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Dedicated to Professor Sigeru Mizohata on the occasion of his 70th birthdayAbstrat. We study the Yamabe problem in the context of manifolds with bound-
ary - a basic problem in Riemannian geometry - from the point of view of nonlinear

elliptic boundary value problems. By making good use of bifurcation theory from a

simple eigenvalue, we show that nonpositive scalar curvatures and nonpositive mean
curvatures are not always conformal to constant negative scalar curvatures and the

zero mean curvature.

Introduction

Let (M, g) be a smooth compact, connected Riemannian manifold with boundary
∂M of dimension n ≥ 3, and let M = M\∂M be the interior of M . A metric g′ of
M is said to be conformal to the metric g if there exists a strictly positive function
ϕ ∈ C∞(M) such that

g′ = ϕ
4

n−2 g.

A basic problem in Riemannian geometry is to seek a conformal change of the
metric g that makes the scalar curvature of M constant and the mean curvature of
∂M zero. When the boundary ∂M is empty, this problem is the so-called Yamabe
problem. The solution of the Yamabe problem is completely given by H. Yamabe
[Ya], N. S. Trudinger [Tr], T. Aubin [Au] and R. Schoen [Sc] (cf. [LP]). Recently, J.
Escobar [Es] has studied the problem in the context of manifolds with boundary,
and has given an affirmative solution to the problem formulated above in almost
every case.

In this paper we consider the case where the given metric g already has a constant
negative scalar curvature k of M and the zero mean curvature of ∂M as in Ouyang
[Ou] (cf. [Ka], [KW]). Our problem is stated as follows:

Problem. Given a nonpositive function R′ ∈ C∞(M) and a nonpositive function
h′ ∈ C∞(∂M), find a metric g′ of M , conformal to g, such that R′ and h′ are the
scalar curvature of M and the mean curvature of ∂M with respect to g′, respectively.

Now we let

M−(R′) = {x ∈M ;R′(x) < 0},
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and

M0(R
′) = M\M−(R′).

Our fundamental hypothesis is the following (cf. Figure 1):

(H) The open set M0(R
′) consists of a finite number of connected components

with smooth boundary, say Mi(R
′), 1 ≤ i ≤ ℓ, which are bounded away from ∂M ,

and consists of a finite number of connected components with smooth boundary,
say Mj(R

′), ℓ + 1 ≤ j ≤ N , such that each closure Mj(R′) is a neighborhood of
some connected component Sj of ∂M .

Sj

Mi(R
′)

M1(R
′)

M2(R
′)

Mj(R
′)

Figure 1
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Under hypothesis (H), we shall show that nonpositive scalar curvatures R′ and
nonpositive mean curvatures h′ are not always conformal to the negative scalar
curvature k and the zero mean curvature; it depends on the shape of the set M0(R

′)
(see Theorem 1 below).

First we consider the Dirichlet eigenvalue problem in each connected component
Mi(R

′), 1 ≤ i ≤ ℓ, which is bounded away from ∂M :

(Di)

{
∆ψ = λψ in Mi(R

′),

ψ = 0 on ∂Mi(R
′).

We remark that the Laplacian ∆ has the sign so that ∆ψ = −ψ′′ on R. By
the celebrated Rayleigh theorem, we know that the first eigenvalue λ1(Mi(R

′)) of
problem (Di) is given by the formula

λ1(Mi(R
′)) = inf

{∫

Mi(R′)

|∇ψ|2 dV ;ψ ∈ H1
0 (Mi(R

′)), ‖ψ‖L2(Mi(R′)) = 1

}
.
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Here dV is the Riemannian density of g, and H1
0 (Mi(R

′)) is the closure of C∞

functions with compact support in Mi(R
′) in the Sobolev space H1(Mi(R

′)).
Next we consider the Dirichlet-Neumann eigenvalue problem in each connected

component Mj(R
′), ℓ + 1 ≤ j ≤ N , whose closure is a neighborhood of some

connected component Sj of ∂M :

(Mj)





∆ψ = µψ in Mj(R
′),

ψ = 0 on ∂Mj(R
′)\Sj,

∂ψ
∂n = 0 on Sj ,

where n is the unit outward normal vector to Sj with respect to the metric g.
Similarly, by Rayleigh’s theorem, we know that the first eigenvalue µ1(Mj(R

′)) of
problem (Mj) is given by the formula

µ1(Mj(R
′)) = inf

{∫

Mj(R′)

|∇ψ|2 dV ;ψ ∈ H1(Mj(R
′)), ψ = 0 on ∂Mj(R

′)\Sj ,

‖ψ‖L2(Mj(R′)) = 1

}
.

We let

λ̃1(M0(R
′)) = min {λ1(M1(R

′)), · · · , λ1(Mℓ(R
′)),

µ1(Mℓ+1(R
′)), · · · , µ1(MN(R′))} .

We remark (cf. [Ch]) that the minimal eigenvalue λ̃1(M0(R
′)) is monotone decreas-

ing with respect to the set M0(R
′); more precisely, it tends to +∞ if M0(R

′) → ∅,
and it tends to zero if M0(R

′) →M .
Then our main result of this paper is stated as follows.

Theorem 1. Assume that the given metric g has a constant negative scalar cur-
vature k of M and the zero mean curvature of ∂M , and that:

(A) h′ ≤ 0 on ∂M\ ∪Nj=ℓ+1 Sj , and h′ = 0 on ∪Nj=ℓ+1Sj .

Then there exists a conformally related metric g′ = ϕ4/(n−2) g, ϕ > 0 on M , such
that R′ and h′ are respectively the scalar curvature of M and the mean curvature
of ∂M with respect to g′ if and only if we have

λ̃1(M0(R
′)) > −

n− 2

4(n− 1)
k.

The rest of this paper is organized as follows.
Section 1 is devoted to analytic and geometric preliminaries. In particular, we

formulate our problem more precisely, and show that the problem is equivalent to
finding a strictly positive solution ϕ ∈ C∞(M) of the nonlinear boundary value
problem:

(∗)

{
4 n−1
n−2 ∆ϕ+ kϕ−R′ϕ

n+2
n−2 = 0 in M,

2
n−2

∂ϕ
∂n − h′ϕ

n
n−2 = 0 on ∂M.
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If we let

λ = −
n− 2

4(n− 1)
k, h = −

n− 2

4(n− 1)
R′, a = −

n− 2

2
h′,

then the boundary value problem (∗) can be written in the following form:

(∗∗)

{
∆u− λu+ hup = 0 in M,
∂u
∂n

+ auq = 0 on ∂M,

where

p =
n+ 2

n− 2
> 1, q =

n

n− 2
> 1.

Here we remark that




λ > 0,

h ∈ C∞(M) and h ≥ 0 in M,

a ∈ C∞(∂M) and a ≥ 0 on ∂M.

In Section 2, we free our problem from geometry, and study the existence and
nonexistence of positive solutions of problem (∗∗) in the framework of Hölder spaces.
Our approach to problem (∗∗) is a modification of that of Ouyang [Ou] adapted to
the present context. However we do not use the sub-super-solution method as in
Ouyang [Ou] (cf. [Ka], [KW]).

First, by using a bifurcation theorem from a simple eigenvalue due to Crandall-
Rabinowitz [CR], we prove that there exists a positive solution u(λ) of problem
(∗∗) starting at the point (0, 0) (Lemma 2.1). Next we show that the solution u(λ)
is strictly positive on M (Lemma 2.2), and is monotone increasing with respect to
the parameter λ (Lemma 2.5). In the proof we make essential use of the positivity
of the resolvent of the linearized problem on the space C(M) due to Taira [Ta2]
(Claim 2.6). Furthermore, by virtue of the implicit function theorem, we can find
a constant 0 < λ(h) <∞ such that there occurs no secondary bifurcation along the
bifurcation solution curve (λ, u(λ)) of problem (∗∗) for all 0 < λ < λ(h) (Lemma
2.3). The situation may be represented schematically by the following bifurcation
diagram:
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In order to characterize explicitly the critical value λ(h), we let

M+(h) = {x ∈M ; h(x) > 0},
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and

M0(h) = M\M+(h).

Our fundamental hypothesis is the following (cf. hypothesis (H)):

(η) The open set M0(h) consists of a finite number of connected components
with smooth boundary, say Mi(h), 1 ≤ i ≤ ℓ, which are bounded away from ∂M ,
and consists of a finite number of connected components with smooth boundary,
say Mj(h), ℓ+1 ≤ j ≤ N , such that each closure Mj(h) is a neighborhood of some
connected component Sj of ∂M .

Then we have the formula

(0.1) λ(h) = λ̃1(M0(h)),

where the quantity λ̃1(M0(h)) is defined similarly, with R′ replaced by −h.
More precisely, we can prove the following existence and nonexistence theorem

of positive solutions of problem (∗∗) (cf. [Cr, Théorème 6], [Ou, Theorem 3]):

Theorem 2. Assume that:
(α) a ≥ 0 on ∂M\Sj, and a = 0 on Sj, ℓ+ 1 ≤ j ≤ N .
Then we have the following:

(i) For any 0 < λ < λ̃1(M0(h)), there exists a strictly positive solution u(λ) of
problem (∗∗).

(ii) For any λ ≥ λ̃1(M0(h)), there exists no positive solution of problem (∗∗).

Our main Theorem 1 is an immediate consequence of Theorem 2.
The proof of formula (0.1) and Theorem 2 is carried out in Section 3 through

Section 6.
First, in Section 3, by using Green’s formula, we prove the inequality (Proposition

3.1):

(0.2) λ(h) ≤ λ̃1(M0(h)).

Next, in Section 4 through Section 6, we prove the reverse inequality of inequality
(0.2) (Proposition 6.1):

(0.3) λ̃1(M0(h)) ≤ λ(h).

In Section 4 we study the behavior of the positive solutions u(λ) (0 < λ < λ(h))
in the set M+(h). Roughly speaking, we prove that, for each ε > 0, there exists a
constant C(ε, λ) > 0 such that (Lemma 4.2)

(u(λ)(x))
p−1−ε ≤

C(ε, λ)

h(x)
for all x ∈ M+(h).

This is an essential step in the proof of inequality (0.3) in Section 6 (cf. estimate
(6.9)). On the other hand, in Section 5, we prove that (Lemma 5.1)

lim
λ→λ(h)

‖u(λ)‖L2(M) = +∞,
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that is, we show that the solution u(λ) “blows up” at the critical value λ(h). In
Section 6, we prove that the critical value λ(h) is an eigenvalue of either the Dirichlet
problem (Di) or the Dirichlet-Neumann problem (Mj). By Rayleigh’s theorem, this
implies the desired reverse inequality (0.3).

The author would like to thank Atsushi Inoue, Osamu Kobayashi and Hajime
Sato for fruitful conversations and helpful comments on the manuscript.

1. Analytic and geometric preliminaries

In this section we collect some notation and well-known facts from the theory of
partial differential equations and Riemannian geometry which will be used in the
subsequent sections.

1.1 Function spaces. Let Ω be an open subset of Euclidean space Rn. If m is a
nonnegative integer and 1 ≤ p ≤ ∞, we let

Wm,p(Ω) = the space of (equivalence classes of) functions

u ∈ Lp(Ω) all of whose derivatives ∂αu, |α| ≤ m,

in the sense of distributions are in Lp(Ω),

and

Wm,p
0 (Ω) = the closure of C∞

0 (Ω) in the space Wm,p(Ω).

In the case p = 2, we customarily write

Hm(Ω) = Wm,2(Ω), Hm
0 (Ω) = Wm,2

0 (Ω).

Furthermore, if m is a nonnegative integer and 0 < θ < 1, we let

Cm+θ(Ω) = the space of functions in Cm(Ω) all of whose m-th order

derivatives are Hölder continuous with exponent θ on Ω.

If M is an n-dimensional compact smooth manifold without boundary, then the
spaces Wm,p(M) and Cm+θ(M) are defined respectively to be locally the spaces
Wm,p(Rn) and Cm+θ(Rn), upon using local coordinate systems flattening out M ,
together with a partition of unity.

