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Dedicated to the memory of Professor Osamu MiyamuraAbstra
t. This paper is devoted to the study of semilinear degenerate elliptic

boundary value problems arising in combustion theory that obey a general Arrhenius

equation and a general Newton law of heat exchange. We prove that ignition and
extinction phenomena occur in the stable steady temperature profile at some critical

values of a dimensionless rate of heat production.

1. Introduction and main results

Let D be a bounded domain of Euclidean space RN , N ≥ 2, with smooth boundary
∂D; its closure D = D ∪ ∂D is an N -dimensional, compact smooth manifold with
boundary. We let

Au(x) = −
N
∑

i=1

∂

∂xi





N
∑

j=1

aij(x)
∂u

∂xj
(x)



+ c(x)u(x)

be a second-order, elliptic differential operator with real coefficients such that:

(1) aij(x) ∈ C∞(D) with aij(x) = aji(x) for all 1 ≤ i, j ≤ N , and there exists a
constant a0 > 0 such that

N
∑

i,j=1

aij(x)ξiξj ≥ a0|ξ|2, x ∈ D, ξ ∈ RN .

(2) c(x) ∈ C∞(D) and c(x) > 0 in D.

In this paper we consider the following semilinear elliptic boundary value problem
stimulated by a small fuel-loss steady-state model in combustion theory:











Au = λ(1 + εu)m exp
[

u
1+εu

]

in D,

Bu = a(x′)
∂u

∂ν

+ (1 − a(x′))u = 0 on ∂D.
(1.1)

Here:

(1) λ and ε are positive parameters.

Typeset by AMS-TEX

1
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(2) m is a positive numerical exponent with 0 ≤ m < 1.
(3) a(x′) ∈ C∞(∂D) and 0 ≤ a(x′) ≤ 1 on ∂D.
(4) ∂/∂ν is the conormal derivative associated with the operator A

∂

∂ν

=

N
∑

i,j=1

aij(x′)nj
∂

∂xi
,

where n = (n1, n2, . . . , nN ) is the unit exterior normal to the boundary ∂D.
The nonlinear term

f(t) := (1 + εt)m exp

[

t

1 + εt

]

describes the temperature dependence of reaction rate for exothermic reactions
obeying the Arrhenius equation in circumstances in which heat flow is purely con-
ductive, and the parameter ε is a dimensionless inverse measure of the Arrhenius
activation energy or a dimensionless ambient temperature. The exponent m is the
exponent of the temperature dependence of the pre-exponential factor in Arrhenius
expression; the two cases m = 0 and m = 1/2 correspond to the simple Arrhenius
rate law and the bimolecular rate law, respectively. The equation

Au = λ(1 + εu)m exp

[

u

1 + εu

]

= λf(u) in D

represents heat balance with reactant consumption ignored, where the function u is
a dimensionless temperature excess of a combustible material and the parameter λ,
called the Frank-Kamenetskii parameter , is a dimensionless rate of heat production.

On the other hand, the boundary condition

Bu = a(x′)
∂u

∂n
+ (1 − a(x′))u = 0 on ∂D

represents the exchange of heat at the surface of the reactant by Newtonian cool-
ing . Moreover, the boundary condition Bu is called the isothermal condition (or
Dirichlet condition) if a(x′) ≡ 0 on ∂D, and is called the adiabatic condition (or
Neumann condition) if a(x′) ≡ 1 on ∂D.

In a reacting material undergoing an exothermic reaction in which reactant con-
sumption is neglected, heat is being produced in accordance with Arrhenius rate
law and Newtonian cooling. Thermal explosions occur when the reactions produce
heat too rapidly for a stable balance between heat production and heat loss to
be preserved. In this paper we are concerned with the localization of the values
of a dimensionless heat evolution rate at which such critical phenomena as igni-
tion and extinction occur. For detailed studies of thermal explosions, the reader
might be referred to Aris [3], Bebernes–Eberly [4], Boddington–Gray–Wake [6] and
Warnatz–Maas–Dibble [24].

A function u(x) ∈ C2(D) is called a solution of problem (1.1) if it satisfies the
equation Au − λf(u) = 0 in D and the boundary condition Bu = 0 on ∂D. A
solution u(x) is said to be positive if it is positive everywhere in D. It should
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be emphasized that problem (1.1) becomes a degenerate boundary value prob-
lem from an analytical point of view. This is due to the fact that the so-called
Shapiro–Lopatinskii complementary condition is violated at the points x′ ∈ ∂D
where a(x′) = 0.

In the non-degenerate case or one-dimensional case, problem (1.1) with m =
0 (Arrhenius law) was studied by many authors (see Brown–Ibrahim–Shivaji [7],
Cohen [8], Cohen–Laetsch [9], Pao [15], Parter [16], Tam [22], Wiebers [25], [26]
and Williams–Leggett [27]). Recently, Wang [23] and Du [11] have discussed in
great detail the isothermal case (Dirichlet case) under general Arrhenius reaction
rate laws (see Remark 1.2 below).

This paper is devoted to the study of the existence of positive solutions of problem
(1.1), and is a continuation of the previous paper Taira–Umezu [21]. Our starting
point is the following existence theorem for problem (1.1) (cf. Wang [23, Corollary
1.3], Du [11, Theorem 3.5]):

Theorem 1.1. For each λ > 0, problem (1.1) has at least one positive solution
u(λ) ∈ C2(D). Furthermore, the solution u(λ) is unique if the parameter ε satisfies
the condition

ε ≥
(

1

1 +
√

1 −m

)2

. (1.2)

Remark 1.1. If φ(x) is a unique positive solution of the linear boundary value
problem

{

Aφ = 1 in D,

Bφ = 0 on ∂D,
(1.3)

then the solutions u(λ) satisfy the estimates

λφ(x) ≤ u(λ)(x) ≤ λCmφ(x) on D. (1.4)

Here Cm is a positive number that is the unique solution of the equation

Cm = (1 + λε‖φ‖∞Cm)
m
e1/ε. (1.5)

Rephrased, Theorem 1.1 asserts that if the activation energy is so low that the
parameter ε exceeds the value (1/(1+

√
1 −m))2, then only a smooth progression of

reaction rate with imposed ambient temperature can occur; such a reaction may be
very rapid but it is only accelerating and lacks the discontinuous change associated
with criticality and ignition (cf. Boddington–Gray–Robinson [5, Table 1]).

