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Abstract The purpose of this paper is to study a class of semilinear degenerate ellip-
tic boundary value problems with asymptotically linear nonlinearity which include
as particular cases the Dirichlet and Robin problems. Our approach is based on the
global inversion theorems between Banach spaces, and is distinguished by the exten-
sive use of the ideas and techniques characteristic of the recent developments in the
theory of partial differential equations. By making use of the variational method, we
prove existence and uniqueness theorems for our problem. The results here extend
three earlier theorems due to Ambrosetti and Prodi to the degenerate case.
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1 Statement of main results

Let Ω be a bounded domain of Euclidean space RN , N ≥ 2, with smooth boundary
∂Ω ; its closure Ω = Ω ∪ ∂Ω is an N-dimensional, compact smooth manifold with
boundary. Let A be a second-order, elliptic differential operator with real coefficients
such that

Au = −
N

∑
i=1

∂
∂xi

(
N

∑
j=1

ai j(x)
∂u
∂x j

)
+ c(x)u. (1.1)
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(1) ai j ∈C∞(Ω) and ai j(x) = a ji(x) for all x ∈ Ω and 1 ≤ i, j ≤ N, and there exists a
positive constant a0 such that

N

∑
i, j=1

ai j(x)ξiξ j ≥ a0|ξ |2 for all (x,ξ ) ∈ Ω ×RN .

(2) c ∈C∞(Ω) and c(x) ≥ 0 in Ω .

Let B be a first-order, boundary condition with real coefficients such that

Bu = a(x′)
∂u
∂ν

+ b(x′)u (1.2)

Here:

(3) a ∈C∞(∂Ω) and a(x′) ≥ 0 on ∂Ω .
(4) b ∈C∞(∂Ω) and b(x′) ≥ 0 on ∂Ω .
(5) ∂/∂ν is the conormal derivative associated with the operator A:

∂
∂ν

=
N

∑
i, j=1

ai j(x′)n j
∂

∂xi
,

where n = (n1,n2, . . . ,nN) is the unit exterior normal to the boundary ∂Ω .

Our fundamental hypotheses on the boundary condition B are the following:

(H.1) a(x′)+ b(x′) > 0 on ∂Ω .
(H.2) b(x′) �≡ 0 on ∂Ω .

It should be noticed that if a(x′) ≡ 0 and b(x′) ≡ 1 on ∂Ω (resp. a(x′) ≡ 1 on ∂Ω ),
then the boundary condition B is the Dirichlet condition (resp. Robin condition).
Moreover, it is easy to see that boundary condition B is non-degenerate (or coercive)
if and only if either a(x′) > 0 on ∂Ω or a(x′) ≡ 0 and b(x′) > 0 on ∂Ω . Therefore,
our boundary condition B is a degenerate boundary value problem from an analytical
point of view (cf. [12]).

The intuitive meaning of hypothesis (H.1) is that either the reflection phenomenon
or the absorption phenomenon does occur at each point of the boundary ∂Ω . More
precisely, hypothesis (H.1) implies that the absorption phenomenon occurs at each
point of the set M = {x′ ∈ ∂Ω : a(x′) = 0}, while the reflection phenomenon occurs
at each point of the set ∂Ω \M = {x′ ∈ ∂Ω : a(x′) > 0} (see [17]). On the other hand,
hypothesis (H.2) implies that the boundary condition B is not equal to the purely
Neumann condition.

In this paper we consider the following semilinear elliptic boundary value prob-
lem in the framework of Hölder spaces: Let p(ξ ) be a function defined on R. Given
a function h(x) in Ω , find a function u(x) in Ω such that⎧⎨

⎩
Au− p(u) = h in Ω ,

Bu = a(x′)
∂u
∂ν

+ b(x′)u = 0 on ∂Ω .
(1.3)



Degenerate elliptic problems with asymptotically linear nonlinearity 3

Hammerstein [11] and Dolph [10] studied problem (1.3) under Dirichlet condition
(see Remarks 1.1 and 1.2), while Amann [2] studied problem (1.3) in the non-degen-
erate case where the boundary ∂Ω is the disjoint union of the two closed subsets M
and ∂Ω \M, each of which is an (N −1) dimensional, compact smooth manifold.

The purpose of this paper is to prove existence and uniqueness theorems for prob-
lem (1.3), and is a continuation of the previous work Taira [19], [20] and [21].

In order to study problem (1.3) in the framework of Hölder spaces, we consider
the linear elliptic boundary value problem{

Au = g in Ω ,

Bu = 0 on ∂Ω
(1.4)

in the framework of the Hilbert space L2(Ω). We associate with problem (1.4) a
densely defined, closed linear operator

A : L2(Ω) −→ L2(Ω)

as follows:

(1) D(A) = {u ∈W 2,2(Ω) : Bu = 0 on ∂Ω}.
(2) Au = Au for every u ∈ D(A).

Here and in the following the Sobolev space W k,p(Ω) for k ∈ N and 1 < p < ∞ is
defined as follows:

W k,p(Ω) = the space of functions u ∈ Lp(Ω) whose derivatives Dα u,
|α| ≤ k, in the sense of distributions are in Lp(Ω),

and its norm ‖ · ‖Wk,p(Ω) is given by the formula

‖u‖Wk,p(Ω) =

(
∑

|α |≤k

∫
Ω
|Dα u(x)|p dx

)1/p

.

Then we have the following fundamental spectral results (i), (ii) and (iii) of the
operator A (see [18, Theorem 5.1]):

(i) The operator A is positive and selfadjoint in L2(Ω).
(ii) The first eigenvalue λ1 of A is positive and algebraically simple, and its corre-

sponding eigenfunction φ1 ∈C2+α(Ω), with exponent 0 < α < 1, may be chosen
to be strictly positive in Ω . Namely, we have the assertions⎧⎪⎨

⎪⎩
Aφ1 = λ1φ1 in Ω ,

φ1 > 0 in Ω ,

Bφ1 = 0 on ∂Ω .

(iii) No other eigenvalues λ j, j ≥ 2, have positive eigenfunctions.

First, we impose the following three conditions (P.1) through (P.3) on the nonlin-
ear term p(ξ ):
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(P.1) p ∈C1+α(R) with 0 < α < 1 and p(ξ ) ≥ 0 on R.
(P.2) There exist a positive constant γ < λ1 and a non-negative constant b such that

p(ξ ) ≤ γξ + b for all ξ ≥ 0.