1.2 Bifurcation theory. Let F (t, x) be a map of a neighborhood of the point
(0, 0) in a Banach space R ×X into a Banach space Y such that

F (t, 0) = 0 for |t| < 1.

Of particular interest is the process of bifurcation whereby a given solution of
F (t, x) = 0 splits into two or more solutions as t passes through some critical value.

The point (0, 0) is called a bifurcation point of the equation F (t, x) = 0 if every
neighborhood of (0, 0) in R × X contains a solution of the equation F (t, x) = 0
with x 6= 0.

The next theorem gives sufficient conditions in order that the point (0, 0) be a
bifurcation point of the equation F (t, x) = 0 (cf. [CR, Theorem 1.7], [Ni, Theorem
3.2.2]; [CH, Chapter 6, Theorem 6.1]):
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Theorem 1.1 (The bifurcation theorem). Let X, Y be Banach spaces, and
let V be a neighborhood of 0 in X and let F : (−1, 1) × V → Y have the following
properties:

(1) F (t, 0) = 0 for |t| < 1.
(2) The partial Fréchet derivatives Ft, Fx and Ftx of F exist and are continuous.
(3) N(Fx(0, 0)) and Y/R(Fx(0, 0)) are one dimensional.
(4) Ftx(0, 0)x0 6∈ R(Fx(0, 0)) where N(Fx(0, 0)) = span {x0}.
If Z is a complement of N(Fx(0, 0)) in X, that is, if it is a closed subspace of X

such that
X = N(Fx(0, 0))⊕ Z,

then there exist a neighborhood U of (0, 0) in R ×X and an open interval (−a, a)
such that the set of solutions of F (t, x) = 0 in U consists of two continuous curves
Γ1 and Γ2 which may be parametrized respectively by t and α as follows:

Γ1 = {(t, 0); (t, 0) ∈ U},

Γ2 = {(ϕ(α), αx0 + αψ(α)); |α| < a}.

Here

ϕ : (−a, a) → R, ϕ(0) = 0,

ψ : (−a, a) → Z, ψ(0) = 0.

1.3 Formulation of Problem. Let (M, g) be a smooth compact, connected Rie-
mannian manifold with boundary ∂M of dimension n ≥ 3 and M = M\∂M the
interior of M . If gjk are the components of the metric tensor g with respect to a
local coordinate system x1, x2, · · · , xn, then gjk and its inverse gjk are used to raise
and lower indices. Covariant differentiation is denoted by ∇. If f is a function on
M , then its covariant derivative is the one-tensor ∇f with components

∇if =
∂f

∂xi
.

The second covariant derivative of f is the two-tensor ∇2f with components

∇ijf =
∂2f

∂xi∂xj
−

n∑

ℓ=1

Γℓij
∂f

∂xℓ
.

Here the functions

Γℓij =
1

2

[
∂gkj
∂xi

+
∂gki
∂xj

−
∂gij
∂xk

]
gkℓ

are the Christoffel symbols. The metric extends to an inner product on tensors of
any type; for example, the norm of ∇f is

|∇f |2 =

n∑

j=1

∇jf∇jf =

n∑

i,j=1

gij∇if∇jf.
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The divergence operator is the formal adjoint ∇∗ of ∇ given on one-forms u =∑n
i=1 ui dx

i by

∇∗u = −
n∑

i=1

∇iui = −
n∑

i,j=1

gij∇jui = −
n∑

i,j=1

gij
∂ui
∂xj

+

n∑

i,j,ℓ=1

gij Γℓji uℓ.

The Laplace-Beltrami operator, or simply Laplacian, is the second-order differential
operator ∆ given on functions f by

∆f = ∇∗∇f = −
n∑

i=1

∇i∇if = −
n∑

i,j=1

gij
∂2f

∂xi∂xj
+

n∑

i,j,ℓ=1

gij Γℓji
∂f

∂xℓ
.

The Riemannian curvature tensor is the tensor with components Rℓkij computed
in a local coordinate system x1, x2, · · · , xn by

Rℓkij =
∂

∂xi
(Γℓjk) −

∂

∂xj
(Γℓik) +

n∑

m=1

Γℓim Γmjk −
n∑

m=1

Γℓjm Γmik.

The Ricci tensor is the contraction of the curvature tensor

Rij =

n∑

k=1

Rkikj ,

and the scalar curvature is the trace of the Ricci tensor

R =

n∑

i,j=1

gijRij .

Let (x1, x2, · · · , xn−1, xn) be a local coordinate system on M in which ∂M is the
plane xn = 0 and for which ∂/∂xn is a unit outward normal vector to ∂M . Then
the components hij of the second fundamental form of g are given by

hij =
1

2

∂gij
∂xn

, 1 ≤ i, j ≤ n− 1.

The mean curvature of ∂M is the trace

h =
1

n− 1

n−1∑

i,j=1

gijhij .

A metric g′ of M is said to be conformal to the metric g if there exists a real-
valued function f ∈ C∞(M) such that

g′ = e2fg.
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If g′ = e2fg is a metric conformal to g, then we have the following transformation
laws for the Ricci curvatures Rij , R

′
ij and the scalar curvatures R, R′, respectively:

R′
ij = Rij − (n− 2)∇ijf + (n− 2)∇if∇jf +

(
∆f − (n− 2)|∇f |2

)
gij,

R′ = e−2f
(
R + 2(n− 1)∆f − (n− 1)(n− 2)|∇f |2

)
.

Furthermore, if we make the substitution

e2f = ϕ
4

n−2 , ϕ > 0 on M,

then the second formula can be simplified as follows:

(1.1) 4
n− 1

n− 2
∆ϕ+Rϕ−R′ϕ

n+2
n−2 = 0 in M.

Similarly, one can compute the components h′ij of the second fundamental form

of g′ = e2fg in terms of the second fundamental form of g. We have the following
transformation laws for the components hij , h

′
ij and the mean curvatures h, h′,

respectively:

h′ij = efhij +
∂

∂n
(ef )gij ,

h′ = e−f
(
h+

∂f

∂n

)
,

where n is the unit outward normal vector with respect to the metric g. Further-
more, if we make the substitution e2f = ϕ4/(n−2) as above, then the second formula
can be simplified as follows:

(1.2)
2

n− 2

∂ϕ

∂n
+ hϕ− h′ϕ

n
n−2 = 0 on ∂M.

Therefore, if we take R = k in equation (1.1) and h = 0 in condition (1.2),
our problem is equivalent to finding a strictly positive solution ϕ ∈ C∞(M) of the
nonlinear boundary value problem:

(∗)

{
4 n−1
n−2

∆ϕ+ kϕ−R′ϕ
n+2
n−2 = 0 in M,

2
n−2

∂ϕ
∂n − h′ϕ

n
n−2 = 0 on ∂M.

1.4 Regularity theorem for nonlinear Neumann problems. The next regu-
larity theorem for nonlinear Neumann problems, due to Cherrier [Cr, Théorème 1],
will play an important role in the proof of Theorem 2:

Theorem 1.2. Let H ∈ C∞(R ×M) and L ∈ C∞(R × ∂M). Assume that there
exist constants C1 > 0 and C2 > 0 such that

|H(t, x)| ≤ C1

(
1 + |t|

n+2
n−2

)
for all (t, x) ∈ R ×M,
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|L(t, y)| ≤ C2

(
1 + |t|

n
n−2
)

for all (t, y) ∈ R × ∂M.

If a function ϕ ∈ H1(M) is a weak solution of the problem

(+)

{
∆ϕ+H(ϕ, x) = 0 in M,
∂ϕ
∂n + L(ϕ, y) = 0 on ∂M,

that is, if it satisfies, for all ψ ∈ H1(M),

∫

M

(
n∑

i=1

∇iϕ∇iψ +H(ϕ, x)ψ

)
dV (x) +

∫

∂M

L(ϕ, y)ψ dσ(y) = 0,

then ϕ belongs to C∞(M), and is a solution of problem (+). Here dV is the
Riemannian density of M and dσ is the induced Riemannian density of ∂M , re-
spectively.

2. Existence of positive solutions of problem (∗∗)

In the subsequent sections, we shall prove Theorem 2, the existence and nonex-
istence theorem of positive solutions of problem (∗∗).

Now we associate with problem (∗∗) a nonlinear mapping F : R×C2+θ(M) 7−→
Cθ(M) × C1+θ(∂M) (0 < θ < 1) as follows:

F :R × C2+θ(M) −→ Cθ(M) × C1+θ(∂M)

(λ, u) 7−→

(
∆u− λu+ hup,

∂u

∂n
+ auq

)
.

We remark that a function u ∈ C2+θ(M) is a solution of problem (∗∗) if and only
if F (λ, u) = 0.

I) First we prove an existence result of positive solutions of problem (∗∗) near
the point (0, 0).

Lemma 2.1. There exists a bifurcation solution curve (λ, u(λ)) of the equation
F (λ, u) = 0 starting at (0, 0):

(∗∗)

{
∆u(λ) − λu(λ) + hu(λ)p = 0 in M,
∂u(λ)
∂n

+ au(λ)q = 0 on ∂M.

Proof. The proof of Lemma 2.1 is based on the bifurcation theorem 1.1.
We have for partial Fréchet derivatives of the mapping F (λ, u)

Fu(λ, u) :C2+θ(M) −→ Cθ(M) × C1+θ(∂M)

v 7−→

(
∆v − λv + phup−1v,

∂v

∂n
+ qauq−1v

)
,

and

Fλu(λ, u) :C2+θ(M) −→ Cθ(M) × C1+θ(∂M)

v 7−→ (−v, 0).
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In particular we have

Fu(0, 0) :C2+θ(M) −→ Cθ(M) × C1+θ(∂M)

v 7−→

(
∆v,

∂v

∂n

)
.

It is easy to see that

N(Fu(0, 0)) = {constant functions} = span {1},
(2.1)

R(Fu(0, 0)) = {(f, ϕ) ∈ Cθ(M) × C1+θ(∂M);

∫

M

f dV +

∫

∂M

ϕdσ = 0},

(2.2)

and

Fλu(0, 0)1 = (−1, 0) 6∈ R(Fu(0, 0)).
(2.3)

First we prove assertion (2.1): Assume that a function v ∈ C2+θ(M) is a solution
of the homogeneous Neumann problem

{
∆v = 0 in M,
∂v
∂n = 0 on ∂M.

Then, by Green’s formula, it follows that

0 =

∫

M

∆v · v dV =

∫

M

|∇v|2 dV.

Hence we find that the function v is constant. This proves that

N(Fu(0, 0)) = {constant functions} = span {1}.

Next we prove assertion (2.2): Assume that a function v ∈ C2+θ(M) is a solution
of the nonhomogeneous Neumann problem

(N)

{
∆v = f in M,
∂v
∂n

= ϕ on ∂M,

with (f, ϕ) ∈ Cθ(M) × C1+θ(∂M).
Then we have by Green’s formula

∫

M

f dV +

∫

∂M

ϕdσ =

∫

M

∆v dV +

∫

∂M

∂v

∂n
dσ

= −

∫

∂M

∂v

∂n
dσ +

∫

∂M

∂v

∂n
dσ
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= 0.

Conversely, assume that a function (f, ϕ) ∈ Cθ(M) × C1+θ(∂M) satisfies the
condition ∫

M

f dV +

∫

∂M

ϕdσ = 0.

If we choose a function w ∈ C2+θ(M) such that

∂w

∂n
= ϕ on ∂M,

then we have by Green’s formula

(2.4)

∫

M

(f −∆w) dV =

∫

M

f dV +

∫

∂M

ϕdσ = 0.

Now we introduce a densely defined, closed linear operator

AN : L2(M) → L2(M)

as follows.
(a) The domain of definition D(AN ) is the space

D(AN ) =

{
u ∈ H2(M);

∂u

∂n
= 0 on ∂M

}
.

(b) ANu = ∆u, u ∈ D(AN ).
Then it is known (cf. [LM, Chapter 2, Section 8.4, Theorem 8.4]) that the operator
AN is self-adjoint and

L2(M) = N(AN ) ⊕ R(AN ),

where
N(AN ) = N(Fu(0, 0)) = {constant functions} = span {1}.