The purpose of the present paper is to study the case where the parameter ε
satisfies the condition

0 < ε <

(

1

1 +
√

1 −m

)2

. (1.6)

Our main result gives sufficient conditions for problem (1.1) to have three positive
solutions, which suggests that the bifurcation curve of problem (1.1) is S-shaped (see
Figure 2). First, to state our multiplicity theorem for problem (1.1) we introduce
a function

ν(t) :=
t

f(t)
=

t

(1 + εt)m exp [t/(1 + εt)]
, t ≥ 0.
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It is easy to see that if condition (1.6) is satisfied, then the function ν(t) has a
unique local maximum at t = t1(ε)

t1(ε) =
1 + (m− 2)ε−

√

m2ε2 + 2(m− 2)ε+ 1

2(1 −m)ε2
,

and has a unique local minimum at t = t2(ε)

t2(ε) =
1 + (m− 2)ε+

√

m2ε2 + 2(m− 2)ε+ 1

2(1 −m)ε2
.

The graph of the function ν(t) is shown in Figure 1.

0
t

t1(ε) t2(ε)

•

•

ν(t) =
t

f(t)

0 < ε < (1/(1 +
√

1 −m))2

Figure 1
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Now we can state our multiplicity theorem for problem (1.1) (cf. Wang [23,
Theorem 1.4], Du [11, Theorem 3.6]):

Theorem 1.3. Let 0 < ε < (1/(1 +
√

1 −m))2. There exists a constant β > 0,
independent of ε, such that if the parameter ε is so small that

ν(t2(ε))

β
<
ν(t1(ε))

‖φ‖∞
, (1.7)

then problem (1.1) has at least three distinct positive solutions u1(λ), u2(λ), u3(λ)
for all λ satisfying the condition

ν(t2(ε))

β
< λ <

ν(t1(ε))

‖φ‖∞
, (1.8)

where

‖φ‖∞ = max
x∈D

φ(x).
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It should be noticed that, as ε ↓ 0, the local maximum ν(t1(ε)) and the local
minimum ν(t2(ε)) behave respectively as follows:

ν(t1(ε)) ∼
1

(1 + ε)m
exp

[

− 1

1 + ε

]

,

ν(t2(ε)) ∼
1

(1 −m)ε2

(

1 −m

1 −m+ ε

)m

exp

[

− 1

ε+ (1 −m)ε2

]

.

This implies that condition (1.7) makes sense.
Theorem 1.3 is a generalization of Wiebers [25, Theorem 4.3] and [26, Theorem

3.1] to the degenerate case. The situation may be represented schematically by
Figure 2 (cf. Boddington–Gray–Robinson [5, Figure 1]).
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λ

0 < ε≪ (1/(1 +
√

1 −m))2

ν(t2(ε))
β

ν(t1(ε))
‖φ‖∞

Figure 2
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Remark 1.2. There are some recent developments related to problem (1.1) that
make the global bifurcation picture, Figure 2, clearer. If the domain D is a two-
dimensional ball and if A = −∆ with Dirichlet condition, then Du [11] proved that,
for ε sufficiently small, the global bifurcation curve is exactly S-shaped, with solu-
tions non-degenerate except those at the two turning points of the curve. Moreover,
he proved that if D is a ball of dimension between 3 and 9, then the global bifurca-
tion curve is more complicated than S-shaped. It should be noticed that the result
for two-dimensional balls, combined with a domain perturbation technique due to
Dancer [10], implies that, even in dimension 2, if D is the union of several balls
touched slightly, then the number of positive solutions of problem (1.1) may be
greater than 3 for some values of λ. This suggests that Figure 2 is only indicative,
not true in general.

Secondly, we state two existence and uniqueness theorems for problem (1.1). Let
λ1 be the first eigenvalue of the linear eigenvalue problem

{

Au = λu in D,

Bu = 0 on ∂D.
(1.9)
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The next two theorems assert that problem (1.1) is uniquely solvable for λ suffi-
ciently small and sufficiently large if 0 < ε < (1/(1 +

√
1 −m))2 (see Figures 3 and

4):

Theorem 1.5. Let 0 < ε < (1/(1+
√

1 −m))2. If the parameter λ is so small that

0 < λ <
λ1

m+ 1 +
√

1 + 2m(1 −m)

(

1

1 +
√

1 + 2m(1 −m)

)1−m

× exp

[

1 +
√

1 + 2m(1 −m) − 1

ε

]

εm−2, (1.10)

then problem (1.1) has a unique positive solution u(λ) ∈ C2(D).

Theorem 1.6. Let 0 < ε < (1/(1 +
√

1 −m))2. There exists a constant Λ > 0,
independent of ε, such that if the parameter λ is greater than Λ, then problem (1.1)
has a unique positive solution u(λ) ∈ C2(D).

Theorems 1.5 and 1.6 are generalizations of Wiebers [25, Theorems 2.9 and 2.6]
to the degenerate case, respectively, although we only treat the nonlinear term
f(t) = (1 + εt)m exp[t/(1 + εt)].
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By virtue of Theorems 1.3, 1.5 and 1.6, we can define two positive numbers µI

and µE by the formulas

µI = inf {µ > 0 : problem (1.1) is uniquely solvable for each λ > µ} ,
µE = sup {µ > 0 : problem (1.1) is uniquely solvable for each 0 < λ < µ} .

Then certain physical conclusions may be drawn (cf. Bebernes–Eberly [4], Warnatz–
Maas–Dibble [24]). If the system is in a state corresponding to a point on the lower
branch and if λ is slowly increased, then the solution can be expected to change
smoothly until the point µI is reached. Rapid transition to the upper branch will
then presumably occur, corresponding to ignition. A subsequent slow decrease
in λ is likewise anticipated to produce a smooth decrease in burning rate until
extinction occurs at the point µE . In other words, the minimal positive solution
u(λ) is continuous for λ > µI but is not continuous at λ = µI , while the maximal
positive solution u(λ) is continuous for 0 < λ < µE but is not continuous at
λ = µE . The situation may be represented schematically by Figures 3 and 4 (cf.
Boddington–Gray–Robinson [5, Figure 1]).

By the maximum principle and the boundary point lemma, we can obtain from
the variational formula (5.2) that the first eigenvalue λ1 = λ1(a) of problem (1.9)
satisfies the inequalities

λ1(1) < λ1(a) < λ1(0).

