis of the above observation, let us now attempt to develop a systematic procedure
for ω-bisection (see also Figure 2).

For each pair {i, j} ⊂ Jk, let

yk
i j = (λ k

i qk
i +λ k

j qk
j)/(λ k

i +λ k
j ). (29)

This point yk
i j is the intersection of the segment [qk

i ,q
k
j] with the hyperplane spanned by ωωωk

and n− 1 vectors qk
1, . . . ,q

k
i−1,q

k
i+1, . . . ,q

k
j−1,q

k
j+1, . . . ,q

k
n. The segment [qk

i ,q
k
j] is split into

two pieces [qk
i ,y

k
i j] and [yk

i j,q
k
j], the shorter of which has a length of

δ k
i j = ∥qk

i −qk
j∥min{λ k

i ,λ k
j }/(λ k

i +λ k
j ). (30)

Among the yk
i j’s, we select as uk the one with the largest δ k

i j, i.e., yk
st with

{s, t} ∈ argmax{δ k
i j | {i, j} ⊂ Jk}, (31)

and subdivide the cone Λk along the direction uk = yk
st into two subcones:

Λ j
k = con(Q j

k), j = s, t, (32)

14



where
Q j

k = [qk
1, . . . ,q

k
j−1,ext(yk

st),q
k
j+1, . . . ,q

k
n]. (33)

Either Λ s
k or Λ t

k is adopted as Λk+1 in the nested sequence of cones {Λk | k = 1,2, . . .}.
Suppose that {Λk | k = 1,2, . . .} is generated according to the rule given by (29)–(33).

Then we have the following results.

Lemma 5.2. There exists an index set J0 ⊂ {1, . . . ,n} such that Jk = J0 for infinitely many k.
Moreover,

(i) for each pair {i, j} ⊂ J0, the sequence {yk
i j | k = 1,2, . . .} has an accumulation point

y0
i j ∈ {q0

i ,q
0
j}, and

(ii) for each j ∈ J0, the sequence {λ k
j | k = 1,2, . . .} has an accumulation point λ 0

j ≥ 0 such
that ∑ j∈J0 λ 0

j ≥ 1.

In particular, if λ 0
i ,λ 0

j > 0 for {i, j} ⊂ J0, then it holds that y0
i j = q0

i = q0
j .

Proof. Consider the same sequence {kr | r = 1,2, . . .} used in the proof of Lemma 5.1. The
indices s and t determined in (31) belong to Jkr , which is a subset of a finite set {1, . . . ,n}.
This implies that there is a set J0 such that {s, t} ⊂ J0 = Jkr for infinitely many r.

(i) After extracting a subsequence, we can assume for each {i, j}⊂ J0 that qkr
i → q0

i , qkr
j → q0

j

and ykr
i j → y0

i j ∈ [q0
i ,q

0
j ], as r→∞, for some q0

i ,q
0
j ∈C(γ). Also, we see from Lemma 5.1 that

y0
i j ∈ {q0

i ,q
0
j} because δ kr

i j ≤ δ kr
st but δ kr

st → 0 as r→ ∞.

(ii) From Lemma 3.3, we see that λλλ kr belongs to a compact set defined by eλλλ ≤ ζ 1 and λλλ ≥ 0.
Taking a further subsequence if necessary, we have λ kr

j → λ 0
j , as r→∞, for some λ 0

j ≥ 0. We

also have ∑ j∈J0 λ 0
j ≥ 1 since ∑ j∈J0 λ kr

j = ζ kr > 1.

If λ 0
i ,λ 0

j > 0 and q0
i ̸= q0

j for some {i, j} ⊂ J0, then

ykr
i j = (λ kr

i qkr
i +λ kr

j qkr
j )/(λ

kr
i +λ kr

j )→ y0
i j = (λ 0

i q0
i +λ 0

j q0
j)/(λ 0

i +λ 0
j ) ̸∈ {q0

i ,q
0
j},

which contradicts (i).

Lemma 5.3. Let ηηηk denote the intersection of the ray from 0 in direction ωωωk with ∂Gk. Then
{ηηηk | k = 1,2, . . .} has an accumulation point ηηη0 ∈ D such that f (ηηη0) = γ .