Therefore, one can find a solution u ∈ C2+θ(M) of the problem
{
∆u = f −∆w in M,
∂u
∂n

= 0 on ∂M,

since formula (2.4) tells us that the function f −∆w is orthogonal to the constant
function 1.

Summing up, we find that the function v = u + w ∈ C2+θ(M) is a solution of
problem (N).

Finally we prove assertion (2.3): Since we have

Fλu(0, 0)1 = (−1, 0),

it follows that ∫

M

(−1) dV +

∫

∂M

0 dσ = −vol(M) < 0.

By assertion (2.2), this proves that

Fλu(0, 0)1 6∈ R(Fu(0, 0)).

The proof of Lemma 2.1 is complete. �

I-2) Next we show that the solution u(λ) is strictly positive on M :

u(λ) > 0 on M.

To do so, it suffices to prove the following:
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Lemma 2.2. If a function v ∈ C2(M) satisfies the conditions




∆v − λv + hvp = 0 in M,
∂v
∂n + avq = 0 on ∂M,

v ≥ 0 on M,

then we have
v > 0 on M.

Proof. a) First assume to the contrary that there exists a point x0 ∈M such that

v(x0) = min
M

v = 0.

Then, since λ > 0 and v ≥ 0 on M , one can find a neighborhood Ω of x0 such that

∆v = v(λ− hvp−1) ≥ 0 in Ω.

Hence, applying the strong maximum principle (cf. [PW, Chapter 2, Section 3,
Theorem 6]; [Ta1, Theorem 7.2.1]), we obtain that

v ≡ 0 in Ω.

This implies that v ≡ 0 in M , since M is connected.
This contradiction proves that v > 0 in M .
b) Next assume to the contrary that there exists a point x′ ∈ ∂M such that

v(x′) = min
M

v = 0.

Then one can find a neighborhood Ω′ of x′ such that

∆v = v(λ− hvp−1) ≥ 0 in Ω′.

But we have by step a) {
v(x) > 0, x ∈M,

v(x′) = minM v = 0.

Thus, applying the boundary point lemma (cf. [PW, Chapter 2, Section 3, Theorem
8]; [Ta1, Lemma 7.1.7]), we obtain that

∂v

∂n
(x′) < 0.

Hence it follows that

0 =
∂v

∂n
(x′) + a(x′)v(x′)q =

∂v

∂n
(x′) < 0.

This contradiction proves that v > 0 on ∂M .
Summing up, we have proved that v > 0 on M . �

I-3) By applying the regularity theorem 1.2 for problem (∗∗), we find that

u(λ) ∈ C∞(M).

II) Secondly, we prove that there occurs no secondary bifurcation along the bi-
furcation solution curve (λ, u(λ)) of equation F (λ, u) = 0 starting at (0, 0):
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Lemma 2.3. There exists a constant 0 < λ(h) <∞ such that F (λ, u(λ)) = 0 and
the Fréchet derivative Fu(λ, u(λ)) is an algebraic and topological isomorphism for
all 0 < λ < λ(h).

Proof. It is known (for example, [Ta1, Theorem 8.4.1]) that the Fréchet derivative
Fu(λ, u(λ)) is a Fredholm operator with index zero. Hence, in order to prove the
bijectivity of Fu(λ, u(λ)), it suffices to show that Fu(λ, u(λ)) is injective:

∆v − λv + phu(λ)p−1v = 0 in M,
∂v

∂n
+ qau(λ)q−1v = 0 on ∂M

=⇒ v = 0 on M.

Indeed, by using the implicit function theorem (cf. [Di, Theorem 10.2.1]), one can
find a constant 0 < λ(h) < ∞ such that F (λ, u(λ)) = 0 and Fu(λ, u(λ)) is an
algebraic and topological isomorphism for all 0 < λ < λ(h).

1) In ordr to prove the injectivity of Fu(λ, u(λ)), we need the following:

Claim 2.4. We define a densely defined, closed linear operator A(λ) : L2(M) →
L2(M) as follows.

(a) The domain of definition D(A(λ)) is the space

D(A(λ)) =

{
v ∈ H2(M);

∂v

∂n
+ qau(λ)q−1v = 0 on ∂M

}
.

(b) A(λ)v = ∆v + phu(λ)p−1v, v ∈ D(A(λ)).
Then the operator A(λ) − λI is positive in L2(M) for λ > 0. More precisely, if

µ1(λ) is the first eigenvalue of A(λ) − λI, then we have µ1(λ) > 0 and

(2.5)

∫

M

(A(λ) − λI)v · v dV ≥ µ1(λ)

∫

M

v2 dV, v ∈ D(A(λ)).

Proof. Let v1(λ) be the eigenfunction of A(λ) − λI associated with µ1(λ):

(A(λ) − λI)v1(λ) = µ1(λ)v1(λ).

We remark that v1(λ) > 0 on M . Then we have by Green’s formula

µ1(λ)

∫

M

u(λ)v1(λ) dV =

∫

M

(∆v1(λ) − λv1(λ) + phu(λ)p−1v1(λ))u(λ) dV

=

∫

M

∇v1(λ) · ∇u(λ) dV − λ

∫

M

u(λ)v1(λ) dV

+ p

∫

M

hu(λ)pv1(λ) dV −

∫

∂M

∂v1(λ)

∂n
u(λ) dσ,

and also

−

∫

M

hu(λ)pv1(λ) dV =

∫

M

(∆u(λ) − λu(λ))v1(λ) dV
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=

∫

M

∇u(λ) · ∇v1(λ) dV − λ

∫

M

u(λ)v1(λ) dV

−

∫

∂M

∂u(λ)

∂n
v1(λ) dσ.

But recall that the functions v1(λ) and u(λ) satisfy respectively the following bound-
ary conditions:

∂v1(λ)

∂n
+ qau(λ)q−1v1(λ) = 0 on ∂M.

∂u(λ)

∂n
+ au(λ)q = 0 on ∂M.

Hence it follows that
∫

M

∇v1(λ) · ∇u(λ) dV − λ

∫

M

u(λ)v1(λ) dV

= µ1(λ)

∫

M

u(λ)v1(λ) dV − p

∫

M

hu(λ)pv1(λ) dV − q

∫

∂M

au(λ)qv1(λ) dσ,

and also
∫

M

∇v1(λ) · ∇u(λ) dV − λ

∫

M

u(λ)v1(λ) dV

= −

∫

M

hu(λ)pv1(λ) dV −

∫

∂M

au(λ)qv1(λ) dσ.

Therefore, we obtain that

µ1(λ)

∫

M

u(λ)v1(λ) dV

= (p− 1)

∫

M

hu(λ)pv1(λ) dV + (q − 1)

∫

∂M

au(λ)qv1(λ) dσ.

This proves that

µ1(λ) =
(p− 1)

∫
M
hu(λ)pv1(λ) dV + (q − 1)

∫
∂M

au(λ)qv1(λ) dσ∫
M
u(λ)v1(λ) dV

> 0,

since p > 1, q > 1, and h ≥ 0 in M and a ≥ 0 on ∂M .

2) Now let v be an arbitrary function in C2+θ(M) such that Fu(λ, u(λ))v = 0.
Then we have v ∈ D(A(λ)) and (A(λ) − λI)v = 0. By estimate (2.5), this implies
that v = 0 on M .

The proof of Lemma 2.3 is complete. �

By virtue of Lemma 2.3, one can extend the above bifurcation curve (λ, u(λ)) to
all 0 < λ < λ(h). Then we have the following:
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Lemma 2.5. The solution u(λ) is differentiable with respect to λ for all 0 < λ <
λ(h), and is monotone increasing; more precisely, we have for all 0 < λ < λ(h)

u′(λ) > 0 on M.

Our situation may be represented schematically as in Figure 2.

Proof. 1) First, since the Fréchet derivative Fu(λ, u(λ)) is an algebraic and topolog-
ical isomorphism for all 0 < λ < λ(h), it follows from an application of the implicit
function theorem that the solution u(λ) is differentiable with respect to λ.

2) Next we show that, for all 0 < λ < λ(h), the derivative u′(λ) is nonnegative
on M :

u′(λ) ≥ 0 on M.

By differentiating problem (∗∗) with respect to λ, we obtain that

{
∆u′(λ) − λu′(λ) + phu(λ)p−1u′(λ) − u(λ) = 0 in M,
∂u′(λ)
∂n

+ qau(λ)q−1u′(λ) = 0 on ∂M.

This implies that

(2.6)

{
u′(λ) ∈ D (A(λ)),

(A(λ) − λI)u′(λ) = u(λ).

Now we introduce a linear operator

A(λ) : C(M) → C(M)

as follows.
(a) The domain of definition D(A(λ)) is the space

D(A(λ)) =

{
v ∈ C(M);∆v ∈ C(M),

∂v

∂n
+ qau(λ)q−1v = 0 on ∂M

}
.

(b) A(λ)v = (−∆− phu(λ)p−1)v, v ∈ D(A(λ)).
Then it follows from an application of the existence theorem of Feller semigroups
due to Taira [Ta2, Theorem 3.16 and Theorem 1.3] that:

(α) The resolvent (αI−A(λ))−1 is nonnegative on the space C(M) for all α > 0.
But we remark that:

(β) The operator A(λ) is an extension of the operator −A(λ).
(γ) The point λ belongs to the resolvent set of A(λ).
Therefore, we obtain the following:

Claim 2.6. The resolvent (A(λ) − λI)−1 is nonnegative on the space C(M), for
all 0 < λ < λ(h).

By formula (2.6), this claim proves that

u′(λ) = (A(λ) − λI)−1u(λ) ≥ 0 on M,
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since u(λ) ∈ C∞(M) and u(λ) > 0 on M .

3) Finally we show that, for all 0 < λ < λ(h), the function u′(λ) is strictly
positive on M :

u′(λ) > 0 on M.

3-a) First assume to the contrary that there exists a point x0 ∈M such that

u′(λ)(x0) = min
M

u′(λ) = 0.

Then we have

0 < u(λ)(x0) = (∆− λ)u′(λ)(x0) + ph(x0) (u(λ)(x0))
p−1

u′(λ)(x0)

= ∆u′(λ)(x0) ≤ 0.

This contradiction proves that u′(λ) > 0 in M .
3-b) Next assume to the contrary that there exists a point x′ ∈ ∂M such that

u′(λ)(x′) = min
M

u′(λ) = 0.

Thus, applying the boundary point lemma to the function u′(λ), we obtain that

∂u′(λ)

∂n
(x′) < 0.

Hence it follows that

0 =
∂u′(λ)

∂n
(x′) + qa(x′) (u(λ)(x′))

q−1
u′(λ)(x′) =

∂u′(λ)

∂n
(x′) < 0.

This contradiction proves that u′(λ) > 0 on ∂M .

Summing up, we have proved that u′(λ) > 0 on M . �

3. Proof of Theorem 2 -(1)-

Sections 3-6 are devoted to the characterization of the critical value λ(h), that
is, the proof of formula (0.1):

(0.1) λ(h) = λ̃1(M0(h))

= min {λ1(M1(h)), · · · , λ1(Mℓ(h)),

µ1(Mℓ+1(h)), · · · , µ1(MN (h))} .

We begin with the following:

Proposition 3.1. For all 0 < λ < λ(h), we have

λ < λ1(Mi(h)), 1 ≤ i ≤ ℓ,
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and

λ < µ1(Mj(h)), ℓ+ 1 ≤ j ≤ N.

In particular, we have the inequality

(0.2) λ(h) ≤ λ̃1(M0(h)).

Proof. 1) First we consider the Dirichlet eigenvalue problem in each connected
component Mi(h), 1 ≤ i ≤ ℓ:

(Di)

{
∆ϕ = λϕ in Mi(h),

ϕ = 0 on ∂Mi(h).

Let λ1(Mi(h)) be the first eigenvalue of problem (Di) with eigenfunction ϕ:

{
∆ϕ = λ1(Mi(h))ϕ in Mi(h),

ϕ = 0 on ∂Mi(h).

