
BOUNDARY VALUE PROBLEMS FOR ELLIPTIC

PSEUDO-DIFFERENTIAL OPERATORS

Kazuaki TAIRA

��������� The purpose of this paper is to study boundary value problems for el-

liptic pseudo-differential operators which originate from the problem of existence of

Markov processes in probability theory. We prove existence and uniqueness theorems

for these boundary value problems in the framework of Sobolev spaces. Our approach

permits us to interpret sufficient conditions for the unique solvability of boundary
value problems in terms of Markovian motion.

1. Introduction and Results

Let Ω be a bounded domain of Euclidean space Rn, with C∞ boundary ∂Ω; its
closure Ω = Ω ∪ ∂Ω is an n-dimensional, compact C∞ manifold with boundary.

Let W be a second-order, elliptic pseudo-differential operator with real coeffi-
cients such that

Wu(x) = Pu(x) + Sru(x)

:=


 n∑

i,j=1

aij(x)
∂2u

∂xi∂xj
(x) +

n∑
i=1

bi(x)
∂u

∂xi
(x) + c(x)u(x)




+
∫

Ω

s(x, y)


u(y) − σ(x, y)


u(x) +

n∑
j=1

(yj − xj)
∂u

∂xj
(x)




 dy.

Here:

(1) aij ∈ C∞(Rn), aij = aji and there exists a constant a0 > 0 such that

n∑
i,j=1

aij(x)ξiξj ≥ a0|ξ|2 , x ∈ Rn, ξ ∈ Rn.

(2) bi ∈ C∞(Rn).
(3) c ∈ C∞(Rn) and c ≤ 0 in Ω.
(4) The integral kernel s(x, y) is the distribution kernel of a properly supported,

pseudo-differential operator S ∈ L2−κ
1,0 (Rn), κ > 0, which has the transmission

property with respect to the boundary ∂Ω (cf. [Bo], [Ho], [RS]), and s(x, y) ≥ 0
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off the diagonal {(x,x) : x ∈ Rn} in Rn × Rn. The measure dy is the Lebesgue
measure on Rn.

(5) The function σ(x, y) is a C∞ function on Ω × Ω such that σ(x, y) = 1 in
a neighborhood of the diagonal

{
(x,x) : x ∈ Ω

}
in Ω × Ω. The function σ(x, y)

depends on the shape of the domain Ω; for example, if Ω is convex, one may take
σ(x, y) ≡ 1 on Ω × Ω.

(6) W1(x) = c(x) +
∫
Ω s(x, y)[1 − σ(x, y)] dy ≤ 0 in Ω, and W1 �≡ 0 in Ω.

The operator W is called a second-order Waldenfels operator (cf. [BCP], [Ta3]).
The differential operator P is called a diffusion operator which describes analytically
a strong Markov process with continuous paths (diffusion process) in the interior
Ω. The operator Sr is called a second-order Lévy operator which is supposed to
correspond to the jump phenomenon in the interior Ω; a Markovian particle moves
by jumps to a random point, according to a law determined by the kernel s(x, y)
and function σ(x, y), in the interior Ω.

Let L be a second-order, boundary condition with real coefficients such that in
local coordinates (x1 , x2, · · · , xn−1) on ∂Ω

Lu(x′) = Qu(x′) + γ(x′)u(x′) + µ(x′)
∂u

∂ν
(x′) +Rru(x′)

:=


 n−1∑

i,j=1

αij(x′)
∂2u

∂xi∂xj
(x′) +

n−1∑
i=1

βi(x′)
∂u

∂xi
(x′)


+ γ(x′)u(x′)

+ µ(x′)
∂u

∂ν
(x′) +

∫
Ω

r(x′, y) [u(y) − u(x′)] dy.