Moreover, it follows that the unique solution φ(x) = φ(a)(x) of problem (1.3) satis-
fies the inequalities

φ(0)(x) < φ(a)(x) < φ(1)(x) in D,

so that,
1

‖φ(1)‖∞
<

1

‖φ(a)‖∞
<

1

‖φ(0)‖∞
.

On the other hand, we find from formula (4.8) that the critical value β = β(a) in
Theorem 1.3 satisfies the inequalities

1

β(1)
≤ 1

β(a)
≤ 1

β(0)
,

and further from formulas (6.19) and (6.21) that the critical value Λ = Λ(a) in
Theorem 1.6 depends essentially on the first eigenvalue λ1 = λ1(a).

Therefore, we can conclude that the extinction phenomenon in the isothermal
condition case occurs at the largest critical value µE(0), while the extinction phe-
nomenon in the adiabatic condition case occurs at the smallest critical value µE(1).
Similarly we find that the ignition phenomenon in the adiabatic condition case
occurs at the smallest critical value µI(1), while the ignition phenomenon in the
isothermal condition case occurs at the largest critical value µI(0).

The rest of this paper is organized as follows. In Section 2 we collect the basic
definitions and notions about the theory of positive mappings in ordered Banach
spaces. This section is adapted from Amann [2]. In Section 3 we apply the super-
subsolution method to prove Theorem 1.1. Namely, we prove that the existence
of an ordered pair of sub- and supersolutions implies the existence of a solution of
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problem (1.1) (Theorem 3.1). Section 4 is devoted to the proof of Theorem 1.3. We
reduce the study of problem (1.1) to the study of a nonlinear operator equation in
an appropriate ordered Banach space just as in Taira–Umezu [21]. The methods
developed here are based on a multiple positive fixed-point technique formulated
by Leggett–Williams [14] (Lemma 4.2). This technique is intended to reduce the
usually difficult task of establishing the existence of multiple positive solutions of
problem (1.1) to the verification of a few elementary conditions on the nonlinear
term f(u) and the resolvent K, just as in Wiebers [25, Theorem 5.3]. In Section 5
we make use of the variational formula (5.2) to prove Theorem 1.5, since the linear
operator A associated with the eigenvalue problem (1.9) is self-adjoint in the Hilbert
space L2(D). In the final Section 6 the proof of Theorem 1.6 can be carried out by
adapting the proof of Wiebers [25, Theorems 2.9 and 2.6] to the degenerate case.
In particular we establish an a priori estimate for all positive solutions of problem
(1.1) (Proposition 6.1) that plays an important role in the proof of Theorem 1.6.

2. Ordered Banach spaces and the fixed-point index

One of the most important tools in nonlinear functional analysis is the Leray–
Schauder degree of a compact perturbation of the identity mapping of a Banach
space into itself. In connection with nonlinear mappings in ordered Banach spaces,
it is natural to consider mappings defined on open subsets of the positive cone.
Since the positive cone is a retract of the Banach space, we can define a fixed-point
index for compact mappings defined on the positive cone as is shown in Amann [2,
Section 11].

2.1. Ordered Banach spaces.

Let X be a non-empty set. An ordering ≤ in X is a relation in X that is reflexive,
transitive and antisymmetric. A non-empty set together with an ordering is called
an ordered set.

Let V be a real vector space. An ordering ≤ in V is said to be linear if the
following two conditions are satisfied:

(i) If x, y ∈ V and x ≤ y, then we have x+ z ≤ y + z for all z ∈ V .
(ii) If x, y ∈ V and x ≤ y, then we have αx ≤ αy for all α ≥ 0.

A real vector space together with a linear ordering is called an ordered vector
space.

If x, y ∈ V and x ≤ y, then the set [x, y] = {z ∈ X : x ≤ z ≤ y} is called an
order interval .

If we let

Q = {x ∈ V : x ≥ 0} ,

then it is easy to verify that the set Q has the following two conditions:

(iii) If x, y ∈ Q, then αx+ βy ∈ Q for all α, β ≥ 0.
(iv) If x 6= 0, then at least one of x and −x does not belong to Q.

The set Q is called the positive cone of the ordering ≤.
Let E be a Banach space E with a linear ordering ≤. The Banach space E is

called an ordered Banach space if the positive cone Q is closed in E. It is to be
expected that the topology and the ordering of an ordered Banach space are closely
related if the norm is monotone: If 0 ≤ u ≤ v, then ‖u‖ ≤ ‖v‖.
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2.2. Retracts and retractions.

Let X be a metric space. A non-empty subset A of X is called a retract of X if
there exists a continuous map r : X → A such that the restriction r|A to A is the
identity map. The map r is called a retraction.

The next theorem, due to Dugundji [12] and [13], gives a sufficient condition in
order that a subset of a Banach space be a retract:

Theorem 2.1. Every non-empty closed convex subset of a Banach space E is a
retract of E.

2.3. The fixed-point index.

Let E and F be Banach spaces, and let A be a non-empty subset of E. A map
f : A→ F is said to be compact if it is continuous and the image f(A) is relatively
compact in F .

Theorem 2.1 tells us that the positive cone Q is a retract of the Banach space
E. Therefore, we can define a fixed-point index for compact mappings defined on
the positive cone; more precisely, the next theorem asserts that we can define a
fixed-point index for compact maps on closed subsets of a retract of E:

Theorem 2.2. Let E be a Banach space and let X be a retract of E. If U is an
open subset of X and if f : U → X is a compact map such that f(x) 6= x for
all x ∈ ∂U , then we can define an integer i(f, U,X) satisfying the following four
conditions:

(i) (Normalization): For every constant map f : U → U , we have

i(f, U,X) = 1.

(ii) (Additivity): For every pair (U1, U2) of disjoint open subsets of U such that
f(x) 6= x for all x ∈ U \ (U1 ∪ U2), we have

i(f, U,X) = i(f |U1
, U1, X) + i(f |U2

, U2, X).

(iii) (Homotopy invariance): For every bounded, closed interval Λ and every
compact map h : Λ × U → X such that h(λ, x) 6= x for all (λ, x) ∈ Λ × ∂U , the
integer

i(h(λ, ·), U,X)

is well-defined and independent of λ ∈ Λ.
(iv) (Permanence): If Y is a retract of X and f(U) ⊂ Y , then we have

i(f, U,X) = i(f |U∩Y , U ∩ Y, Y ).