Here we remark that ϕ > 0 in Mi(h). If we let

ϕ∗(x) =

{
ϕ(x) x ∈ Mi(h),

0 x ∈M\Mi(h),

then it follows that
ϕ∗ ∈ H1(M),

and
ϕ∗ ≥ 0 in M.

Now let u(λ) ∈ C∞(M) be a solution of problem (∗∗). Then it follows from an
application of Green’s formula that

0 =

∫

M

(∆u(λ) − λu(λ) + hu(λ)p)ϕ∗ dV

=

∫

Mi(h)

∇u(λ) · ∇ϕdV − λ

∫

Mi(h)

u(λ)ϕdV

+

∫

Mi(h)

hu(λ)pϕdV −

∫

∂Mi(h)

∂u(λ)

∂n
ϕdσ

=

∫

Mi(h)

∇u(λ) · ∇ϕdV − λ

∫

Mi(h)

u(λ)ϕdV,

since h = 0 in Mi(h) and ϕ = 0 on ∂Mi(h). Hence we obtain that

(3.1)

∫

Mi(h)

∇u(λ) · ∇ϕdV = λ

∫

Mi(h)

u(λ)ϕdV.
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Similarly, it follows that

(3.2) 0 =

∫

Mi(h)

(∆ϕ− λ1(Mi(h))ϕ)u(λ) dV

=

∫

Mi(h)

∇u(λ) · ∇ϕdV −

∫

∂Mi(h)

∂ϕ

∂n
u(λ) dσ

− λ1(Mi(h))

∫

Mi(h)

ϕu(λ) dV.

Thus, combining formulas (3.1) and (3.2), we obtain that

λ

∫

Mi(h)

u(λ)ϕdV

= λ1(Mi(h))

∫

Mi(h)

u(λ)ϕdV +

∫

∂Mi(h)

∂ϕ

∂n
u(λ) dσ.

But, it follows from an application of the boundary point lemma that

∂ϕ

∂n
< 0 on ∂Mi(h).

Indeed, it suffices to note that






∆ϕ = λ1(Mi(h))ϕ > 0 in Mi(h),

ϕ > 0 in Mi(h),

ϕ = 0 on ∂Mi(h).

We also recall that
u(λ) > 0 on M.

Therefore, we find that

(λ1(Mi(h)) − λ)

∫

Mi(h)

u(λ)ϕdV = −

∫

∂Mi(h)

∂ϕ

∂n
u(λ) dσ > 0,

so that
λ < λ1(Mi(h)), 1 ≤ i ≤ ℓ.

This proves that

(3.3) λ(h) ≤ λ1(Mi(h)) for 1 ≤ i ≤ ℓ.

2) Next we consider the Dirichlet-Neumann eigenvalue problem in each connected
component Mj(h), ℓ+ 1 ≤ j ≤ N :

(Mj)





∆ϕ = µϕ in Mj(h),

ϕ = 0 on ∂Mj(h)\Sj ,
∂ϕ
∂n = 0 on Sj .
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Let µ1(Mj(h)) be the first eigenvalue of problem (Mj) with eigenfunction ψ:





∆ψ = µ1(Mj(h))ψ in Mj(h),

ψ = 0 on ∂Mj(h)\Sj ,
∂ψ
∂n = 0 on Sj .

Here we remark that ψ > 0 in Mj(h). If we let

ψ∗(x) =

{
ψ(x) x ∈ Mj(h),

0 x ∈M\Mj(h),

then it follows that
ψ∗ ∈ H1(M),

and
ψ∗ ≥ 0 in M.

Now let u(λ) ∈ C∞(M) be a solution of problem (∗∗). We remark that

∂u(λ)

∂n
= 0 on Sj ,

since we have, by condition (α), a = 0 on Sj . Then it follows from an application
of Green’s formula that

0 =

∫

M

(∆u(λ) − λu(λ) + hu(λ)p)ψ∗ dV

=

∫

Mj(h)

∇u(λ) · ∇ψ dV − λ

∫

Mj(h)

u(λ)ψ dV

+

∫

Mj(h)

hu(λ)pψ dV −

∫

∂Mj(h)

∂u(λ)

∂n
ψ dσ

=

∫

Mj(h)

∇u(λ) · ∇ψ dV − λ

∫

Mj(h)

u(λ)ψ dV.

Indeed, since we have

ψ = 0 on ∂Mj(h)\Sj ,

∂u(λ)

∂n
= 0 on Sj ,

it follows that
∫

∂Mj(h)

∂u(λ)

∂n
ψ dσ =

∫

Sj

∂u(λ)

∂n
ψ dσ +

∫

∂Mj(h)\Sj

∂u(λ)

∂n
ψ dσ = 0.

Hence we obtain that

(3.4)

∫

Mj(h)

∇u(λ) · ∇ψ dV = λ

∫

Mj(h)

u(λ)ψ dV.
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Similarly, it follows that

(3.5) 0 =

∫

Mj(h)

(∆ψ − µ1(Mj(h))ψ)u(λ) dV

=

∫

Mj(h)

∇u(λ) · ∇ψ dV −

∫

∂Mj(h)

∂ψ

∂n
u(λ) dσ

− µ1(Mj(h))

∫

Mj(h)

ψu(λ) dV

=

∫

Mj(h)

∇u(λ) · ∇ψ dV −

∫

∂Mj(h)\Sj

∂ψ

∂n
u(λ) dσ

− µ1(Mj(h))

∫

Mj(h)

ψu(λ) dV,

since ∂ψ/∂n = 0 on Sj .
Thus, combining formulas (3.4) and (3.5), we obtain that

λ

∫

Mj(h)

u(λ)ψ dV

= µ1(Mj(h))

∫

Mj(h)

u(λ)ψ dV +

∫

∂Mj(h)\Sj

∂ψ

∂n
u(λ) dσ.

But, it follows from an application of the boundary point lemma that

∂ψ

∂n
< 0 on ∂Mj(h)\Sj .

Indeed, it suffices to note that






∆ψ = µ1(Mj(h))ψ > 0 in Mj(h),

ψ > 0 in Mj(h),

ψ = 0 on ∂Mj(h)\Sj .

Therefore, we find that

(µ1(Mj(h)) − λ)

∫

Mj(h)

u(λ)ψ dV = −

∫

∂Mj(h)\Sj

∂ψ

∂n
u(λ) dσ > 0,

so that
λ < µ1(Mj(h)), ℓ+ 1 ≤ j ≤ N.

This proves that

(3.6) λ(h) ≤ µ1(Mj(h)) for ℓ+ 1 ≤ j ≤ N.

The desired inequality (0.2) follows by combining inequalities (3.3) and (3.6).
The proof of Proposition 3.1 is complete. �
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4. Properties of positive solutions -(1)-

In Section 4 through Section 6, we shall prove the reverse inequality (0.3) of
inequality (0.2).

First we begin with the following:

Lemma 4.1. One can construct a function h∗ ∈ C1(M) having the following prop-
erties:

(a) 0 < h∗(x) ≤ h(x) for x ∈ M+(h).

(b) For each ε > 0, there exists a constant C > 0, depending on supM |∇h|, such
that

(4.1) sup
M+(h)

∣∣∣∣∣
∇h∗

(h∗)
1−ε

∣∣∣∣∣ ≤
C

ε2
.

Proof. We let

d(x) = dist (x, ∂M+(h)), x ∈ M+(h),

and define a function h∗(x) by the following:

h∗(x) =






e−
1

h(x) for x ∈ M+(h), d(x) < δ,

h(x) for x ∈ M+(h), d(x) > 2δ,

0 for x ∈M\M+(h),

and

0 < h∗(x) ≤ h(x) for x ∈ M+(h), δ ≤ d(x) ≤ 2δ.

Then it is easy to verify that the function h∗ enjoys properties (a) and (b).

Indeed, property (b) may be verified as follows. Since we have

∇h∗(x) = e−
1

h(x)
∇h(x)

h(x)2
for x ∈ M+(h), 0 < d(x) < δ,

it follows that

∣∣∣∣∣
∇h∗(x)

h∗(x)
1−ε

∣∣∣∣∣ = |∇h(x)| e−
ε

h(x)
1

h(x)2

≤ sup
M

|∇h| · sup
M

(
e−

ε
h

h2

)

≤ sup
M

|∇h|

(
4e−2

ε2

)
. �

The next lemma will play an essential role in the proof of inequality (0.3) (cf.
the proof of Proposition 6.1).
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Lemma 4.2. If u(λ) is a positive solution of problem (∗∗) with 0 < λ < λ(h),
then, we have for any ε > 0

h∗ u(λ)p−1−ε ∈ L∞(M+(h)),

and

(4.2) sup
M+(h)

(
h∗ u(λ)p−1−ε

)
≤ C(ε, λ),

with a constant C(ε, λ) > 0. Moreover, if λ is finite, then so is the constant C(ε, λ).

Proof. 1) Let µ1(λ) and v1(λ) be the first eigenvalue and associated eigenfunction
of the Fréchet derivative Fu(λ, u(λ)), that is,

{
(∆− λ+ phu(λ)p−1)v1(λ) = µ1(λ)v1(λ) in M,
∂v1(λ)
∂n + qau(λ)q−1v1(λ) = 0 on ∂M.

We recall that µ1(λ) > 0 and v1(λ) > 0 on M . Furthermore, by Rayleigh’s theorem
(cf. [Ag, Chapter 10], [Ch, Chapter I]), we know that the first eigenvalue µ1(λ) can
be characterized by the following formula:

(4.3) µ1(λ)

∫

M

ϕ2 dV ≤

∫

M

|∇ϕ|2 dV − λ

∫

M

ϕ2 dV

+ p

∫

M

hu(λ)p−1 ϕ2 dV + q

∫

∂M

au(λ)q−1 ϕ2 dσ.

Now, we take
ϕ = (h∗)s u(λ)k, s > 0, k > p, k > q,

where the constants s, k will be chosen later on. Then we have

∇ϕ = s(h∗)s−1 u(λ)k∇h∗ + k(h∗)s u(λ)k−1 ∇u,

and so

|∇ϕ|2 = s2(h∗)2s−2 u(λ)2k |∇h∗|2 + k2(h∗)2s u(λ)2k−2 |∇u|2

+ 2sk(h∗)2s−1 u(λ)2k−1 ∇h∗ · ∇u.

Hence, we can write inequality (4.3) in the following form:

(4.4) µ1(λ)

∫

M

(h∗)2s u(λ)2k dV

≤ s2
∫

M

(h∗)2s−2 u(λ)2k |∇h∗|2 dV

+ 2sk

∫

M

(h∗)2s−1 u(λ)2k−1 ∇h∗ · ∇u dV

+ k2

∫

M

(h∗)2s u(λ)2k−2 |∇u|2 dV − λ

∫

M

(h∗)2s u(λ)2k dV

+ p

∫

M

h (h∗)2s u(λ)p−1+2k dV + q

∫

∂M

a (h∗)2s u(λ)q−1+2k dσ.
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2) Next we show that the second term on the right-hand side of inequality (4.4)
can be written as

(4.5) 2sk

∫

M

(h∗)2s−1 u(λ)2k−1 ∇h∗ · ∇u dV

= λk

∫

M

(h∗)2s u(λ)2k dV − k(2k − 1)

∫

M

(h∗)2s u(λ)2k−2 |∇u|2 dV

− k

∫

M

h (h∗)2s u(λ)p−1+2k dV − k

∫

∂M

a (h∗)2s u(λ)q−1+2k dσ.

If we let
ψ(λ) = ku(λ)2k−1 (h∗)2s,

then we obtain that

∇ψ(λ) = 2sku(λ)2k−1 (h∗)2s−1 ∇h∗

+ k(2k − 1)u(λ)2k−2 (h∗)2s∇u(λ).