Here:
(1) The operator Q is a second-order, degenerate elliptic differential operator

with C∞ coefficients on ∂Ω. More precisely, the αij are the components of a C∞

symmetric contravariant tensor of type
(
2
0

)
on ∂Ω satisfying

n−1∑
i,j=1

αij(x′)ξiξj ≥ 0, x′ ∈ ∂Ω, ξ′ =
n−1∑
j=1

ξj dxj ∈ T ∗
x′(∂Ω),

where T ∗
x′(∂Ω) is the cotangent space of ∂Ω at x′.

(2) L1 = γ ∈ C∞(∂Ω) and γ ≤ 0 on ∂Ω.
(3) µ ∈ C∞(∂Ω) and µ ≥ 0 on ∂Ω.
(4) ν = (ν1, . . . , νn) is the unit interior normal to the boundary ∂Ω.
(5) The integral kernel r(x, y) is the distribution kernel of a properly supported,

pseudo-differential operator R ∈ L0
1,0(Rn) which has the transmission property

with respect to the boundary ∂Ω, and r(x, y) ≥ 0 off the diagonal in Rn × Rn.
The boundary condition L is called a second-order Ventcel’ boundary condition

(cf. [BCP], [Ta3]). The terms of L are supposed to correspond to the diffusion along
the boundary, the absorption phenomenon, the reflection phenomenon, the inward
jump phenomenon from the boundary, respectively.

In this paper, we prove existence and uniqueness theorems for the following
boundary value problem in the framework of Sobolev spaces:

(∗)
{
Wu = f in Ω,
Lu = ϕ on ∂Ω.
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To state our fundamental hypotheses concerning the boundary condition L, we
introduce some notation and definitions.

We let

Yi =
n−1∑
j=1

αij ∂

∂xj
, 1 ≤ i ≤ n− 1; Y0 =

n−1∑
i=1


βi −

n−1∑
j=1

∂αij

∂xj


 ∂

∂xi
,

and define the Lie algebra L(Y) over R generated by the vector fields Y1, · · · , Yn−1

and Y0 in the following way: In terms of local coordinates (x1, x2, · · · , xn−1) on
∂Ω, we define a mapping

Ψ : Γ (∂Ω, T ∗(∂Ω)) −→ Γ (∂Ω, T (∂Ω))

by the formula

Ψ(ζ) =
n−1∑
j=1

(
n−1∑
i=1

αijζi

)
∂

∂xj
, ζ =

n−1∑
i=1

ζi dxi,

and

Y1 = the image of Ψ = {Ψ(ζ) : ζ ∈ Γ (∂Ω, T ∗(∂Ω))} .

Here Γ (∂Ω, T ∗(∂Ω)) and Γ (∂Ω, T (∂Ω)) are the space of C∞ covariant vector fields
on ∂Ω and the space of C∞ contravariant vector fields on ∂Ω, respectively. Then
we let

L(Y) = the Lie algebra over R generated by the vector fields Y1 and Y0.

If x′ is a point of the boundary ∂Ω, then we let

ω(x′) = the closure of all points y′ ∈ ∂Ω which can be joined to x′ by
a piecewise differentiable curve, of which each differentiable
arc is an integral curve of one of the vector fields Y1 and Y0.

The set ω(x′) is called the propagation set of x′ (cf. [Ta2, Chapter 7]).
Now we can state our fundamental hypotheses for the boundary condition L (cf.

Figures 1 and 2):
(H1) There exists a compact C∞ submanifold Σ of codimension one in the set

M = {x′ ∈ ∂Ω : µ(x′) = 0}

such that the Lie algebra L(Y) has rank n− 1 at each point of the set M\Σ.
(H2) There exists a nested family of compact C∞ submanifolds

Σ = Σ1 ⊃ Σ2 ⊃ · · · ⊃ Σk ⊃ Σk+1 = ∅,
dimΣj > dimΣj+1, j = 1, · · · , k,
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such that the Lie algebra L(Y) is transversal to the submanifold Σj at each point
x′ of Σj\Σj+1, j = 1, · · · , k, that is, there exists a tangent vector Y in L(Y) which
is transversal to the tangent space Tx′(Σj).

