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1. INTRODUCTION AND RESULTS

This paper is a continuation of the previous papers Taira-Umezu [TU1]| and
[TU2| where we studied global static bifurcation theory for a class of degenerate
boundary value problems for nonlinear second-order elliptic differential operators.
The previous papers treated the asymptotic linear and nonlinear cases, for example,
such nonlinear terms as v + 1/u and wP, p > 1, near u = 400, by using the
Leray-Schauder degree theory. The purpose of this paper is to study more general
nonlinear terms such as \/u, log(1 4+ u) and e™", and is to prove the existence and
uniqueness of positive solutions of nonlinear elliptic boundary value problems, by
making good use of the super-subsolution method. We remark that the variational
method would break down, since our boundary condition is degenerate.

Let D be a bounded domain of Euclidean space R, N > 2, with C* boundary
0D:; its closure D = D U 0D is an N-dimensional, compact C°° manifold with
boundary. We let

ou

0z

N
a’(x) () | + c(x)u(x)

AR
Au(az) T Z Ox; Z

be a second-order, elliptic differential operator with real C™ coefficients on D such
that:

(1) a¥(z) = a’*(z), z € D, 1 <1i,j < N, and there exists a constant ag > 0 such

that
N

3 a (@) > aolé)?, x €D, € e RV,

i,j=1
(2) ¢(x) >0 on D.
In this paper we consider the following general nonlinear elliptic boundary value

problem: Given function f(z, ) defined on D x [0, 00), find a nonnegative function
u in D such that

” { Au = f(z,u) in D,

Bu:a%—kbu:() on 0D.
Here:
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(1) a € C*°(9D) and a > 0 on 9D.

(2) be C*>°(0D) and b > 0 on 0D.

(3) 9/0v is the conormal derivative associated with the operator A: 0/0v =
Zf\]jzl a”n;0/0z;, where n = (ny,na,---,ny) is the unit exterior normal to the
bofmdary oD.

First we state our fundamental hypotheses on the functions a, b and c:

(H.1) b(2') >0 on M = {2’ € D : a(z") = 0}.

(H.2) ¢(x) > 0in D.

It is worth pointing out here that the boundary condition B is non-degenerate if
and only if either a £ 0 on D or a =0 and b # 0 on dD. In particular, if a = 1
and b =0 on 0D (resp. a =0 and b = 1 on 9D), then the boundary condition B is
the so-called Neumann (resp. Dirichlet) condition.

A solution u € C?(D) of problem (%) is said to be nontrivial if it does not
identically equal zero on D. We call a nontrivial solution u of problem (x) a positive
solution if u(x) >0 on D.

Let A1 be the first eigenvalue of the linearized boundary value problem

{Au:)\u in D,

(1) Bu=0 on0D.

By [Ta2, Theorem 1], we know that the eigenvalue A; is positive and simple with
positive eigenfunction in D.

Our existence theorem for positive solutions of problem (k) is stated as follows
(cf. [BO, Theorem 2]):

Theorem 1. Assume that hypotheses (H.1) and (H.2) are satisfied and that the
function f(x,&) belongs to C°(D x [0,0]), 0 < 8 < 1, for every o > 0, and satisfies
the slope condition: For every o > 0, there exists a constant w = w(o) > 0,
independent of x € D, such that

(R)s f(z,&) = flz,n) > —w(€—n), z€D, 0<n<{<o
If in addition the two limits

and

exist uniformly for all x € D and if we have
(1.1) m(z) <\ < {(z), x€D,
then problem (x) has a positive solution u € C*T9(D).

If the nonlinear term f(x, £) is independent of x, then we can prove that condition
(1.1) is necessary and sufficient for the existence of positive solutions of problem
(%); more precisely, we have the following generalization of [BO, Theorem 1] to the
degenerate case:
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Theorem 2. Assume that hypotheses (H.1) and (H.2) are satisfied, and that the
function f(x,&) = f(§) is independent of x € D and further that the function f(£)/§
18 strictly decreasing for 0 < & < oo. We let

SO f(©)
f=lim= m= lim =

Then problem (%) has a positive solution u € C**t9(D) if and only if
(1.2) m < A </

Furthermore, the solution u is unique in the space C*(D).

