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��������� The purpose of this paper is to study boundary value problems for el-
liptic pseudo-differential operators which originate from the problem of existence of

Markov processes in probability theory, generalizing some results of the previous work

[9, 10]. Our approach has a great advantage of intuitive interpretation of sufficient

conditions for the unique solvability of boundary value problems in terms of Markov-

ian motion. In fact, we prove that if a Markovian particle moves incessantly both

by jumps and continuously in the state space, not being trapped in the set where no
reflection phenomenon occurs, then our boundary value problem is uniquely solvable

in the framework of Sobolev spaces of Lp style.

1. Introduction
Let Ω be a bounded domain of Euclidean space Rn, with C∞ boundary ∂Ω; its

closure Ω = Ω ∪ ∂Ω is an n-dimensional, compact C∞ manifold with boundary.
Let W be a second-order, elliptic pseudo-differential operator with real coeffi-

cients such that

Wu(x) = Pu(x) + Sru(x)

:=


 n∑

i,j=1

aij(x)
∂2u

∂xi∂xj
(x) +

n∑
i=1

bi(x)
∂u

∂xi
(x) + c(x)u(x)




+
∫

Ω

s(x, y)


u(y) − σ(x, y)


u(x) +

n∑
j=1

(yj − xj)
∂u

∂xj
(x)





 dy.

Here:

(1) aij ∈ C∞(Rn), aij = aji and there exists a constant a0 > 0 such that

n∑
i,j=1

aij(x)ξiξj ≥ a0|ξ|2 , x ∈ Rn, ξ ∈ Rn.
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(2) bi ∈ C∞(Rn).
(3) c ∈ C∞(Rn) and c ≤ 0 in Ω.
(4) The integral kernel s(x, y) is the distribution kernel of a properly supported,

pseudo-differential operator S ∈ L2−κ
1,0 (Rn), κ > 0, which has the transmission

property with respect to ∂Ω, and s(x, y) ≥ 0 off the diagonal {(x,x) : x ∈ Rn} in
Rn × Rn. Here we recall (see [4, 6, 7]) that S is said to have the transmission
property with respect to ∂Ω if the restriction of S(u0) to Ω has a C∞ extension to
Rn for every u ∈ C∞(Ω), where u0 is the extension of u to Rn by zero outside Ω.

(5) The function σ(x, y) is a C∞ function on Ω × Ω such that σ(x, y) = 1 in
a neighborhood of the diagonal {(x,x) : x ∈ Ω} in Ω × Ω. The function σ(x, y)
depends on the shape of the domain Ω; more precisely, it depends on a family of
local charts on Ω. For example, if Ω is convex, one may take σ(x, y) ≡ 1 on Ω×Ω.

(6) W1(x) = c(x) +
∫
Ω
s(x, y) [1 − σ(x, y)] dy ≤ 0 in Ω, and W1 �≡ 0 in Ω.

The operator W is called a second-order Waldenfels operator (cf. [2, 8]). The
differential operator P is called a diffusion operator which describes analytically a
strong Markov process with continuous paths (diffusion process) in the interior Ω.
The integro-differential operator Sr is called a second-order Lévy operator which is
supposed to correspond to the jump phenomenon in the interior Ω. Therefore, the
Waldenfels operator W is supposed to correspond to such a diffusion phenomenon
that a Markovian particle moves both by jumps and continuously in the state space
Ω.

We remark that the integro-differential operator Sr is a “regularization” of S,
since the integrand is absolutely convergent. Indeed, it suffices to note (see [5,
Chapitre IV, Proposition 1]) that, for any compact K ⊂ Rn, there exists a constant
CK > 0 such that the distribution kernel s(x, y) satisfies the estimate

|s(x, y)| ≤ CK

|x − y|n+2−κ
, x, y ∈ K, x �= y.

The intuitive meaning of condition (6) is that the jump phenomenon from a
point x ∈ Ω to the outside of a neighborhood of x in Ω is “dominated” by the
absorption phenomenon at x. In particular, if c(x) ≡ 0 in Ω, then condition (6)
implies that any Markovian particle does not move by jumps from x ∈ Ω to the
outside of a neighborhood V (x) of x in the interior Ω, since we have

∫
Ω

s(x, y) [1 − σ(x, y)] dy = 0,

and so by conditions (4) and (5)

s(x, y) = 0, y ∈ Ω \ V (x).