(H3) If there exists a point x′0 of M such that the propagation set ω(x′0) is
entirely contained in M , then we have

|γ(x′)| +
∫

Ω

r(x′ , y)dy �≡ 0 on ω(x′0).

M

Σ

ω(x′0)

Figure 1
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Intuitively, hypotheses (H1) and (H2) imply that a Markovian particle does
not stay at any point of the set M = {x′ ∈ ∂Ω : µ(x′) = 0}, where no reflection
phenomenon occurs, for any period of time. However, a Markovian particle may
be trapped in the set M . Hypothesis (H3) is a non-trapping condition for the set
M ; more precisely, hypothesis (H3) implies that, at some point of the set ω(x′0), a
Markovian particle may “disappear” or “move by jumps” to a random point in the
interior Ω.

The next theorem asserts that if a Markovian particle moves incessantly both by
jumps and continuously in the state space Ω = Ω∪∂Ω, not being trapped in the set
M where no reflection phenomenon occurs, then problem (∗) is uniquely solvable
in the framework of Sobolev spaces:

Theorem 1. Assume that hypotheses (H1), (H2) and (H3) are satisfied. Then,
for any f ∈ Hs(Ω) and any ϕ ∈ Hs−1/2(∂Ω) with s > 1/2, there exists a unique
solution u ∈ Hs(Ω) of the problem

(∗)
{
Wu = f in Ω,
Lu = ϕ on ∂Ω.
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Furthermore, we consider the case when αij ≡ 0 on ∂Ω:

Lou(x′) =
n−1∑
i=1

βi(x′)
∂u

∂xi
(x′) + γ(x′)u(x′) + µ(x′)

∂u

∂ν
(x′)

+
∫

Ω

r(x′ , y) [u(y) − u(x′)] dy.

The fundamental hypothesis for the boundary condition Lo is stated as follows:

(H4) The vector field β =
∑

i β
i∂/∂xi is non-zero on M = {x′ ∈ ∂Ω : µ(x′) = 0}

and any maximal integral curve of β is not entirely contained in M .

The vector field β coincides with the drift vector field Y0, since αij ≡ 0 on ∂Ω.
Hence the intuitive meaning of hypothesis (H4) is that a Markovian particle “goes
through” the setM where no reflection phenomenon occurs; that is, hypothesis (H4)
is a non-trapping condition for the set M , similar to hypothesis (H3) in Theorem
1.

Then we can prove the following result:

Theorem 2. Let S ∈ L1−κ
1,0 (Rn) with κ > 0 and R ∈ L−θ

1,0(R
n) with θ > 0. Assume

that hypothesis (H4) is satisfied. Then, for any f ∈ Hs(Ω) and any ϕ ∈ Hs+1/2(∂Ω)
with s > −1/2, there exists a unique solution u ∈ Hs+1(Ω) of the problem

(∗∗)
{
Wu = f in Ω,
Lou = ϕ on ∂Ω.

Theorems 1 and 2 extend and improve substantially Theorem 3 of Paneyakh [Pa]
and Théorème 2 of Taira [Ta1], which only treated the case when S ≡ 0 and R ≡ 0.

2. Proof of Theorem 1

(1) First, we show that the boundary value problem

(∗)
{
Wu = f in Ω,
Lu = ϕ on ∂Ω

can be reduced to the study of an operator on the boundary.
Now we consider the following Dirichlet problem:

(D)
{
Wv = f in Ω,
v = 0 on ∂Ω.

The existence and uniqueness theorem for problem (D) is well established in the
framework of Sobolev spaces (cf. [Ho, Chapter XX], [RS, Chapter 3]). Indeed, it
suffices to note that the operator W is a perturbation of a compact operator, in
the framework of Sobolev spaces, to the second-order elliptic differential operator
P , since W = P + Sr and Sr is of order 2 − κ < 2. We let

v = Gf.
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Then it follows that a function u is a solution of problem (∗) if and only if the
function w = u− v is a solution of the problem

{
Ww = 0 in Ω,
Lw = ϕ− Lv = ϕ− LGf on ∂Ω.