Proof. Consider again the subsequence used in the previous lemmas. Renumbering the sub-
scripts, we may assume that J0 = {1, . . . , p} for some p ≤ n. For i = 3, . . . , p, we will show
below that if

wkr
i−1 =

i−1

∑
j=1

λ kr
j qkr

j →

(
i−1

∑
j=1

λ 0
j

)
q0

h, as r→ ∞, (34)
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for some h ∈ {1, . . . , i−1}, then

wkr
i =

i

∑
j=1

λ kr
j qkr

j →

(
i

∑
j=1

λ 0
j

)
q0

h′, as r→ ∞, (35)

for h′ ∈ {h, i}. Note that (35) follows immediately from Lemma 5.2 if i = 2.
Since ykr

hi converges to either q0
h or q0

i , there are three cases to consider:

∥qkr
i −qkr

h ∥→ 0 (36)

∥qkr
i −qkr

h ∥→ σ , λ 0
h > 0, λ 0

i = 0 (37)

∥qkr
i −qkr

h ∥→ σ , λ 0
h = 0, λ 0

i > 0, (38)

where σ > 0 is some constant. In cases (36) and (37), as r→ ∞, we have

∥wkr
i −

(
i

∑
j=1

λ kr
j

)
qkr

h ∥= ∥
i−1

∑
j=1

λ kr
j qkr

j −

(
i−1

∑
j=1

λ kr
j

)
qkr

h +λ kr
i (qkr

i −qkr
h )∥

≤ ∥wkr
i−1−

(
i−1

∑
j=1

λ kr
j

)
qkr

h ∥+λ kr
i ∥q

kr
i −qkr

h ∥→ 0,

and wkr
i → (∑i

j=1 λ 0
j )q

0
h. In case (38), if λ 0

j = 0 for j = 1, . . . , i−1, then obviously

∥wkr
i −

(
i

∑
j=1

λ kr
j

)
qkr

i ∥= ∥
i−1

∑
j=1

λ kr
j (q

kr
j −qkr

i )∥ ≤
i−1

∑
j=1

λ kr
j ∥q

kr
j −qkr

i ∥→ 0, (39)

and wkr
i → (∑i

j=1 λ 0
j )q

0
i . Even if λ 0

j > 0 for some j, we have (39) because q0
i = q0

j by Lemma
5.2. Therefore, (35) holds for all three cases. By induction, there exists an index h ∈ J0 such
that

ωωωkr = wkr
p = ∑

j∈J0

λ kr
j qkr

j →

(
∑
j∈J0

λ 0
j

)
q0

h, as r→ ∞. (40)

By definition, we have ηηηkr = ωωωkr/∑ j∈J0 λ kr
j → q0

h, and hence f (ηηηkr)→ f (q0
h) = γ , as r→ ∞.

The rest of the proof is the same as that for Corollary 4.4.

ALGORITHM DESCRIPTION

Before closing this section, let us summarize the conical algorithm for solving (DC) with
ω-bisection.

algorithm conic ω bisect(D, f ,α ,ε)
γ ← α− ε;
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determine a cone Λ with vertex v = 0 and a polyhedron M such that D = M∩Λ , f (v)> γ ,
and v is an interior point of M;
let Λ be spanned by n vectors q1, . . . ,qn with f (q j) = γ , and Q← [q1, . . . ,qn];
P ← /0; T ←{Q}; stop← false; z← 0; k← 1;
while stop = false do

for each Q ∈T do

compute an optimal solution λλλ (Q) of the linear program max{eλλλ |Qλ ∈M,λλλ ≥ 0};
ζ (Q)← eλλλ (Q);
if ζ (Q)> 1 then

P ←P ∪{Q};
end if

if f (Qλλλ (Q))< α then

z←Qλλλ (Q);
end if

end for

if P = /0 or f (z)< α then

stop← true;
else

choose Q with the largest ζ (Q) from P , and let Qk←Q;
λλλ k← λλλ (Qk); ωωωk←Qkλλλ k;
generate the children Qs

k and Qt
k of Qk from λλλ k according to (29)–(33);

P ←P \{Qk}; T ←{Qs
k,Q

t
k}; k← k+1;

end if

end while

if P ̸= /0 then

print “z is a point in D\C(α).”;
else

print “D is a subset of C(γ).”;
end if

end.

Theorem 5.4. Suppose ε = 0. If the algorithm conic ω bisect terminates, then it either gen-
erates a point z ∈ D\C(α) or proves that D⊂C(α). If not, the sequence {ωωωk | k = 1,2, . . .}
has an accumulation point ωωω0 ∈ D such that f (ωωω0) = α .

Proof. Since the claim is obvious if conic ω bisect terminates, it is sufficient to consider the
case where it does not. In that case, the algorithm generates an infinite sequence of matrices
{Qk | k = 1,2, . . .} such that Qk+1 is a child of Qk if we renumber the indices. For each k,
let Λk = con(Qk). Then {Λk | k = 1,2, . . .} is a nested sequence of cones generated by ω-
bisection. Let ηηηk denote the intersection of the ray in direction ωωωk with ∂Gk. Since ζ k =
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ζ (Qk)> 1, we see that ηηηk lies on the segment [0,ωωωk]. By the concavity of f , we have

f (ηηηk)≥min{ f (0), f (ωωωk)} ≥ γ = α− ε. (41)

However, by Lemma 5.3, there exists a subsequence {kr | r = 1,2, . . .} such that f (ηηηkr)→ γ
as r → ∞. Since ε = 0 and f (0) > α , this can be compatible with (41) only if f (ωωωkr)→
γ = α . Moreover, {ωωωk | k = 1,2, . . .} is generated in the compact set D, and hence it has an
accumulation point ωωω0 ∈ D such that f (ωωω0) = α .