Let L be a first-order, boundary condition with real coefficients such that

Lu(x′) = µ(x′)
∂u

∂ν
(x′) + γ(x′)u(x′) +

∫
Ω

r(x′ , y) [u(y) − u(x′)] dy.

Here:
(1) µ ∈ C∞(∂Ω) and µ ≥ 0 on ∂Ω.
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(2) γ ∈ C∞(∂Ω) and γ ≤ 0 on ∂Ω.
(3) ν = (ν1, ν2, · · · , νn) is the unit interior normal to the boundary ∂Ω.
(4) The integral kernel r(x, y) is the distribution kernel of a properly supported,

pseudo-differential operator R ∈ L−θ
1,0(R

n), θ > 0, which has the transmission
property with respect to the boundary ∂Ω, and r(x, y) ≥ 0 off the diagonal in
Rn × Rn.

The boundary condition L is called a first-order Ventcel’ boundary condition (cf.
[2, 8]). The three terms of L

µ(x′)
∂u

∂ν
(x′), γ(x′)u(x′),

∫
Ω

r(x′ , y) [u(y) − u(x′)] dy

are supposed to correspond to the reflection phenomenon, the absorption phenom-
enon and the inward jump phenomenon from the boundary, respectively.

In this paper, we prove an existence and uniqueness theorem for the following
boundary value problem in the framework of Sobolev spaces of Lp style:{

Wu = f in Ω,
Lu = ϕ on ∂Ω.

(∗)

We remark that the note [10] only treated the case when S = 0 and R = 0, while
the paper [9] studied problem (∗) in the framework of Sobolev spaces of L2 style.

The function spaces we shall treat are the following (cf. [1, 12]): If 1 < p < ∞
and m is a nonnegative integer, we define the Sobolev space

Hm,p(Ω) = the space of functions u ∈ Lp(Ω) whose

derivatives Dαu, |α| ≤ m, in the sense of

distributions are in Lp(Ω).

The space Hm,p(Ω) is a Banach space with the norm

‖u‖m,p =


 ∑

|α|≤m

∫
Ω

|Dαu(x)|p dx




1/p

.

Furthermore, we let

Bm−1/p,p(∂Ω) = the space of the boundary values ϕ of functions

u ∈ Hm,p(Ω),

and define a norm

|ϕ|m−1/p,p = inf {‖u‖m,p : u ∈ Hm,p(Ω), u|∂Ω = ϕ} .

The space Bm−1/p,p(∂Ω) is a Banach space with respect to the norm | · |m−1/p,p;
more precisely, it is a Besov space.

Our fundamental hypothesis for the boundary condition L is the following:

γ(x′) −
∫

Ω

r(x′ , y)dy < 0 on the set M = {x′ ∈ ∂Ω : µ(x′) = 0}. (H)



4 KAZUAKI TAIRA

Intuitively, hypothesis (H) implies that, at any point of the set M where no re-
flection phenomenon occurs, a Markovian particle may “disappear” or “move by
jumps” to a random point in the interior Ω.

We introduce a subspace of Bm−1−1/p,p(∂Ω) which is associated with the bound-
ary condition L in the following way: If we let

γ(x′) = γ(x′) −
∫

Ω

r(x′, y)dy,

then we find that condition (H) is equivalent to the following one:

µ(x′) − γ(x′) > 0 on ∂Ω. (H′)

We define the space

B
m−1−1/p,p
∗ (∂Ω) =

{
ϕ = µϕ1 − γ ϕ2 : ϕ1 ∈ Bm−1−1/p,p(∂Ω),

ϕ2 ∈ Bm−1/p,p(∂Ω)

}
,

and a norm

|ϕ|∗m−1−1/p,p = inf
{
|ϕ1|m−1−1/p,p + |ϕ2|m−1/p,p : ϕ = µϕ1 − γ ϕ2

}
.

