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ABsTRACT. We study the Yamabe problem in the context of manifolds with bound-
ary - a basic problem in Riemannian geometry - from the point of view of nonlinear
elliptic boundary value problems. By making good use of bifurcation theory from a
simple eigenvalue, we show that nonpositive scalar curvatures and nonpositive mean
curvatures are not always conformal to constant negative scalar curvatures and the
zero mean curvature.

INTRODUCTION

Let (M, g) be a smooth compact, connected Riemannian manifold with boundary
OM of dimension n > 3, and let M = M\OM be the interior of M. A metric g’ of
M is said to be conformal to the metric g if there exists a strictly positive function
¢ € C°°(M) such that

/ 4
g =¢n2g.

A basic problem in Riemannian geometry is to seek a conformal change of the
metric g that makes the scalar curvature of M constant and the mean curvature of
OM zero. When the boundary OM is empty, this problem is the so-called Yamabe
problem. The solution of the Yamabe problem is completely given by H. Yamabe
[Ya], N. S. Trudinger [Tr], T. Aubin [Au] and R. Schoen [Sc] (cf. [LP]). Recently, J.
Escobar [Es| has studied the problem in the context of manifolds with boundary,
and has given an affirmative solution to the problem formulated above in almost
every case.

In this paper we consider the case where the given metric g already has a constant

negative scalar curvature k of M and the zero mean curvature of 9M as in Ouyang
[Ou] (cf. [Ka], [KW]). Our problem is stated as follows:

Problem. Given a nonpositive function R’ € C°°(M) and a nonpositive function
e C>*°(0M), find a metric g' of M, conformal to g, such that R' and h' are the
scalar curvature of M and the mean curvature of M with respect to g’, respectively.

Now we let
M_(R") ={x € M; R'(z) < 0},
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and

Mo(R') = M\M_(R)).

Our fundamental hypothesis is the following (cf. Figure 1):

(H) The open set M(R’) consists of a finite number of connected components
with smooth boundary, say M;(R’), 1 <i < ¢, which are bounded away from 0M,
and consists of a finite number of connected components with smooth boundary,
say M;(R'), £+ 1 < j < N, such that each closure M;(R’) is a neighborhood of
some connected component S; of OM.

Figure 1

Under hypothesis (H), we shall show that nonpositive scalar curvatures R’ and
nonpositive mean curvatures h’ are not always conformal to the negative scalar
curvature k and the zero mean curvature; it depends on the shape of the set M (R')
(see Theorem 1 below).

First we consider the Dirichlet eigenvalue problem in each connected component
M;(R), 1 <i < ¥, which is bounded away from OM:

(D)) { AYp =X in M;(R),
' =0 on OM,;(R').
We remark that the Laplacian A has the sign so that Ay = —¢” on R. By

the celebrated Rayleigh theorem, we know that the first eigenvalue Ai(M;(R’)) of
problem (D) is given by the formula

M(M(R) = inf { /M_(R,) VIV € HEM(R)), Il o, ) = 1} -
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Here dV is the Riemannian density of g, and H}(M;(R’)) is the closure of C*°
functions with compact support in M;(R’) in the Sobolev space H*(M;(R)).

Next we consider the Dirichlet-Neumann eigenvalue problem in each connected
component M;(R’), £+ 1 < j < N, whose closure is a neighborhood of some
connected component S; of OM:

A’QZJ = ILL’QD in Mj(R/),

(M;) =0 on OM;(R)\S;,
g—qﬁ = on Sj,

where n is the unit outward normal vector to §; with respect to the metric g.
Similarly, by Rayleigh’s theorem, we know that the first eigenvalue 1 (M;(R')) of
problem (M) is given by the formula

i (M (R')) = inf{ /M_(R,) VRV € H (M;(R')). 0 = Don OM;(R)\S;.

|l L2, (R = 1}-
We let

A (Mo(R)) = min {\ (M (R))), -, M (M(R)),
(Mo (R)), - s pn(Mn(R))}

We remark (cf. [Ch]) that the minimal eigenvalue A (Mo(R')) is monotone decreas-
ing with respect to the set Mo(R'); more precisely, it tends to +oo if My(R') — 0,
and it tends to zero if My(R') — M.

Then our main result of this paper is stated as follows.

Theorem 1. Assume that the given metric g has a constant negative scalar cur-
vature k of M and the zero mean curvature of OM, and that:

(A) k' <0 on OM\ ij:eﬂ S;, and h' =0 on Uj-V:HlSj.

Then there ezists a conformally related metric ¢’ = */("=2) g, © > 0 on M, such
that R and h' are respectively the scalar curvature of M and the mean curvature
of OM with respect to g’ if and only if we have

n— 2

A (Mo(R)) > — =1

The rest of this paper is organized as follows.

Section 1 is devoted to analytic and geometric preliminaries. In particular, we
formulate our problem more precisely, and show that the problem is equivalent to
finding a strictly positive solution ¢ € C° (M) of the nonlinear boundary value
problem:

n+t2
) {43—:;A¢+k¢—R’<pm:0 in M,
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If we let

n— 2 n— 2 n—2
A==k h=- " R, a=-
An—1)" An—1) " “

then the boundary value problem (x) can be written in the following form:

Au—Au+hu? =0 in M,
()

% +au? =0 on OM,
where
I
P= n— 2 4= n—2 '
Here we remark that
A >0,

heC™(M)and h>0in M,
a € C>®(OM) and a > 0 on OM.

In Section 2, we free our problem from geometry, and study the existence and
nonexistence of positive solutions of problem (xx) in the framework of Holder spaces.
Our approach to problem (xx) is a modification of that of Ouyang [Ou] adapted to
the present context. However we do not use the sub-super-solution method as in
Ouyang [Ou] (cf. [Ka], [KW]).

First, by using a bifurcation theorem from a simple eigenvalue due to Crandall-
Rabinowitz [CR], we prove that there exists a positive solution u(\) of problem
(xx) starting at the point (0,0) (Lemma 2.1). Next we show that the solution u(\)
is strictly positive on M (Lemma 2.2), and is monotone increasing with respect to
the parameter A (Lemma 2.5). In the proof we make essential use of the positivity
of the resolvent of the linearized problem on the space C(M) due to Taira [Ta2]
(Claim 2.6). Furthermore, by virtue of the implicit function theorem, we can find
a constant 0 < A(h) < oo such that there occurs no secondary bifurcation along the
bifurcation solution curve (\,u()\)) of problem (%) for all 0 < A < A(h) (Lemma
2.3). The situation may be represented schematically by the following bifurcation

diagram:
u

A(h)

Figure 2
In order to characterize explicitly the critical value A(h), we let

M (h) = {z € M;h(z) > 0},
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and

Mo(h) = MAM . (h).

Our fundamental hypothesis is the following (cf. hypothesis (H)):

(n) The open set My(h) consists of a finite number of connected components
with smooth boundary, say M;(h), 1 < i < ¢, which are bounded away from 0M,
and consists of a finite number of connected components with smooth boundary,

say M;(h), {+1 < j < N, such that each closure M (h) is a neighborhood of some
connected component S; of OM.

Then we have the formula

(0.1) X(h) = M(Mo(h)),

where the quantity A (Mo(h)) is defined similarly, with R’ replaced by —h.
More precisely, we can prove the following existence and nonexistence theorem
of positive solutions of problem (xx) (cf. [Cr, Théoreme 6], [Ou, Theorem 3)):

Theorem 2. Assume that:

() a>0 on OM\S;, anda =0 on S;, {+1<j<N.

Then we have the following:

(i) For any 0 < XA < A (Mq(h)), there exists a strictly positive solution u()\) of
problem (xx).

(ii) For any A > X\ (Mg(h)), there ezists no positive solution of problem (sx).

Our main Theorem 1 is an immediate consequence of Theorem 2.

The proof of formula (0.1) and Theorem 2 is carried out in Section 3 through
Section 6.

First, in Section 3, by using Green’s formula, we prove the inequality (Proposition
3.1):

(0.2) A(h) < A (Mo(h)).

Next, in Section 4 through Section 6, we prove the reverse inequality of inequality
(0.2) (Proposition 6.1):

(0.3) M (Mo (R)) < X(h).

In Section 4 we study the behavior of the positive solutions u(\) (0 < A < A(h))
in the set M (h). Roughly speaking, we prove that, for each € > 0, there exists a
constant C'(g, A) > 0 such that (Lemma 4.2)

p—l—¢ C(e, \)
(u(N)(x)) < h() for all x € M4 (h).

This is an essential step in the proof of inequality (0.3) in Section 6 (cf. estimate
(6.9)). On the other hand, in Section 5, we prove that (Lemma 5.1)

lim (M) 2(ar) = +oo.
A—x(h)
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that is, we show that the solution u(\) “blows up” at the critical value A(h). In
Section 6, we prove that the critical value A(h) is an eigenvalue of either the Dirichlet
problem (D;) or the Dirichlet-Neumann problem (1/;). By Rayleigh’s theorem, this
implies the desired reverse inequality (0.3).

The author would like to thank Atsushi Inoue, Osamu Kobayashi and Hajime
Sato for fruitful conversations and helpful comments on the manuscript.

1. ANALYTIC AND GEOMETRIC PRELIMINARIES

In this section we collect some notation and well-known facts from the theory of
partial differential equations and Riemannian geometry which will be used in the
subsequent sections.