Corollary 5.5. If ε > 0, the algorithm conic ω bisect terminates in a finite number of itera-
tions, and either generates a point z ∈ D\C(α) or proves that D⊂C(α− ε).

Proof. As seen in the proof of Theorem 5.4, if conic ω bisect does not terminate, it generates
a sequence {kr | r = 1,2, . . .} such that f (ωωωkr)→ γ = α−ε as r→∞. However, if f (ωωωk)< α
holds, the algorithm terminates according to its stopping criterion. Therefore, conic ω bisect

terminates in a finite number of iterations if ε > 0.

6 Numerical results

In this section, we report a numerical comparison between the conical algorithm with ω-
bisection and that with the usual ω-subdivision. The test problem was a concave quadratic
minimization problem of the form∣∣∣∣∣∣∣∣∣∣

minimize
1
2

xTCx+d

[
x
y

]

subject to A

[
x
y

]
≤ b, x, y≥ 0,

(42)

where A ∈ R40×100, b ∈ R40, C ∈ Rr×r, d ∈ R100, and r ≤ 100. In order to make the feasible
region bounded, b was set to [1, . . . ,1,100]T and each entry in the last row of A was set to
one. Other entries of A were uniformly random numbers generated in the interval [−0.5,1.0].
As for the objective function, C was a symmetric and negative-definite matrix with entries
in [−1.0,0.0], and all components of d were random numbers in [−300.0,0.0]. To solve this
optimization problem, we adopted the two-phase scheme described in Section 2 and wrote
two program codes, ω-bisect and ω-subdiv, in GNU Octave [3], a numerical computing en-
vironment similar to MATLAB. The only deference between ω-bisect and ω-subdiv is that
the former uses ω-bisection as the cone subdivision rule for the conical algorithm in Phase 2
while the latter uses the usual ω-subdivision. These codes consist largely of solving the linear
program (7) associated with (Pk), to which we applied the simplex method solver in GLPK
(GNU linear programming kit) [2]. Also, to prevent the convergence from depending on the
magnitude of the optimal value, we modified the tolerance in the d.c. feasibility problem and
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Figure 3: Comparison between ω-bisect and ω-subdiv when ε = 10−5.
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solved the following in Phase 2, instead of (DC) given in Section 2:

(DC′) : find a point x ∈ D\C(α) if there is one, or else prove that D⊂C((1+ ε)α),

where we should note that α ≤ 0 for the test problem (42). We solved ten instances for each
pair (r,ε) on a single core of an Intel Core i7 processor (3.33GHz). Note that, when r < 100,
the objective function of (42) does not satisfy the condition (24); and hence ω-bisect is not
guaranteed to terminate in this case. In our experiment, however, both ω-bisect and ω-subdiv

solved all the instances in finite time.
Figure 3 compares the behavior of ω-bisect and ω-subdiv when the tolerance ε was fixed

at 10−5 and the number r of nonlinear variables was changed from 10 to 40 in increments
of 10. The upper plot shows the average number of total branching operations executed in
each of ω-bisect and ω-subdiv, corresponding to the solid and dashed lines, respectively. The
lower plot shows the average CPU time taken by each code in seconds. We see immediately
from these plots that both codes actually take an exponential amount of computation time in
r. What is still more remarkable is that, while ω-bisect requires more branching operations, it
is much faster than ω-subdiv. This is totally due to the difference in the number of auxiliary
problems generated after a single branching operation. In the worst case, ω-subdiv needs to
solve n(= 100) new auxiliary problems. In contrast to this, those to be solved in ω-bisect are
only two. The same tendency can be observed in Figure 4, which shows the result when r was
fixed at 30 and ε was changed from 10−3 to 10−6. In this figure, the computation time for
both codes seems to reach a ceiling around ε = 10−5. It might be because unpromising cones
are discarded earlier when ε is small enough. However, since this is simply a result obtained
from ten instances for each ε , we cannot draw a firm conclusion.

In order to make a definite conclusion, we need to solve a wider variety of problems with
different sizes. Nevertheless, it should be clear even from these limited results that ω-bisection
is at least comparable with ω-subdivision in practical efficiency and promising as a new cone
subdivision rule for the conical algorithm. In a subsequent paper, we will report on more
detailed numerical results, together with a generalization of ω-bisection and ω-subdivision.
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