Then it is easy to verify that the space Bm−1−1/p,p
∗ (∂Ω) is a Banach space with

respect to the norm | · |∗m−1−1/p,p. We remark that the space Bm−1−1/p,p
∗ (∂Ω) is an

“interpolation space” between the spaces Bm−1/p,p(∂Ω) and Bm−1−1/p,p(∂Ω). In
particular, we have

B
m−1−1/p,p
∗ (∂Ω) = Bm−1/p,p(∂Ω) if µ ≡ 0 on ∂Ω,

B
m−1−1/p,p
∗ (∂Ω) = Bm−1−1/p,p(∂Ω) if µ > 0 on ∂Ω.

Now we can state our main result which is an Lp version of [9, Theorem 1] and
is also a generalization of [10, Theorem 1] to the case when S �= 0 and R �= 0.

Theorem. Let 1 < p <∞ and let m be a positive integer such that m > 1 + 1/p.
If condition (H) is satisfied, then the mapping

(W,L) : Hm,p(Ω) −→ Hm−2,p(Ω)⊕B
m−1−1/p,p
∗ (∂Ω)

is an algebraic and topological isomorphism. In particular, for any f ∈ Hm−2,p(Ω)
and any ϕ ∈ B

m−1−1/p,p
∗ (∂Ω), there exists a unique solution u ∈ Hm,p(Ω) of

problem (∗).
Our approach has a great advantage of intuitive interpretation of the sufficient

condition (H) for the unique solvability of problem (∗) in terms of Markovian mo-
tion. In fact, Theorem states that if a Markovian particle moves incessantly both
by jumps and continuously in the state space Ω = Ω ∪ ∂Ω, not being trapped in
the set M where no reflection phenomenon occurs, then problem (∗) is uniquely
solvable in the framework of Sobolev spaces of Lp style.

Theorem will play an important role in the study of initial boundary value prob-
lems for semilinear parabolic differential equations as in [10].

I am grateful to the referee for his careful reading of the first draft of the man-
uscript and many valuable suggestions.
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2. Proof of Theorem
We begin by showing that the mapping

(W,L) : Hm,p(Ω) −→ Hm−2,p(Ω)⊕B
m−1−1/p,p
∗ (∂Ω)

is continuous. To do this, we have only to verify the continuity of L.
By condition (H), one can write the boundary condition Lu in the following

form:

Lu = µ
∂u

∂ν
+ γ u+

∫
Ω

r(·, y) [u(y) − u(·)] dy

= µ
∂u

∂ν
+ γ u+R(u0)

= µ

(
∂u

∂ν
+

1
µ− γ

R(u0)
)
− γ

(
1

µ− γ
R(u0) − u

)
on ∂Ω,

where

u0(x) =
{
u(x) if x ∈ Ω,

0 if x ∈ Rn \ Ω.

Since R ∈ L−θ
1,0(R

n) has the transmission property, it follows (see [7, Section 2.3])
that the operator RΩ, defined by the formula

RΩu = R(u0)|Ω,

maps Hs,p(Ω) continuously into Hs+θ,p(Ω) for all s ≥ 0. Hence we find from the
definition of Bm−1−1/p,p

∗ (∂Ω) that the operator L : Hm,p(Ω) → B
m−1−1/p,p
∗ (∂Ω) is

continuous.
Therefore, in order to prove Theorem, it suffices to show that the mapping

(W,L) is bijective. Indeed, the continuity of the inverse of (W,L) follows from an
application of Banach’s closed graph theorem, since (W,L) is continuous.

The proof is divided into five steps.
(I) First we show that the boundary value problem{

Wu = f in Ω,
Lu = ϕ on ∂Ω

(∗)

can be reduced to the study of an operator on the boundary.
Now let f be an arbitrary element of Hm−2,p(Ω) and let ϕ be an arbitrary

element of Bm−1−1/p,p
∗ (∂Ω) such that

ϕ = µϕ1 − γ ϕ2, ϕ1 ∈ Bm−1−1/p,p(∂Ω), ϕ2 ∈ Bm−1/p,p(∂Ω).

We consider the Neumann problem
{
Wv = f in Ω,
∂v

∂ν
= ϕ1 on ∂Ω.