The integer i(f, U,X) is called the fixed-point index of f over U with respect to X .
In fact, the integer i(f, U,X) is defined by the formula

i(f, U,X) = deg(I − f ◦ r, r−1(U), 0),

where r : E → X is an arbitrary retraction and deg(I − f ◦ r, r−1(U), 0) is the
Leray–Schauder degree with respect to zero of the map I − f ◦ r defined on the
closure of the open subset r−1(U).

The fixed-point index enjoys further important and useful properties:
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Corollary 2.3. Let E be a Banach space and let X be a retract of E. If U is an
open subset of X and if f : U → X is a compact map such that f(x) 6= x for all
x ∈ ∂U , then the fixed-point index i(f, U,X) has the following two properties:

(v) (Excision): For every open subset V ⊂ U such that f(x) 6= x for all x ∈ U\V ,
we have

i(f, U,X) = i(f |V , V,X).

(vi) (Solution property): If i(f, U,X) 6= 0, then the map f has at least one
fixed-point in U .

3. Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. To do this, we make use of
the super-subsolution method (cf. Taira–Umezu [20, Theorem 1]). We let

f(t) = (1 + εt)m exp

[

t

1 + εt

]

, t ≥ 0.

A non-negative function ψ(x) ∈ C2(D) is called a supersolution of problem (1.1)
if it satisfies the conditions

{

Aψ − λf(ψ) ≥ 0 in D,

Bψ ≥ 0 on ∂D.

Similarly, a non-negative function ϕ(x) ∈ C2(D) is called a subsolution of problem
(1.1) if it satisfies the conditions

{

Aϕ− λf(ϕ) ≤ 0 in D,

Bϕ ≤ 0 on ∂D.

Moreover, we notice that the nonlinear term f(t) satisfies the following one-sided
Lipschitz condition or slope condition:

For any positive number σ, there exists a constant ω = ω(σ) > 0 such that

f(ξ)− f(η) > −ω · (ξ − η), 0 ≤ η < ξ ≤ σ.

Geometrically, this condition means that the slope of the function f(t) is bounded
below.

Our proof of Theorem 1.1 is based on the following existence theorem of a positive
solution of problem (1.1) (see Taira [19, Theorem 2]):

Theorem 3.1. Assume that ψ(x) and ϕ(x) are respectively super- and subsolutions
of problem (1.1) that satisfies the condition: ϕ(x) ≤ ψ(x) on D. Then there exists
a positive solution u(λ) ∈ C2(D) of problem (1.1) such that ϕ(x) ≤ u(λ)(x) ≤ ψ(x)
on D.

Proof of Theorem 1.1. (1) First, we construct a subsolution of problem (1.1).
If φ(x) is the unique solution of problem (1.3), then it follows that the function

v(x) = λφ(x) satisfies the conditions

{

Av = λ ≤ λf(v) in D,

Bv = 0 on ∂D.
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This proves that the function v(x) = λφ(x) is a subsolution of problem (1.1).
(2) To construct a supersolution of problem (1.1), we choose a positive number

Cm > 1 satisfying the equation

Cm = (1 + λε‖φ‖∞Cm)
m
e1/ε, (1.5)

and let
w(x) = λCmφ(x).

Then we have, by formula (1.5),

Aw = λCm

= λ (1 + λε‖φ‖∞Cm)
m
e1/ε

≥ λ (1 + λεφ(x)Cm)
m

exp

[

λCmφ(x)

1 + λεCmφ(x)

]

= λf(w) in D,

and
Bw = 0 on ∂D.

This proves that the function w(x) = λCmφ(x) is a supersolution of problem (1.1).
(3) Therefore, applying Theorem 3.1 with ϕ := v and ψ := w we can find a

solution u(λ) of problem (1.1) that satisfies the estimates

λφ(x) ≤ u(λ)(x) ≤ λCmφ(x) on D. (1.4)

(4) Finally, it follows from an application of Taira [19, Corollary 2] that problem
(1.1) has a unique positive solution u(λ) ∈ C2(D) for each λ > 0 if condition (1.2) is
satisfied. Indeed, it suffices to note that the function f(t)/t is (strictly) decreasing
for all t > 0 if the parameter ε satisfies condition (1.2). �

4. Proof of Theorem 1.3

This section is devoted to the proof of Theorem 1.3. First, we transpose the non-
linear problem (1.1) into an equivalent fixed-point equation for the resolvent K in
an appropriate ordered Banach space, just as in Taira–Umezu [21].

To do this, we consider the following linearized problem: For any given function
g(x) ∈ Lp(D), find a function u(x) in D such that

{

Au = g in D,

Bu = 0 on ∂D.
(4.1)

Then we have the following existence and uniqueness theorem for problem (4.1) in
the framework of Lp spaces (see Taira [18, Theorem 1]):

Theorem 4.1. Let 1 < p <∞. Then the mapping

A :W 2,p
B (D) −→ Lp(D)

u 7−→ Au
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is an algebraic and topological isomorphism. Here W 2,p(D) is the usual Sobolev
space of Lp style and

W 2,p
B (D) = {u ∈W 2,p(D) : Bu = 0 on ∂D}.

Step 1: By Theorem 4.1, we can introduce a continuous linear operator

K : Lp(D) −→W 2,p
B (D)

as follows: For any g(x) ∈ Lp(D), the function u(x) = Kg(x) ∈ W 2,p(D) is the
unique solution of problem (4.1). Then, by the Ascoli-Arzelà theorem we find that
the operator K, considered as

K : C(D) −→ C1(D),

is compact . Indeed it follows from an application of Sobolev’s imbedding theorem
that W 2,p(D) is continuously imbedded into C2−N/p(D) for all N < p <∞.

For u, v ∈ C(D), we write u � v if u(x) ≥ v(x) in D. Then the space C(D) is
an ordered Banach space with the linear ordering �, and with the positive cone

P =
{

u ∈ C(D) : u � 0
}

.

