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Abstract:

We propose a new model of the atmospheric concentration of a radionuclide with the inclusion of
fluctuations of the concentration. The model is a stochastic differential equation and we derive the
analytic solution of the equation. The solution agrees very well with the Chernobyl Cs-137 data.
The advantage of the model is that the uncertainty in radiation exposure risk, with regard to the
concentration fluctuations, can be quantitatively estimated. We show the range of fluctuations of +0,
+20, £30 in the 10-year measurement of the atmospheric concentration in Chernobyl and confirmed

the validity of the model.

1. Introduction

In major nuclear power plant accidents, such as Chernobyl or Fukushima, a huge amount of
radionuclides have been released into the atmosphere. In such accidents, long-lived radionuclides,
cesium-137 and strontium-90, for example, pose a serious problem. Radionuclides carried in the
initial plume were deposited on the ground, and they keep imposing a risk to the public health for a
long period of time. In the Chernobyl case, it is believed that the resuspension-deposition cycle
contributes significantly to the airborne concentration of radionuclides (Klug et al., 1992; Ishikawa,
1995; Nicholson, 1998; Ould-Dada and Nasser, 1992). Since the resuspended nuclides make the
atmospheric concentration increase, it is considered one of the most important processes in the
long-term radiation risk assessment. In this accident, health effects on the humans, such as leukemia

and genetic abnormalities have been confirmed (IAEA, 2006; Arkhipov et al., 1994; Lazjukd et al.,
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1997; Romanenko et al., 2008). Therefore precise predictions on the concentrations of radionuclides

are necessary.

For that purpose, using the data of the Chernobyl accident, we have derived a simple formula on
the mean atmospheric concentration (Hatano et al., 1997, 1998). In the formula, the atmospheric
concentration of a specific radionuclide decreases as

C(t) = Aexp(—Appyst)t ™% (D
Here C (t) is the concentration of a specific radionuclide measured at a fixed location, t is the

number of days since the accident, 4,,,¢ is the rate constant which includes all the first-order

phy
reactions (e.g. radioactive decay, adsorption rate on the soil, see Hatano and Hatano, 1997). A and
a are constants that is determined by the fitting of the actual data. The power index —a in Eq. (1)

is determined from the magnitude of the temporal autocorrelations of the wind velocity. In our
previous studies (Hatano et al., 1997, 1998), we set o at — g. Equation (1) successfully reproduces

the mean concentration of the Chernobyl data (Cs-137-134, Ce-144, Ru-106) over a decade. In
present study, we allow more degrees of freedom on «, because the wind correlation may vary
depending on sites. In this manner, we introduce more flexibility to the model and thereby make the
model applicable in general cases. For the details of our model, see the references. We would stress
that Eq. (1) is derived by averaging out all the fluctuations of microscopic processes; therefore it

describes the mean behavior of the atmospheric concentration.

In the present study, we concentrate on how the data fluctuates from Eq. (1), and thereby estimate
the maximum and the minimum concentrations of the atmospheric concentration. From the
Chernobyl case, we have learned that the atmospheric concentration of radionuclides fluctuates very
much, depending mainly on the meteorological conditions (the wind velocity, the humidity, rainfall,
the amount of solar radiation, and the traffics). Estimating the magnitude of fluctuations would
greatly contributes for radiation safety. For this purpose we proposed a model that can reproduce

those fluctuations.

2. Model --- stochastic differential equation on the fluctuations

In this section, we propose a new model that can reproduce the fluctuations in the Cs-137
atmospheric concentration. The model is a stochastic differential equation, assuming that each
deviation follows a stochastic process. We use here the Chernobyl data set. The measurement site is

shown in Fig. 1 based on the report of the Japan Atomic Energy Research Institute (Ueno et al.,
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2003). We choose 6 observation sites. Each site is assigned a number, e.g. "Point 20.0". The sites
we choose are Point 6.0 (7 km to the southwest from the power plant), Point 8.0 (11 km, north),
Point 11.0 (10 km, south), Point 13.0 (9 km, east), Point 21.0 (2 km, northwest), and Point 60.1 (3
km, northwest). These sites have longer observation period than others. As the radionuclide, we
choose Cs-137, because Cs-137 was detectable over a decade because of their long half-life
(~30years) and amount released was also very large. In Fig. 2, we show a good agreement between
Eq. (1) and the data at Point 21.0 for a demonstrating purpose. Other graphs appear in Hatano et al.,
1998.