But we know that every solution w of the homogeneous equation: Ww = 0 in Ω
can be expressed as follows:

w = Pψ.

Thus, by using the operators G and P , one can reduce the study of problem (∗) to
that of the equation

(+) Tψ := LPψ = ϕ− LGf on ∂Ω.

More precisely, we can formulate this reduction to the boundary in the framework
of Sobolev spaces as follows:

Proposition 2.1. For functions f ∈ Hs(Ω) and ϕ ∈ Hs−1/2(∂Ω) with s > 1/2,
there exists a solution u ∈ Hs(Ω) of problem (∗) if and only if there exists a solution
ψ ∈ Hs−1/2(∂Ω) of equation (+). Furthermore, the solutions u and ψ are related
as follows: u = Gf + Pψ where Gf ∈ Hs+2(Ω) and Pψ ∈ Hs(Ω).

(2) Next, we show that the operator

Tψ(x′) =
n−1∑
i,j=1

αij(x′)
∂2ψ

∂xi∂xj
(x′) +

n−1∑
i=1

βi(x′)
∂ψ

∂xi
(x′) + γ(x′)ψ(x′)

+ µ(x′)
∂

∂ν
(Pψ) (x′) +

∫
Ω

r(x′ , y) [Pψ(y) − ψ(x′)] dy

is a second-order, pseudo-differential operator on the boundary ∂Ω.
Indeed, we have the following:
(a) It is known (cf. [Ho, Chapter XX], [RS, Chapter 3]) that the operator

Π : ψ(x′) �−→ ∂

∂ν
(Pψ) (x′)

is a first-order, elliptic pseudo-differential operator on ∂Ω.
(b) Since the pseudo-differential operator R ∈ L0

1,0(R
n) has the transmission

property with respect to ∂Ω, it follows (cf. [Bo], [RS, Chapter 2]) that the operator

U : ψ(x′) �−→
∫

Ω

r(x′ , y)Pψ(y)dy

is a pseudo-differential operator of order zero on ∂Ω.
(3) We study the operator T in question, and show that conditions (H1) and

(H2) are sufficient for the validity of a priori estimates for T .
First we prove an a priori estimate for T outside the submanifold Σ:
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Lemma 2.2. Assume that hypothesis (H1) is satisfied. Let σ ∈ R and let χ be a
function in C∞

0 (∂Ω\Σ). Then, for each ε > 0, there exists a constant Cε,χ > 0
such that we have, for all ψ ∈ C∞(∂Ω),

(2.1) |χψ|Hσ(∂Ω) ≤ ε
(
|Tψ|Hσ(∂Ω) + |ψ|Hσ(∂Ω)

)
+ Cε,χ|ψ|Hσ−1(∂Ω).

Proof. We remark that the pseudo-differential operator T is of the form

T =
n−1∑
i,j=1

αij ∂2

∂xi∂xj
+

n−1∑
i=1

βi ∂

∂xi
+ µΠ +

(
γ −

∫
Ω

r(·, y)dy
)

+ a pseudo-differential operator U of order zero.

That is, the pseudo-differential operator T is a perturbation of a bounded operator,
in the framework of Sobolev spaces, to the differential operator

∑
i,j α

ij∂2/∂xi∂xj +∑
i β

i∂/∂xi + µΠ + γ which is studied in detail in Paneyakh [Pa]. Therefore, the
desired estimate (2.1) can be obtained as in [Pa, Theorem 2.5]. �

Similarly, we can prove an a priori estimate for T in a tubular neighborhood of
the submanifold Σ, just as in [Pa, Theorem 3.1]:

Lemma 2.3. Assume that hypothesis (H2) is satisfied. Let σ ∈ R and let Ξ be
a sufficiently small tubular neighborhood of the submanifold Σ. Then, for each
ε > 0, there exists a constant Cε > 0 such that we have, for all ψ ∈ C∞(∂Ω) with
suppψ ⊂ Ξ,

(2.2) |ψ|Hσ(∂Ω) ≤ ε|Tψ|Hσ(∂Ω) + Cε|ψ|Hσ−1(∂Ω).