(P.3) p′(ξ ) < λ1 on R.

Example 1.1 A simple example of the nonlinear term p(ξ ) is given by the formula

p(ξ ) =

⎧⎪⎪⎨
⎪⎪⎩

γ
(

ξ + 1
2ξ − 5

4

)
for ξ > 1,

γ
4 ξ 2 for −1 ≤ ξ ≤ 1,

γ
(
−ξ − 1

2ξ − 5
4

)
for ξ < −1,

where 0 < γ < λ1. This function p(ξ ) satisfies condition (P.2) with b = 0.

We remark that condition (P.2) implies the asymptotically linear nonlinearity of
p(ξ ), while condition (P.3) guarantees that the range {p′(ξ ) : ξ ∈ R} of p′ does not
contain the eigenvalues λk of the operator A.

The next existence and uniqueness theorem for problem (1.3) is a generalization
of Ambrosetti–Prodi [4, Chapter 3, Theorem 1.13] to the degenerate case:

Theorem 1.1 Assume that p(ξ ) satisfies conditions (P.1) through (P.3). Then the
semilinear elliptic boundary value problem (1.3) has a unique solution u ∈C2+α(Ω )
for any function h ∈Cα(Ω).

Remark 1.1 Hammerstein [11] proved Theorem 1.1 in the Dirichlet case ([11, Satz
6]).

Secondly, we impose the following four conditions (Q.1) through (Q.4) on the
nonlinear term p(ξ ):

(Q.1) p(ξ ) = aξ + q(ξ ) on R.
(Q.2) a is a real constant such that a �= λk for all k = 1, 2, . . ..
(Q.3) q ∈C1+α(R) with 0 < α < 1 and is bounded on R.
(Q.4) Either p′(ξ ) = a + q′(ξ ) < λ1 on R or λk < p′(ξ ) = a + q′(ξ ) < λk+1 on R for

some k.

Example 1.2 A simple example of the nonlinear term q(ξ ) is given by the formula

q(ξ ) = (λ1 −a)
ξ

1 + ξ 2 .

This function q(ξ ) satisfies the condition that a + q′(ξ ) < λ1 on R.

We remark that conditions (Q.1), (Q.2) and (Q.3) imply that p(ξ ) is a bounded
nonlinear perturbation of a linear invertible operator (cf. [16, Subsection 6.3.2]). On
the other hand, condition (Q.4) implies that the range {p′(ξ ) : ξ ∈ R} of p′ = a + q′
does not contain the eigenvalues λk of the operator A.

The next existence and uniqueness theorem for problem (1.3) is a generalization
of Ambrosetti–Prodi [4, Chapter 4, Theorem 1.4] to the degenerate case:
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Theorem 1.2 Assume that p(ξ ) satisfies conditions (Q.1) through (Q.4). Then prob-
lem (1.3) has a unique solution u ∈C2+α(Ω ) for any h ∈Cα (Ω).

Remark 1.2 Dolph [10] and Castro–Lazer [6] proved Theorem 1.2 in the Dirichlet
case ([10, Theorem 3.1]; [6, Theorem D]). On the other hand, Ambrosetti–Prodi [3]
considered the case where the range of p′ contains only the first eigenvalue λ1 of
the Dirichlet problem, and studied problem (1.3) in the framework of singularity
theory in Banach spaces ([22]). They characterized completely the solution structure
of problem (1.3) ([3, Theorem 3.1], [4, Chapter 4, Theorem 2.4]; see also [5, Theorem
3]). Their result is generalized to the degenerate case by Taira ([19, Theorem 1.1]).

Thirdly, we replace conditions (Q.3) and (Q.4) by a weaker condition

(Q.5) q(ξ ) is bounded and Lipschitz continuous on R.

Example 1.3 A simple example of the nonlinear term q(ξ ) is given by the formula

q(ξ ) =

⎧⎪⎪⎨
⎪⎪⎩

a
(

1
2ξ −1

)
for ξ > 1,

− a
2 ξ for −1 ≤ ξ ≤ 1,

a
(

1
2ξ + 1

)
for ξ < −1,

where a is a real constant.

The next existence theorem for problem (1.3) is a generalization of Ambrosetti–
Prodi [4, Chapter 4, Theorem 1.1] to the degenerate case:

Theorem 1.3 Assume that p(ξ ) satisfies conditions (Q.1), (Q.2) and (Q.5). Then
problem (1.3) is solvable. More precisely, problem (1.3) has a solution u ∈C2+α(Ω )
for any h ∈Cα(Ω).

The rest of this paper is organized as follows. Section 2 deals with local and
global inversions of mappings between Banach spaces which go back to Hadamard
in the finite dimensional case and to Cacciopoli and Lévy for general Banach spaces
(Theorem 2.2). In Section 3 we summarize the basic facts about the Leray–Schauder
degree introduced by Leray–Schauder [13] in the study of nonlinear partial differen-
tial equations. The non-triviality of the degree guarantees the existence of a solution
of nonlinear equations (Theorem 3.1). In Section 4 we prove Theorem 1.1, by using
global inversion theorems, just as in Ambrosetti–Prodi [4, Theorem 1.13]. To do this,
we have only to verify all the conditions of Theorem 2.2. Our proof of Theorem 1.1
is based on the variational approach developed in Taira [18] and [19] (cf. [8]). Sim-
ilarly, Section 5 is devoted to the proof of Theorem 1.2. The proof is based on the
local inversion theorem and the global inversion theorem (see Propositions 5.1 and
5.3). In the final Section 6, by making use of the Leray–Schauder topological degree
we prove Theorem 1.3 (Theorem 6.1).
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2 Local and global inversion theorems

This section deals with local and global inversions of mappings between Banach
spaces which go back to Hadamard in the finite dimensional case and to Cacciopoli
and Lévy for general Banach spaces. The presentation here is taken from Ambrosetti–
Prodi [4] and Nirenberg [15] (see also [9]).

2.1 Local inversion theorem

Let X , Y be Banach spaces and let F : X → Y be a C1 map. Namely, the map F is
differentiable in X and its Fréchet derivative DF is continuous as a map of X into the
Banach space B(X ,Y ) of bounded (continuous) linear operators from X into Y .