Recall that the function u(λ) is a solution of problem (∗∗). Hence we have by
Green’s formula

0 =

∫

M

(∆u(λ) − λu(λ) + hu(λ)p)ψ(λ) dV

=

∫

M

∇u(λ) · ∇ψ(λ) dV − λ

∫

M

u(λ)ψ(λ) dV

+

∫

M

hu(λ)p ψ(λ) dV −

∫

∂M

∂u(λ)

∂n
ψ(λ) dσ

=

∫

M

∇u(λ)
(
2sk u(λ)2k−1 (h∗)2s−1 ∇h∗

+ k(2k − 1) u(λ)2k−2 (h∗)2s∇u(λ)
)
dV

+ k

∫

∂M

a u(λ)2k−1+q (h∗)2s dσ.

This proves formula (4.5).
Thus, carrying formula (4.5) into inequality (4.4), we find that

µ1(λ)

∫

M

(h∗)2s u(λ)2k dV

≤ s2
∫

M

(h∗)2s−2 u(λ)2k |∇h∗|2 dV + λ(k − 1)

∫

M

(h∗)2s u(λ)2k dV

− k(k − 1)

∫

M

(h∗)2s u(λ)2k−2 |∇u|2 dV

+ (p− k)

∫

M

h (h∗)2s u(λ)p−1+2k dV

+ (q − k)

∫

∂M

a (h∗)2s u(λ)q−1+2k dσ.
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Furthermore, it follows that
(4.6)

s2
∫

M

(h∗)2s−2 u(λ)2k |∇h∗|2 dV

+ λ(k − 1)

∫

M

(h∗)2s u(λ)2k dV

= s2
∫

M+(h)

(h∗)2s−2 u(λ)2k |∇h∗|2 dV

+ λ(k − 1)

∫

M+(h)

(h∗)2s u(λ)2k dV

≥ k(k − 1)

∫

M+(h)

(h∗)2s u(λ)2k−2 |∇u|2 dV

+ (k − p)

∫

M+(h)

h (h∗)2s u(λ)p−1+2k dV + µ1(λ)

∫

M+(h)

(h∗)2s u(λ)2k dV

+ (k − q)

∫

∂M

a (h∗)2s u(λ)q−1+2k dσ

≥ k(k − 1)

∫

M+(h)

(h∗)2s u(λ)2k−2 |∇u|2 dV

+ (k − p)

∫

M+(h)

(h∗)2s+1 u(λ)p+2k−1 dV,

since k > p, k > q, µ1(λ) > 0 and also we have, by part (a) of Lemma 4.1,
0 < h∗(x) ≤ h(x) for x ∈ M+(h).

3) First we show that the first term on the left-hand side of inequality (4.6) can
be estimated as follows:

(4.7) s2
∫

M

(h∗)2s−2 u(λ)2k |∇h∗|2 dV

= s2
∫

M+(h)

(h∗)2s−2 u(λ)2k |∇h∗|2 dV

≤

∫

M+(h)

(h∗)1+2s u(λ)2k+p−1 dV + |M+(h)| .

By inequality (4.1), it follows that
∫

M

(h∗)2s−2 u(λ)2k |∇h∗|2 dV

=

∫

M+(h)

(h∗)2(s−ε) u(λ)2k
|∇h∗|2

|(h∗)1−ε|2
dV

≤
C2

ε4

∫

M+(h)

(h∗)2(s−ε) u(λ)2k dV.

If we choose the constant s as

(4.8) s =
1 + 2ε

p− 1
k + ε,
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then we obtain from Hölder’s inequality that

∫

M

(h∗)2s−2 u(λ)2k |∇h∗|2 dV

≤
C2

ε4

(∫

M+(h)

(
(h∗)2(s−ε) u(λ)2k

) 2k+p−1
2k

dV

) 2k
2k+p−1

×

(∫

M+(h)

dV

) p−1
2k+p−1

=
C2

ε4

(∫

M+(h)

(h∗)1+2s u(λ)2k+p−1 dV

) 2k
2k+p−1

|M+(h)|
p−1

2k+p−1 .

Hence, it follows from an application of Young’s inequality that

s2
∫

M+(h)

(h∗)2s−2 u(λ)2k |∇h∗|2 dV

≤

(∫

M+(h)

(h∗)1+2s u(λ)2k+p−1 dV

) 2k
2k+p−1

×

(
|M+(h)|

(
C2s2

ε4

) 2k+p−1
p−1

) p−1
2k+p−1

≤

(
2k

2k + p− 1

)∫

M+(h)

(h∗)1+2s u(λ)2k+p−1 dV

+

(
p− 1

2k + p− 1

)
|M+(h)|

(
C2s2

ε4

) 2k+p−1
p−1

≤

∫

M+(h)

(h∗)1+2s u(λ)2k+p−1 dV + |M+(h)|

(
C2s2

ε4

) 2k+p−1
p−1

.

This proves inequality (4.7).
Next we show that the second term on the left-hand side of inequality (4.6) can

be estimated as follows:

(4.9) λ(k − 1)

∫

M

(h∗)2s u(λ)2k dV

= λ(k − 1)

∫

M+(h)

(h∗)2s u(λ)2k dV

≤

∫

M+(h)

(h∗)1+2s u(λ)2k+p−1 dV

+

(
λ(k − 1) sup

M+(h)

∣∣(h∗)2ε
∣∣
) 2k+p−1

p−1

|M+(h)| .
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By using Hölder’s inequality and Young’s inequality as above, we have the fol-
lowing:

λ(k − 1)

∫

M+(h)

(h∗)2s u(λ)2k dV

= λ(k − 1)

∫

M+(h)

(h∗)2(s−ε) (h∗)2ε u(λ)2k dV

≤ λ(k − 1) sup
M+(h)

∣∣(h∗)2ε
∣∣
∫

M+(h)

(h∗)2(s−ε) u(λ)2k dV

≤ λ(k − 1) sup
M+(h)

∣∣(h∗)2ε
∣∣
(∫

M+(h)

(h∗)1+2s u(λ)2k+p−1 dV

) 2k
2k+p−1

× |M+(h)|
p−1

2k+p−1

=



(
λ(k − 1) sup

M+(h)

∣∣(h∗)2ε
∣∣
) 2k+p−1

p−1

|M+(h)|




p−1
2k+p−1

×

(∫

M+(h)

(h∗)1+2s u(λ)2k+p−1 dV

) 2k
2k+p−1

≤

(
2k

2k + p− 1

)∫

M+(h)

(h∗)1+2s u(λ)2k+p−1 dV

+

(
p− 1

2k + p− 1

)(
λ(k − 1) sup

M+(h)

∣∣(h∗)2ε
∣∣
) 2k+p−1

p−1

|M+(h)|

≤

∫

M+(h)

(h∗)1+2s u(λ)2k+p−1 dV

+

(
λ(k − 1) sup

M+(h)

∣∣(h∗)2ε
∣∣
) 2k+p−1

p−1

|M+(h)| .

This proves inequality (4.9).
Therefore, combining inequalities (4.6), (4.7) and (4.9), we obtain that

k(k − 1)

∫

M+(h)

(h∗)2s u(λ)2k−2 |∇u|2 dV

+ (k − p)

∫

M+(h)

(h∗)1+2s u(λ)p−1+2k dV

≤ 2

∫

M+(h)

(h∗)1+2s u(λ)2k+p−1 dV +

(
C2s2

ε4

) 2k+p−1
p−1

|M+(h)|

+

(
λ(k − 1) sup

M+(h)

∣∣(h∗)2ε
∣∣
) 2k+p−1

p−1

|M+(h)| .
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In particular, this proves that

(4.10) (k − p)

∫

M+(h)

(h∗)1+2s u(λ)p−1+2k dV

≤ 2

∫

M+(h)

(h∗)1+2s u(λ)2k+p−1 dV +

(
C2s2

ε4

) 2k+p−1
p−1

|M+(h)|

+

(
λ(k − 1) sup

M+(h)

∣∣(h∗)2ε
∣∣
) 2k+p−1

p−1

|M+(h)| .

If we take the constant k so large that the first term on the right-hand side of
inequality (4.10) may be absorbed into the left-hand side, for example, if we take
k so that

k − p > 3,

then it follows that

∫

M+(h)

(h∗)1+2s u(λ)p−1+2k dV

≤




(
C2s2

ε4

) 2k+p−1
p−1

+

(
λ(k − 1) sup

M+(h)

∣∣(h∗)2ε
∣∣
) 2k+p−1

p−1



 |M+(h)| .

But, by formula (4.8), we find that the constant s is of order k. Thus one can find
a constant C′ > 0 such that

(4.11)

∫

M+(h)

(h∗)1+2s u(λ)p−1+2k dV ≤

(
C′(1 + λ)

k2

ε4

) 2k+p−1
p−1

|M+(h)| .

Here we remark that the constant C′ > 0 depends on the quantities supM+(h) |h
∗|

and supM+(h) |∇h|.

On the other hand, since we have by formula (4.8)

1 + 2s =
1 + 2ε

p− 1
(p+ 2k − 1),

we can write the left-hand side of inequality (4.11) as

∫

M+(h)

(h∗)1+2s u(λ)p−1+2k dV =

∫

M+(h)

(
(h∗)

1+2ε
p−1 u(λ)

)p+2k−1

dV.

Therefore we obtain from inequality (4.11) that

(4.12)

∫

M+(h)

(
(h∗)

1+2ε
p−1 u(λ)

)p+2k−1

dV ≤

(
C′(1 + λ)

k2

ε4

) 2k+p−1
p−1

|M+(h)| .
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4) We let
ω(λ) = (h∗)

s
k u(λ),

where (cf. formula (4.8))
s

k
=

1 + 2ε

p− 1
+
ε

k
.

Then we have

∇ω(λ)k = s(h∗)s−1 u(λ)k∇h∗ + k(h∗)s u(λ)k−1 ∇u,

and so

|∇ω(λ)k|2 = s2(h∗)2s−2 u(λ)2k |∇h∗|2 + k2(h∗)2s u(λ)2k−2 |∇u|2

+ 2sk(h∗)2s−1 u(λ)2k−1 ∇h∗ · ∇u

≤ 2
(
s2(h∗)2s−2 u(λ)2k |∇h∗|2 + k2(h∗)2s u(λ)2k−2 |∇u|2

)
.

Hence it follows that

(4.13)

∫

M+(h)

|∇ω(λ)k|2 dV ≤ 2s2
∫

M+(h)

(h∗)2s−2 u(λ)2k |∇h∗|2 dV

+ 2k2

∫

M+(h)

(h∗)2s u(λ)2k−2 |∇u|2 dV.

On the other hand, we find from inequality (4.6) that

(4.14)

∫

M+(h)

(h∗)2s u(λ)2k−2 |∇u|2 dV

≤
s2

k(k − 1)

∫

M+(h)

(h∗)2s−2 u(λ)2k |∇h∗|2 dV

+
λ

k

∫

M+(h)

(h∗)2s u(λ)2k dV.

Thus, combining inequalities (4.13) and (4.14), we obtain that

(4.15)

∫

M+(h)

|∇ω(λ)k|2 dV

≤ 2s2
(

2k − 1

k − 1

)∫

M+(h)

(h∗)2s−2 u(λ)2k |∇h∗|2 dV

+ 2kλ

∫

M+(h)

(h∗)2s u(λ)2k dV.

But we recall that the two terms on the right-hand side of inequality (4.15) can
be estimated respectively as follows:

∫

M+(h)

(h∗)2s−2 u(λ)2k |∇h∗|2 dV ≤
C2

ε4

∫

M+(h)

(h∗)2(s−ε) u(λ)2k dV.
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∫

M+(h)

(h∗)2s u(λ)2k dV ≤ sup
M+(h)

∣∣(h∗)2ε
∣∣
∫

M+(h)

(h∗)2(s−ε) u(λ)2k dV.

Therefore, carrying these inequalities into the right-hand side of inequality (4.15),
we obtain that

∫

M+(h)

|∇ω(λ)k|2 dV

≤

(
2s2

(
2k − 1

k − 1

)
C2

ε4
+ 2λk sup

M+(h)

∣∣(h∗)2ε
∣∣
)∫

M+(h)

(h∗)2(s−ε) u(λ)2k dV.