1.1 Function spaces. Let () be an open subset of Euclidean space R™. If m is a
nonnegative integer and 1 < p < oo, we let
W™ P(Q) =the space of (equivalence classes of) functions
u € LP(Q) all of whose derivatives 0%u, |a| < m,

in the sense of distributions are in LP(€2),
and

Wi"P(92) =the closure of C3° () in the space W™(Q).
In the case p = 2, we customarily write
H™(Q) = W™(Q), H'(Q) = W*(9Q).
Furthermore, if m is a nonnegative integer and 0 < 6 < 1, we let

C™0(Q)) = the space of functions in C™(Q) all of whose m-th order

derivatives are Holder continuous with exponent 6 on 2.

If M is an n-dimensional compact smooth manifold without boundary, then the
spaces W™P(M) and C™+%(M) are defined respectively to be locally the spaces
WmP(R™) and C™*?(R™), upon using local coordinate systems flattening out M,
together with a partition of unity.

1.2 Bifurcation theory. Let F'(¢,z) be a map of a neighborhood of the point
(0,0) in a Banach space R x X into a Banach space Y such that

F(t,0)=0 for |t| < 1.

Of particular interest is the process of bifurcation whereby a given solution of
F(t,z) = 0 splits into two or more solutions as ¢ passes through some critical value.

The point (0,0) is called a bifurcation point of the equation F'(t,z) = 0 if every
neighborhood of (0,0) in R x X contains a solution of the equation F(t,z) = 0
with = # 0.

The next theorem gives sufficient conditions in order that the point (0,0) be a
bifurcation point of the equation F(¢,z) = 0 (cf. [CR, Theorem 1.7], [Ni, Theorem
3.2.2]; [CH, Chapter 6, Theorem 6.1)):
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Theorem 1.1 (The bifurcation theorem). Let X, Y be Banach spaces, and
let V' be a neighborhood of 0 in X and let F': (=1,1) x V. — Y have the following
properties:

(1) F(t,0) =0 for |t| < 1.

(2) The partial Fréchet derivatives Fy, F, and Fy, of F' exist and are continuous.

(3) N(F;(0,0)) and Y/R(F,(0,0)) are one dimensional.

(4) Fi:(0,0)x0 & R(F;(0,0)) where N(F,(0,0)) = span {zo}.

If Z is a complement of N(F,(0,0)) in X, that is, if it is a closed subspace of X
such that

X = N(F,(0,0) & Z,

then there exist a neighborhood U of (0,0) in R x X and an open interval (—a, a)
such that the set of solutions of F(t,z) =0 in U consists of two continuous curves
Iy and Iy which may be parametrized respectively by t and o as follows:

I = {(t,0); (t,0) € U},
I = {(¢(), azg + ap(a)); || < a}.

Here

)

(—a,a) = R, ¢(0)=0
—a 0.

Y
b (=a,a) = 2, P(0)

1.3 Formulation of Problem. Let (M, g) be a smooth compact, connected Rie-
mannian manifold with boundary M of dimension n > 3 and M = H\@M the
interior of M. If g, are the components of the metric tensor g with respect to a
local coordinate system z!, 22, --- , 2™, then g;k and its inverse ¢7% are used to raise
and lower indices. Covariant differentiation is denoted by V. If f is a function on

M, then its covariant derivative is the one-tensor V f with components

_of
- oxt

Vif

The second covariant derivative of f is the two-tensor V2 f with components

P & o)
Vig | = 0rioxi Zrij dzrt”

Here the functions
¢
Fij =

1 OGr; agk:i_@gij gt
2| 0zt Oxi  Oxk

are the Christoffel symbols. The metric extends to an inner product on tensors of
any type; for example, the norm of Vf is

VAP =D VIfVif = > g'VifV,f.

7j=1 3,j=1
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The divergence operator is the formal adjoint V* of V given on one-forms u =
o u;dzt by

n

i=1

2,j=1 1,7=1 2,7,4=1

ij e
Iiw

The Laplace-Beltrami operator, or simply Laplacian, is the second-order differential
operator A given on functions f by

n

Af:quz—E:wVJ:—E:gé%@ﬂ+-z:Zn%af
=1 i, ]

1,5=1 i,5,£=1

The Riemannian curvature tensor is the tensor with components R’ kij computed

in a local coordinate system z',z2,---,z" by

0

0
Rekzij - @(Fejk) a 7 (Felk —|— Z Felm Fm]k — Z ngm Fm
m=1 m=1

The Ricci tensor is the contraction of the curvature tensor
n
sz - Z Rkikj7
k=1
and the scalar curvature is the trace of the Ricci tensor
n
R= ) ¢“R
1,j=1

Let (2%, 22, --- 2" ! 2") be a local coordinate system on M in which M is the
plane 2™ = 0 and for which 0/0z™ is a unit outward normal vector to M. Then
the components h;; of the second fundamental form of g are given by

1 8gij

hi':_ )
72 gz

1<i,j<n-—1.

The mean curvature of OM is the trace

hij.
4,j=1

A metric ¢’ of M is said to be conformal to the metric g if there exists a real-
valued function f € C°°(M) such that

g = leg.
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If ¢’ = €%/ g is a metric conformal to g, then we have the following transformation
laws for the Ricci curvatures R;j, R;; and the scalar curvatures R, R', respectively:

Ri;=Rij—(n—=2)Vif+(n—=2)VifV;f+ (Af — (n = 2)|VS]) gi5,
R =e¢? (R+2(n—1Af —(n—1)(n—2)|Vf]?).
Furthermore, if we make the substitution
e2f=g0ﬁ, ©>0on M,

then the second formula can be simplified as follows:
(1.1) 4—A<p+R<p R¢a2 =0 in M.

Slmllarly, one can compute the components h of the second fundamental form

of ¢’ = €2/ ¢ in terms of the second fundamental form of g. We have the following
transformation laws for the components h;;, h;j and the mean curvatures h, h',
respectively:

0
h;j = efhij + a—(ef)gij7

of
h' = h+
( 3n)
where n is the unit outward normal vector with respect to the metric g. Further-

more, if we make the substitution e?/ = ©*/("=2) ag above, then the second formula
can be simplified as follows:

2 Oy
n—2on

(1.2) + ho —hea2 =0 on M.

Therefore, if we take R = k in equation (1.1) and A = 0 in condition (1.2),
our problem is equivalent to finding a strictly positive solution ¢ € C°° (M) of the
nonlinear boundary value problem:

n—1 y, nt2 :
) {4n—Ag0—|—k:g0—R<pn—2:0 in M,
*

ﬁ__hj,n2: OH@M.

1.4 Regularity theorem for nonlinear Neumann problems. The next regu-
larity theorem for nonlinear Neumann problems, due to Cherrier [Cr, Théoreme 1],
will play an important role in the proof of Theorem 2:

Theorem 1.2. Let H € C*°(R x M) and L € C*°(R x OM). Assume that there
exist constants C7 > 0 and Cy > 0 such that

\H(t,2)| < Cy (1 + |t|2—f5) for all (t,z) € R x M,
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|L(t,y)| < Ca (1+ \t\ﬁ) for all (t,y) € R x OM.
If a function ¢ € H'(M) is a weak solution of the problem

{ Ap+ H(p,z) =0 in M,

_.l_
) g—ﬁ—f—L(gp,y):O on OM,

that is, if it satisfies, for all yp € HY (M),

/M <ZX_; Vlgovm + H(QO, x)@b) dV({E) + /aM L(gp, y)dj da(y) =

then ¢ belongs to C*°(M), and is a solution of problem (+). Here dV is the
Riemannian density of M and do is the induced Riemannian density of OM, re-
spectively.

2. EXISTENCE OF POSITIVE SOLUTIONS OF PROBLEM ()

In the subsequent sections, we shall prove Theorem 2, the existence and nonex-
istence theorem of positive solutions of problem ().
Now we associate with problem (%) a nonlinear mapping F : R x C?T(M) —

Co(M) x C**9(0M) (0 < § < 1) as follows:
F:R x C**(M) — C°(M) x C**°(0M)

(A u) — (Au—)\u—khup,% —|—auq) .
On

We remark that a function u € C?+%(M) is a solution of problem (*x) if and only
if F(\u) =

I) First we prove an existence result of positive solutions of problem (k%) near
the point (0,0).

Lemma 2.1. There exists a bifurcation solution curve (X,u(\)) of the equation

F(X\ u) =0 starting at (0,0):

{Aum u() +hu(A)? =0 in M,

ok
(%) Qu(d) 4 au(A\)? =0 on OM.

Proof. The proof of Lemma 2.1 is based on the bifurcation theorem 1.1.
We have for partial Fréchet derivatives of the mapping F'(\, u)

F,(\u) :C*T(M) — C%(M) x C*0(oM)

v (Av — v + phuP~ o, @ + qauq_lzJ) ,
on
and

Fya(\,u) : C?*TO (M) — C(M) x C*0(0M)

v +— (—v,0).
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In particular we have

F,(0,0) : C*T (M) — C9(M) x C*9(0M)
ov
v (AU, 8—n) .

It is easy to see that

(2.1)
N(F,(0,0)) = {constant functions} = span {1},
(2.2)
R(P(0.0) = {(f.0) € C"(8D) x " 0ay: [ fav+ [ o o),
and
(2.3)

FAu(an)l = (_170) ¢ R(Fu(0,0))

First we prove assertion (2.1): Assume that a function v € C?T%(M) is a solution
of the homogeneous Neumann problem

{szO in M,
%:0 on OM.