A continuous map F : X → Y is said to be locally invertible at a point u∗ of X if
there exist an open neighborhood U of u∗, an open neighborhood V of F(u∗) and a
continuous map G : V →U such that{

G(F(u)) = u for all u ∈U ,

F(G(v)) = v for all v ∈V .

The map G is called the local inverse of F , and will be denoted by F−1.
The local inversion theorem reads as follows (see [4, Chapter 2, Theorem 1.2]):

Theorem 2.1 Let F : X → Y be a C1 map. If the Fréchet derivative DF(u∗) : X → Y
is continuous and invertible at a point u∗ ∈ X, then F is locally invertible at u∗ with
C1 inverse F−1.

2.2 Global inversion theorem

Let M, N be metric spaces and let F : M → N be a continuous map. The map F : M →
N is said to be proper if the preimage F−1(K) is compact in M for every compact set
K in N. We remark that if F is proper, then it maps closed sets in M into closed sets
in N.

A topological space T is said to be simply connected if it is arcwise connected
and if every closed path σ in T is homotopic to a constant. Namely, for any given
map σ ∈C([0,1],T ) with σ(0) = σ(1) there exist a map h ∈C([0,1]× [0,1],T) and
a point v ∈ T such that ⎧⎪⎨

⎪⎩
h(s,0) = σ(s) for 0 ≤ s ≤ 1,

h(s,1) = v for 0 ≤ s ≤ 1,

h(0,t) = h(1,t) for 0 ≤ t ≤ 1.

Now we are in position to state the global inversion theorem (see [4, Chapter 3,
Theorem 1.8]):

Theorem 2.2 Let M be an arcwise connected metric space and let N be a simply con-
nected metric space. If a continuous map F : M → N is proper and locally invertible
on all of M, then F is a homeomorphism of M onto N.
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3 The Leray–Schauder degree

The Leray–Schauder degree is an extension of the Brouwer degree to mappings de-
fined on an infinite dimensional real Banach space. The Brouwer fixed-point theorem
asserts that a continuous map f of a closed, bounded convex set K ⊂ Rn into itself
has a fixed point. This is no longer true in infinite dimensions. In infinite-dimensional
spaces, we must require more of f than mere continuity (see [15], [7], [23]).

Let X be a real Banach space and let Ω be a bounded, open subset of X with
boundary ∂Ω . A continuous map f : Ω → X is said to be compact if it maps bounded
sets in Ω into relatively compact sets of X .

The Leray–Schauder degree deg( f ,Ω , p) of a compact perturbation f = I−K of
the identity map I at a point p ∈ X and relative to Ω can be defined by an analogue
of the Galerkin approximation procedures, by assuming that

f (x) �= p on ∂Ω .

Similar to the Brouwer degree, the Leray–Schauder degree enjoys some basic
properties:

(I) Normalization: If I : X → X is the identity map, then we have the assertion

deg(I,Ω , p) =

{
1 if p ∈ Ω ,

0 if p �∈ Ω .

(II) Homotopy Invariance: Let Ω be a bounded open set in X . If K : Ω × [0,1] → X
is compact and if a point p ∈ X satisfies the condition

x−K(x,t) �= p for all x ∈ ∂Ω and 0 ≤ t ≤ 1,

then it follows that deg(I −K(·,t),Ω , p) is independent of t.
(III) Translation Invariance: For each point p ∈ X , we have the formula

deg(I −K,Ω , p) = deg(I−K − p,Ω ,0).

(IV) Domain Additivity: If Ω1 and Ω2 are two open subsets in Ω such that Ω1∩Ω2 = /0
and satisfy the condition

x−Kx �= p for all x ∈ Ω \ (Ω1 ∪Ω2),

then we have the formula

deg(I −K,Ω , p) = deg(I−K,Ω1, p)+ deg(I−K,Ω2, p).

The next theorem is a generalization of Kronecker’s existence theorem for the
Brouwer degree (see [7, Section 3.4]):

Theorem 3.1 Let Ω be a bounded open subset of a real Banach space X and let
K : Ω → X be compact. If p0 �∈ (I −K)(∂Ω) and deg(I −K,Ω , p0) �= 0, then there
exists a point x0 ∈ Ω such that (I−K)x0 = p0.
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4 Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1 which is inspired by Ambro-
setti–Prodi [4, Theorem 1.13]. The crucial point in the proof is how to verify all the
conditions of the global inversion theorem (Theorem 2.2). The proof is divided into
three steps.

Step 1: We let

X = C2+α
B (Ω) =

{
u ∈C2+α(Ω ) : Bu = a(x′)

∂u
∂ν

+ b(x′)u = 0 on ∂Ω
}

,

Y = Cα(Ω ),

and introduce a nonlinear map
F : X −→ Y

by the formula
F(u) = Au− p(u) for every u ∈ X .

Then it is easy to verify the following two assertions:

(1) DF(u)v = (A− p′(u))v for every v ∈ X .
(2) F ∈C1(X ,Y ).

First, the next proposition verifies the local invertibility of F :

Proposition 4.1 The mapping F is locally invertible on all of X.

Proof The proof is based on the local inversion theorem (Theorem 2.1).
(i) First, we prove the Fredholm alternative theorem for the Fréchet derivative

DF(u) at a point u ∈ X :

Lemma 4.1 The index of DF(u) : X → Y is equal to zero:

indDF(u) = dimN(DF(u))− codimR(DF(u)) = 0.

Proof If we associate with the homogeneous boundary value problem{
Av = f in Ω ,

Bv = 0 on ∂Ω

a continuous linear operator A by the formula

A = A : X −→ Y,

then it follows from an application of [17, Theorem 9.1] with ϕ := 0 that the operator
A is a Fredholm operator with index zero:

indA = dimN(A )− codimR(A ) = 0. (4.1)

Moreover, if we let
P(u)v = p′(u)v for every v ∈ X ,
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then it follows from an application of the Ascoli–Arzelà theorem that the operator

P(u) : C2+α(Ω) −→Cα(Ω)

is compact. Therefore, we find that the Fréchet derivative

DF(u) = A −P(u) : X −→ Y

is a Fredholm operator with index zero, since we have, by assertion (4.1),

indDF(u) = ind(A ) = 0.

The proof of Lemma 4.1 is complete.