Figure 3 shows the raw data of the atmospheric concentration of Cs-137 at Point 13.0 for 5000
days after the accident. The airborne concentration of Cs-137 fluctuates by various reasons: for
example, wind transport from other places, ground surface disturbances such as rainfall, and
detachment from surfaces such as trees or buildings. We assume that if we take a long enough
period of time, these elementary processes achieve the equilibrium of fluctuations and can be
treated as a stationary stochastic process. The repeated randomness is manifest as the resulting
averaged behavior. We assume here that these fluctuations of the elementary processes are the
Gaussian white noise. The Gaussian white noise is observed frequently in natural phenomena.

We model those fluctuations by means of the stochastic differential equation as follows. First, we
define the residual, X(t), between the data and Eq. (1), as

X)) =1In (C(t) /(Aexp(—/lphyst)t—“)) @)

= ln(C(t)) — ln(Aexp(—)lphyst)t‘“).
In Fig. 4 we see the behavior of X(t) for Point 13.0. When we see X(t) as a stochastic variable,
we observe the following two things. One is that the negative values of X(t) and the positive
values of that appear almost at the same frequency throughout the measurement. Second, the
displacement in X(t) is almost reversal. Namely, if X(t;) > X(t;_1), then it is likely we have
X(tiz1) < X(t;) in the next time step, and vice versa. Therefore, the model may have the property

of a correction force that neutralizes fluctuations:

dx(t) 3)
El a |- %
or
E[dX(t)] = —yX dt. (4)

Here E[] represents the expected value and dX(t) is the displacement in X during small amount
of time dt. We assume that the sum of dX(t) and yX dt is the Gaussian white noise. That is,
dX(t) = —yX dt + adW (t). (5)

Here dW (t) is the Gaussian white noise at time t, and y is the parameter of the “reversal” force,
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and o is the parameter indicating the magnitude of the Gaussian white noise. The stochastic
differential equation Eq. (5) is called as the Ornstein-Uhlenbeck process. If the Chernobyl data
fluctuate as Eq. (5), we should recover the Gaussian white noise odW (t) by substituting the actual

data dX + yXdt. In order to show that, we first estimate the values of ¥ and ¢ in the next section.

3. Results and discussion
3.1 Estimation of parameters y and o

In estimating the values of y and o, we demonstrate in Fig. 5 how the value of ¥y works on
X(t). The horizontal axis is X(t) at Point 21.0 over 5000 days, and the vertical axis is its
derivative dX(t)/dt. The straight line is the LSM (Least Squares Method) fit to the data.
According to Eq. (3), the slope in Fig. 5 corresponds to the value -y. As shown in this figure, we
see a fairly good fit. The actual data have the tendency that an increase in X at a specific time
results in a decrease in X at the next moment, and vice versa. However, the LSM fit in Fig. 5 is, in
some part, not so good. This is due to the fact that the value of dt (time interval between
observations) is sometimes very large in the actual data. In an extreme case, dt is about 30 days.
Therefore, in the following, we calculate more accurate value of y.

Let us start with Eq. (5). Solution of Eq. (5) is given by Susanne and Ove, 2008.