Then, by Green’s formula, it follows that

O:/ Av~vdV:/ |Vo|? dV.
M M

Hence we find that the function v is constant. This proves that
N(F,(0,0)) = {constant functions} = span {1}.

Next we prove assertion (2.2): Assume that a function v € C?T%(M) is a solution
of the nonhomogeneous Neumann problem

Av=f in M,
(N) {81}_
50 =¢ ondM,

with (f, ) € C/(M) x C*+9(OM).
Then we have by Green’s formula

/de+/ godaz/ AvdV + @da
M OM M an On
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= 0.
Conversely, assume that a function (f,¢) € C?(M) x C'*9(0M) satisfies the

condition
/ de+/ pdo = 0.
M oM

If we choose a function w € C?*%(M) such that
ow

— =¢ on JdM,
on
then we have by Green’s formula
(2.4) /(f—Aw)dV:/ de+/ pdo = 0.
M M oM

Now we introduce a densely defined, closed linear operator
Ay : L2(M) — L*(M)

as follows.
(a) The domain of definition D(2(y) is the space

0
D(Ay) = {u e H2(M); 8—“ —0on 8M} .
n
(b) Anu = Au, u € D(QlN)
Then it is known (cf. [LM, Chapter 2, Section 8.4, Theorem 8.4]) that the operator
An is self-adjoint and
L*(M) = N(Un) ® R(2n),
where
N ) = N(F,(0,0)) = {constant functions} = span {1}.
Therefore, one can find a solution u € C%*%(M) of the problem
{Au:f—Aw in M,
% =0 on OM,
since formula (2.4) tells us that the function f — Aw is orthogonal to the constant
function 1. -
Summing up, we find that the function v = u +w € C?*?(M) is a solution of
problem (N).
Finally we prove assertion (2.3): Since we have
F,(0,0)1 = (—1,0),
it follows that

/ (=1)dV +/ 0do = —vol(M) < 0.
M oM
By assertion (2.2), this proves that
Fx.(0,0)1 ¢ R(F,(0,0)).
The proof of Lemma 2.1 is complete. [J
I-2) Next we show that the solution u(\) is strictly positive on M:
u(A) >0 on M.

To do so, it suffices to prove the following:
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Lemma 2.2. If a function v € C?(M) satisfies the conditions
Av— v+ ho? =0 in M,
% +av? =0 on OM,
v>0 on H,

then we have o
v>0 onM.

Proof. a) First assume to the contrary that there exists a point xg € M such that

v(xp) = minv = 0.
M

Then, since A > 0 and v > 0 on M, one can find a neighborhood €2 of z such that
Av=v(A—h?P"1) >0 in Q.

Hence, applying the strong maximum principle (cf. [PW, Chapter 2, Section 3,
Theorem 6]; [Tal, Theorem 7.2.1]), we obtain that

v=0 in Q.

This implies that v = 0 in M, since M is connected.
This contradiction proves that v > 0 in M.
b) Next assume to the contrary that there exists a point &’ € 9M such that

v(2') = minv = 0.
M

Then one can find a neighborhood € of 2’ such that
Av=vA—hP 1) >0 in Q.
But we have by step a)
v(z) >0, ze€ M,
v(2") = ming;v = 0.

Thus, applying the boundary point lemma (cf. [PW, Chapter 2, Section 3, Theorem
8]; [Tal, Lemma 7.1.7]), we obtain that

g—z(x/) < 0.
Hence it follows that
0= @(az') +a(z")v(z")? = @(az') < 0.
on on

This contradiction proves that v > 0 on M.
Summing up, we have proved that v > 0 on M. [0

I-3) By applying the regularity theorem 1.2 for problem (xx), we find that
u(\) € C(M).

IT) Secondly, we prove that there occurs no secondary bifurcation along the bi-
furcation solution curve (A, u(\)) of equation F'(\,u) = 0 starting at (0,0):
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Lemma 2.3. There exists a constant 0 < \(h) < oo such that F(\,u()\)) =0 and
the Fréchet derivative F,(\,u(\)) is an algebraic and topological isomorphism for

all 0 < X < A(h).

Proof. 1t is known (for example, [Tal, Theorem 8.4.1]) that the Fréchet derivative
F,(A,u(N)) is a Fredholm operator with index zero. Hence, in order to prove the
bijectivity of F, (A, (X)), it suffices to show that Fy, (A, u(\)) is injective:

Av — Av + phu(A\)P"v =0 in M, g—z + gau(N)?T v =0 on OM

— v=0 on M.

Indeed, by using the implicit function theorem (cf. [Di, Theorem 10.2.1]), one can
find a constant 0 < A(h) < oo such that F(\,u()\)) = 0 and F,(\,u()\)) is an
algebraic and topological isomorphism for all 0 < A < A(h).

1) In ordr to prove the injectivity of F, (A, u()\)), we need the following:

Claim 2.4. We define a densely defined, closed linear operator A(N\) : L?>(M) —
L%(M) as follows.
(a) The domain of definition D(20()\)) is the space

D(A(N)) = {U c H*(M); g—z + qau(N\)? v =0 on 8M} .

(b) A(N)v = Av + phu(N\)P~1v, v € D(A(N)).

Then the operator A(N) — M is positive in L*(M) for X > 0. More precisely, if
1 () is the first eigenvalue of A(N) — A, then we have pi(A) > 0 and

(2.5) /M(Ql()\) —M)v-vdV > pi(N) /M v2dV, v e DEIN).

Proof. Let v1(\) be the eigenfunction of 2(A) — M associated with 11 ()):
(2A(A) = ADvi(A) = pa(Mvi(A).
We remark that v;(A) > 0 on M. Then we have by Green’s formula
() /M w(Nor (3 dV = /M(Avl()\) “ At (V) 4 pha(0)Por (A))u(\) dV
= /M Vi (A) - Vu(A) dV — )\/ u(A)vy(A) dV

M
Py — 91 (N) u o
+p/M hu(A\)Puy (\) dV /GM 1) ) do

and also

—/ hu(X)Pvi () de/ (Au(X) = du(N))vi (M) dV
M
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— / Vu(A) - Vor(A) dV — A / u(A)vi(A) dV
M M
_/a du(A) v1(A) do.

Man

But recall that the functions v; (\) and u(\) satisfy respectively the following bound-
ary conditions:

61)1()\)
on

ou(\)
on

+ qau(N\)?T v (A\) =0 on M.

+au(N)?=0 on OM.
Hence it follows that
/ Vor(\) - Va(d) dV — A / w(Nvy (3) dV
M M

=) [ a0 av —p [ mOra)av—g [ au)in ) de

oM

and also
Vor(A) - Vu(A) dV — A / w(Nvr (\) dV
M M

__ /M hau(\)Por (M) dV — / au(\)%01 () do.

oM

Therefore, we obtain that

i (V) /M u(\or(X) dV

== [ Oyn ) av +a=1) [ au)in o)

This proves that

(p—1) fM hu(AN)Pvr(A)dV + (¢ — 1) faM au(N)%v1(N) do
Jor uN)vr () dV

p1(A) =
> 0,

sincep>1,¢g>1,and h>0in M and a > 0 on OM.

2) Now let v be an arbitrary function in C2+%(A) such that F, (), u()\))v = 0.
Then we have v € D((N)) and (A(X) — Al)v = 0. By estimate (2.5), this implies
that v = 0 on M.

The proof of Lemma 2.3 is complete. [

By virtue of Lemma 2.3, one can extend the above bifurcation curve (A, u(\)) to
all 0 < A < A(h). Then we have the following:
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Lemma 2.5. The solution u(\) is differentiable with respect to A for all 0<A<
A(h), and is monotone increasing; more precisely, we have for all 0 < X\ < \(h)

u'(A) >0 on M.

Our situation may be represented schematically as in Figure 2.

Proof. 1) First, since the Fréchet derivative F, (A, u())) is an algebraic and topolog-
ical isomorphism for all 0 < A < A(h), it follows from an application of the implicit
function theorem that the solution u()) is differentiable with respect to A.

2) Next we show that, for all 0 < A < A(h), the derivative u’()\) is nonnegative

on M: -
w'(\) >0 on M.

By differentiating problem (xx) with respect to A, we obtain that

aualr(l)‘) + gau(N) 41/ (N) =0 on OM.

{4m%w—Awa+wmuy4u%m—uQ):o in M,

This implies that

u'(A) € D(A(N)),
(2:6) { (AN) = A/ () = u(N).

Now we introduce a linear operator
AN : C(M) — C(M)

as follows.
(a) The domain of definition D(A(\)) is the space

D(A(N)) = {U € C(M); Av € C(M), g—z + gau(N)9 v =0 on 8M} .

(b) AN)v = (=A — phu(N\)P~Hv, v € D(A(N)).
Then it follows from an application of the existence theorem of Feller semigroups
due to Taira [Ta2, Theorem 3.16 and Theorem 1.3] that:

(a) The resolvent (o —.A(X\))~! is nonnegative on the space C(M) for all o > 0.
But we remark that:

(8) The operator 2(\) is an extension of the operator —A(\).

() The point A belongs to the resolvent set of A(\).