But, by formula (4.8), we find that the constant s is of order k. Thus, if we take
the constant k so large that

2k − 1

k − 1
< 3,

then one can find a constant C′′ > 0 such that

(4.16)

∫

M+(h)

|∇ω(λ)k|2 dV

≤

(
6s2

C2

ε4
+ 2λk sup

M+(h)

∣∣(h∗)2ε
∣∣
)∫

M+(h)

(h∗)2(s−ε) u(λ)2k dV

≤ C′′(1 + λ)
k2

ε4

∫

M+(h)

(h∗)2(s−ε) u(λ)2k dV.

Here we remark that the constant C′′ > 0 depends on the quantities supM+(h) |h
∗|

and supM+(h) |∇h|.
5) We make use of the Sobolev imbedding theorem (cf. [Ad, Theorem 5.4]):

(4.17)
(∫

M+(h)

ϕ
2n

n−2 dV

)n−2
2n

≤ C(n)

(∫

M+(h)

|∇ϕ|2 dV

) 1
2

, ϕ ∈ H1(M+(h)).

Here the constant C(n) > 0 depends on the dimension n ≥ 3.
Now, applying inequality (4.17) to the function

ω(λ)k = (h∗)s u(λ)k

and then using inequality (4.16), we obtain that

(∫

M+(h)

(
(h∗)

s
k u(λ)

) 2kn
n−2 dV

)n−2
n

=

(∫

M+(h)

(
(h∗)s u(λ)k

) 2n
n−2 dV

)n−2
n
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≤ C(n)
2
∫

M+(h)

|∇ω(λ)k|2 dV

≤ C(n)
2
C′′(1 + λ)

k2

ε4

∫

M+(h)

(h∗)2(s−ε) u(λ)2k dV

= C(n)
2
C′′(1 + λ)

k2

ε4

∫

M+(h)

(
(h∗)

s−ε
k u(λ)

)2k

dV,

or equivalently

(4.18)
∥∥∥(h∗)s/k u(λ)

∥∥∥
L2kn/(n−2)(M+(h))

≤ C(λ)
1/2k

(
k2

ε4

)1/2k ∥∥∥(h∗)(s−ε)/k u(λ)
∥∥∥
L2k(M+(h))

,

where

C(λ) = C(n)
2
C′′(1 + λ).

We let

χ =
n

n− 2
> 1,

and for a sufficiently large positive integer m

k = χm.

Then we have

s

k
=

1 + 2ε

p− 1
+
ε

k
=

1 + 2ε

p− 1
+

ε

χm
,

2kn

n− 2
= 2χm

n

n− 2
= 2χm+1,

s− ε

k
=

1 + 2ε

p− 1
.

Thus we can write inequality (4.18) as

(4.19)
∥∥∥(h∗)

1+2ε
p−1 + ε

χm u(λ)
∥∥∥
L2χm+1

(M+(h))

≤ C(λ)
1

2χm

(
χ2m

ε4

) 1
2χm ∥∥∥(h∗)

1+2ε
p−1 u(λ)

∥∥∥
L2χm

(M+(h))
.

Furthermore, if we let

ε0 = ε, ε1 =

(
1 +

p− 1

2χm

)
ε0,
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then it follows that

1 + 2ε0
p− 1

+
ε0
χm

=
1 + 2

(
1 + p−1

2χm

)
ε0

p− 1
=

1 + 2ε1
p− 1

.

Thus we can rewrite inequality (4.19) in the following form:

(4.20)1

∥∥∥(h∗)
1+2ε1
p−1 u(λ)

∥∥∥
L2χm+1

(M+(h))

≤ C(λ)
1
2χ

−m
(
χ2m

ε40

) 1
2χ

−m ∥∥∥(h∗)
1+2ε0
p−1 u(λ)

∥∥∥
L2χm

(M+(h))
.

6) By the same procedure as above (replacing χm by χm+1), we have the in-
equality:

(4.21)

∥∥∥∥(h
∗)

1+2ε1
p−1 +

ε1
χm+1 u(λ)

∥∥∥∥
L2χm+2

(M+(h))

≤ C(λ)
1
2χ

−(m+1)
(
χ2(m+1)

ε41

) 1
2χ

−(m+1) ∥∥∥(h∗)
1+2ε1
p−1 u(λ)

∥∥∥
L2χm+1

(M+(h))
.

But we remark that

ε1 =

(
1 +

p− 1

2χm

)
ε0 > ε0.

Thus, combining inequality (4.21) with inequality (4.20)1, we obtain that

(4.22)

∥∥∥∥(h
∗)

1+2ε1
p−1 +

ε1
χm+1 u(λ)

∥∥∥∥
L2χm+2

(M+(h))

≤ C(λ)
1
2χ

−(m+1)
(
χ2(m+1)

ε40

) 1
2χ

−(m+1) ∥∥∥(h∗)
1+2ε1
p−1 u(λ)

∥∥∥
L2χm+1

(M+(h))

≤ C(λ)
1
2χ

−(m+1)

C(λ)
1
2χ

−m
(
χ2(m+1)

ε40

) 1
2χ

−(m+1) (
χ2m

ε40

) 1
2χ

−m

×
∥∥∥(h∗)

1+2ε0
p−1 u(λ)

∥∥∥
L2χm (M+(h))

≤ C(λ)
1
2(χ

−(m+1)+χ−m) χ((m+1)χ−(m+1)+mχ−m)
(

1

ε0

)2(χ−(m+1)+χ−m)

×
∥∥∥(h∗)

1+2ε0
p−1 u(λ)

∥∥∥
L2χm

(M+(h))
.

If we let

ε2 =

(
1 +

p− 1

2χm+1

)
ε1,
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then we can write inequality (4.22) as

(4.20)2

∥∥∥(h∗)
1+2ε2
p−1 u(λ)

∥∥∥
L2χm+2

(M+(h))

≤ C(λ)
1
2 (χ

−m+χ−(m+1)) χ(mχ−m+(m+1)χ−(m+1))
(

1

ε0

)2(χ−m+χ−(m+1))

×
∥∥∥(h∗)

1+2ε0
p−1 u(λ)

∥∥∥
L2χm

(M+(h))
.

Continuing this procedure, we have after N steps

(4.20)N+1

∥∥∥∥(h
∗)

1+2εN+1
p−1 u(λ)

∥∥∥∥
L2χm+N+1 (M+(h))

≤ C(λ)
1
2 (
PN

i=0 χ
−(m+i)) χ(

PN
i=0(m+i)χ−(m+i))

(
1

ε0

)2(
PN

i=0 χ
−(m+i))

×
∥∥∥(h∗)

1+2ε0
p−1 u(λ)

∥∥∥
L2χm

(M+(h))
.

But we remark that:

∞∑

i=0

1

χm+i
=

1

χm

∞∑

i=0

1

χi
=

1

χm

(
χ

χ− 1

)
=
n

2

1

χm
,

∞∑

i=0

(m+ i)
1

χm+i
=

1

χ

∞∑

i=0

(m+ i)
1

χm+i−1
=
n(2m+ n− 2)

4

1

χm
.

Thus it follows from inequality (4.20)N+1 that

(4.23)

∥∥∥∥(h
∗)

1+2εN+1
p−1 u(λ)

∥∥∥∥
L2χm+N+1

(M+(h))

≤ C(λ)
n

4χm χ
n(2m+n−2)

4χm

(
1

ε0

) n
χm ∥∥∥(h∗)

1+2ε0
p−1 u(λ)

∥∥∥
L2χm (M+(h))

.

Furthermore we find that

εN+1 =

(
1 +

p− 1

2χm+N

)
εN

=

(
1 +

p− 1

2χm+N

)(
1 +

p− 1

2χm+N−1

)
εN−1

...

=

(
N∏

i=0

(
1 +

p− 1

2χm+i

))
ε0,
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and that the limit (infinite product)

lim
N→∞

εN+1 =

(
∞∏

i=0

(
1 +

p− 1

2χm+i

))
ε0

exists, since χ > 1.
Therefore, letting N → ∞ in inequality (4.23), we obtain that

(4.24) sup
M+(h)

∣∣∣(h∗)
1+2σε0

p−1 u(λ)
∣∣∣

≤ C(λ)
n

4χm χ
n(2m+n−2)

4χm

(
1

ε0

) n
χm ∥∥∥(h∗)

1+2ε0
p−1 u(λ)

∥∥∥
L2χm

(M+(h))
,

where

σ =
∞∏

i=0

(
1 +

p− 1

2χm+i

)
> 1.

7) On the other hand, by Hölder’s inequality, it follows that

(4.25)
∥∥∥(h∗)

1+2ε0
p−1 u(λ)

∥∥∥
L2χm

(M+(h))
≤
∥∥∥(h∗)

1+2ε0
p−1 u(λ)

∥∥∥
Lp+2k−1(M+(h))

× |M+(h)|
1

2χm − 1
p+2k−1 .

Furthermore, we have by inequality (4.12) with ε = ε0

(4.26)
∥∥∥(h∗)

1+2ε0
p−1 u(λ)

∥∥∥
Lp+2k−1(M+(h))

≤ C(λ)′
1

p−1

(
k2

ε40

) 1
p−1

|M+(h)|
1

p+2k−1 ,

where

C(λ)′ = C′ (1 + λ).

Here we recall that the constant C′ depends on the quantities supM+(h) |h
∗| and

supM+(h) |∇h|.

Therefore, combining inequalities (4.25) and (4.26), we get the following inequal-
ity:

∥∥∥(h∗)
1+2ε0
p−1 u(λ)

∥∥∥
L2χm

(M+(h))
≤ C(λ)′

1
p−1 χ

2m
p−1

(
1

ε0

) 4
p−1

|M+(h)|
1

2χm .

Carrying this inequality into the right-hand side of inequality (4.24), we obtain that

sup
M+(h)

∣∣∣(h∗)
1+2σε0

p−1 u(λ)
∣∣∣ ≤ C(λ)

n
4χm χ

n(2m+n−2)
4χm C(λ)′

1
p−1 χ

2m
p−1

(
1

ε0

) n
χm + 4

p−1

× |M+(h)|
1

2χm .
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Summing up, we have proved that there exists a constant C(λ)′′ > 0 such that
for each ε0 > 0

(4.27) sup
M+(h)

∣∣∣(h∗)
1+2σε0

p−1 u(λ)
∣∣∣ ≤ C(λ)′′ ε0

−µ,

where

µ =
n

χm
+

4

p− 1
.

It is easy to see that inequality (4.27) is equivalent to inequality (4.2). Moreover,
we find that if λ is finite, then so is the constant C(λ)′′.

The proof of Lemma 4.2 is now complete. �

5. Properties of positive solutions -(2)-

The next lemma asserts that the solution u(λ) “blows up” at the critical value
λ(h):

Lemma 5.1. If u(λ) ∈ C∞(M), 0 < λ < λ(h), is a solution of problem (∗∗), then
we have:

(5.1) lim
λ→λ(h)

‖u(λ)‖L2(M) = +∞.

Proof. Assume to the contrary that there exists a constant C > 0 such that

(5.2)

∫

M

u(λ)2 dV ≤ C for all 0 < λ < λ(h).

Then, using Green’s formula, we obtain that

0 = −

∫

M

(∆u(λ) − λu(λ) + hu(λ)p) u(λ) dV

= −

∫

M

|∇u(λ)|2 dV +

∫

∂M

∂u(λ)

∂n
· u(λ) dσ + λ

∫

M

u(λ)2 dV

−

∫

M

hu(λ)p+1 dV

= −

∫

M

|∇u(λ)|2 dV −

∫

∂M

a u(λ)q+1 dσ + λ

∫

M

u(λ)2 dV

−

∫

M

hu(λ)p+1 dV.

Thus it follows that
∫

M

|∇u(λ)|2 dV +

∫

M

hu(λ)p+1 dV +

∫

∂M

a u(λ)q+1 dσ = λ

∫

M

u(λ)2 dV.

In particular, this proves that

(5.3)

∫

M

|∇u(λ)|2 dV ≤ λ

∫

M

u(λ)2 dV.
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On the other hand, applying Sobolev’s inequality (4.17) to the function u(λ), we
obtain that

(5.4)

(∫

M

u(λ)
2n

n−2 dV

)n−2
n

≤ C(n)2
∫

M

|∇u(λ)|2 dV.