X(t) = exp(=yt) lX (to) + o f exp (ys) dW(s)|, (6)

where X(ty) is the initial value. Because X (t) is the discrete in the actual data, we rewrite it as
X(ty), X(ty) , X(ty), ..,X(t;),..,X(t,). Due to the Markov property of Wiener process, it is
possible to take the initial value at anywhere and Eq. (6) can also be expressed as follows:

X(tiv1) —exp(—y(tiys — ) X (&)

= sexp(-y (6 — ) [ T exp(ys) AW (s). @

If you replace t; to O and t;,; —t; tot, then Eq. (7) and Eq. (6) are equivalent. Hence, we define
the value of the right-hand side of Eq. (7) as Y:

Y = gexpl—y(tis — )1 X5 gexp(ys;) [W(sje1) = W(s)]. (8)
Here K is the number of discretization in s. From the definition of the Wiener process,
W(sj+1) - W(sj) is a random variable and follows the normal distribution with 0-mean and the
variance S;j;; — ;. Since the sum of the random variables, which follow the normal distribution,

also follows the normal distribution, Y follows the normal distribution. The mean of the sum is
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equal to 0, and the variance is follows from simple calculation:

VIY] = o%exp (=2 (tis — tDIXE | g exp Qye)(W(spa) =W (sD)' | (9

Here V[ ] represents the variance and we use the relation V[Y] = E[Y?] — (E[Y])? for

calculation. Using (W(sj+1) — W(s]-))2 = Sj4+1 — Sj, we obtained the following equation:

V[Y] = o2exp (—2y(tjy1 — tl-))f " iexp (2ys)ds. (10)

By solving this, Y, or the entire right side of Eq. (7) is a random variable that follows the normal
distribution with O0-mean and with the variance 02(1 — exp (—2y(tiz1 — t;)))/2y. Note that
variance solely depends on (t;,; — t;). It means that, when the interval between observations is
long, the variance of the fluctuations increases. On the contrary, when the interval is small, the

variance of fluctuations decreases. In order to eliminate this dependence on the interval length, we

1
normalize Eq. (7) by dividing the both sides with 1 — exp(—Zy(tHl - ti))2 to obtain
X(tiv1) —exp (—=y(tipq — t))X(E)
V1—exp (=2y(tyy — t,))
. _ tiv1—t; (11)
gexp (=y (tipr —t)) [, exp (2yt) dW (s)
V1—exp (=2y(tyy — t,)

Now the entire right-hand side of Eq. (11) is a random variable that follows the normal distribution
with O-mean and the variance ¢2/2y. In addition, with respect to the left-hand side, all parameters

are known except for y. Hence, y is obtained by the following equation.
n

X(t; — e =Y (tiv1 — ;)X
z ( l+1) Xp( V( i+1 l)) ( 1) San(ti) - 0. (12)
= J1-exp(—2y(tiys — 1)
Here sgn(x) is the signum function defined as follows.
-1 (x<0)
sgn(x) =< 0 (x=0) (13)
1 (x>1)

Then substituting thus-obtained y to Eq. (11), we finally arrive at the equation for o.

L NC (X (tisr) = exp (=¥ (g — EDX(ED\
’ _Zy;( exp (—2y(tip1 — 1)) )

(14)

To summarize, we can calculate the parameters y and o with Eq. (12) and Eq. (14), using the

actual data. We summarize the values of y and o of each observation site in Tablel. These values
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are used in the calculations in the next subsection.

3.2 Analytic Solution

In Section 3.1, we explained that, in order to show that X(t) can be described by the Eq. (5),
dX + yXdt should be the Gaussian white noise. This is equivalent to that the right side of Eq. (11)
is the Gaussian white noise. We use the spectral analysis because the Gaussian white noise has the
same power in its all frequencies.

The result is shown in Fig. 6. The horizontal axis represents the frequency and the vertical axis
represents the intensity of the spectrum. Since observation times are unevenly spaced, we used the
periodogram (Scargle, 1982; Schulz and Stattegger, 1997). The periodgram is one of the methods of
detecting a periodic signal hidden in the noise in the case where the observation times are unevenly
spaced. It is used instead of FFT in such cases. Except for a strong annual peak (and its
subharmonics), the spectrum scales roughly as the white noise. Figure 6 is the spectrum of Point
21.0 and we confirmed that other five observation sites have the very similar white noise spectrum.