Therefore, we obtain the following:

Claim 2.6. The resolvent (A(\) — M)~ is nonnegative on the space C(M), for
all 0 < A < A(h).

By formula (2.6), this claim proves that
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since u(A\) € C*° (M) and u(\) > 0 on M.
3) Finally we show that, for all 0 < A < A(h), the function u/()) is strictly
positive on M:
uw'(A\) >0 on M.

3-a) First assume to the contrary that there exists a point xg € M such that

u' (N)(xg) = rrl_Ai[nu’(A) =0.

Then we have

0 < u(A)(x0) = (A= A/ (N)(z0) + phlo) (w(A)(20))" " u'(A) (o)
= Au'(N)(z9) < 0.

This contradiction proves that «/(\) > 0 in M.
3-b) Next assume to the contrary that there exists a point 2’ € M such that

ou'(N),
on (a7) <0
Hence it follows that
0= 61251)\) (:13/> + qa(x/> (u(A)(l"))q_l U/()\)(:El) _ 61251)\) (:13/) <0

This contradiction proves that u/(A) > 0 on OM.
Summing up, we have proved that u/(\) >0 on M. O
3. PROOF OF THEOREM 2 -(1)-
Sections 3-6 are devoted to the characterization of the critical value A(h), that

is, the proof of formula (0.1):

(0.1) Ah) = A (Mo(h))
= min{A;(M1(h)), -+, A (Mg(h)),
1 (Megi(h)), - s pr (M (h)}

We begin with the following:
Proposition 3.1. For all 0 < A < A(h), we have

A< )\1(./\/[2(]1)), 1<i <Y,
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and

A< pi(Mj(h), £+1<j<N.
In particular, we have the inequality

(0.2) (R) < X1 (Mo(h)).

Proof. 1) First we consider the Dirichlet eigenvalue problem in each connected
component M;(h), 1 <i < ¢:

{ Ap =Xy in M;(h),

(D) ©=0 on OM;(h).

Let A1(M;(h)) be the first eigenvalue of problem (D;) with eigenfunction ¢:

{ Ap =AM (M;(h)) ¢ in M;(h),
=0 on OM;(h).

Here we remark that ¢ > 0 in M;(h). If we let

= { PO €M
2T 0 ze M\M(h),

then it follows that

p* e H' (M),
and

©*>0 in M.

Now let u(\) € C°°(M) be a solution of problem (*x). Then it follows from an
application of Green’s formula that

0= / (Au(A) — Au(X) + hu(X)P) ™ dV

Mi(h)
+/ hu()\)pgodV—/ 9u()) pdo
M (h) oM.y On

= / Vu(A) - VedV — )\/ u(A) pdV,
M;(h) M;(h)

= / Vu(A) - VedV — )\/ u(A) pdV
M;(h)

since h = 0 in M;(h) and ¢ = 0 on OM;(h). Hence we obtain that

(3.1) / Vu(A) - VedV = )\/ u(A) pdV.
M (h) M (h)
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Similarly, it follows that

(3.2) — /M (Ap — M (M) 9) u(N) AV

— (M) /M‘(h) ou(A) dV.

Thus, combining formulas (3.1) and (3.2), we obtain that

A / u(A) pdV
M (h)

= >\1(Mi(h>)/

u(N) pdV + / — u(A) do.
M (h)

But, it follows from an application of the boundary point lemma that

Dy
a—n <0 on 8M2<hj)

Indeed, it suffices to note that
AgO = )\1(./\/11‘(]1)) >0 in Mi(h),

=0 on OM;(h).

We also recall that o
uw(A) >0 on M.

Therefore, we find that

(M) -0 [ uyeav == [ Loy > o
M (h) oM, (h) On
so that
>\<)\1(Mz(h)), 1<i</
This proves that

2) Next we consider the Dirichlet-Neumann eigenvalue problem in each connected
component M;(h), £+1<j < N:

(M;) p=0 on OM;(h)\S;
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Let p11(M;(h)) be the first eigenvalue of problem (M;) with eigenfunction :

A = pr(M;(h) v in M;(h),
P =0 on OM;(h)\S;,
=0 on §;.

®|Q>
s e

Here we remark that ¢ > 0 in M;(h). If we let

o [ ¥(@) xe M;h),
P*(z) =
0 T c M\Mj(h),
then it follows that
Ve HY(M),
and
Y* >0 in M.

Now let u(\) € C°°(M) be a solution of problem (x). We remark that

ou(A)
on

=0 onSj,

since we have, by condition («), a = 0 on §;. Then it follows from an application
of Green’s formula that

0= / (Au(X) — Au(A) + hu(X)P) ™ dV

:/ Vu()) - Vo dV — A/ w(A)pdV
M;(h)

M; (h)
+ / hu(\)Pe dV — / 0N o
M, (h) om;(h) On

:/ Vu()) - Ve dV — A/ w(N) ¢ av.
M (h)

M (h)

Indeed, since we have

ou(\)
e 0 onSj,
it follows that
/ N gy = [ 28N 4o / 0N 4o = .

om,(n) On s, On oM, (m)\s; On
Hence we obtain that
(3.4) / Vu()) - ViV = A w(\) b dV.

Mj (h) Mj(h)
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Similarly, it follows that

(35 0= [ (B M) Y ) v

= / Vu(A) - VipdV — / oy u(A) do
M; (h) oM (h) On

— (M () / bu() dv

M;(h)
- / Vu()) - Vb dV — / 9% (A do
M; (h) oM;(h)\S; On

— i (M (b)) / bu(X) v,

M (h)

since 01/0n =0 on §;.
Thus, combining formulas (3.4) and (3.5), we obtain that

A ANvdV

/Mj(h) u(A) ¥

_ | 9
(M () /Mj(h)u(A)ddeJr /8 s, 7 OV

But, it follows from an application of the boundary point lemma that

oY
5o <0 on OM;(h)\S;.

Indeed, it suffices to note that

A = pr(Mjch)) ¢ >0 in M;(h),
Y >0 in M;(h),
=0 on OM;(W)\S;.

Therefore, we find that

(b (M () — A) / u(N) do > 0,

M, (h)

u(A)zpdV:—/ o0

oM;(h)\s; On

so that
A< p(Mj(h)), £+1<5<N.

This proves that

(3.6) A(h) < (M, (h)) for £+1<j<N.

The desired inequality (0.2) follows by combining inequalities (3.3) and (3.6).

The proof of Proposition 3.1 is complete. [

zl
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4. PROPERTIES OF POSITIVE SOLUTIONS -(1)-

In Section 4 through Section 6, we shall prove the reverse inequality (0.3) of
inequality (0.2).
First we begin with the following:

Lemma 4.1. One can construct a function h* € C1(M) having the following prop-
erties:

(a) 0 < h*(z) < h(x) for x € M4 (h).

(b) For each € > 0, there exists a constant C' > 0, depending on sup,, |Vh|, such
that

Vh*
(h)"*

C

(4.1) sup <3

M (h)

Proof. We let
d(z) = dist (z, oM (h)), z € My(h),

and define a function h*(z) by the following:

1

@ for x € My (h), d(z) <6,
h*(z) =< h(z)  for x € My(h), d(x) > 26,
0 for v € M\M(h),

and
0 < h*(z) <h(x) forxe Mi(h),d <d(x)<24.

Then it is easy to verify that the function h* enjoys properties (a) and (b).
Indeed, property (b) may be verified as follows. Since we have

_1_Vh
Vh*(z) = e *@ Z x(g? for x € M (h), 0 <d(x) <6,
it follows that
Vh*(x) . 1
——2 | = |Vh(x)|e *=
@) |Vh(z)] AL

€
h2

4 -2
§sup\Vh\(e ) O
M

o

<sup|Vh| - sup
M M

e2

The next lemma will play an essential role in the proof of inequality (0.3) (cf.
the proof of Proposition 6.1).
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Lemma 4.2. If u(\) is a positive solution of problem (xx) with 0 < XA < A(h),
then, we have for any e >0

h*u(AP7175 € L= (M (h)),
and

(4.2) sup (R*u(A\)P717F) < Cle, N),
M (h)

with a constant C(e, \) > 0. Moreover, if \ is finite, then so is the constant C(g, \).

Proof. 1) Let p1(X) and v1 (M) be the first eigenvalue and associated eigenfunction
of the Fréchet derivative Fy, (A, u(X)), that is,

{ (A =X+ phu(NP~Hor(A) = (Mo (A)  in M,
8%1—1(:‘) + qau(N)9 vy (N) =0 on OM.