For u, v ∈ C(D), the notation u ≻ v means that u− v ∈ P \ {0}. Then it follows
from an application of the maximum principle (cf. Protter–Weinberger [17]) that
the resolventK is strictly positive, that is, the functionKg(x) is positive everywhere
in D if g ≻ 0 (see Taira [19, Lemma 2.7]). Moreover, it is easy to verify that a
function u(x) is a solution of problem (1.1) if and only if it satisfies the nonlinear
operator equation

u = λK(f(u)) in C(D). (4.2)

Step 2: The proof of Theorem 1.3 is based on the following result on multiple
positive fixed-points of nonlinear operators on ordered Banach spaces essentially
due to Leggett–Williams [14] (cf. Wiebers [25, Lemma 4.4]):

Lemma 4.2. Let (X,Q,�) be an ordered Banach space such that the positive cone
Q has non-empty interior. Moreover, let η : Q → [0,∞) be a continuous and
concave functional and let G be a compact mapping of Qτ := {w ∈ Q : ‖w‖ ≤ τ}
into Q for some constant τ > 0 such that

‖G(w)‖ < τ for all w ∈ Qτ satisfying ‖w‖ = τ . (4.3)

Assume that there exist constants 0 < δ < τ and σ > 0 such that the set

W :=

{

w ∈
o

Qτ : η(w) > σ

}

(4.4)

is non-empty, where
o

A denotes the interior of a subset A of Q, and that

‖G(w)‖ < δ for all w ∈ Qδ satisfying ‖w‖ = δ, (4.5)
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η(w) < σ for all w ∈ Qδ, (4.6)

and
η(G(w)) > σ for all w ∈ Qτ satisfying η(w) = σ. (4.7)

Then the mapping G has at least three distinct fixed-points.

Step 3: End of Proof of Theorem 1.3 . The proof of Theorem 1.3 may be carried
out just as in the proof of Wiebers [25, Theorem 4.3].

Let B be the set of all subdomains Ω of D with smooth boundary such that
dist (Ω, ∂D) > 0, and let

β = sup
Ω∈B

CΩ, CΩ = inf
x∈Ω

(KχΩ)(x), (4.8)

where χΩ(x) denotes the characteristic function of a set Ω. It is easy to see that the
constant β is positive, since the resolvent K of problem (4.1) is strictly positive.

Since limt→∞ ν(t) = limt→∞ t/f(t) = ∞, we can find a constant t1(ε) such that

t1(ε) = min {t > t2(ε) : ν(t) = ν(t1(ε))} .

It should be noticed that
t1(ε) < t2(ε) < t1(ε),

and that

ν(t1(ε)) = ν(t1(ε)) =
t1(ε)

f
(

t1(ε)
) . (4.9)

Now we shall apply Lemma 4.2 with

X := C(D),

Q := P = {u ∈ C(D) : u � 0},
G(·) := λK(f(·)),
δ := t1(ε), σ := t2(ε), τ := t1(ε).

To do this, it suffices to verify that the conditions of Lemma 4.2 are fulfilled for all
λ satisfying condition (1.8).

Step 3-a: If t > 0, we let

P (t) = {u ∈ P : ‖u‖∞ ≤ t} .

If u ∈ P (t1(ε)) and ‖u‖∞ = t1(ε) and if φ(x) = K1(x) is the unique solution of
problem (1.3), then it follows from condition (1.8) and formula (4.9) that

‖λK(f(u))‖∞ <
ν(t1(ε))

‖φ‖∞
‖K(f(u))‖∞

≤ ν(t1(ε))

‖φ‖∞
f(t1(ε))‖K1‖∞

= ν(t1(ε))f(t1(ε))
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= t1(ε),

since f(t) is increasing for all t ≥ 0. This proves that the mapping λK(f(·)) satisfies
condition (4.3) with Qτ := P (t1(ε)).

Similarly we can verify that if u ∈ P (t1(ε)) and ‖u‖∞ = t1(ε), then we have

‖λK(f(u))‖∞ < t1(ε).

This proves that the mapping λK(f(·)) satisfies condition (4.5) withQδ := P (t1(ε)).
Step 3-b: If Ω ∈ B, we let

η(u) = inf
x∈Ω

u(x).

Then it is easy to see that η is a continuous and concave functional of P . If
u ∈ P (t1(ε)), then we have

η(u) ≤ ‖u‖∞ ≤ t1(ε) < t2(ε).

This verifies condition (4.6) for the functional η.
Step 3-c: If we let

W =

{

u ∈
o

P (t1(ε)) : η(u) > t2(ε)

}

,

then we find that

W ⊃
{

u ∈ P :
t1(ε)

2
≤ u < t1(ε) on D, η(u) > t2(ε)

}

6= ∅,

since t2(ε) < t1(ε). This verifies condition (4.4) for the functional η.
Step 3-d: Now, since λ > ν(t2(ε))/β, by formula (4.8) we can find a subdomain

Ω ∈ B such that

λ >
ν(t2(ε))

CΩ
.

If u ∈ P (t1(ε)) and η(u) = t2(ε), then we have

η(λK(f(u))) = inf
x∈Ω

λK(f(u))(x)

≥ inf
x∈Ω

λK(f(u)χΩ)(x)

>
ν(t2(ε))

CΩ
inf
x∈Ω

K(f(u)χΩ)(x). (4.10)

However, since infΩ u = η(u) = t2(ε) and f(t) is increasing for all t ≥ 0, it follows
that

ν(t2(ε))

CΩ
inf
x∈Ω

K(f(u)χΩ)(x) ≥ ν(t2(ε))

CΩ
inf
x∈Ω

K(f(t2(ε))χΩ)(x)

=
ν(t2(ε))

CΩ
f(t2(ε)) inf

x∈Ω
(KχΩ)(x)

= ν(t2(ε))f(t2(ε))

= t2(ε). (4.11)

Therefore, combining inequalities (4.10) and (4.11) we obtain that

η(λK(f(u))) > t2(ε).

This verifies condition (4.7) for the mapping λK(f(·)).
The proof of Theorem 1.3 is now complete. �
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5. Proof of Theorem 1.5

If u1 = u1(λ) and u2 = u2(λ) are two positive solutions of problem (1.1), then we
have, by the mean value theorem,

∫

D

A(u1 − u2) · (u1 − u2) dx =

∫

D

λ(f(u1) − f(u2))(u1 − u2) dx

= λ

∫

D

G(x)(u1 − u2)
2 dx, (5.1)

where

G(x) =

∫ 1

0

f ′ (u2(x) + θ(u1(x) − u2(x))) dθ.

We shall prove Theorem 1.5 by using a variant of variational method. To do
this, we introduce an unbounded linear operator A from the Hilbert space L2(D)
into itself as follows:

(a) The domain of definition D(A) of A is the space

D(A) =
{

u ∈W 2,2(D) : Bu = 0
}

.