In this way, our assumption used in Eq. (5) is justified for the present data set.

In Fig. 7, we plot the cumulative histogram of the right-hand side of Eq. (11) and found that it
follows the normal distribution excellently. The curve showing along with the histogram represents
the distribution function of the normal distribution. The values of the mean and the variance were
obtained in Section 3.1. Figure 7 is the case for Point 21.0, and we found that the results of other
five observation sites are almost identical with Fig. 7. As a result of these findings, it can be said
that Eq. (5) is suitable for modeling the fluctuations.

Finally we arrive at the analytic solution of radioactive aerosols in the atmosphere. Using Eqgs. (2),
(5),and (7):

C(t) = Aexp(—Appyst) t7 X

t—tg

exp {eXp[—V(t — to)] [X (to) + 0 f exp [y (¢ — to)] dW(s)l} : (15)

By taking the logarithm on both sides of Eq. (11), we have
InC(t) = ln[AeXp(—/Iphyst) ] +
t—ty (16)
expl-y (6= to)] [X(t) + o [ exp Iyt = o) aw(s)|.
0
The right-hand side of Eq. (16) is a random variable that follows the normal distribution with the

mean [ and the variance 62 where

a= ln[A exp(—/lphyst)t_“] + X(t,) exp[—y(t — to)]. @a7)



147
148

149
150
151

152
153
154
155
156
157
158
159
160
161
162
163
164

165
166
167
168
169
170
171
172

2

2 _ 0 4 _ _
G _Zy(l exp[—2y(t — to)]) (18)

Note that, for large t, i converges to the logarithm of Eq. (1). Thus we obtain the following
equation describing the distribution of the fluctuation.
1 _xo-p?

e 262

2162 . (19)

p(to, X(t), t,X(1)) =

Here p is the transition probability density function; p is the probability where the residual X (t)
occurs when the initial residual is X (t,). To be precise, p describes the probability density of X (t)
under the initial condition:

Jim p = S(X() — X(ty)). (20)
Note that X(t) corresponds to In C(t) (see Eg. (2)). The right-hand side of Eq. (19) is in the form of
the normal distribution, C(t) obeys the log-normal distribution.

In Fig. 8, we summarize the significance of the present study. Let us consider the circumstance in
which we have to predict the future concentration. In usual case (upper half of Fig. 8), we calculate
the average using the observed data that are available at the moment. The future concentration is
estimated by extrapolation. However, the estimation depends on the extrapolation technique (upper
half right). The ranges of fluctuations are sometimes assumed by the maximum and the minimum
values.

In the present study, the fluctuation (the difference from one observation to another) gives
information of the future concentration. The value of f, that is asymptotically Eq. (1) as t > 1,
gives the future concentration and & the future standard deviation. As described in the previous
subsections, Egs. (12), (14) gives the value of y and o, with which we calculate g and 2. In

this way, the present method utilizes fluctuations for the behavior of the future concentration.

3.3 Comparison between the analytic solution and the Chernobyl data
Now we collect the results from previous sections and thereby make a comparison with the
Chernobyl data. We use Eq. (1) as the mean concentration and & as the standard deviation from
the mean concentration. Figure 9 shows the comparison of the raw dataof Cs-137 at Point 6.0, 8.0,
11.0,13.0,21.0,and 60.1.
Many studies have reported that the concentration of particle in the atmosphere follows a
log-normal distribution (e.g. Ashok et al., 1997; Eugene and Chan, 1997; Junya et al., 2002), and

this is consistent with the result of the present study.
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The thick solid lines indicate the mean concentration (Eq. (1)) and the dotted lines correspond to
+ 6,+ 26, and £ 36. In the log-normal distribution, approximately 68.3% of the data should fall
within the range of + 6,95.4% in + 26, and 99.7% in + 36. Table 2 gives the percentages for the
present study. Our result is consistent with the theoretical percentages.