Now, as an application of Theorem 2, we consider global static bifurcation prob-
lems for the following semilinear elliptic boundary value problem:

{Au—)\u—i—h(u):() in D,

()
Bu=0 on 0D.

The next corollary, which is an immediate consequence of Theorem 2, allows
us to treat more general nonlinear terms h than [TUL, Theorem 1] as is shown in
Examples 1-4 below.

Corollary 1. Assume that h(€) is a function in C?([0,0]), 0 < @ < 1, for every
o > 0, and that the function h(§)/€ is strictly increasing for 0 < £ < oco. We let

h(§)

a=lim—=, (= lim —=.

Then problem (x*) has a unique positive solution u € C*t9(D) if and only if A1 +
a< A<\ + 0.

For Corollary 1, we give four simple examples of the function A(§):

Example 1. h(¢) = (k/6)¢3 for 0 < ¢ < 1 and h(€) = k(€ + 1/(2¢) — 4/3) for
1 < & < oo, where k is a positive constant. In this case, « = 0, # = k and so
A <A< A +E.

Example 2. h(§) =&P, p > 1. In this case, a =0, f = 0o and so A\; < \ < 0.

Example 3. h(§) = —/&. In this case, « = —00, =0 and s0 —00 < X < A1.

Example 4. h(¢) = —e~¢. In this case, « = —oc0, =0 and so —00 < A < ;.
Similarly, we consider the following semilinear elliptic eigenvalue problem:

{ Au—Ag(u) =0 in D,

( * %)
Bu=0 on 0D.

Then we have the following generalization of [SC, Theorem 2.1] to the degenerate
case:
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Corollary 2. Assume that g(€) is a function in C%([0,0]), 0 < 6 < 1, for every
o > 0, and that the function g(£)/€ is strictly decreasing for 0 < £ < oco. We let

g 98 o 9(©)
TTE e fTeRTe

Then problem (x % *) has a unique positive solution u € C**%(D) if and only if
)\1/’7 <AL )\1/(5

For Corollary 2, we give three simple examples of the function g(§):
Example 5. g(¢) = /€. In this case, y = 00, § =0 and s0 0 < \ < 0.
Example 6. g(&) = e~¢. In this case, ¥y =00, = 0 and s0 0 < A < oo.
Example 7. ¢(§) =log(l+&). In this case, y =1, =0 and so \; < A < c0.

2. PROOF OF THEOREM 1

Our proof of Theorem 1 is carried out by making use of the super-subsolution
method just as in the proof of [De, Theorem 2.2].

A nonnegative function ¢ € C?(D) is said to be a supersolution of problem (x)
if it satisfies the conditions:

AY — f(z,4) 20 in D,
{B@DEO on 0D.

Similarly, a nonnegative function ¢ € C?(D) is said to be a subsolution of problem
(%) if it satisfies the conditions:

Ap— f(x,¢) <0 in D,
{B¢§O on 0D.

(I) First we construct a subsolution of problem (x).
By condition (1.1), we can find a constant ¢; > 0 such that

(2.1) fx, &) >N¢E €D, 0<E<ey.
On the other hand, it is known (cf. [Ta2, Theorem 1]) that the linearized boundary

value problem
Ap =AM in D,
Bp=0 on 0D

has a positive eigenfunction ¢ € C?+9(D). If we let
Ge =€
for € > 0 sufficiently small, we may assume that

max ¢ < cj.
D
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Then we have by condition (2.1)

Ape — f(2,0:) < Mpe — Mg =0 in D,
{ Bgp. =0 on 0D.

This proves that the function ¢. € C?*T?(D) is a subsolution of problem (x).

(IT) In order to construct a supersolution of problem (%), we make use of the
theory of positive operators in ordered Banach spaces (cf. [Am)]).

A Banach space X is called an ordered Banach space if it is an ordered set. For
an ordered Banach space X having the ordering <, the set Q = {x € X : z > 0} is
called the positive cone in X.