(N)

The existence and uniqueness theorem for problem (N) is well established in the
framework of Sobolev spaces of Lp style (see [11, Chapter XI]). Indeed, it suffices
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to note that the operator W = P + Sr is a relatively compact perturbation of P in
the framework of Sobolev spaces of Lp style, since Sr is of order 2− κ < 2. We let

v = GN (f,ϕ1) ∈ Hm,p(Ω).

The operator GN is a generalization of the classical Green operator. Then it follows
that a function u is a solution of problem (∗) if and only if the function w = u− v
is a solution of the problem {

Ww = 0 in Ω,
Lw = ϕ− Lv on ∂Ω.

Here we remark that

Lv = µ
∂v

∂ν
+ γ v +RΩv = µϕ1 + γ v +RΩv on ∂Ω,

so that
Lw = ϕ− Lv = −γ (ϕ2 + v) −RΩv ∈ Bm−1/p,p(∂Ω).

But we know that every solution w ∈ Hm,p(Ω) of the homogeneous equation Ww =
0 can be expressed as follows.

w = Pψ, ψ ∈ Bm−1/p,p(∂Ω).

The operator P is a generalization of the classical Poisson operator; that is, the
function w = Pψ is the unique solution of the Dirichlet problem{

Ww = 0 in Ω,
w = ψ on ∂Ω.

Thus, by using the operators GN and P , one can reduce the study of problem (∗)
to that of the equation

Tψ := LPψ = −γ (ϕ2 + v) −RΩv on ∂Ω. (†)

This is a generalization of the classical Fredholm integral equation.
More precisely, we can formulate this reduction to the boundary in the framework

of Sobolev spaces of Lp style as follows:

Proposition 2.1. Let 1 < p < ∞ and m > 1 + 1/p. For given functions f ∈
Hm−2,p(Ω) and ϕ = µϕ1 − γ ϕ2 ∈ B

m−1−1/m,p
∗ (∂Ω), there exists a solution u ∈

Hm,p(Ω) of problem (∗) if and only if there exists a solution ψ ∈ Bm−1/p,p(∂Ω) of
equation (†).

(II) Next we show that the operator

Tψ(x′) = LPψ(x′)

= µ(x′)
∂

∂ν
(Pψ) (x′) + γ(x′)ψ(x′) +

∫
Ω

r(x′, y) [Pψ(y) − ψ(x′)] dy

is a first-order, pseudo-differential operator on the boundary ∂Ω.
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In fact, we have the following results:
(a) It is known (see [6, Chapter XX], [7, Chapter 3]) that the operator

Π : ψ(x′) 
−→ ∂

∂ν
(Pψ) (x′)

is a first-order, elliptic pseudo-differential operator on ∂Ω. For example, if W is the
usual Laplacian ∆ = ∂2/∂x2

1 + ∂2/∂x2
2 + · · ·+ ∂2/∂x2

n, that is, if P = ∆ and S = 0,
then it follows that the principal symbol p1(x′, ξ′) of Π is given by the formula

p1(x′, ξ′) =minus the length |ξ′| of ξ′ with respect to the Riemannian

metric of ∂Ω induced by the natural metric of Rn.

(b) Since the pseudo-differential operator R ∈ L−θ
1,0(R

n) has the transmission
property with respect to ∂Ω, it follows (see [4], [7, Chapter 2]) that the operator

Q : ψ(x′) 
−→
∫

Ω

r(x′ , y)Pψ(y)dy

is a pseudo-differential operator of order −θ on ∂Ω.
(III) We study the pseudo-differential operator T in question. The next propo-

sition is an essential step in the proof of Theorem.

Proposition 2.2. If hypothesis (H) is satisfied, then there exists a parametrix E
in the Hörmander class L0

1,1/2(∂Ω) for T such that

ET ≡ TE ≡ I mod L−∞(∂Ω),

E : Bσ,p(∂Ω) −→ Bσ,p(∂Ω) for all σ ∈ R.