We recall that y1(\) > 0 and v1(\) > 0 on M. Furthermore, by Rayleigh’s theorem
(cf. [Ag, Chapter 10], [Ch, Chapter I]), we know that the first eigenvalue p4(\) can
be characterized by the following formula:

(4.3) ul(A)/ <p2dV§/ \w\?dV—A/ ©*dV
M M M

+p/ hu ()Pt gdeV+q/ au(N)? ! p? do.
M oM

Now, we take
p= (") uN s>0, k>p, k>q,

where the constants s, k will be chosen later on. Then we have
Vo = s(h*)* "t u(N)* VA* + E(h*)* u(N\)F! Va,
and so
|v<,0|2 — 52<h*)2s—2 u()\)Qk |Vh*‘2 + k2(h*)25 u(}\)Qk—Q ‘VU,F
+ 2sk(h*)* " u(N)2* 71 VA - V.
Hence, we can write inequality (4.3) in the following form:
O R TV
M
< 52/ (h*)** 72 u(N)?* |[Vh*[?aV
M
+ 2s/<:/ ()5 LN VR - VudV
M
+ k2/ (R*)%5 u(X\)?* =2 |Vu|?dV — A/ (h*)%5 u(N)?* dV
M M

+p / h(h*)% u(NP~1T2R Vv 4 ¢ / a (h*)* u(\)T 120 4o
M oM
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2) Next we show that the second term on the right-hand side of inequality (4.4)
can be written as

(4.5) 2sk / (R LN~ VR - VudV
M
=>\Ic/ (h*)% u(\)? dV—k(Qk—l)/ (R*)%5 w(X)?*=2 | Vu|? dV
M M

—k/ h(h*)%u(A)p—H%dV—k/ a (h*)** u(X)?** do.
M oM

If we let
P(A) = ku(X)* 71 (%),

then we obtain that

Vip(\) = 2sku(N)2*~1 (h*)2~ 1 Vh*
+ k(2k — D)u(N)?572 (h*)2 Vu(N).

Recall that the function u(\) is a solution of problem (xx). Hence we have by
Green’s formula

0= /M (Au() — M) + hu(VP) b(A) dV

— /M Vu(\) - V(A dV — A /M u(A) P(A) dV

» B Ou () 5
+/M hu(X)P (X)) dV /8 —— (N d

M 6n
= / Vu(A) (2sk u(X)?*~1 (h*)? 1 VhA*
M
+ k(2k — 1) u(N)*2 (h*)? Vu(N)) aV

+k / au( N2 (p*)28 4o
oM

This proves formula (4.5).
Thus, carrying formula (4.5) into inequality (4.4), we find that

i) [ (0 ) av
2 *\25—2 2k *|2 . * 2su 2k
<s /M(h 1252 (02K VA2 dV + Ak 1)/M(h 125 u(A)2k 4V
—k(k—1) /M(h*)QS u(N)?F72 |\ Vu|? dV
+(p—k) / B (h*)25 w(\)P~ 142 gy
M

tla=h) /aM a (h*)2 w(\) 12k dg.



1o YAMADR FRUODLEN AND INONLINEAR DOUNDARY VALUL FRUDLENMDS 20

Furthermore, it follows that
(4.6)

82/ (h*)2s—2 u()\)2k |Vh*|2 AYS
M

+ Mk —1) / (h*)% w(N) 2 dV
M
_ 82/ (h*)23—2 u()\)2k |Vh*|2 AYS
M (h)
A — 1)/ (h*)2® u(N)2k 4V
M (h)
> h(k — 1)/ (h*)25 w(N)22 [Vul2 dV
My (h)

Fe=p) [ RO AOPTR ) [ 0tuav
My (h) My (h)

+ (k—q) /E)M a (R*)?* u(\)1 12k do

> h(k — 1)/ (h*)2 w(N) %2 [Vul2 dV
M (h)

(k- p) / (W25 (AP 21 gy,
M (h)

since k > p, k > ¢, p1(\) > 0 and also we have, by part (a) of Lemma 4.1,
0 < h*(z) < h(x) for x € M, (h).

3) First we show that the first term on the left-hand side of inequality (4.6) can
be estimated as follows:

(4.7) 5?2 / (R*)25 72 u (N2 | VR |2 dV
M
— 82/ (h*)23—2 U(A)Qk ‘Vh*‘2 dV
M (h)

<[y M),
My (h)
By inequality (4.1), it follows that

/ (h*)2s—2 u()\)2k |Vh*|2 AYS
M

) Vh*[2
— h* 2(s s)u A 2k |7dV
/M+<h>< TN e

2
< C

<7/, (h)(h*)2(5_5) u(X)?* dV.
Jr

If we choose the constant s as

(4.8) s

k+ e,
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then we obtain from Hoélder’s inequality that

/ (h*)2s—2 U(A)Qk ‘Vh*‘2 dV
M

02 . . 2k-}2-£—1 #
< ( / ((h ) mm%) dV)
€ My (h)
X (/ dV)
M (h)

02 2k-i2-;c7—1 b1
- ( / e dv> M ()| 75T
+

Hence, it follows from an application of Young’s inequality that

82/ (h*)2s—2 u()\)2k |Vh*|2 AV
M (h)

#ﬁ;—l
S </ (h*)1+23 u()\)Qk—i—p—l dv)
M (h)

—1

2k+p—1 #}7—1
0252 p—1
. <|M+<h>| (<) )

S ( 2k ) / (h*)1+25 u(}\)Qk-i—p—l dv
2k+p—1) Jpmem

(22 Y (C2)
2%k +p—1 + et

</ <h*>1+25u<A>2’“+p-1dv+|M+<h>|(
My (k)

2k+p—1

0282)7

o4
This proves inequality (4.7).

Next we show that the second term on the left-hand side of inequality (4.6) can
be estimated as follows:

(4.9) Mk — 1)/ (h*)% u(\)?* dV
M
(k- 1>/M (h)(h*)2su()\)2k v

< / (h*)1+2s u(}\)Zk—l—p—l dV
M (h)
2k+p—1
T

+<)\(k:—1) sup }(h*)%}) N M (h)].

M (h)
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By using Holder’s inequality and Young’s inequality as above, we have the fol-
lowing:

Mk —1) /M (h)(h*)QS u(N)?* dv
_ )\(k‘ . 1) /M (h)(h*)Q(s—E) (h*)25 U(A)Qk dV

<Mk —1) sup |(h")*] / (R*)2=E) y(N)2F av
My (h) M (h)

2k

2k+p—1

< )\(k‘ — 1) sup }(h*)Qs} (/ (h*)1+25 U(A)2k+p—1 dv)
M.y (h) M (h)

X | My ()| 75T

p—1

= (<)\(l€1) /\/stu%)h)}(h*)%}) 7 M+(h>)

2k
2k+p—1
> (/ (h*>1+2s u()\)Qk—i—p—l dV)
M (h)

S ( 2k ) / (h*)1+25 U(A)ka—l—p—l AV
2k+p=1) Jmem

2k+p—1

b —= 1 *\2¢ T
——— | | Mk -1 h h
+(%+p_1)<< ) s >}> M (B)
< / (h*)1+23 u(}\)2k—|—p—1 AYS
My (h)
2k+_pl—1
+<Mk—U wp\ww%o M (0]
M (h)

This proves inequality (4.9).
Therefore, combining inequalities (4.6), (4.7) and (4.9), we obtain that

k(k — 1)/ (R*)%5 u(N)?* =2 |Vu|? dV
M (h)

+ (k‘ . p)/ (h*)1+25 u()\)p—l—i—Qk: dV
M (h)

0282 p—1
< 2/M (h)(h*)l—i—Qs u(}\)Qk-l-P—l dv + ( — ) |M.|_<h)‘
+

2k+p—1
1

+<Mk—U wp\wwko M),

M (h)
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In particular, this proves that

(4.10) (k) / ()25 (AP~ 142 gy
My (h)

2k+p 1

22
<2 f <h*>1+25u<x>2k+p1dv+(0 ) Mo ()
M (h) et

2k+p—1

+(A<k—1> sup \<h*>25\> M.

M (h)

If we take the constant k so large that the first term on the right-hand side of
inequality (4.10) may be absorbed into the left-hand side, for example, if we take
k so that

k—p>3,

then it follows that

/ (h*)1+25 u(}\)p—l—i—Qk dV
M (h)
0252\ TP , =
(SF) 7+ (-0 s o Mo (B)].
€ M (h)
But, by formula (4.8), we find that the constant s is of order k. Thus one can find
a constant C’ > 0 such that

+p1

(4.11) /M (h)(h*)1+25u()\)p_1+2k dv < <C’(1+>\) h ) M (R)] .

Here we remark that the constant C” > 0 depends on the quantities sup rq, () ||
and sup vy, () [VA|.
On the other hand, since we have by formula (4.8)

1+ 2¢

1+2s=
+ 2s b1

(p+2k—1),
we can write the left-hand side of inequality (4.11) as

142e p+2k—1
) v,

/M+(h)(h*)1+25 ur Y = /M+(h) <<h*) e

Therefore we obtain from inequality (4.11) that

2k+p—1
p—1

v < (C’(l + ) k—4) M ()] .

1426 >P+2k—1

(4.12) /M N <(h*)p T u(N)
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4) We let
w(X) = (h*)F u(),
where (cf. formula (4.8))
s _ 142 n €
Cop—1 K

Then we have
VwA)F = s(h*)* L u(N)F VA* + E(h*)* u(N) ! Va,
and so
IVW(ANE2 = s2(h*) 252 u(N)2F |V 2 + k2(h*)2 (M) 252 |Vul?