(ii) By virtue of Lemma 4.1, it is easy to see that the Fréchet derivative DF(u)
at a point u ∈ X is bijective if and only if DF(u) is injective. Namely, we find that
DF(u) is invertible if and only if the linearized eigenvalue problem with the weight
p′(u) {

Av = p′(u)v in Ω ,

Bv = 0 on ∂Ω
(4.2)

has only the trivial solution. However, we have, by condition (P.3),

p′(u(x)) < λ1 for all x ∈ Ω ,

and so, by the comparison property ([19, Corollary 3.6]),

λ1(p′(u)) > 1.

This proves that problem (4.2) has only the trivial solution, since 1 is not an eigen-
value of problem (4.2).

(iii) Therefore, we can apply the local inversion theorem (Theorem 2.1) to obtain
Proposition 4.1.

The proof of Proposition 4.1 is complete.

Step 2: The next proposition is an essential step in the proof of Theorem 1.1:

Proposition 4.2 The mapping F : X → Y is proper.

Proof The proof is divided into three steps.
Step 2-1: Assume that {hn} is an arbitrary bounded sequence in Y such that

F(un) = hn with un ∈ X , that is,{
Aun = p(un)+ hn in Ω ,

Bun = 0 on ∂Ω .
(4.3)

First, we show that the sequence {un} is bounded from below in the space C(Ω).
More precisely, we have the following:

Lemma 4.2 There exists a positive constant c1 such that

un(x) ≥−c1 on Ω . (4.4)
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Proof We consider the following regular (non-degenerate) Robin eigenvalue prob-
lem: ⎧⎨

⎩
Av = ν v in Ω ,
∂v
∂ν

+
(

b(x′)
a(x′)+ b(x′)

)
v = 0 on ∂Ω .

(4.5)

Since we have, by conditions (H.1) and (H.2),

b(x′)
a(x′)+ b(x′)

�≡ 0 on ∂Ω ,

it follows from an application of [18, Theorem 5.1] with

a(x′) := 1,

b(x′) :=
b(x′)

a(x′)+ b(x′)

that the first eigenvalue ν1 of problem (4.5) is positive and algebraically simple, and
further that the corresponding eigenfunction ψ1(x) may be chosen to be strictly pos-
itive on Ω . Namely, we have the assertions⎧⎪⎪⎨

⎪⎪⎩
Aψ1 = ν1 ψ1 in Ω ,

ψ1 > 0 on Ω ,
∂ψ1

∂ν
+
(

b(x′)
a(x′)+ b(x′)

)
ψ1 = 0 on ∂Ω .

(4.6)

Since the sequence {hn} is bounded in Y = Cα(Ω ), we can find a positive constant
M such that

‖hn‖C(Ω) ≤ M. (4.7)

If we define a positive constant C by the formula

C =
2M

ν1 minΩ ψ1
,

then we have, by equations (4.3) and (4.6) and condition (P.1),

A(un +Cψ1) = p(un)+ hn +Cν1ψ1

≥ hn +Cν1ψ1 ≥ hn +Cν1 min
Ω

ψ1

≥ −M +Cν1 min
Ω

ψ1 = M

> 0 in Ω .

Moreover, we have, by equations (4.3) and (4.6),

B(un +Cψ1) = CBψ1 = C
(

a(x′)
∂ψ1

∂ν
+ b(x′)ψ1

)

= C
(

b(x′)2

a(x′)+ b(x′)

)
ψ1
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≥ 0 on ∂Ω .

Hence it follows that the functions un(x)+Cψ1(x) satisfy the conditions{
A(un +Cψ1) > 0 in Ω ,

B(un +Cψ1) ≥ 0 on ∂Ω .

Therefore, by applying the maximum principle [18, Theorem 3.7] we obtain that

un(x)+Cψ1(x) ≥ 0 on Ω ,

so that
un(x) ≥−Cψ1(x) ≥−C max

Ω
ψ1 on Ω .

This proves the desired estimate (4.4) with

c1 = C max
Ω

ψ1 =
2M maxΩ ψ1

ν1 minΩ ψ1
.

The proof of Lemma 4.2 is complete.

Step 2-2: Secondly, we show that the sequence {un} is bounded in the space
C(Ω). More precisely, we have the following:

Lemma 4.3 There exists a positive constant c2 such that

‖un‖C(Ω) ≤ c2. (4.8)

Proof Assume, to the contrary, that

‖un‖C(Ω ) −→ ∞ as n → ∞ (4.9)

Then, by letting

zn(x) =
un(x)

‖un‖C(Ω )
for all x ∈ Ω ,

we obtain from problem (4.3) that⎧⎪⎨
⎪⎩

Azn =
p(un)

‖un‖C(Ω )
+

hn

‖un‖C(Ω)
in Ω ,

Bzn = 0 on ∂Ω .

(4.10)

However, by condition (P.2) we can find a constant b1 such that

p(ξ ) ≤ γ ξ + b1 for all ξ ≥−c1.

Hence we have, by inequality (4.4),

p(un(x)) ≤ γ un(x)+ b1 for all x ∈ Ω , (4.11)

and so
p(un(x))
‖un‖C(Ω)

≤ γ zn(x)+
b1

‖un‖C(Ω )
for all x ∈ Ω . (4.12)
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Since ‖zn‖C(Ω) = 1, it follows from inequality (4.12) that the sequence

p(un)
‖un‖C(Ω)

is bounded in the space C(Ω ). We recall that the sequence {hn} is bounded in the
space C(Ω ).

Therefore, by applying [17, Theorem 9.1] with ϕ := 0 for p > N/(1−α) we
obtain from problem (4.10) that the sequence

zn = A−1

(
p(un)

‖un‖C(Ω)
+

hn

‖un‖C(Ω)

)

is bounded in the space C1+α(Ω ). Indeed, it suffices to note that we have, by the
Sobolev imbedding theorem (see [1, Theorem 4.12, Part II]),

W 2,p(Ω) ⊂C2−N/p(Ω ) ⊂C1+α(Ω),

for p > N/(1−α). Namely, we have, for some positive constant C,

‖zn‖C1+α (Ω) ≤C.

By the Ascoli–Arzelà theorem, we may assume that the sequence {zn} itself con-
verges to some function z∗ in the space C1(Ω) as n → ∞:

zn −→ z∗ in C1(Ω) as n → ∞. (4.13)

We remark that the limit function z∗(x) satisfies the condition

‖z∗‖C(Ω) = lim
n→∞

‖zn‖C(Ω) = 1, (4.14)

and also the boundary condition

Bz∗ = lim
n→∞

Bzn = 0 on ∂Ω .