Finally, we mention the significance of our result from a practical aspect. Understanding the
distribution of concentration helps us to make estimations of the risk of radiation exposure of
workers. Consider the case as follows. In Fukushima, the working hours of workers are determined
using the mean atmospheric concentration. In this case, if the concentration is increased temporarily
by fluctuations, workers of some percentage might be exposed to excessive radiation. By using the

proposed model, we can calculate a possible maximum risk of workers.

4. Conclusion

We have studied the fluctuations in the atmospheric concentration of Cs-137 in Chernobyl. We
found the followings.
1. We proposed a new method to extract the characteristics of fluctuations. We define the
fluctuations as the deviations from Eq. (1). Two parameters, ¥ (the magnitude of reverse effect)
and o (the magnitude of white noise), represent the characteristics. We showed the procedure of
calculating ¥ and o from the actual data.
2. We derived the analytic solution of the long-term concentration with the inclusion of random
fluctuations with y and o.
3. The concentration of the Chernobyl data agrees excellently with the solution.
4. Using these results, we can estimate workers' radiation exposure in Fukushima with uncertainty,

with which we know the probability that their exposure falls within the range of +o,+20,130.
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Notation
A Constant that is proportional to the amount of nuclide that fell in observation point.
C Radionuclide concentration in the atmosphere.
C, Radionuclide concentration that is observed at time of t.

E[] Expected value.
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p Transition probability density function of X.
The number of days since accident.
to Measurement date of the first post-accident.
t; The i-th measurement day.
V[] Variance.
W  Wiener process.
x Random variable representing the value of X at time ¢t.
xo X valueat t,
X Difference in log axis of the observed value and the average concentration.
Y Random variable.
a Constant representing the effect of advection and uptake of plant.
y Model parameter indicating earliness of fluctuations converge.
{4 Mean of X.
Aphys The rate constant which includes all the first-order reactions.
o Model parameter indicating the magnitude of the fluctuation.

6 Variance of X.
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Fig. 1: The location of the Chernobyl power plant and the measurement site. “4 UNIT NPP”
indicates the forth unit of the nuclear power plant, where the accident occurred. Annotations
on the Google map.
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Fig. 2: Atmospheric concentration of 6-months average at Point 21.0.
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Fig. 3: Atmospheric concentration of Cs-137 at Point 13.0. Dots are the non-averaged
original data and the soild line Eq.(1).
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Fig. 4: Deviations X(t) defined as Eq. (2).
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Fig. 6: Power spectrum of the Brownian part dX + yXdt. The data of Point 21.0 are used. The
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Fig. 8: Illustration of the significance of the present model. (upper half): usual
case; (lower half): the present study.
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Fig. 9: Standard deviation of fluctuations added to the mean concentration. Curves indicate +0,
+20, £30. (a) Point 6.0, (b) Point 8.0, (c¢) Point 13.0, (d) Point 11.0, (e) Point 21.0, (f) Point 60.1.
In Point 21.0 and Point 60.1, observation sites are close to the reactor; the atmospheric
concentration is higher than other cases, and earlier data are available (since 300 days after the
accident). Even such cases, the fluctuations are within the given curves.
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Table 1: The values of ¥ and o in each observation site

Site number A a y o
Point 6.0 0.785 1.12 0.393 1.01
Point 8.0 0.118 0.846 0.314 0.779

Point 11.0 0.649 1.15 0415 0.992
Point 13.0 0.173 0.988 0.371 0.794
Point 21.0* 3.07x10° 2.63 0.280 0.791
Point 60.1° 2.84x10° 1.97 0.353 1.04

* Since the sites of Point 21.0 and Point 60.1 are close to the reactor, values of A is very large
compared to other sites.
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Table, 2: The proportion of data within + &,+ 26, and + 36.

Code number + 16 range +20 range + 30 range
Point 6.0 0.724 0.941 0.986
Point 8.0 0.709 0.957 0.996
Point 11.0 0.720 0.947 0.992
Point 13.0 0.671 0.963 0.997
Point 21.0 0.691 0.950 0.997
Point 60.1 0.740 0.933 0.988
Average 0.709 0.949 0.993
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