Proof. By assertions (a) and (b), it follows that the pseudo-differential operator T
can be written in the form

T = µΠ + γ +Q,

where Π is of order 1 and Q is of order −θ, respectively. If the symbol of Π has
an asymptotic expansion

p1(x′, ξ′) + p0(x′, ξ′) + · · · ,

then we find that the symbol t(x′, ξ′) of T is given by the formula

t(x′, ξ′) = µ(x′)
(
Re p1(x′, ξ′) +

√
−1 Im p1(x′, ξ′)

)
+

(
[γ(x′) + µ(x′)Re p0(x′, ξ)] +

√
−1µ(x′) Im p0(x′, ξ)

)
+ terms of negative order.

Here we remark that:
(1) Re p1(x′, ξ′) < 0 on the bundle T ∗(∂Ω)\{0} of non-zero cotangent vectors.
(2) Hypothesis (H) implies that

γ(x′) < 0 on the set M = {x′ ∈ ∂Ω : µ(x′) = 0}.

Thus, just as in [10, Lemma 5.3], one can prove the following:
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Claim. Assume that hypothesis (H) is satisfied. Then, for each point x′0 of ∂Ω,
there exists a neighborhood U(x′0) of x′0 such that:

For any compact K ⊂ U(x′0) and any multi-indices α, β, there exist constants
CK,α,β > 0 and CK > 0 such that we have, for all x′ ∈ K and |ξ′| ≥ CK,

∣∣∣Dα
ξ′D

β
x′t(x′, ξ′)

∣∣∣ ≤ CK,α,β |t(x′, ξ′)| (1 + |ξ′|)−|α|+(1/2)|β |
,

|t(x′, ξ′)|−1 ≤ CK .

Therefore, applying [6, Theorem 22.1.3] to our situation, one can construct a
parametrix E ∈ L0

1,1/2(∂Ω) for T .
The boundedness of the parametrix E : Bσ,p(∂Ω) → Bσ,p(∂Ω) follows from an

application of a Besov-space boundedness theorem due to Bourdaud [3, Theorem
1]. �

(IV) We associate with equation (†) a linear operator

T : Bm−1/p,p(∂Ω) −→ Bm−1/p,p(∂Ω)

as follows.
(α) The domain D(T ) of T is the space

D(T ) =
{
ψ ∈ Bm−1/p,p(∂Ω) : Tψ ∈ Bm−1/p,p(∂Ω)

}
.

(β) T ψ = Tψ, ψ ∈ D(T ).
Then the operator T is a densely defined, closed linear operator, since the op-

erator T : Bm−1/p,p(∂Ω) → Bm−1−1/p,p(∂Ω) is continuous and since the domain
D(T ) contains the space C∞(∂Ω).

Furthermore, just as in the proof of [10, Theorem 6.6], we can obtain the fol-
lowing results for the operator T :

Theorem 2.3. Assume that hypothesis (H) is satisfied. Then we have the follow-
ing:

(i) The operator T is a Fredholm operator with index zero, that is,

indT := dim N(T ) − codim R(T ) = 0.

(ii) The null space

N(T ) =
{
ψ ∈ Bm−1/p,p(∂Ω) : Tψ = 0

}
consists of C∞ functions on ∂Ω.

Proof. In order to prove assertion (i), we write the boundary condition Lu as

Lu =
(
µ
∂u

∂ν
+ γ u

)
+

∫
Ω

r(·, y)u(y)dy

:= L0u+RΩu.
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Then it follows that the operator

(W,L) = (P + Sr, L0 +RΩ) : Hm,p(Ω) −→ Hm−2,p(Ω) ×B
m−1−1/p,p
∗ (∂Ω)

is a relatively compact perturbation of the operator

(P,L0) : Hm,p(Ω) −→ Hm−2,p(Ω) ×B
m−1−1/p,p
∗ (∂Ω),

since Sr is of order 2 − κ < 2 and RΩ is of order −θ < 0. But, arguing as in the
proof of [10, Theorem 6.6], we find that if hypothesis (H) is satisfied, then we have

ind (P,L0) = 0.

Therefore, by using Proposition 2.1, we obtain that

ind T = ind (W,L) = ind (P,L0) = 0.