+ 2sk(h*)* 1w\ VA - Vu
< 9 (82(h*)2s—2 U(A)Qk ‘Vh*‘2 + k,Q(h*)Qs u()\)2k—2 |VU|2> )

Hence it follows that

(4.13) / Vw(W)F2dV < 262 / (h*)25=2 w(N)2k [V A2 dV
M (h) M (h)

+ 2k2/ (R*)% w(X)2F=2 |Vu|? dV.
My (h)

On the other hand, we find from inequality (4.6) that

(4.14) / (h*)2 w(N)%2 [Vul2 dV
M (h)
52 /
R — (h*)25—2 U(A)Qk |Vh*‘2 dV
k(k—1) Jamgn)

A
ks

Thus, combining inequalities (4.13) and (4.14), we obtain that
(4.15) / Vw(\)F R dV
M (h)
% — 1
< 282 (7) / (h*)23—2 U(A)Qk |Vh*|2 AYS
=1/ Jamem
+ 2k / (R*)%5 u(N)?* V.
M (h)

But we recall that the two terms on the right-hand side of inequality (4.15) can
be estimated respectively as follows:

2
(h*)2s—2 u()\)2k |Vh*|2 dv < C_ (h*)2(s—a) u()\)2k dvV.
4
./\/lJr(h) € MJr(h)
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/ (h*)2s U()\)2k dv < sup }(h*>2€}/ (h*>2(s—5) u()\)Zk dV.
My (h) My (h) My (h)

Therefore, carrying these inequalities into the right-hand side of inequality (4.15),
we obtain that

/ |Vw(NF2dV
M (h)

2 2k — 1Y C? *\2¢e *\2(s—¢) 2k
< |2s — +2Mk sup |(h*)?*| (h*) u(A)=" dV.
k—1) ¢ My (k) M (h)

But, by formula (4.8), we find that the constant s is of order k. Thus, if we take

the constant k so large that
2k — 1 <3
k—1 ’

then one can find a constant C” > 0 such that

(4.16) / IVw(A)F|? av
M (h)

2

< | 652 « +2X\k sup |(h*)*] (R*)26=2) y(N)2k gV

4
€ M (h) M. (h)

2
<C"(1+N) k—4/ (R*)*¢= u(M)** av.
= IMem)

Here we remark that the constant C” > 0 depends on the quantities sup, () [h*|
and sup vy, () [VA|.

5) We make use of the Sobolev imbedding theorem (cf. [Ad, Theorem 5.4)):
(4.17)

L)
M (h)

Here the constant C'(n) > 0 depends on the dimension n > 3.
Now, applying inequality (4.17) to the function

1
2

gC@)/" VelPdV) . pe BN M. ().
M (h)

n—2
2n

WV = (h*)* (V)"

and then using inequality (4.16), we obtain that

</' (ww%u@»%%dV)

My (h)

(/ ((h)* u(V)*) 2 dv> :
M (h)
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2
< C(n) / IVw(NF|? dV
My (h)

2
< C(n)QC//(l + )\) k_4/ (h*)Q(S—E) U(}\)Qk AV
& I My (h)

=C(n)>C"(1+ ) k—i /M o <(h*)s;e u(/\))zk W

3

or equivalently

4.1 *)/k
(4.18) H(h ) “(A)) L2kn/(n=2) (M (h))
) 2 1/2k

< 1/2k k- x\(s—e)/k

<C(\) (54) H(h ) “(A)‘ L2 (M (h)
where

C(A) =Cn)*C"(1+\).
We let
n
X = n—2 > 1,

kE=x".
Then we have
3_1—|—25 e_1+25 €
k- p—1 k p—1 ™
2kn n
:2m —9 m-+1

n—2 X n—2 X ’
s—e 142

ko p—1"

Thus we can write inequality (4.18) as

142 €
4.19 H KA FEE R (A
(4.19) (") UM paemr (aa

L2X™ (M (h))

<o (S0 [ ey

Furthermore, if we let

ol
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then it follows that

1
14250 <o _1+2<1+2 )50_1+251

p—1 XM -1 op—1"
Thus we can rewrite inequality (4.19) in the following form:

1+2¢eq

4.2 ) )1
(4.20), ) (h7) U(A)) L2 (M (h))
2m %Xim
l —m X 1+2¢g¢
< CO(N)2X AT H h*) 71 wu(A ‘ .

6) By the same procedure as above (replacing Y™ by x™*!), we have the in-
equality:

1+251+
(4.21) H(h*) =T T ()
L2 (M (h)
1., —(m+1)
1 —mtn) [y 2mHD) 2X 142¢;
< O(N)2X Hh = )\‘ .
<o (5 RO [

Bul we remark that
]_ >
+ €0 €o-

Thus, combining inequality (4.21) with inequality (4.20);, we obtain that

1+251

(4.22) H(h*) T 4(\)
L2 (M (h)
1., —(m+1)
1y —(m+1) 2(m+1) X 1+2eg
< C(N)2X Hh = A‘
<o) (*~—) RS TO] W

—(m+1)

2
€0

1~ (mtD) L [y 2mD)\ EX
<O o) ( )

142¢q ‘

X H(h*) = ()

L™ (Mg (1)

= €0

)Q(X_(m“)er_m)

1+2€0 ‘

X H(h =1 u(\)

p—1
g2 = (1+—2Xm+1)€17

L2X™ (M (h))

If we let
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then we can write inequality (4.22) as

(4.20)5

ey 5 wer)

(h") =T u(X)

LA™ (M (h))

< C(A)%(X7M+X7(m+l)) X(mx_m+(m+1)x_(m+1)) (i
=~ 0

)z(xm+x<m+l>)

1+2¢eq ’

X H(h*) = u(\)

L2X™ (M (h))
Continuing this procedure, we have after N steps

1+2€N+1

a2 o )

L2 TN (M (R))

< C()\)%(Zivzo X~ (D) X(Ef\;o(m+i)x—<m+i)) (i

Q(Eév:o X*(eri))
60)

1+42¢
XHh*ﬁ—luA) .
(7 ) L2X™ (M4 (h))
But we remark that:
S T e
— Xm—i—z Xm — Xz Xm X — 1 2 Xm’
= 1 & 1 n(2m+n—2) 1
m 41 = — m+1 = —
ZX_;( ) Xm—H X ZX_(:)( ) Xm—i—z—l 4 Xm

Thus it follows from inequality (4.20)y41 that

1+25N+1

(4.23) H(h*) T ()

LN (M (1)

< coyrim =552 (LY ey

€0 L2 (M (h))

Furthermore we find that

20
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and that the limit (infinite product)

0
. B p—1
1\}1_{%0 EN+1 = (H <1 + 2xm+i)> €0

1=0

exists, since y > 1.
Therefore, letting N — oo in inequality (4.23), we obtain that

(4.24) sup ‘(h*) T u()\)’
My (h)

n n(2m+n—2) 1 XL’” 1+2¢g
< o R (2 H h*) T UA) ,
WX < ) ") Mo an

where

o= 1+ - > 1
g}( 2Xm+z

7) On the other hand, by Hélder’s inequality, it follows that

142eg )

(4.25) H(h*) =1 u(\)

< [ ) 55w
r—1
L2X™ (M (h)) —

Lr 281 (Mo (h)
X [ M () [T

Furthermore, we have by inequality (4.12) with € = ¢q

1

1 (E2\ T 1
<o (&) mmirE,
0

Lr#2k=1(My (h))

14+2eqg )

(4.26) H(h*) = u(N)

where

OO =" (1+ ).

Here we recall that the constant C’ depends on the quantities sup M (R) |h*| and
SupM+(h) |Vh|

Therefore, combining inequalities (4.25) and (4.26), we get the following inequal-
ity:

H 14+2eg ‘

(h) 75 u()

_1 2m ]_ p—1 1
< C(\)'7T xo-T <—) M (R)|X™
L2 (M4 (h)) O €0 (M (R)

Carrying this inequality into the right-hand side of inequality (4.24), we obtain that

(R7) 7P T u(N)| < C)®T X & C() 7T xv T

sup

n 4
) 1+20¢eq ‘ n n(2m+n—2) 1 om ( 1 ) X T p—1
M (h)

€0

< M ()]
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Summing up, we have proved that there exists a constant C(\)” > 0 such that
for each g > 0

(4.27) sup. (R) 7 u(N)| < () g0 ",
My (h
where
n 4
p=—mt—
X" op—1

It is easy to see that inequality (4.27) is equivalent to inequality (4.2). Moreover,
we find that if A is finite, then so is the constant C'(\)”.
The proof of Lemma 4.2 is now complete. [

5. PROPERTIES OF POSITIVE SOLUTIONS -(2)-

The next lemma asserts that the solution u(A) “blows up” at the critical value
A(h):

Lemma 5.1. If u(\) € C°(M), 0 < X\ < A(h), is a solution of problem (xx), then
we have:

(5.1) m [Ju(N)|| L2y = +o0.
A—A(h)

Proof. Assume to the contrary that there exists a constant C' > 0 such that
(5.2) /M u(N)?dV < C  for all 0 < X < A(h).
Then, using Green’s formula, we obtain that

0=— /M (Du(N) — Mu(A) + hu(N)P) u() dV

:—/M\VU(A)\QdV—f—/ %) iy da+)\/ w(N)? dV

om On M
—/ hu(A\)PTav
M
:—/ \Vu(A)PdV—/ au()\)q+1da+)\/ u(N)?dV
M oM M
_ / (VP av.
M

Thus it follows that
/ |Vu(>\)|2dV+/ hu(A)p“dVJr/ au()\)q+1do:)\/ W\ AV,
M M oM M

In particular, this proves that

(5.3) /M IVu(M\)[2dV < A /M u(N)?2 dv.
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On the other hand, applying Sobolev’s inequality (4.17) to the function u(\), we
obtain that

n—2
(5.4) ( / W) dV) < C(n)? / Vu(\) 2 av.
M M
Thus, combining inequalities (5.4) and (5.3), we obtain that

(/M w(\)7z dV) N < AC(n)? /M w(N)2dv,

or equivalently
1
(5.5) |u(N)|| 2n_ <C(N)2 Hu()‘)HL?(M) )

where

Furthermore, if we let

n—2

then we can write inequality (5.5) in the following form:

(5.6); Hu()\)HLQX(M) < C(A)% Hu()‘)||L2(M) .