Thus, combining inequalities (5.4) and (5.3), we obtain that

(∫

M

u(λ)
2n

n−2 dV

)n−2
n

≤ λC(n)2
∫

M

u(λ)2 dV,

or equivalently

(5.5) ‖u(λ)‖
L

2n
n−2 (M)

≤ C(λ)
1
2 ‖u(λ)‖L2(M) ,

where
C(λ) = λC(n)2.

Furthermore, if we let

χ =
n

n− 2
> 1,

then we can write inequality (5.5) in the following form:

(5.6)1 ‖u(λ)‖L2χ(M) ≤ C(λ)
1
2 ‖u(λ)‖L2(M) .

Continuing this procedure as in the proof of Lemma 4.2, we have after N steps

(5.6)N+1 ‖u(λ)‖
L2χN+1

(M)
≤ C(λ)

1
2(
PN

i=0 χ
−i) ‖u(λ)‖L2(M)

≤ C(λ)
n
4 ‖u(λ)‖L2(M) .

Therefore, letting N → ∞ in inequality (5.6)N+1, we obtain that

(5.7) sup
M

|u(λ)| ≤ C(λ)
n
4 χ

n(n−2)
4 ‖u(λ)‖L2(M) for all 0 < λ < λ(h).

By inequalities (5.2) and (5.3), it follows that for all 0 < λ < λ(h)

∫

M

u(λ)2 dV ≤ C,(5.8a)

∫

M

|∇u(λ)|2 dV ≤ λ(h)C.(5.8b)

This proves that the functions u(λ) are bounded in the Sobolev space H1(M), for
all 0 < λ < λ(h).

But we remark the following:
(a) Rellich’s theorem tells us that the injection of H1(M) into L2(M) is compact

(or completely continuous) if the dimension n is greater than 3.
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(b) It is well known that the unit ball in the Hilbert space is sequentially weakly
compact. Therefore, by inequalities (5.8a) and (5.8b), we can find a sequence {λn}
and a function u(λ(h)) ∈ H1(M) such that

λn −→ λ(h),(5.9a)

and

u(λn) −→ u(λ(h)) strongly in L2(M),(5.9b)

∇u(λn) −→ ∇u(λ(h)) weakly in L2(M).(5.9c)

On the other hand, by combining inequalities (5.2) and (5.7), we obtain that

sup
M

|u(λ)| ≤ C
1
2

(
λ(h)C(n)2

)n
4 χ

n(n−2)
4 for all 0 < λ < λ(h).

But, Lemma 2.5 tells us that the solution u(λ) is monotone increasing for all 0 <
λ < λ(h). Thus, we find that the finite limit

(5.10) u(λ(h))(x) = lim
λn→λ(h)

u(λn)(x)

exists for each point x of M .
Now, since u(λn) is a solution of problem (∗∗), it follows that for all ψ ∈ H1(M)

(5.11)

∫

M

∇u(λn) · ∇ψ dV +

∫

M

hu(λn)
p ψ dV − λ

∫

M

hu(λn)ψ dV

+

∫

∂M

a u(λn)
q ψ dσ = 0.

But we have the following:
(1) By assertion (5.9), it follows that

∫

M

u(λn)ψ dV −→

∫

M

u(λ(h))ψ dV,

and

∫

M

∇u(λn) · ∇ψ dV −→

∫

M

∇u(λ(h)) · ∇ψ dV.

(2) By assertion (5.10), it follows from an application of the Lebesgue monotone
convergence theorem that

∫

M

hu(λn)
p ψ dV −→

∫

M

hu(λ(h))p ψ dV,

∫

∂M

a u(λn)
q ψ dσ −→

∫

∂M

a u(λ(h))q ψ dσ.
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By passing to the limit in formula (5.11), we obtain that the function u(λ(h))
satisfies, for all ψ ∈ H1(M),

∫

M

∇u(λ(h)) · ∇ψ dV +

∫

M

hu(λ(h))p ψ dV − λ(h)

∫

M

hu(λ(h))ψ dV

+

∫

∂M

a u(λ(h))q ψ dσ = 0.

This proves that the function u(λ(h)) ∈ H1(M) is a weak solution of problem (∗∗).
Thus, we have by the regularity theorem 1.2

u(λ(h)) ∈ C∞(M).

Furthermore, we recall that the solution u(λ) is strictly positive on M and is
monotone increasing for all 0 < λ < λ(h). Thus it follows that

u(λ(h)) > 0 on M.

Finally, it is easy to see that the Fréchet derivative Fu(λ(h), u(λ(h))) is an alge-
braic and topological isomorphism. Indeed, if µ1(λ(h)) is the first eigenvalue of the
Fréchet derivative Fu(λ(h), u(λ(h))) with eigenfunction v1(λ(h)), then, arguing as
in the proof of Lemma 2.3, we obtain that

µ1(λ(h))

=
(p− 1)

∫
M
hu(λ(h))pv1(λ(h)) dV + (q − 1)

∫
∂M

au(λ(h))qv1(λ(h)) dσ
∫
M
u(λ(h))v1(λ(h)) dV

> 0.

Therefore, by virtue of the implicit function theorem, one can extend the bifurca-
tion curve (λ, u(λ)) beyond the point (λ(h), u(λ(h)). This contradicts the definition
of λ(h).

The proof of Lemma 5.1 is complete. �

6. Proof of Theorem 2 -(2)-

The next proposition proves the inequality

(0.3) λ̃1(M0(h)) ≤ λ(h),

which completes the proof of Theorem 2.

Proposition 6.1. The critical value λ(h) is an eigenvalue of either the Dirichlet
problem (Di) or the Dirichlet-Neumann problem (Mj).

Proof. 1) Let u(λ) ∈ C∞(M), 0 < λ < λ(h), be a solution of the problem (∗∗), and
let

ω(λ) =
u(λ)

‖u(λ)‖L2(M)
.
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Then it follows that

∆ω(λ) − λω(λ) + hu(λ)p−1ω(λ)

=
1

‖u(λ)‖L2(M)
(∆u(λ) − λu(λ) + hu(λ)p) = 0 in M,

and

∂ω(λ)

∂n
+ au(λ)q−1ω(λ)

=
1

‖u(λ)‖L2(M)

(
∂u(λ)

∂n
+ au(λ)q

)
= 0 on ∂M.

Hence we have by Green’s formula
∫

M

hu(λ)p−1ω(λ) · ω(λ) dV

=

∫

M

(−∆ω(λ) + λω(λ))ω(λ) dV

= −

∫

M

|∇ω(λ)|2 dV +

∫

∂M

∂ω(λ)

∂n
· ω(λ) dσ + λ

∫

M

ω(λ)2 dV

= −

∫

M

|∇ω(λ)|2 dV −

∫

∂M

a u(λ)q−1ω(λ)2 dσ + λ

∫

M

ω(λ)2 dV.

This proves that

(6.1)

∫

M

|∇ω(λ)|2 dV

≤

∫

M

|∇ω(λ)|2 dV +

∫

∂M

a u(λ)q−1ω(λ)2 dσ +

∫

M

hu(λ)p−1ω(λ)2 dV

= λ

∫

M

ω(λ)2 dV.

By inequality (6.1), it follows that for all 0 < λ < λ(h)

∫

M

ω(λ)2 dV = 1,(6.2a)

∫

M

|∇ω(λ)|2 dV ≤ λ

∫

M

ω(λ)2 dV = λ ≤ λ(h).(6.2b)

Thus, just as in the proof of Lemma 5.1, we can find a sequence {λn} and a function
ω(λ(h)) ∈ H1(M) such that

λn −→ λ(h),(6.3a)

and

ω(λn) −→ ω(λ(h)) strongly in L2(M),(6.3b)
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∇ω(λn) −→ ∇ω(λ(h)) weakly in L2(M).(6.3c)

Furthermore, arguing as in the proof of Lemma 5.1 (cf. inequality (5.7)), we can
find a constant C(λ(h)) > 0 such that

(6.4) sup
M

|ω(λ)| ≤ C(λ(h)) ‖ω(λ)‖L2(M) = C(λ(h)) for all 0 < λ < λ(h).

Therefore, we obtain from assertions (6.2), (6.3) and (6.4) that the limit function
ω(λ(h)) ∈ H1(M) satisfies the following conditions:

ω(λ(h)) ≥ 0 in M.(6.5a)
∫

M

ω(λ(h))2 dV = 1.(6.5b)

∫

M

|∇ω(λ(h))|2 dV ≤ λ(h).(6.5c)

sup
M

∣∣ω(λ(h))
∣∣ ≤ C(λ(h)).(6.5d)

On the other hand, we remark that the functions ω(λn) satisfy the equation

∆ω(λn) − λnω(λn) = 0 in M0(h),

since h ≡ 0 in M0(h). By passing to the limit, we find that the function ω(λ(h))
is a weak solution of the equation

∆ω(λ(h)) − λ(h)ω(λ(h)) = 0 in M0(h).

Hence it follows from an application of the interior regularity theorem in linear
elliptic theory (cf. [GT, Corollary 8.11]) that

ω(λ(h)) ∈ C∞(M0(h)).

Summing up, we have proved that

ω(λ(h)) ∈ C∞(M0(h)) ∩H
1(M) ∩ L∞(M).(6.6a)

∆ω(λ(h)) − λ(h)ω(λ(h)) = 0 in M0(h).(6.6b)

2) Next, we shall prove that the function ω(λ(h)) is an eigenfunction of problem
(Di) or problem (Mj), more precisely, we shall show that one of the following two
cases (i) and (ii) holds:

(i) In some connected component Mi(h), 1 ≤ i ≤ ℓ, the function ω(λ(h)) satisfies
the conditions:

(Di)





∆ω(λ(h)) = λ(h)ω(λ(h)) in Mi(h),

ω(λ(h)) = 0 on ∂Mi(h),

ω(λ(h)) > 0 in Mi(h).
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(ii) In some connected component Mj(h), ℓ + 1 ≤ j ≤ N , the function ω(λ(h))
satisfies the conditions:

(Mj)





∆ω(λ(h)) = λ(h)ω(λ(h)) in Mj(h),

ω(λ(h)) = 0 on ∂Mj(h)\Sj ,

∂ω(λ(h))
∂n = 0 on Sj ,

ω(λ(h)) > 0 in Mj(h).

2-a) First, by assertion (5.1), we remark that

(6.7) lim
λn→λ(h)

‖u(λn)‖L2(M) = +∞.

But, Lemma 4.2 tells us that, for each ε > 0, there exists a constant C(ε, λ(h)) > 0
such that

(6.8) (u(λn)(x))
p−1−ε ≤

C(ε, λ(h))

h∗(x)
for all x ∈ M+(h).

Hence it follows from assertion (6.7) and inequality (6.8) that

(6.9) ω(λ(h))(x) = lim
λn→λ(h)

ω(λn)(x) = lim
λn→λ(h)

u(λn)(x)

‖u(λn)‖L2(M)
= 0

for almost every x ∈ M+(h).
Therefore, combining assertions (6.5b) and (6.9), we find that∫

M0(h)

ω(λ(h))2 dV =

∫

M

ω(λ(h))2 dV = 1.

This proves that, in some connected component Mk(h), 1 ≤ k ≤ N , the function
ω(λ(h)) is strictly positive:

ω(λ(h)) > 0 in Mk(h),

since we have
M0(h) =

(
∪ℓi=1Mi(h)

)
∪
(
∪Nj=ℓ+1Mj(h)

)
.

2-b) Furthermore, we can prove the following:

Lemma 6.2. The function ω(λ(h)) satisfies the boundary conditions

ω(λ(h)) = 0 on ∂M0(h)\ ∪
N
j=ℓ+1 Sj .

∂ω(λ(h))

∂n
= 0 on ∪Nj=ℓ+1 Sj .