Moreover, we have the assertion

z∗(x) ≥ 0 in Ω . (4.15)

Indeed, if z∗(x0) < 0 for some point x0 ∈ Ω , then it follows from condition (4.9) that

un(x0) = z∗(x0)‖un‖C(Ω) −→−∞ as n → ∞.

This contradicts inequality (4.4).
On the other hand, by multiplying the equation

Azn =
p(un)

‖un‖C(Ω)
+

hn

‖un‖C(Ω)
in Ω
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by the eigenfunction φ1(x) and integrating over Ω we obtain from the selfadjointness
of A and inequality (4.12) that

λ1

∫
Ω

zn(x) ·φ1(x)dx =
∫

Ω
zn(x) ·Aφ1(x)dx (4.16)

=
∫

Ω
Azn(x) ·φ1(x)dx

=
∫

Ω
Azn(x) ·φ1(x)dx

=
∫

Ω

p(un)
‖un‖C(Ω)

φ1(x)dx +
∫

Ω

hn(x)φ1(x)
‖un‖C(Ω)

dx

≤ γ
∫

Ω
zn(x)φ1(x)dx +

∫
Ω

(b1 + hn(x))φ1(x)
‖un‖C(Ω)

dx.

Hence, by letting n → ∞ in inequality (4.16) we obtain from conditions (4.7) and
(4.9) and assertion (4.13) that

λ1

∫
Ω

z∗(x)φ1(x)dx ≤ γ
∫

Ω
z∗(x)φ1(x)dx. (4.17)

However, we have, by assertions (4.14) and (4.15),∫
Ω

z∗(x)φ1(x)dx > 0. (4.18)

Therefore, it follows from an application of assertions (4.17) and (4.18) that

λ1 ≤ γ.

This contradicts the condition that γ < λ1 in condition (P.2).
Summing up, we have proved the desired assertion (4.8).
The proof of Lemma 4.3 is complete.

Step 2-3: Thirdly, we show that if {un} is a sequence in X = C2+α
B (Ω ) such that

the sequence
hn = F(un) = Aun − p(un)

converges to some function h in Y = Cα(Ω ) as n → ∞, then the sequence {un} con-
tains a convergent subsequence in X . This proves that the mapping F : X → Y is
proper.

Since the sequence {un} is bounded in C(Ω ) as is shown in Lemma 4.3, it follows
that the sequence {p(un)+ hn} is bounded in the space C(Ω ). Indeed, we have, by
inequalities (4.11) and (4.8),

‖p(un)‖C(Ω ) ≤ γ ‖un‖C(Ω) + b1 ≤ γ c2 + b1.

Hence, by applying [17, Theorem 9.1] with ϕ := 0 for p > N/(1−α) we obtain from
problem (4.3) that the sequence

un = A−1 (p(un)+ hn) (4.19)
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is bounded in the space C1+α(Ω). Namely, we have, for some positive constant C′,

‖un‖C1+α (Ω) ≤C′. (4.20)

Moreover, since p(ξ ) is of class C1, it follows from inequality (4.20) that the se-
quence {p(un) + hn} is bounded in Cα(Ω ). Therefore, by applying [17, Theorem
9.1] with ϕ := 0 we obtain from equation (4.19) that the sequence {un} is bounded
in C2+α(Ω). By the Ascoli–Arzelà theorem, we may assume that the sequence {un}
itself converges to some function u∗ in the space C2(Ω) as n → ∞:

un −→ u∗ in C2(Ω) as n → ∞. (4.21)

We remark that the limit function u∗(x) satisfies the boundary condition

Bu∗ = lim
n→∞

Bun = 0 on ∂Ω .

Moreover, since we have the assertion

Aun = p(un)+ hn −→ p(u∗)+ h in Cα(Ω) as n → ∞,

it follows from an application of [17, Theorem 9.1] with ϕ := 0 that

un = A−1(p(un)+ hn) −→ A−1(p(u∗)+ h) in X = C2+α
B (Ω) as n → ∞.

In view of assertion (4.21), this proves that

u∗ = A−1(p(u∗)+ h) ∈ X ,

and further that
un −→ u∗ in X as n → ∞.

Now the proof of Proposition 4.2 is complete.

Step 3: Finally, by virtue of Propositions 4.1 and 4.2 we can apply the global
inversion theorem (Theorem 2.2) to obtain Theorem 1.1.

The proof of Theorem 1.1 is complete. ��

5 Proof of Theorem 1.2

This section is devoted to the proof of Theorem 1.2. The proof is based on the global
inversion theorem (Theorem 2.2), and is divided into four steps, just as in Section 4.

Step 1: We let

X = C2+α
B (Ω) =

{
u ∈C2+α(Ω ) : Bu = a(x′)

∂u
∂ν

+ b(x′)u = 0 on ∂Ω
}

,

Y = Cα(Ω ),

and introduce a nonlinear map
F : X −→ Y

by the formula

F(u) = Au− p(u) = Au−au−q(u) for every u ∈ X .

Then it is easy to verify the following two assertions:
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(1) DF(u)v = (A− p′(u))v = (A−a−q′(u))v for every v ∈ X .
(2) F ∈C1(X ,Y ).

First, the next proposition verifies the local invertibility of F :

Proposition 5.1 The mapping F is locally invertible on all of X.

Proof The proof is based on the local inversion theorem (Theorem 2.1).
(i) First, we prove the Fredholm alternative theorem for the Fréchet derivative

DF(u) at a point u ∈ X :

Lemma 5.1 The index of DF(u) : X → Y is equal to zero:

indDF(u) = dimN(DF(u))− codimR(DF(u)) = 0.

Proof If we associate with the homogeneous boundary value problem

{
Av = f in Ω ,

Bv = 0 on ∂Ω

a continuous linear operator A by the formula

A = A : X −→ Y,

then it follows from an application of [17, Theorem 9.1] with ϕ := 0 that the operator
A is a Fredholm operator with index zero:

indA = dimN(A )− codimR(A ) = 0. (5.1)

Moreover, if we let

P(u)v = p′(u)v = av + q′(u)v for every v ∈ X ,

then it follows from an application of the Ascoli–Arzelà theorem that the operator

P(u) : C2+α(Ω) −→Cα(Ω)

is compact. Therefore, we find that the Fréchet derivative

DF(u) = A −P(u) : X −→ Y

is a Fredholm operator with index zero, since we have, by assertion (5.1),

indDF(u) = indA = 0.