Continuing this procedure as in the proof of Lemma 4.2, we have after N steps

NEE=XT) a2 ary
()

(5.6) 41 Ju(N) | o1 (4, < C
C

I3

IA

[l L2 ) -
Therefore, letting N — oo in inequality (5.6)x41, we obtain that
(5.7)  supluN)] < COVF XTT [u(N) g2y for all 0 < A < X(h).
M
By inequalities (5.2) and (5.3), it follows that for all 0 < A < A(h)

(5.8a) /M u(N)?dV < C,

(5.8b) /M IVu(N)|?dV < X(h)C.

This proves that the functions u(\) are bounded in the Sobolev space H' (M), for
all 0 < X < A(h).

But we remark the following;:

(a) Rellich’s theorem tells us that the injection of H!(M) into L?(M) is compact
(or completely continuous) if the dimension n is greater than 3.
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(b) It is well known that the unit ball in the Hilbert space is sequentially weakly
compact. Therefore, by inequalities (5.8a) and (5.8b), we can find a sequence {\,}
and a function u(A(h)) € HY(M) such that

and
(5.9b) uw(\p,) — u(A(h)) strongly in L%(M),
(5.9¢) Vu(\,) — Vu(A(h)) weakly in L?(M).

On the other hand, by combining inequalities (5.2) and (5.7), we obtain that

% n(n—2)

sup [u(A\)] < C2 (A(h)C(n)?) " x" 1 forall 0 < A < A(h).
M

But, Lemma 2.5 tells us that the solution u(\) is monotone increasing for all 0 <
A < A(h). Thus, we find that the finite limit

(5.10) u(A(h))(z) = R li%l(h) u(An) ()

exists for each point = of M.
Now, since u()\,) is a solution of problem (xx), it follows that for all ¢» € H*(M)

hu(An)P b dV — A/ hu(A) ¥ dV

M

(5.11) /M Vu(h) - v¢dv+/

M

q —
+/8Mau()\n) Y do = 0.

But we have the following;:
(1) By assertion (5.9), it follows that

/ ¢dV—>/ ) v dv,

and

/Mvu( n) - V¢dV—>/ Vu(A(h)) - Vi dV.

(2) By assertion (5.10), it follows from an application of the Lebesgue monotone
convergence theorem that

/M (A )dde—>/hu h))P o dV,
/ au(A,)? Y do — au(X(h))?do.
oM oM
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By passing to the limit in formula (5.11), we obtain that the function u(\(h))
satisfies, for all ¢ € HY(M),

/ Vu(X wdv+/Mhu( ()P dV — A(h)/ hu(N(h)) v dV

M
/ w(X(h)? 4 do = 0.
oM

This proves that the function u(\

(h)) € H'(M) is a weak solution of problem (*x).
Thus, we have by the regularity t

heorem 1.2
u(X(h)) € C™(M).

Furthermore, we recall that the solution u()\) is strictly positive on M and is
monotone increasing for all 0 < A < A(h). Thus it follows that

u(A(h)) >0 on M.

Finally, it is easy to see that the Fréchet derivative F,,(A(h),u(A(h))) is an alge-
braic and topological isomorphism. Indeed, if 3 (A(R)) is the first eigenvalue of the
Fréchet derivative F,(A(h),u(A(h))) with eigenfunction vy (A(h)), then, arguing as
in the proof of Lemma 2.3, we obtain that

p1(A(h))

0= 1) fuy AP0 (8R) AV + (g = 1) fyp, au(X(B) 701 ((R) do
Jor u MR (X)) dV

> 0.

Therefore, by virtue of the implicit function theorem, one can extend the bifurca-
tion curve (), u())) beyond the point (A(h), w(X(h)). This contradicts the definition
of A(h).

The proof of Lemma 5.1 is complete. []

6. PROOF OF THEOREM 2 -(2)-

The next proposition proves the inequality
(0.3) A1(Mo(h)) < X(h),

which completes the proof of Theorem 2.

Proposition 6.1. The critical value \(h) is an eigenvalue of either the Dirichlet
problem (D;) or the Dirichlet-Neumann problem (M;).

Proof. 1) Let u(\) € C=(M), 0 < A < A(h), be a solution of the problem (*x), and
let
u()

YO = a0 lezon
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Then it follows that

Aw(N) — dw(A) + hu(N)PTw(N)
1

— m (Au(A) — Au(N) + hu(N)P) = in M,
and
&5@ +au(X) " w())
_ 1 ou(N) qu(N ) — on
= T o (T +autr) =0 onont.

Hence we have by Green’s formula
/ VP~ w(\) - w(\) dV
M
_ / (= Aw(N) + Aw(N)) w(A) dV
M

:—/M\Vw()\)|2dv+/8 %) da+)\/ w(N)?2dV

v On M

= — w(N)|? — au N w2 do w(N)2dV.
= /M\V (N[ adV /E)M (\) (N)*d +)\/M (N)*dV.

This proves that

(6.1) / V()2 dV
M
< / |Vw(N)|? aV +/ au(N)?Ttw(\)?do +/ hu(N)P~tw(N)?dV
M oM M
= A/ w(N)?av.
M
By inequality (6.1), it follows that for all 0 < A < A(h)
(6.2a) / w(N)?dV =1,
M
(6.2b) / VwW)2dV < )\/ WN2AV = A < A(h).
M M

o9

Thus, just as in the proof of Lemma 5.1, we can find a sequence {\, } and a function

w(X(h)) € H' (M) such that
(6.3a) An — A(h),
and

(6.3b) w(A,) — w(A(h)) strongly in L*(M),
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(6.3¢) Vw(A,) — Vw(\(h)) weakly in L?(M).

Furthermore, arguing as in the proof of Lemma 5.1 (cf. inequality (5.7)), we can
find a constant C'(A(h)) > 0 such that

64)  sup )] < COW) o) p2p) = CAR) - for all 0.< X < X(h).

‘Therefore, we obtain from assertions (6.2), (6.3) and (6.4) that the limit function
w(A(h)) € HY(M) satisfies the following conditions:

(6.5a) w(A(R)) >0 in M.
(6.5b) / W((W)2dV = 1.
M
(6.5¢) /M V(R dV < Mh).
(650 oup [w(R(W)| £ O(R(H).

On the other hand, we remark that the functions w(\,,) satisfy the equation
Aw(An) — Apw(An) =0 in Mo(h),

since h = 0 in Mg(h). By passing to the limit, we find that the function w(\(h))
is a weak solution of the equation

Aw(NR)) = XR)w(Nh)) =0 in Mo(h).

Hence it follows from an application of the interior regularity theorem in linear
elliptic theory (cf. [GT, Corollary 8.11]) that

w(A(h)) € C*(Mo(h)).
Summing up, we have proved that

(6.6a) w(A(R)) € C®(Mqo(h)) N HY (M) N L(M).
(6.6b) Aw(X(h)) = A(R)w(X(h)) =0 in Mg(h).

2) Next, we shall prove that the function w(A(h)) is an eigenfunction of problem
(D;) or problem (M;), more precisely, we shall show that one of the following two
cases (i) and (ii) holds:

(i) In some connected component M;(h), 1 < i < £, the function w(A(h)) satisfies
the conditions:

Aw(A(h)) = A(M)w(A(h)) in M;(h),
(D;) w(A(h)) =0 on OM;(h),
w(X(h)) >0 in M;(h).
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(ii) In some connected component M (h), £+ 1 < j < N, the function w(A(h))
satisfies the conditions:

Aw(A(h)) = A(R)w(A(h)) in M;(h),

w(A(h)) =0 on OM;(h)\S;,
(M) dw(X(h))
on =0 on Sj,
w(A(h)) >0 in M;(h).
2-a) First, by assertion (5.1), we remark that
(67) lim ||u()\n)]|L2(M) = +00.
An—A(h)

But, Lemma 4.2 tells us that, for each € > 0, there exists a constant C(e, A\(h)) > 0
such that

(6.8) (u(\p)(z))P71 7 < W for all x € M (h).
x
Hence it follows from assertion (6.7) and inequality (6.8) that
69 wGE)@ = tm w()@ = tm o
A —X(h) An—x(r) [[W(An) L2 (an)

for almost every z € M, (h).
Therefore, combining assertions (6.5b) and (6.9), we find that

/ wX(h))?dV = / wX(h))?dV =1.
Mo (h) M
This proves that, in some connected component My(h), 1 < k < N, the function
w(A(h)) is strictly positive:
w(A(h)) >0 in My(h),
since we have
Mo(h) = (Uimy Mi(h)) U (Uil Mj(h)) -

2-b) Furthermore, we can prove the following:

Lemma 6.2. The function w(\(h)) satisfies the boundary conditions
wA(R)) =0 on dMoy(h)\ U;-V:u_l S;.
dw(A(h))

on

2-c¢) Assuming Lemma 6.2 for the moment, we shall prove Proposition 6.1.
By Lemma 6.2, we find that the function w(A(h)) is an eigenfunction of problem
(D;) or problem (Mj;). This implies that A(h) is an eigenvalue of problem (D;) or

problem (M;). Hence we have, by Rayleigh’s theorem,
A(B) > M (Mi(h)) > Xy (Mo(h))

N
=0 on Uj:Z'i‘]- S]

or

Nh) = p1(M;(R)) = M (Mo(h)).