Assertion (ii) is an immediate consequence of Proposition 2.2. �
(V) Finally we prove that the mapping (W,L) is bijective, or equivalently,{

Problem (∗) has a unique solution u ∈ Hm,p(Ω) for

any f ∈ Hm−2,p(Ω) and any ϕ ∈ B
m−1−1/p,p
∗ (∂Ω).

(2.1)

(V-1) In doing so, we first prove uniqueness result for problem (∗):
{
u ∈ Hm,p(Ω), Wu = 0 in Ω, Lu = 0 on ∂Ω
=⇒ u = 0 in Ω.

(2.2)

By virtue of Proposition 2.1, we find from part (ii) of Theorem 2.3 that

{
u ∈ Hm,p(Ω), Wu = 0 in Ω, Lu = 0 on ∂Ω

=⇒ u ∈ C∞(Ω).

Therefore, uniqueness result (2.2) is an immediate consequence of the following
maximum principle:

Proposition 2.4. If hypothesis (H) is satisfied, then we have

{
u ∈ C2(Ω), Wu ≥ 0 in Ω, Lu ≥ 0 on ∂Ω

=⇒ u ≤ 0 on Ω.

Proof. If u is a constant C , then it follows that

0 ≤ Wu = CW1 in Ω.

This implies that C is nonpositive, since W1 ≤ 0 and W1 �≡ 0 in Ω.
Hence we have only to consider the case when u is not a constant. Assume to

the contrary that
C = max

Ω
u > 0.
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Then, applying the strong maximum principle (see Appendix, Theorem A.1) to the
operator W , we obtain that there exists a point x′0 of ∂Ω such that{

u(x′0) = C > 0,
u(y) < u(x′0) for all y ∈ Ω.

(2.3)

Furthermore, it follows from an application of the boundary point lemma (see
Theorem A.2) that

∂u

∂ν
(x′0) < 0.

This implies that µ(x′0) = 0, that is,

x′0 ∈M = {x′ ∈ ∂Ω : µ(x′) = 0} ,

since we have
0 ≤ Lu(x′0) ≤ µ(x′0)

∂u

∂ν
(x′0).

Therefore, by hypothesis (H) and assertion (2.3), we find that

Lu(x′0) = γ(x′0)u(x
′
0) +

∫
Ω

r(x′0 , y) [u(y) − u(x′0)] dy < 0.

This contradicts the hypothesis: Lu ≥ 0 on ∂Ω. �
(V-2) In view of Proposition 2.1, we obtain from uniqueness result (2.2) that the

operator T : Bm−1/p,p(∂Ω) → Bm−1/p,p(∂Ω) is injective, that is,

dim N(T ) = 0.

But, part (i) of Theorem 2.3 tells us that T is a Fredholm operator with index zero.
Thus we have

codimR(T ) = 0,

which proves that T is surjective. Hence it follows that the operator T is bijective.
Therefore, existence and uniqueness result (2.1) follows by using again Proposition
2.1.

The proof of Theorem is now complete. �
Appendix: The maximum principle

In this appendix, following Bony-Courrège-Priouret [2], we formulate two useful
maximum principles for second-order elliptic Waldenfels operators.

First we state the strong maximum principle (see [2, Théorème VII]):

Theorem A.1. Let W be a second-order elliptic Waldenfels operator. Assume
that {

u ∈ C2(Ω), Wu ≥ 0 in Ω,
C = maxΩ u ≥ 0.

If the function u takes its maximum C at an interior point x0 ∈ Ω, then u ≡ C
in the connected component containing x0.

Next we consider the interior normal derivative (∂u)/(∂ν) at a boundary point
where the function u ∈ C2(Ω) takes its nonnegative maximum.

The boundary point lemma reads as follows (see [2, Théorème VIII]):
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Theorem A.2. Let W be a second-order elliptic Waldenfels operator. Assume
that {

u ∈ C2(Ω), Wu ≥ 0 in Ω,
C = maxΩ u ≥ 0.

If the function u takes its maximum C at a boundary point x′0 ∈ ∂Ω, then either
u ≡ C in the connected component containing x′0 or

∂u

∂ν
(x′0) < 0.
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