The proof of Lemma 5.1 is complete.
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(ii) By virtue of Lemma 5.1, it is easy to see that the Fréchet derivative DF(u)
at a point u ∈ X is bijective if and only if DF(u) is injective. Namely, we find that
DF(u) is invertible if and only if the linearized eigenvalue problem{

Av = p′(u)v = av + q′(u)v in Ω ,

Bv = 0 on ∂Ω
(5.2)

has only the trivial solution.
If we let

m(x) = p′(u)v = a + q′(u(x)) for all x ∈ Ω ,

then it follows from condition (Q.3) that

m ∈Cα(Ω ),

and further that problem (5.2) can be written as the eigenvalue problem with the
weight m(x) {

Av = m(x)v in Ω ,

Bv = 0 on ∂Ω .
(5.3)

However, we have, by condition (Q.4),

m(x) < λ1 for all x ∈ Ω ,

or
λk < m(x) < λk+1 for all x ∈ Ω .

By using the comparison property ([19, Corollary 3.6]), we obtain that

λ1(m) > 1

or
λk(m) < 1 < λk+1(m).

This proves that problem (5.2) has only the trivial solution, since 1 is not an eigen-
value of problem (5.3).

(iii) Therefore, we can apply the local inversion theorem (Theorem 2.1) to obtain
Proposition 5.1.

The proof of Proposition 5.1 is complete.

Step 2: The next proposition is an essential step in the proof of Theorem 1.2:

Proposition 5.2 Let 1 < p < ∞. Assume that condition (Q.2) is satisfied. Then there
exists a positive constant C(p,a) depending on p and a such that

‖u‖W2,p(Ω) ≤C(p,a)‖(A−a)u‖Lp(Ω) for all u ∈W 2,p
B (Ω). (5.4)

Here
W 2,p

B (Ω) =
{

u ∈W 2,p(Ω) : Bu = 0 on ∂Ω
}

.
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Proof Assume, to the contrary, that, for every n ∈ N there is a function un ∈W 2,p
B (Ω)

such that
‖un‖W2,p(Ω) > n‖(A−a)un‖Lp(Ω) . (5.5)

If we let
vn =

un

‖un‖W 2,p(Ω)
∈W 2,p

B (Ω),

then we obtain from equation (5.5) that

‖vn‖W2,p(Ω) = 1, (5.6)

‖(A−a)vn‖Lp(Ω) <
1
n
. (5.7)

However, it follows from an application of the Rellich–Kondrachov theorem (see
[1, Theorem 6.3]) that the injection W 2,p(Ω) → W 1,p(Ω) is compact. By assertion
(5.6), we may assume that the sequence {vn} itself converges to some function v∗ in
W 1,p(Ω) as n → ∞:

vn −→ v∗ in W 1,p(Ω) as n → ∞. (5.8)

We remark that the limit function v∗(x) satisfies the boundary condition

Bv∗ = lim
n→∞

Bvn = 0 on ∂Ω . (5.9)

Furthermore, it follows from inequality (5.7) that

(A−a)vn −→ 0 in Lp(Ω) as n → ∞.

Hence we have, by assertion (5.8),

(A−a)v∗ = lim
n→∞

(A−a)vn = 0 in D ′(Ω). (5.10)

By combining assertions (5.9) and (5.10), we obtain that⎧⎪⎨
⎪⎩

v∗ ∈W 1,p(Ω),
(A−a)v∗ = 0 in Ω ,

Bv∗ = 0 on ∂Ω .

(5.11)

Hence, it follows from an application of the regularity theorem for problem (5.11)
([17, Theorem 8.2]) that

v∗ ∈W 2,p(Ω).

On the other hand, by applying [17, Theorem 9.1] with ϕ := 0 we can find a
positive constant C such that

‖u‖W2,p(Ω) ≤C‖Au‖Lp(Ω) for all u ∈W 2,p
B (Ω).

By using this inequality with u := vn − v∗, we obtain from assertions (5.7), (5.8) and
(5.11) that

‖vn − v∗‖W2,p(Ω)
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≤ C‖A(vn − v∗)‖Lp(Ω)

= C‖(A−a)(vn − v∗)+ a(vn − v∗)‖Lp(Ω)

≤ C‖(A−a)vn‖Lp(Ω) +C‖(A−a)v∗‖Lp(Ω) +C|a|‖vn − v∗‖Lp(Ω)

≤ C
n

+C|a|‖vn − v∗‖Lp(Ω) −→ 0 as n → ∞.

Hence we have, by assertion (5.6),

‖v∗‖W2,p(Ω) = lim
n→∞

‖vn‖W 2,p(Ω) = 1.

In particular, it follows that
v∗(x) �≡ 0 in Ω .

Summing up, we have proved that the non-trivial function v∗ ∈W 2,p(Ω) satisfies
the conditions {

Av∗ = av∗ in Ω ,

Bv∗ = 0 on ∂Ω .

However, this contradicts condition (Q.2) that the constant a does not coincide with
the eigenvalues λk of the operator A.

The proof of Proposition 5.2 is complete.

Step 3: By using Proposition 5.2, we can prove the following:

Proposition 5.3 The mapping F : X → Y is proper.

Proof The proof is divided into two steps.
Step 3-1: Assume that {hn} is an arbitrary bounded sequence in Y such that

F(un) = hn with un ∈ X , that is,{
Aun −aun −q(un) = hn in Ω ,

Bun = 0 on ∂Ω .
(5.12)

First, we show that the sequence {un} is bounded in the space Y = Cα(Ω ). Namely,
we have the following:

Lemma 5.2 There exists a positive constant c1 such that

‖un‖Y ≤ c1. (5.13)

Proof Assume, to the contrary, that

‖un‖Y −→ ∞ as n → ∞. (5.14)

If we let

zn(x) =
un(x)
‖un‖Y

for all x ∈ Ω ,
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then we obtain from problem (5.12) that⎧⎨
⎩(A−a)zn =

q(un)
‖un‖Y

+
hn

‖un‖Y
in Ω ,

Bzn = 0 on ∂Ω .