(b) Au = Au for every u ∈ D(A).

Then it follows from Taira [19, Theorem 2.6] that the operator A is a positive and
self-adjoint operator in L2(D), and has a compact resolvent. Hence we obtain that
the first eigenvalue λ1 of A is characterized by the following variational formula:

λ1 = min

{
∫

D

Au(x) · u(x) dx : u ∈ W 2,2(D),

∫

D

|u(x)|2 dx = 1, Bu = 0

}

. (5.2)

Thus it follows from formulas (5.2) and (5.1) that

λ1

∫

D

(u1 − u2)
2 dx ≤

∫

D

A(u1 − u2) · (u1 − u2) dx

= λ

∫

D

G(x)(u1 − u2)
2 dx

≤ λ sup f ′(t)

∫

D

(u1 − u2)
2 dx. (5.3)

However, it is easy to see that

sup f ′(t) = f ′ (tm(ε)))

=
(

m+ 1 +
√

1 + 2m(1 −m)
)(

1 +
√

1 + 2m(1 −m)
)1−m

× exp

[

1

ε
− (1 +

√

1 + 2m(1 −m))

]

ε2−m, (5.4)

where

tm(ε) =
1

1 +
√

1 + 2m(1 −m)

1

ε2
− 1

ε
.
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Hence, combining formula (5.4) with inequality (5.3) we obtain that

λ1

∫

D

(u1 − u2)
2 dx

≤ λ ε2−m
(

m+ 1 +
√

1 + 2m(1 −m)
)(

1 +
√

1 + 2m(1 −m)
)1−m

× exp

[

1

ε
− (1 +

√

1 + 2m(1 −m))

]
∫

D

(u1 − u2)
2 dx.

Therefore, we find that u1(x) ≡ u2(x) in D if the parameter λ is so small that
condition (1.10) is satisfied, that is, if we have

λ1 > λε2−m
(

m+ 1 +
√

1 + 2m(1 −m)
)(

1 +
√

1 + 2m(1 −m)
)1−m

× exp

[

1

ε
− (1 +

√

1 + 2m(1 −m))

]

.

The proof of Theorem 1.5 is complete. �

6. Proof of Theorem 1.6

This section is devoted to the proof of Theorem 1.6. Our proof of Theorem 1.6 is
based on a method inspired by Wiebers [25, Theorems 2.9 and 2.6].

6.1. An a priori estimate.

In this subsection we shall establish an a priori estimate for all positive solutions
of problem (1.1) that will play an important role in the proof of Theorem 1.6.

First, we introduce another ordered Banach subspace of C(D) for the fixed-point
equation (4.2) that combines the good properties of the resolventK of problem (4.1)
with the good properties of the natural ordering of C(D).

Let φ(x) = K1(x) be the unique solution of problem (1.3). Then it follows from
Taira [19, Lemma 2.7] that the function φ(x) belongs to C∞(D) and satisfies the
conditions

φ(x)

{

> 0 if either x ∈ D or x ∈ ∂D and a(x) > 0,

= 0 if x ∈ ∂D and a(x) = 0,

and
∂φ

∂ν

(x) < 0 if x ∈ ∂D and a(x) = 0.

By using the function φ(x), we can introduce a subspace of C(D) as follows:

Cφ(D) :=
{

u ∈ C(D) : there exists a constant c > 0 such that −cφ � u � cφ
}

.

The space Cφ(D) is given a norm by the formula

‖u‖φ = inf{c > 0 : −cφ � u � cφ}.

If we let
Pφ := Cφ(D) ∩ P = {u ∈ Cφ(D) : u � 0},
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then it is easy to verify that the space Cφ(D) is an ordered Banach space having the

positive cone Pφ with non-empty interior. For u, v ∈ Cφ(D), the notation u ≫ v
means that u− v is an interior point of Pφ. It follows from Taira [19, Proposition

2.8] that K maps Cφ(D) compactly into itself, and that K is strongly positive, that
is, Kg ≫ 0 for all g ∈ Pφ \ {0}.

It is easy to see that a function u(x) is a solution of problem (1.1) if and only if
it satisfies the nonlinear operator equation

u = λK(f(u)) in Cφ(D). (6.1)

However, we know from Taira [19, Theorem 0] that the first eigenvalue λ1 of A

is positive and simple, with positive eigenfunction ϕ1(x):











Aϕ1 = λ1ϕ1 in D,

ϕ1 > 0 in D,

Bϕ1 = 0 on ∂D.

Without loss of generality, we may assume that

max
D

ϕ1(x) = 1.

We let

γ = min

{

f(t1(ε))

t1(ε)
: 0 < ε <

(

1

1 +
√

1 −m

)2
}

. (6.2)

Here it should be noticed that t1(ε) → 1 as ε ↓ 0, so that the constant γ is positive.
Then we have the following a priori estimate for all positive solutions u of prob-

lem (1.1):

Proposition 6.1. There exists a constant 0 < ε0 ≤ (1/(1 +
√

1 −m))2 such that
if λ > λ1/γ and 0 < ε ≤ ε0, then we have, for all positive solutions u of problem
(1.1),

u � λε−2ϕ1.

Proof. (1) Let c be a parameter satisfying the condition 0 < c < 1. Then we have

A
(

λcε−2ϕ1(x)
)

− λf
(

λcε−2ϕ1(x)
)

= λcε−2

(

λ1 − λ
f(λcε−2ϕ1(x))

λcε−2ϕ1(x)

)

ϕ1(x) in D.

However, since we have

f(t)

t
−→ 0 as t→ ∞,

f(t)

t
−→ ∞ as t→ 0,
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it follows that

f
(

λcε−2ϕ1(x)
)

λcε−2ϕ1(x)
≥ min

{

f(t1(ε))

t1(ε)
,
f
(

λε−2
)

λε−2

}

in D. (6.3)

First, we obtain from formula (6.2) that

λ1 − λ
f(t1(ε))

t1(ε)
≤ λ1 − λγ

< 0 for all λ > λ1/γ and 0 < ε < (1/(1 +
√

1 −m))2. (6.4)

Secondly, since the function f(t) is increasing for all t ≥ 0, it follows that, for all
λ > λ1/γ,

λ1 − λ
f
(

λε−2
)

λε−2
= λ1 − ε2

(

1 +
λ

ε

)m

exp

[

1

ε+ ε2/λ

]

≤ λ1 − ε2
(

1 +
λ1

εγ

)m

exp

[

1

ε+ ε2γ/λ1

]

.