For functions u and v in C(D), we write u < v if u(x) < v(z) for all z € D. Then
the space C'(D) becomes an ordered Banach space with the ordering <. Moreover,
if we let

P={uecC(D):u>0},
then the set P is the positive cone in C(D).
By [TU2, Theorem 1.1], we can introduce a continuous linear operator
K :C%(D) — C*T%(D)

as follows: For any v € C?(D), the function u = Kv € C?**?(D) is the unique
solution of the boundary value problem

Au=v in D,

Bu=0 ondD.

Now we introduce an ordered Banach subspace of C(D) which is associated with
the resolvent K.
We let
e=K1eC*(D),

and
Co(D) = {u € C(D) : there is a constant ¢ > 0 such that —ce < u < ce}.
Then the space C.(D) is given a norm by the formula
|lu]le = inf{c > 0: —ce < u < ce}.

If we let o
P.={ue€ C.(D):u>0},

it is easy to verify that the space C,(D) is an ordered Banach space having the
positive cone P, with nonempty interior. Moreover, by [TU1, Proposition 2.2|, we
can extend uniquely the resolvent K to a strongly positive, compact linear operator

K : C.(D) — C.(D).

Here we recall that K is said to be strongly positive if v € P, and v # 0 on D, then
the function Kv is an interior point of P,.

The next lemma plays an important role in the construction of a supersolution
of problem (x) (cf. [Kr, Theorem 2.16]):
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Lemma (The positivity lemma). LetT : C.(D) — C,(D) be a strongly positive,
compact linear operator and Ao the largest eigenvalue of T'. Then, for any given
positive function g € C.(D), the equation

A—Tv=g

has a unique positive solution v € Ce(D) for each X\ > Ag.
(ITI) By condition (1.1), we can find constants ¢ > 0 and 0 < d < Ay such that

f(xvg)g()‘l_d)gv I'EE, €>CQ-

Hence, if we let B
k:max{\f(x,f‘ﬂ crxeD, 0<¢L CQ},

then we have
(2.2) f(@,&) < (M —d)§+k ze€D, £>0.
We show that the boundary value problem

Au= (M —du+k in D,
03 (i — d)
Bu=20 on 0D
has a positive solution u € C?T9(D).
First it is easy to see that u € C?T9(D) is a solution of problem (2.3) if and only
if it satisfies the following operator equation:

(2.4) u=(\ —d)Ku+ Kk in C.(D).

But we remark that the largest eigenvalue (A; — d)/A; of the operator (A\y — d)K
is less than 1, and that the function Kk is positive on D. Thus, applying the
positivity lemma to our situation, we can find a solution ¢ € C?*%(D) of equation
(2.4), or equivalently, a solution of problem (2.3).

Then we have by condition (2.2)

{Ad]—f(x,@b)z(>\1—d)¢+7€—((>\1—d)¢+’€)=0 in D,
By =0 on 0D.

This proves that the function ¢ € C?*9(D) is a supersolution of problem (x).
(IV) One may assume that the super- and subsolutions v, ¢. satisfy the condition

¢ <1 on D.
Furthermore, if we take a constant ¢ > 0 such that

max ¢., max¢ < o,
D D

then it follows that the functions ¢ and ¢. are respectively super- and subsolutions
of problem (%) taking values in the interval [0, o].

Therefore our theorem follows from an application of [TU2, Theorem 1].

The proof of Theorem 1 is complete. [
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3. PROOF OF THEOREM 2

By Theorem 1, it suffices to prove that condition (1.2) is necessary for the exis-
tence of positive solutions of problem ().

We associate with problem (f) an unbounded linear operator 2 from the Hilbert
space L?(D) into itself as follows:

(a) The domain of definition D(2l) is the space
D) = {u € H*(D): Bu=0}.

(b) Au = Au, u € D(A).
Then it is known (cf. [Tal, Theorems 7.3 and 7.4]) that the operator U is a

non-negative, self-adjoint operator in L?(D), and has a compact resolvent. Hence
we find that the first eigenvalue A\; of 2 is characterized by the following formula:

(3.1) A1 = min {(Au,u) : w € DA, |u|| =1},

where || - || is the norm on L?(D).
First we show that

(32) A < L.
Since the function f(§)/€ is strictly decreasing, it follows that

(3.3) m<$<€, 0<¢<o0.