2-c) Assuming Lemma 6.2 for the moment, we shall prove Proposition 6.1.
By Lemma 6.2, we find that the function ω(λ(h)) is an eigenfunction of problem

(Di) or problem (Mj). This implies that λ(h) is an eigenvalue of problem (Di) or
problem (Mj). Hence we have, by Rayleigh’s theorem,

λ(h) ≥ λ1(Mi(h)) ≥ λ̃1(M0(h))

or

λ(h) ≥ µ1(Mj(h)) ≥ λ̃1(M0(h)).

The proof of Proposition 6.1 (and hence that of Theorem 2) is complete, apart
from the proof of Lemma 6.2. �
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Proof of Lemma 6.2.
1) First we show that the function ω(λ(h)) satisfies the Neumann boundary

conditions:
∂ω(λ(h))

∂n
= 0 on ∪Nj=ℓ+1 Sj .

We recall that

ω(λn) −→ ω(λ(h)) in L2(M),

and

∆ω(λn) = λnω(λn) −→ λ(h)ω(λ(h)) = ∆ω(λ(h)) in L2(M0(h)).

Hence it follows from an application of the trace theorem (cf. [Ta1, Proposition
8.3.1] with σ = 0 and τ = 0) that

∂ω(λn)

∂n
−→

∂ω(λ(h))

∂n
in H−3/2(∂M0(h)).

But we have by condition (α)

∂ω(λn)

∂n
=
∂ω(λn)

∂n
+ au(λn)

q−1ω(λn) = 0 on ∪Nj=ℓ+1 Sj .

Thus we find that
∂ω(λ(h))

∂n
= 0 on ∪Nj=ℓ+1 Sj .

2) Next we show that the function ω(λ(h)) satisfies the Dirichlet boundary con-
ditions:

ω(λ(h)) = 0 on ∂M0(h)\ ∪
N
j=ℓ+1 Sj .

2-a) We show that

ω(λ(h)) = 0 on ∪ℓi=1 ∂Mi(h),

or equivalently
ω(λ(h)) ∈ H1

0

(
∪ℓi=1Mi(h)

)
.

In this case, without loss of generality, one may assume that

M0(h) = ∪ℓi=1Mi(h).

2-a-i) First we recall that

ω(λ(h)) ∈ C∞(M0(h)) ∩H
1(M) ∩ L∞(M),(6.6a)

and

ω(λ(h)) = 0 almost everywhere in M+(h).(6.9)
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For r > 0 sufficiently small, we let

Mr = {x ∈ M0(h); dist (x, ∂M0(h)) > r},

and let n be the unit exterior normal vector to the boundary ∂Mr. One can
construct a C∞ vector function Ψ on M such that

Ψ · n ≥
1

2
on ∂Mr,(6.10)

and

‖Ψ‖C1(M) ≤ C,(6.11)

with a constant C > 0. Here and in the following the letter C denotes a generic
positive constant independent of r.

Since ω(λ(h)) is in the Sobolev space H1
0 (M), we have by Green’s formula

∫

M

∇ω(λ(h)) · Ψ dV = −

∫

M

ω(λ(h))divΨ dV

(6.12)

= −

∫

M0(h)

ω(λ(h))divΨ dV,

and also

∫

M

∇ω(λ(h)) · Ψ dV =

∫

Mr

∇ω(λ(h)) ·Ψ dV +

∫

M\Mr

∇ω(λ(h)) · Ψ dV

(6.13)

=

∫

Mr

∇ω(λ(h)) ·Ψ dV +

∫

M0(h)\Mr

∇ω(λ(h)) · Ψ dV

=

∫

∂Mr

ω(λ(h))(Ψ · n) dσ −

∫

Mr

ω(λ(h))divΨ dV

+

∫

M0(h)\Mr

∇ω(λ(h)) · Ψ dV.

Thus, combining formulas (6.12) and (6.13), we obtain that

(6.14)

∫

∂Mr

ω(λ(h))(Ψ · n) dσ

= −

∫

M0(h)\Mr

ω(λ(h))divΨ dV −

∫

M0(h)\Mr

∇ω(λ(h)) ·Ψ dV.

But, by using inequalities (6.11) and (6.4), we can estimate the first term on the
right-hand side of formula (6.14) as follows:

∣∣∣∣∣

∫

M0(h)\Mr

ω(λ(h))divΨ dV

∣∣∣∣∣ ≤ C

∫

M0(h)\Mr

dV ≤ Cr.
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Further, by using the Schwarz inequality and inequality (6.5c), we can estimate the
second term on the right-hand side of formula (6.14) as follows:

∣∣∣∣∣

∫

M0(h)\Mr

∇ω(λ(h)) · Ψ dV

∣∣∣∣∣

≤ C

∫

M0(h)\Mr

|∇ω(λ(h))| dV

≤ C

(∫

M0(h)\Mr

|∇ω(λ(h))|2 dV

)1/2(∫

M0(h)\Mr

dV

)1/2

≤ Cr
1
2 .

Hence, by formula (6.14), we have for all r > 0 sufficiently small

∫

∂Mr

ω(λ(h))(Ψ · n) dσ ≤ Cr + Cr
1
2 ≤ Cr

1
2 .

By inequality (6.10), this proves that for all r > 0 sufficiently small

(6.15)

∫

∂Mr

ω(λ(h)) dσ ≤ 2

∫

∂Mr

ω(λ(h))(Ψ · n) dσ ≤ Cr
1
2 .

If we let
M∗

r = M0(h)\Mr,

then it follows from inequality (6.15) that

∫

M∗

r

ω(λ(h)) dV =

∫ r

0

(∫

∂Mr

ω(λ(h)) dσ

)
dt

≤ Cr
3
2 .

Therefore we have for all r > 0 sufficiently small

(6.16)

(∫

M∗

r

ω(λ(h))2 dV

) 1
2

=

(∫

M∗

r

ω(λ(h)) · ω(λ(h)) dV

) 1
2

≤ C

(∫

M∗

r

ω(λ(h)) dV

) 1
2

≤ Cr
3
4 .

2-a-ii) Now we construct a sequence {ωr} in the space W 1,2n/(n+1)(M0(h)) such
that

ωr −→ ω(λ(h)) in W 1, 2n
n+1 (M0(h)) as r ↓ 0.

We let

Sr = {x ∈M ; dist (x, ∂M0(h)) < r},
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S−
r = M0(h)\Mr,

and

∂S1
r = {x ∈ M+(h); dist (x, ∂M0(h)) = r},

∂S2
r = {x ∈ M0(h); dist (x, ∂M0(h)) = r}.

Then it is easy to see that, for r > 0 sufficiently small, there exists a “shrinking”
diffeomorphism

Ψ : Sr −→ S−
r

with the following properties:

Ψ(∂S1
r ) = ∂M0(h), Ψ(∂S2

r ) = ∂S2
r .(a)

sup
Sr

|∇Ψ | ≤ C, sup
S−

r

|∇Ψ−1| ≤ C.(b)

Indeed, in terms of local coordinates (x1, x2, · · · , xn−1, xn) such that

∂S1
r = {xn = −r}, ∂S2

r = {xn = +r},

the diffeomorphism Ψ is given by the formula

Ψ(x1, x2, · · · , xn−1, xn) =

(
x1, x2, · · · , xn−1,

xn + r

2

)
.

We let

ωr(x) =

{
ω(λ(h))(Ψ−1(x)) if x ∈ S−

r ,

ω(λ(h))(x) if x ∈ Mr.

Then, in view of assertion (6.9), it follows that the functions {ωr} are in the space
H1

0 (M0(h)) for all r > 0 sufficiently small. Next, by inequality (6.16), we have for
all r > 0 sufficiently small

(6.17) ‖ωr − ω(λ(h))‖L2(M0(h))

= ‖ωr − ω(λ(h))‖L2(M0(h)\Mr)

≤ ‖ωr‖L2(M0(h)\Mr) + ‖ω(λ(h))‖L2(M0(h)\Mr)

≤ 2‖ω(λ(h))‖L2(M∗

r)

≤ Cr
3
4 .

Furthermore, using Hölder’s inequality, we obtain that for all r > 0 sufficiently
small

(6.18) ‖ωr − ω(λ(h))‖L2n/(n+1)(M0(h))

≤ |M0(h)|
n+1
2n − 1

2 ‖ωr − ω(λ(h))‖L2(M∗

r)

≤ Cr
3
4 .
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Similarly, it follows that for all r > 0 sufficiently small

‖∇(ωr − ω(λ(h)))‖L2n/(n+1)(M0(h))

= ‖∇(ωr − ω(λ(h))‖L2n/(n+1)(M0(h)\Mr)

≤ ‖∇ωr‖L2n/(n+1)(M0(h)\Mr) + ‖∇ω(λ(h))‖L2n/(n+1)(M0(h)\Mr)

≤ sup
S−1

r

|∇Ψ−1| ‖∇ω(λ(h))‖L2n/(n+1)(M0(h)\Mr)

+ ‖∇ω(λ(h))‖L2n/(n+1)(M0(h)\Mr)

≤ C‖∇ω(λ(h))‖L2n/(n+1)(M0(h)\Mr).

But we find that the last term can be estimated as follows:

‖∇ω(λ(h))‖L2n/(n+1)(M0(h)\Mr)

=

(∫

M0(h)\Mr

|∇ω(λ(h))|
2n

n+1 dV

)n+1
2n

≤



|M0(h)\Mr|
1− n

n+1

(∫

M0(h)\Mr

|∇ω(λ(h))|2 dV

)n+1
n





n+1
2n

≤ |M0(h)\Mr|
1
2n ‖∇ω(λ(h))‖L2(M)

≤ Cr
1
2n .

Hence we obtain that for all r > 0 sufficiently small

(6.19) ‖∇(ωr − ω(λ(h)))‖L2n/(n+1)(M0(h)) ≤ Cr
1
2n .

Therefore, combining inequalities (6.18) and (6.19), we have proved that

ω(λ(h)) ∈W
1, 2n

n+1

0 (M0(h)),

and

ωr −→ ω(λ(h)) in W
1, 2n

n+1

0 (M0(h)) as r ↓ 0.

2-a-iii) Finally we show that:

ω(λ(h)) ∈ H1
0 (M0(h)),(6.20a)

and

ωr −→ ω(λ(h)) in H1
0 (M0(h)) as r ↓ 0.(6.20b)
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We recall that the function

ω(λ(h)) ∈W
1, 2n

n+1

0 (M0(h)) ∩ L
∞(M0(h))

satisfies the equation

∆ω(λ(h)) − λ(h))ω(λ(h)) = 0 in M0(h).

Thus, by using Lp estimates for elliptic equations (cf. [GT, Theorem 9.14]), we
obtain that

(6.21) ω(λ(h)) ∈W 2, 2n
n+1 (M0(h)) ∩W

1, 2n
n+1

0 (M0(h)).

On the other hand, by applying the Sobolev imbedding theorem (cf. [Ad, Theo-
rem 5.4]), we find that the injection

(6.22) W 2, 2n
n+1 (M0(h)) ⊂W 1, 2n

n−1 (M0(h))

is continuous.
Hence it follows from assertions (6.21) and (6.22) that

‖∇ω(λ(h))‖L2n/(n−1)(M0(h)) ≤ C.

By virtue of Hölder’s inequality, this proves that for all r > 0 sufficiently small

(∫

M∗

r

|∇ω(λ(h))|2 dV

) 1
2

≤

(∫

M∗

r

|∇ω(λ(h))|
2n

n−1 dV

)n−1
2n
(∫

M∗

r

dV

) 1
2n

= ‖∇ω(λ(h))‖L2n/(n−1)(M0(h))|M
∗
r|

1
2n

≤ Cr
1
2n .

Thus we have for all r > 0 sufficiently small

(6.23) ‖∇(ωr − ω(λ(h)))‖L2(M0(h)) = ‖∇(ωr − ω(λ(h))‖L2(M∗

r)

≤ C‖∇ω(λ(h))‖L2(M∗

r)

≤ Cr
1
2n .

Therefore, assertion (6.20) follows by combining inequalities (6.17) and (6.23).
2-b) Similarly, one can prove that

ω(λ(h)) = 0 on ∪Nj=ℓ+1 ∂Mj(h)\Sj .

The proof of Lemma 6.2 and hence that of Proposition 6.1 is complete. �
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