However, we can find a constant ε0 ∈ (0, (1/(1 +
√

1 −m))2] such that, for all
0 < ε ≤ ε0,

ε2
(

1 +
λ1

εγ

)m

exp

[

1

ε+ ε2γ/λ1

]

> λ1.

Hence it follows that

λ1 − λ
f
(

λε−2
)

λε−2
< 0 for all λ > λ1/γ and 0 < ε ≤ ε0. (6.5)

Therefore, combining inequalities (6.3), (6.4) and (6.5) we obtain that, for all
λ > λ1/γ and 0 < ε ≤ ε0,

A
(

λcε−2ϕ1(x)
)

− λf
(

λcε−2ϕ1(x)
)

= λcε−2

(

λ1 − λ
f
(

λcε−2ϕ1(x)
)

λcε−2ϕ1(x)

)

ϕ1(x)

≤ λcε−2

(

λ1 − λmin

{

f(t1(ε))

t1(ε)
,
f
(

λε−2
)

λε−2

})

ϕ1(x)

< 0 in D,

so that
λf
(

λcε−2ϕ1(x)
)

> A
(

λcε−2ϕ1(x)
)

in D.

By applying the resolvent K to the both sides, we have, for all λ > λ1/γ and
0 < ε ≤ ε0,

λK
(

f(λcε−2ϕ1)
)

≫ λcε−2ϕ1. (6.6)

(2) Now we need the following lemma (cf. Wiebers [25, Lemma 1.3]):
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Lemma 6.2. If there exist a function ũ ≫ 0 and a constant s0 > 0 such that
λK(f(sũ)) ≫ sũ for all 0 ≤ s < s0, then we have, for each fixed-point u of the
mapping λK(f(u)),

u � s0ũ.

Proof. Assume, to the contrary, that there exists a fixed-point u of λK(f(·)) with
u 6� s0ũ. Then we can choose a constant 0 ≤ s̃ < s0 such that

u− s̃ũ ∈ ∂Pφ. (6.7)

However, since s̃ũ satisfies the condition

λK(f(s̃ũ)) ≫ s̃ũ,

it follows from condition (6.7) that

u = λK(f(u)) � λK(f(s̃ũ)) ≫ s̃ũ,

so that

u− s̃ũ ∈
o

Pφ.

This contradicts condition (6.7). �

(3) Since λK(f(0)) ≫ 0 and estimate (6.6) holds for all 0 < c < 1, it follows
from an application of Lemma 6.2 with ũ := λε−2ϕ1, s0 := 1 and s := c (and also
equation (6.1)) that every positive solution u of problem (1.1) satisfies the estimate

u � λε−2ϕ1 for all λ > λ1/γ and 0 < ε ≤ ε0.

The proof of Proposition 6.1 is complete. �

6.2. End of Proof of Theorem 1.6.

Step 1: First, we introduce a function

F (t) := f(t) − f ′(t)t

=
[

(1 + εt)m −mε(1 + εt)m−1t− (1 + εt)m−2t
]

exp

[

t

1 + εt

]

, t ≥ 0.

The next lemma summarizes some elementary properties of the function F (t):

Lemma 6.3. Let 0 < ε < (1/(1 +
√

1 −m))2. Then the function F (t) has the
properties

F (t)











> 0 if either 0 ≤ t < t1(ε) or t > t2(ε),

= 0 if t = t1(ε) and t = t2(ε),

< 0 if t1(ε) < t < t2(ε).

Moreover, the function F (t) is decreasing in the interval (0, t0(ε)) and is increasing
in the interval (t0(ε),∞), and has a minimum at t = t0(ε), where

t0(ε) =
1 − 2ε(1 −m)

1 −m2 + (1 −m)
√

(m+ 1)2 − 2mε+ m
1−m

1

ε2
.

Step 2: The next proposition is an essential step in the proof of Theorem 1.6
(cf. Amann [1, Lemma 7.8]):
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Proposition 6.4. Let 0 < ε < (1/(1 +
√

1 −m))2. Then there exists a constant
α > 0, independent of ε, such that we have, for all u � αε−2ϕ1,

K(F (u)) ≫ 0. (6.8)

Proof. First, since t2(ε) <
2

(1−m) ε2 , it follows from Lemma 6.3 that

F (t) ≥ F

(

2

(1 −m) ε2

)

> 0 for all t ≥ 2

(1 −m) ε2
.

We define two functions

z−(u)(x) =















−F (u(x)) if u(x) ≥ 2

(1 −m) ε2
,

0 if u(x) <
2

(1 −m) ε2
,

and
z+(u)(x) = F (u(x)) + z−(u)(x).

Moreover, we define two sets

M :=

{

x ∈ D : ϕ1(x) >
1

2

}

,

and

L :=

{

x ∈ D : u(x) ≥ 2

(1 −m) ε2

}

.

Then we have M ⊂ L for all u � 4
(1−m) ε2ϕ1, and so

z−(u) ≤ −F
(

2

(1 −m) ε2

)

χL ≤ −F
(

2

(1 −m) ε2

)

χM .

By using Friedrichs’ mollifiers, we can construct a function v(x) ∈ C∞(D) such
that v ≻ 0 and that

z−(u) ≤ −F
(

2

(1 −m) ε2

)

v for all u � 4

(1 −m) ε2
ϕ1. (6.9)

On the other hand, by Lemma 6.3 we notice that

min

{

F (t) : 0 ≤ t ≤ 2

(1 −m) ε2

}

= F (t0(ε)) < 0.

Since we have

z+(u)(x) =

{

0 if x ∈ L,

F (u(x)) if x 6∈ L,



SEMILINEAR ELLIPTIC PROBLEMS IN COMBUSTION THEORY 21

it follows that
z+(u) ≥ F (t0(ε))χD\L.

If α is a constant greater than 4/(1 −m), we define a set

Mα :=

{

x ∈ D : ϕ1(x) <
2

α(1 −m)

}

.