Now let u € C?(D) be a positive solution of problem (x):

Au = f(u) in D,
u >0 in D,
Bu=0 on 0D.

Then, since u € D(2(), we have by inequality (3.3) with £ = u(x)

(RAu,u) = (Au,u) = /D fw)ude < E/Du2 dz.

Hence inequality (3.2) follows by using formula (3.1).
Next we show that

(34) A1 > m.

If u € C?(D) is a positive solution of problem (x), we let

Fllulloo +1)
. d=211" 1= 7
(3:5) Tl + 1

)
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where ||u]/o = maxpzu. We remark that d > m.
Now we consider the eigenvalue problem

{ Au—du =M u in D,
Bu=0 on 0D,
and let A;(d) be its first eigenvalue. Then, by formula (3.1), we find that
A(d) = min {((A — dl)u,u) : uw € D), ||lu|| =1} = A —d.
Furthermore, by [Ta2, Theorem 1], one may assume that the first eigenvalue A (d)
has a positive eigenfunction ¢ € C?+9(D):
Ap —dp = M\i(d)y in D,
p>0 in D,
By=0 on 0D.
Then we have the following:
Claim 3.1. A\ (d) =X —d > 0.

Proof. Since the function f(&)/¢ is strictly decreasing, it follows from formula (3.5)
that
flu(x)) > du(z), =z € D.

Hence we have

(3.6) (Ru, p) = (Au, ) = / f(u)pdx > d/ up dzx.
D D
On the other hand, by the self-adjointness 2, it follows that
(37) (%,9) = (0.2) = (1. 49) = [ u(n(d) + d)pda.
D

Thus, combining formulas (3.6) and (3.7), we obtain that

Al(d)/ up dx > 0.
D

This proves Claim 3.1, since we have u >0, o > 0in D. [

Summing up, we have proved that
A1 >d > m.
The desired inequality (1.2) follows from inequalities (3.2) and (3.4).

(IT) Finally we prove the uniqueness of positive solutions of problem (k) (cf. [BO,
Section 2]).
Let u; € C?(D), i = 1,2, be two positive solutions of problem (*):
Au; = f(u;) in D,
u; >0 inD,
Bu; =0 on 0D.

The next claim is an essential step in the proof of uniqueness of positive solutions
(cf. [BO, Lemma 1]):



rosiiivi SOLULTIVONS OF SUbLINBEAR LLLIFLTIO BOUNDARY VALUL FRUDLINDS J

Claim 3.2. u;/us, us/u; € C(D).

Proof. Since the function f(&)/€ is strictly decreasing, one can find two nonnegative
constants w;, ¢ = 1, 2, such that

flu;)) +wiu; >0 in D.

Indeed, it suffices to take

wizmax{(),—w}, 1=1,2.

i
Then the solutions wu;, ¢ = 1, 2, are expressed as follows:

u; = Ko, (f(ui) +wiu;),
flu)) +wiu; >0 in D.

Here K, is the resolvent of the boundary value problem

{ (A4 wj))u=¢ in D,
Bu=20 on 0D.

Hence Claim 3.2 follows from the strong positivity of the resolvents K., i =1, 2
(see [TUL, inequality (2.4)]). O

By Claim 3.2, we can apply Green’s formula to obtain that
(3.8)
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Here we remark that the four integrals over 0D on the last line of formula (3.8)
vanish. Indeed, it suffices to note that

Bul
5, U1
' v =0 on dD,
Guz 4,
ov 2

since the solutions u; and wuso satisfy the boundary conditions

8u1
v U1 a o 0
(£ ) () =(0) mon

and since (a,b) # (0,0) on 0D.
Therefore we find that

/ <f(u1) . f<uz>) (u? — u2) da

D u1 U2
N ij <8u1 U9 8u1) (811,1 u9 811,1)
= a - —= ———]dx
D52 ox; uy Ox; Oxr; w Oxj
N
o (Ous  uy Oug Ous  uy Ous
ig (Y22 21902 At 2 I |
i /D MZ; ¢ (Oxi Us axi) <8:1:j Ug 8:Bj) v
>0

This implies that u; = us in D, since the function f(§)/€ is strictly decreasing.
The proof of Theorem 2 is now complete. [
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