Therefore, combining estimates (2.1) and (2.2), together with a partition of unity,
we have the following fundamental a priori estimate for the operator T (cf. [Pa,
Theorem 4.1]):

Proposition 2.4. Assume that hypotheses (H1) and (H2) are satisfied, and let
σ ∈ R. Then, for each ε > 0, there exists a constant Cε > 0 such that we have, for
all ψ ∈ C∞(∂Ω),

|ψ|Hσ(∂Ω) ≤ ε|Tψ|Hσ(∂Ω) + Cε|ψ|Hσ−1(∂Ω).

(4) We associate with equation (+) a densely defined, closed linear operator

T : Hs−1/2(∂Ω) −→ Hs−1/2(∂Ω)

as follows:
(α) The domain D(T ) of T is the space

D(T ) =
{
ψ ∈ Hs−1/2(∂Ω) : Tψ ∈ Hs−1/2(∂Ω)

}
.

(β) T ψ = Tψ, ψ ∈ D(T ).
Then, by using Proposition 2.4 as in [Pa, Theorem 4.2], we can obtain the

following:
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Theorem 2.5. Assume that hypotheses (H1) and (H2) are satisfied, and let s ∈ R.
Then we have

(i) The operator T : Hs−1/2(∂Ω) → Hs−1/2(∂Ω) is a Fredholm operator with
index zero, that is,

indT := dim N(T ) − codim R(T ) = 0.

(ii) The null space N(T ) consists of C∞ functions on ∂Ω.

(5) Now we prove existence and uniqueness result for problem (∗):

(2.3) Problem (∗) has a unique solution u ∈ Hs(Ω) for any

f ∈ Hs(Ω) and any ϕ ∈ Hs−1/2(∂Ω) with s > 1/2.

(5-1) To do this, we first prove uniqueness result for problem (∗):

(2.4)
{
u ∈ Hs(Ω),Wu = 0 in Ω, Lu = 0 on ∂Ω
=⇒ u = 0 in Ω.

In view of Proposition 2.1, part (ii) of Theorem 2.5 implies that

{
u ∈ Hs(Ω),Wu = 0 in Ω, Lu = 0 on ∂Ω

=⇒ u ∈ C∞(Ω).

Therefore, uniqueness result (2.4) is an immediate consequence of the following
maximum principle:

Proposition 2.6. Assume that hypothesis (H3) is satisfied. Then we have

{
u ∈ C2(Ω),Wu ≥ 0 in Ω, Lu ≥ 0 on ∂Ω

=⇒ u ≤ 0 on Ω.

Proof. We have only to consider the case when u is not a constant. Assume to the
contrary that

m = max
Ω

u > 0.

Then, applying the strong maximum principle (cf. [BCP, Théorème VII]) to the
operator W , we obtain that there exists a point x′0 of ∂Ω such that

{
u(x′0) = m,

u(x) < u(x′0) for all x ∈ Ω.

Furthermore, it follows from an application of the boundary point lemma (cf. [BCP,
Théorème VIII]) that

∂u

∂ν
(x′0) < 0.

This implies that µ(x′0) = 0, that is, x′0 ∈M , since we have

0 ≤ Lu(x′0) ≤ µ(x′0)
∂u

∂ν
(x′0).
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But, applying the sharp maximum principle (cf. [Ta2, Theorem 7.2.1]) to our
situation, we find that
u ≡ m throughout the propagation set ω(x′0) of x′0 ∈M .