The proof of Proposition 6.1 (and hence that of Theorem 2) is complete, apart
from the proof of Lemma 6.2. [
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Proof of Lemma 6.2. _
1) First we show that the function w(A(h)) satisfies the Neumann boundary
conditions:

Ow(A(h
We recall that

w(An) — w(A(h)) in L*(M),

and

Aw(M) = Awn) — AR)w(R)) = Aw(Nh))  in L2(Mo(h)).

Hence it follows from an application of the trace theorem (cf. [Tal, Proposition
8.3.1] with 0 = 0 and 7 = 0) that

Ow(An) . Ow(A(h))
on on

in H=3/2(dMo(h)).

But we have by condition («)

Ow(An)  Ow(An)
on  On
Thus we find that

+au(M\)?'w(N,) =0 on Ué\]:g_’_l S;.

dw(A(h))
on

2) Next we show that the function w(A(h)) satisfies the Dirichlet boundary con-
ditions:

N

w(A(h)) =0 on OMo(h)\ UL, S;.
2-a) We show that

wX(h)) =0 on U_, OM;(h),

or equivalently

w(A(h)) € Hy (Ui Mi(h)) .

In this case, without loss of generality, one may assume that
Mo (h) = U M, (h).
2-a-i) First we recall that
(6.6a) w(A(h)) € C®(Mqo(h)) N HY (M) N L>®(M),
and

(6.9) w(X(h)) =0 almost everywhere in M (h).
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For r > 0 sufficiently small, we let
M, = {x € My(h);dist (x,0Mo(h)) > r},

and let n be the unit exterior normal vector to the boundary dM,. One can
construct a C*° vector function ¥ on M such that

1
(6.10) ¥.n> 5 on oM.,
and
(6.11) 1% o) < C.

with a constant C' > 0. Here and in the following the letter C' denotes a generic
positive constant independent of r.
Since w(A(h)) is in the Sobolev space HE (M), we have by Green’s formula

(6.12)
/ vw(X(h)).wvz—/ w(NR))div & dV
M M

= —/ w(A(h))div ¥ dV,
Mo(h)
and also
(6.13)
/ Vw(X(h)) P dV = Vw(X(h)) W dV + / Vw(X(h)) - dV
M M\M,.

M,
_ / V(N (h) - ¥ dV + / Vw((h) - @ dV
M. Mo (R)\M,

:/ w(X(m)(\p-n)da—/ W(N(h))div & dV
oM, M,

+/ Vw(A(h)) - dV.
MO(h)\M'r
Thus, combining formulas (6.12) and (6.13), we obtain that
(6.14) / w(A(h))( - n) do

oM.

_ —/ w(N(h))div @ dV — / Vu(X(h)) - @ dV.
Mo(h)\M, Mo(AN\M,

But, by using inequalities (6.11) and (6.4), we can estimate the first term on the
right-hand side of formula (6.14) as follows:

<C dv < Cr.
MO(h)\M'r

i / W(N(h))div & dV
Mo (R)\M,
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Further, by using the Schwarz inequality and inequality (6.5¢), we can estimate the
second term on the right-hand side of formula (6.14) as follows:

/ Vw(A(h)) - ¥ dV
Mo (R)\M-

< C’/ IVw(A(h))| dV
MO(h)\Mr

1/2 1/2
<C / IVw(X(h))|? dV / dv
Mo (h)\M, Mo(h)\M,

< Crz.
Hence, by formula (6.14), we have for all » > 0 sufficiently small

/ wA(R))(¥ -n)do < Cr+ Crz < Cr3.
oM,

By inequality (6.10), this proves that for all r > 0 sufficiently small

[N

(6.15) /CW w(\(h)) do < Q/W w(Nh))(® -n)do < Cr3.

If we let
M: = MO(h>\MT‘7

then it follows from inequality (6.15) that
/ w(N(h)) dV = / (/ w(A(h) da) dt
M 0 \Jom,

< Cr3 .
Therefore we have for all » > 0 sufficiently small

(6.16) ( [

*
r

2

w(N(h)) dV) - ( /M:
<c (/ w(A(h) dv)

r

1
2

w(NR)) - wA(h)) dv>

*
r

1
2

SCT‘%.

2-a-ii) Now we construct a sequence {w, } in the space W 2"/ ("+1) (M, (h)) such
that B ,
wr — w(A(h)) in WhatT (Mo(h)) as r | 0.

We let

S, = {z € M;dist (z,0Mq(h)) < r},
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S, = Mo(h)\M,,
and

S} = {x € M (h);dist (x,0My(h)) = r},
082 = {x € Mg(h);dist (x, 0Mo(h)) = r}.

Then it is easy to see that, for » > 0 sufficiently small, there exists a “shrinking”
diffeomorphism

v:.S, — S
with the following properties:
(a) w(8Sy) = OMo(h), w(dS?) =88
(b) sup |[V¥| < C, sup|V¥ ! <C.
S S
Indeed, in terms of local coordinates (x1, 2, - ,Zp—1,2y) such that

oSt ={x, = —r}, 0S%={zx,=+r},

the diffeomorphism ¥ is given by the formula

Tp + T
W(.’El,.’lfg, T 7xn—17mn) = | T1,X2," " ,Tn-1, 2 .

We let _
{ wAh) (T~ (z)) ifzeS,,
we(z) =9 < .
w(A(h))(x) it z € M,.
Then, in view of assertion (6.9), it follows that the functions {w,} are in the space

H}(Mqg(h)) for all » > 0 sufficiently small. Next, by inequality (6.16), we have for
all » > 0 sufficiently small

(6.17) lwr = w(AR)) [ 2 (Mo (n))
= [lwr — WA ()|l 2 (Mo )\ M, )
< lwrllz2 (Mo, + W) | L2 (Mo (r)\ M)
< 2[lw A (M)l L2 (mz)
< COri,

Furthermore, using Holder’s inequality, we obtain that for all » > 0 sufficiently
small

(6.18) [lwr = WA L2ns ety (Mo (h))
n+1

< [Mo(R)| 57 2 [|w, — wAN(A)) | 22 ()
< C’r%.
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Similarly, it follows that for all » > 0 sufficiently small

IV (wr = W) | L2n/ 1) (Ao (1))
= [|[V(wr —W( (h ))||L2n/<n+1>(M0(h)\M )
< NVwrll p2nsatn (o my) + IVOR)) | p2n/ 0 (Ao (h)\ M)

<SUP\VW V@AM 2n/ 0 (M )\ Mo)
P

+ VWA () p2n/ 1) (Mo () \ M)
< Cl[VwA) [ L2/ o1 (Ao )\ M) -

But we find that the last term can be estimated as follows:

VWA R)) | 20/t 1) (Mo () \ M)

n+1

— / Vw(RR))[E v
MO(h)\MT

< | Mo M ( Loy [T >>|2dv)

< [IMo(M)\M.| 27 [ VwX(R)) || 22 (ary
< Cra.

3
AR

ntl 2n

Hence we obtain that for all » > 0 sufficiently small
(6.19) IV (@i = @A)l L2m /e (Mg (n)) < Cram,
Therefore, combining inequalities (6.18) and (6.19), we have proved that
W(N(R)) € Wy ™ (Mo (R)),
and
w, — w(A(h)) in W()l’f_ﬁ(./\/lo(h)) asr | 0.
2-a-iii) Finally we show that:
(6.20a) w(A(h)) € Hy(Mo(h)),
and

(6.20b) wr — w(A(h)) in Hy(Mo(h)) asr | 0.
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We recall that the function
W(N(h)) € Wy ™7 (Mo(R)) N L (Mo (R)
satisfies the equation
Aw(N(R)) = NR)w(N(h)) =0 in Mo(h).

Thus, by using LP estimates for elliptic equations (cf. [GT, Theorem 9.14]), we
obtain that

12n

(6.21) wA(h)) € W2 (Mo (h)) N Wy ™ (Mo (h)).

On the other hand, by applying the Sobolev imbedding theorem (cf. [Ad, Theo-
rem 5.4]), we find that the injection

(6.22) W21 (Mo(h)) € WHaT (Mo(h))

is continuous.
Hence it follows from assertions (6.21) and (6.22) that

IV AB) L2/ -1 (o () < C-

By virtue of Hélder’s inequality, this proves that for all » > 0 sufficiently small

(/ Ve (ih >>\2dv)

< (/ *\Vw(X(h))I%dV> B (/ *dv);”

= VoA | L2ns =) (Mo (n)) | M kz
< Cra.

1
2

Thus we have for all » > 0 sufficiently small

(6.23) IV (wr = wA)) | L2(Mmon)) = IV (wr — w(A(R)) || L20Mm)
< CIVwA ()l L2z
< Cran.

Therefore, assertion (6.20) follows by combining inequalities (6.17) and (6.23).
2-b) Similarly, one can prove that

w(A(h)) =0 on U;V:u_l OM;(R)\S;.

The proof of Lemma 6.2 and hence that of Proposition 6.1 is complete. [
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