However, it follows from condition (Q.3) that the sequence

Un =
q(un)
‖un‖Y

+
hn

‖un‖Y

is bounded in the space C(Ω), since the functions q(un(x)) and hn(x) are bounded in
C(Ω). More precisely, we have, by assertion (5.14),

Un −→ 0 in C(Ω ) as n → ∞. (5.15)

By applying inequality (5.4) with u := zn for p > N/(1−α), we obtain from the
equation

(A−a)zn = Un in Ω (5.16)

that the sequence {zn} is bounded in the space C1+α(Ω ). Namely, we have, for some
positive constant C,

‖zn‖C1+α (Ω) ≤C.

Indeed, it follows from an application of the Sobolev imbedding theorem (see [1,
Theorem 4.12, Part II]) that we have the imbedding

W 2,p(Ω) ⊂C2−N/p(Ω ) ⊂C1+α(Ω),

for p > N/(1−α).
Hence, by the Ascoli–Arzelà theorem we may assume that the sequence {zn}

itself converges to some function z∗ in the space C1(Ω ) as n → ∞:

zn −→ z∗ in C1(Ω) as n → ∞. (5.17)

We remark that the limit function z∗(x) satisfies the condition

‖z∗‖Y = lim
n→∞

‖zn‖Y = 1,

and also the boundary condition

Bz∗ = lim
n→∞

Bzn = 0 on ∂Ω . (5.18)

In particular, it follows that z∗(x) �≡ 0 in Ω .
Therefore, by passing to the limit in equation (5.16) we obtain from assertions

(5.15), (5.17) and (5.18) that{
(A−a)z∗ = 0 in Ω ,

Bz∗ = 0 on ∂Ω .
(5.19)
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Moreover, it follows from an application of the regularity theorem for problem (5.19)
([17, Theorem 8.2]) that

z∗ ∈C2+α(Ω ).
Summing up, we have proved that the non-trivial function z∗ ∈C2+α(Ω) satisfies

the conditions {
Az∗ = az∗ in Ω ,

Bz∗ = 0 on ∂Ω .

However, this contradicts condition (Q.2) that the constant a does not coincide with
the eigenvalues λk of the operator A.

The proof of Lemma 5.2 is complete.

Step 3-2: Secondly, we show that if {un} is a sequence in X such that the sequence

F(un) = Aun −aun −q(un) = hn

converges to some function h in X as n → ∞, then the sequence {un} contains a
convergent subsequence in X . This proves that the mapping F : X → Y is proper.

By inequality (5.13), it is easy to verify that the sequence

θn = aun + q(un)+ hn

is bounded in the space Y = Cα(Ω). Hence, by applying [17, Theorem 9.1] with
ϕ := 0 we obtain from problem (5.12) that the sequence

un = A−1 (θn)

is bounded in the space C2+α(Ω). Namely, we have, for some positive constant C′,

‖un‖C2+α (Ω) ≤C′.

By the Ascoli–Arzelà theorem, we may assume that the sequence {un} itself con-
verges to some function u∗ in the space C2(Ω ) as n → ∞:

un −→ u∗ in C2(Ω) as n → ∞. (5.20)

We remark that the limit function u∗(x) satisfies the boundary condition

Bu∗ = lim
n→∞

Bun = 0 on ∂Ω .

Moreover, since we have the assertion

Aun = θn = aun + q(un)+ hn −→ au∗ + q(u∗)+ h in Y = Cα(Ω) as n → ∞,

it follows from an application of [17, Theorem 9.1] with ϕ := 0 that

un = A−1(θn) = A−1(aun + q(un)+ hn)
−→ A−1(au∗+ q(u∗)+ h) in X = C2+α

B (Ω) as n → ∞.

In view of assertion (5.20), this proves that

u∗ = A−1(au∗+ q(u∗)+ h)∈ X ,

and further that
un −→ u∗ in X as n → ∞.

Now the proof of Proposition 5.3 is complete.
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Step 4: Finally, by virtue of Propositions 5.1 and 5.3 we can apply the global
inversion theorem (Theorem 2.2) to obtain Theorem 1.2.

The proof of Theorem 1.2 is complete. ��

6 Proof of Theorem 1.3

This section is devoted to the proof of Theorem 1.3. The next existence theorem
proves Theorem 1.3:

Theorem 6.1 Assume that the nonlinear term q(ξ ) satisfies condition (Q.5). Then
the semilinear boundary value problem⎧⎨

⎩
Au−au−q(u)= h in Ω ,

Bu = a(x′)
∂u
∂ν

+ b(x′)u = 0 on ∂Ω
(6.1)

has a solution u ∈C2+α(Ω) for any h ∈Cα(Ω ).

Proof The proof of Theorem 6.1 is based on Theorem 3.1, and is divided into four
steps.

Step 1: First, we let

X = C2+α
B (Ω ) =

{
u ∈C2+α(Ω ) : Bu = 0 on ∂Ω

}
,

Y = Cα(Ω).

Then we have the following:

Lemma 6.1 If u∈C2+α(Ω) is a solution of problem (6.1), then there exists a positive
constant c such that

‖u‖Y ≤ c.

Proof Assume, to the contrary, that, for every n ∈ N there is a function un ∈ X such
that {

Aun −aun −q(un) = h in Ω ,

Bun = 0 on ∂Ω ,
(6.2)

and that
‖un‖Y > n. (6.3)

If we let

zn(x) =
un(x)
‖un‖Y

∈ X ,

then we obtain from problem (6.2) that⎧⎨
⎩(A−a)zn =

q(un)
‖un‖Y

+
h

‖un‖Y
in Ω ,

Bzn = 0 on ∂Ω .
(6.4)
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However, since q(ξ ) is bounded on R, it follows from condition (6.3) that the se-
quence

Un =
q(un)
‖un‖Y

+
h

‖un‖Y

converges to zero in C(Ω) as n → ∞:

Un −→ 0 in C(Ω ) as n → ∞. (6.5)

Therefore, by applying inequality (5.4) with u := zn for p > N/(1−α) we obtain
from problem (6.4) that the sequence {zn} is bounded in C1+α(Ω). Hence, by the
Ascoli–Arzelà theorem we may assume that the sequence {zn} itself converges to
some function z∗ in the space C1(Ω) as n → ∞:

zn −→ z∗ in C1(Ω) as n → ∞. (6.6)

By passing to the limit in problem (6.4), we obtain from assertions (6.5) and (6.6)
that the limit function z∗(x) satisfies the conditions{

(A−a)z∗ = 0 in Ω ,

Bz∗ = 0 on ∂Ω ,
(6.7)

and also
‖z∗‖Y = lim

n→∞
‖zn‖Y = 1.