Then we have, for all u � αε−2ϕ1,

D \ L =

{

x ∈ D : u(x) <
2

(1 −m) ε2

}

⊂Mα,

and hence
z+(u) ≥ F (t0(ε))χMα

for all u � αε−2ϕ1. (6.10)

Thus, combining inequalities (6.9) and (6.10) we obtain that

K(F (u))

= K (z+(u) − z−(u))

≥ F (t0(ε))K(χMα
) + F

(

2

(1 −m) ε2

)

Kv for all u � αε−2ϕ1. (6.11)

However, by Taira [19, estimate (2.11)] it follows that there exists a constant
c0 > 0 such that

Kv � c0ϕ1. (6.12)

Furthermore, since χMα
→ 0 in Lp(D) as α → ∞, it follows that K(χMα

) → 0 in
C1(D) and so K(χMα

) → 0 in Cφ(D). Hence, for any positive integer k we can
choose the constant α so large that

K(χMα
) � c0

k
ϕ1. (6.13)

Thus, carrying inequalities (6.12) and (6.13) into the right-hand side of inequality
(6.11) we obtain that

K(F (u)) = K (z+(u) − z−(u))

≥ F (t0(ε))
c0
k
ϕ1 + F

(

2

(1 −m) ε2

)

c0ϕ1

= c0 F

(

2

(1 −m) ε2

)









1 +
F (t0(ε))

F

(

2

(1 −m) ε2

)

1

k









ϕ1

for all u � αε−2ϕ1. (6.14)

However, we have, as ε ↓ 0,

F (t0(ε))

F

(

2

(1 −m) ε2

) −→
(

2

δ(1 −m)

)1−m

(δ(1 −m) − 1) exp

[

1 −m

2
− 1

δ

]

,
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where

δ =
1

1 −m2 + (1 −m)
√

(m+ 1)2 + m
1−m

.

Therefore, the desired inequality (6.8) follows from inequality (6.14) if we take
the positive integer k so large that

k > − min
0<ε<(1/(1+

√
1−m))2

F (t0(ε))

F

(

2

(1 −m) ε2

) .

The proof of Proposition 6.4 is complete. �

Step 3: Proposition 6.4 implies the following important property of the nonlin-
ear mapping K(f(·)) (cf. Wiebers [25, Lemma 2.2]):

Lemma 6.5. Let 0 < ε < (1/(1 +
√

1 −m))2 and let α be the same constant as in
Proposition 6.4. Then we have, for all u � αε−2ϕ1 and all s > 1,

sK(f(u)) ≫ K(f(su)).

Proof. By Taylor’s formula, it follows that

sK(f(u))−K(f(su))

= sK(f(u))− (K(f(u)) +K(f ′(u)(su− u)) + o(‖su− u‖))

= (s− 1)

(

K(F (u)) − o(‖su− u‖)
s− 1

)

. (6.15)

However, Proposition 6.4 tells us that there exists an element v̂ ∈
o

Pφ such that

K(F (u)) � v̂ for all u � αε−2ϕ1. (6.16)

Now let A be an arbitrary compact subset of αε−2ϕ1 +Pφ. Then, by combining
inequalities (6.15) and (6.16) we can find a constant s0 > 1 such that

sK(f(u))−K(f(su))

≫ (s− 1)

(

v̂ − o(‖su− u‖)
s− 1

)

for all u ∈ A and all 1 < s ≤ s0. (6.17)

In particular, if s > 1 and u � αε−2ϕ1, we let

A := {σu : 1 ≤ σ ≤ s}, s := t.

By inequality (6.17), we have, for all 1 < t ≤ s0 and all 1 ≤ σ ≤ s,

tK(f(σu)) ≫ K(f(tσu)). (6.18)
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It should be noticed that, for given s > 1, there exist numbers 1 < t1 ≤ t2 ≤ . . . ≤
tm ≤ s0 with

m
∏

i=1

ti = s.

Therefore, by using inequality (6.18) m-times we obtain that

K(f(su)) = K

(

f

(

m
∏

i=1

tiu

))

≪ t1K

(

f

(

m
∏

i=2

tiu

))

· · · ≪
m
∏

i=1

tiK(f(u))

= sK(f(u)).

This proves Lemma 6.5. �

Step 4: If ε0 and α are the constants as in Propositions 6.1 and 6.4, respectively,
then we let

Λ1 := max

{

λ1

γ
, α

}

. (6.19)

If u1 = u1(λ) and u2 = u2(λ) are two positive solutions of problem (1.1) with
λ > Λ1 and 0 < ε ≤ ε0, then, by combining Proposition 6.1 and Lemma 6.5 we find
that, for all s > 1,

sK(f(ui)) ≫ K(f(sui)), i = 1, 2,

so that
sui = sλK(f(ui)) ≫ λK(f(sui)), i = 1, 2.

Therefore, we obtain that u1 = u2, by applying the following lemma with ũ := u1

and u := u2 and with ũ := u2 and u := u1 (see Wiebers [25, Lemma 1.3]):

Lemma 6.6. If there exists a function ũ ≫ 0 such that sũ ≫ λK(f(sũ)) for all
s > 1, then ũ � u for each fixed-point u of the mapping λK(f(·)).
Proof. Assume, to the contrary, that there exists a fixed-point u of λK(f(·)) with
ũ 6� u. Then we can choose a constant s̃ > 1 such that

s̃ũ− u ∈ ∂Pφ. (6.20)

However, since s̃ũ satisfies the condition

s̃ũ≫ λK(f(s̃ũ)),

it follows from condition (6.20) that

s̃ũ≫ λK(f(s̃ũ)) � λK(f(u)) = u,

so that

s̃ũ− u ∈
o

Pφ.
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This contradicts condition (6.20). �

Step 5: Finally, it remains to consider the case where ε0 < ε < (1/(1 +√
1 −m))2. If u(λ) is a positive solution of problem (1.1), then we have

A

(

u(λ) − λ

λ1
ϕ1

)

= λf(u(λ)) − λϕ1 ≥ λ(1 − ϕ1) ≥ 0 in D,

since maxD ϕ1 = 1 and f(t) ≥ 1 for t ≥ 0. By the positivity of the resolvent K, it
follows that

u(λ) � λ

λ1
ϕ1 � α

ε2
ϕ1 for all λ ≥ αλ1

ε2
.

Therefore, just as in the case 0 < ε ≤ ε0, we can prove that the uniqueness result
for positive solutions of problem (1.1) holds true if we take the parameter λ so large
that

λ ≥ Λ2 :=
αλ1

ε2
. (6.21)

Now the proof of Theorem 1.6 is complete if we take Λ = max{Λ1,Λ2}. �
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