Therefore, by virtue of hypothesis (H3), we can find a point y′0 of ∂Ω such that
u(y′0) = m, and that (cf. Figure 1)

(a) If ω(x′0) �⊂M , then we have y′0 �∈M and so

µ(y′0) > 0,
∂u

∂ν
(y′0) < 0.

(b) If ω(x′0) ⊂M , then we have y′0 ∈ ω(x′0) and

γ(y′0)u(y
′
0) +

∫
Ω

r(y′0 , y) [u(y) − u(y′0)] dy < 0.

This contradicts the hypothesis: Lu ≥ 0 on ∂Ω. Indeed, we then have

Lu(y′0) ≤ µ(y′0)
∂u

∂ν
(y′0) + γ(y′0)u(y

′
0) +

∫
Ω

r(y′0 , y) [u(y) − u(y′0)] dy < 0. �

(5-2) In view of Proposition 2.1, uniqueness result (2.4) implies that the operator
T : Hs−1/2(∂Ω) → Hs−1/2(∂Ω) is injective, that is, dim N(T ) = 0. But, part (i) of
Theorem 2.5 tells us that T is a Fredholm operator with index zero. Thus we find
that codim R(T ) = dimN(T ) = 0, which proves that the operator T is surjective;
hence it is bijective. Therefore, existence and uniqueness result (2.3) follows by
using again Proposition 2.1.

The proof of Theorem 1 is now complete.

3. Proof of Theorem 2

The idea of Proof of Theorem 2 is essentially the same as that of Theorem 1.
(1) First, arguing as in step (1) of Proof of Theorem 1, we are reduced to the

study of the pseudo-differential equation

(++) Toψ := LoPψ = ϕ− LoGf on ∂Ω.

But the operator To is of the form

To =
n−1∑
i=1

βi ∂

∂xi
+ µΠ +

(
γ −

∫
Ω

r(·, y)dy
)

+ a pseudo-differential operator U of order −θ.
Therefore, just as in [Ta1, Lemme 3.6], we can prove the following:

Proposition 3.1. If hypothesis (H4) is satisfied, then there exists a parametrix
Eo for To which maps Hσ(∂Ω) continuously into itself for all σ ∈ R.

(2) We associate with equation (++) a densely defined, closed linear operator

To : Hs+1/2(∂Ω) −→ Hs+1/2(∂Ω)

as follows:
(α) The domain D(To) of To is the space

D(To) =
{
ψ ∈ Hs+1/2(∂Ω) : Toψ ∈ Hs+1/2(∂Ω)

}
.

(β) Toψ = Toψ, ψ ∈ D(To).
Then we have the following result for the operator To, analogous to Theorem

2.5:
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Theorem 3.2. Assume that hypotheses (H4) is satisfied. Then we have the fol-
lowing assertions:

(i) The operator To : Hs+1/2(∂Ω) → Hs+1/2(∂Ω) is a Fredholm operator with
index zero.

(ii) The null space N(To) consists of C∞ functions on ∂Ω.

Proof. To prove assertion (i), we remark that the operator

(W,Lo) = (P + Sr, L0 + U) : Hs+1(Ω) −→ Hs(Ω)×Hs+1/2(∂Ω)

is a perturbation of a compact operator to the operator (P,L0), since Sr is of order
1−κ < 1 and U is of order −θ < 0. Here L0 = µ∂/∂ν+

∑
i β

i∂/∂xi+γ−
∫
Ω
r(·, y)dy.

But, by [Ta1, Corollaire 4.3], we know that if hypothesis (H4) is satisfied, then we
have ind (P,L0) = 0. Therefore, we obtain that

ind To = ind (W,Lo) = ind (P,L0) = 0.

Assertion (ii) is an immediate consequence of Proposition 3.1. �
By virtue of Theorem 3.2, Theorem 2 can be proved just as in the proof of

Theorem 1.
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