Furthermore, it follows from an application of the regularity theorem for problem
(6.7) ([17, Theorem 8.2]) that

z∗ ∈C2+α(Ω ).

Summing up, we have proved that the non-trivial function z∗ ∈C2+α(Ω) satisfies
the conditions {

Az∗ = az∗ in Ω ,

Bz∗ = 0 on ∂Ω .

However, this contradicts condition (Q.2) that the constant a does not coincide with
the eigenvalues λk of the operator A.

The proof of Lemma 6.1 is complete.

Step 2: Secondly, we consider the following family of semilinear elliptic bound-
ary value problems: {

Au−au− t q(u) = h in Ω ,

Bu = 0 on ∂Ω ,
(6.8)

where 0 ≤ t ≤ 1. We remark that problem (6.8) coincides with the original problem
(6.1) when t = 1.

It follows from an application of Proposition 5.2 that the inverse (−A + aI)−1

exists for a �= λk, k ≥ 1. Hence we can rewrite problem (6.8) in the operator equation
form

u− t(A−aI)−1(q(u)) = (A−aI)−1h in X . (6.9)
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If we let {
K(u,t) = t(A−aI)−1(q(u)) for all u ∈ X and 0 ≤ t ≤ 1,

g = (A−aI)−1h ∈ X ,

then we obtain that equation (6.9) is equivalent to the following operator equation:

u−K(u,t) = g in X .

The next proposition is an essential step in the proof of Theorem 6.1:

Proposition 6.1 The mapping

K : X × [0,1]−→ X

is compact.

Proof Assume that {(un,tn)} is an arbitrary bounded sequence in X × [0,1]. Then, by
the Ascoli–Arzelà theorem we may assume that the sequence {un} itself converges
to some function u∗ in the space C2(Ω) as n → ∞ and further that the sequence {tn}
itself converges to some point t∗ in [0,1] as n → ∞.

Since q(ξ ) is bounded and Lipschitz continuous on R, we have the following two
assertions:

(i) q(un) → q(u∗) in C(Ω ).
(ii) The sequence {q(un)−q(u∗)} is bounded in the space C0,1(Ω) of Lipschitz con-

tinuous functions on Ω .

However, it follows from an application of the Ascoli–Arzelà theorem that the injec-
tion C0,1(Ω ) →Cα(Ω) is compact for 0 < α < 1. Hence we find from assertions (i)
and (ii) that the sequence {q(un)−q(u∗)} accumulates only at 0 in the space Cα(Ω).
This proves that q(un) → q(u∗) in Y = Cα(Ω) as n → ∞.

On the other hand, by using [17, Theorem 9.1] with ϕ := 0 in the proof of Propo-
sition 5.2 we obtain that the inverse (A−aI)−1 : Y → X is bounded:

∥∥(A−aI)−1∥∥= sup
v∈Y
v�=0

‖(A−aI)−1v‖X

‖v‖Y
< ∞. (6.10)

Therefore, it follows that the sequence

K(un,tn) = tn(A−aI)−1(q(un))

converges to the function

K(u∗,t∗) = t∗(A−aI)−1(q(u∗))

in X as n → ∞.
Summing up, we have proved that the mapping K : X × [0,1]→ X is compact.
The proof of Proposition 6.1 is complete.

Step 3: Thirdly, we have the following:
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Proposition 6.2 For the function g = (A−aI)−1h ∈ X with h ∈ Y , the set

S = {u ∈ X : u−K(u,t) = g for some t ∈ [0,1]}
is bounded in X. Namely, there exists a positive constant M, independent of t, such
that

‖u‖X ≤ M for all u ∈ S. (6.11)

Proof By arguing just as in the proof of Lemma 6.1, we obtain that the set S is
bounded in Y . Namely, there exists a positive constant M0, independent of t, such
that

‖u‖Y ≤ M0 for all u ∈ S. (6.12)

On the other hand, since q(ξ ) is bounded and Lipschitz continuous on R, it is
easy to see that

‖q(u)‖Y ≤ sup
ξ∈R

|q(ξ )|+ L‖u‖Y , (6.13)

where L is a Lipschitz constant for the function q(ξ ).
Hence we have, by assertion (6.10) and inequalities (6.13) and (6.12),

‖K(u,t)‖X = t‖(A−aI)−1(q(u))‖X ≤ t‖(A−aI)−1‖ · ‖q(u)‖Y

≤ ‖(A−aI)−1‖
(

sup
ξ∈R

|q(ξ )|+ L‖u‖Y

)

≤ ‖(A−aI)−1‖
(

sup
ξ∈R

|q(ξ )|+ LM0

)
for all u ∈ S.

Therefore, we obtain the inequality

‖u‖X = ‖K(u,t)+ g‖X ≤ ‖K(u,t)‖X +‖g‖X

≤ ‖(A−aI)−1‖
(

sup
ξ∈R

|q(ξ )|+ LM0

)
+‖g‖X for all u ∈ S.

This proves the desired inequality (6.11) with

M = ‖(A−aI)−1‖
(

sup
ξ∈R

|q(ξ )|+ LM0

)
+‖g‖X .

The proof of Proposition 6.2 is complete.

Step 4: Finally, if we let

B(0,2M) = {u ∈ X : ‖u‖X < 2M},
then we obtain from Proposition 6.2 that

u−K(u,t) �= g for all ‖u‖X = 2M and 0 ≤ t ≤ 1. (6.14)
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By virtue of Proposition 6.1, it follows from the homotopy invariance and normaliza-
tion of the Leray–Schauder degree that

deg(I − (A−aI)−1q(·),B(0,2M),g) = deg(I−K(·,1),B(0,2M),g) (6.15)
= deg(I−K(·,0),B(0,2M),g)
= deg(I,B(0,2M),g)
= 1.

Therefore, by applying Theorem 3.1 with

X := C2+α(Ω), Ω := B(0,2M),

K := K(·,1) = (A−aI)−1q(·), p0 := g,

we obtain from assertions (6.14) and (6.15) that the operator equation

u− (A−aI)−1(q(u)) = g = (A−aI)−1h

has a solution u in the open ball B(0,2M) of X .
Summing up, we have proved that problem (6.1) has a solution u ∈C2+α(Ω) for

any h ∈Cα(Ω ).
Now the proof of Theorem 6.1 is complete. ��
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