BOUNDARY VALUE PROBLEMS FOR ELLIPTIC INTEGRO-DIFFERENTIAL OPERATORS

Kazuaki Taira

Institute of Mathematics, University of Tsukuba, Tsukuba 305, JAPAN Dedicated to Professor Kiyosi Itô on his 80th birthday

Introduction and results.

This paper is a continuation of the previous note [T2] where we studied a class of degenerate boundary value problems for second-order elliptic differential operators and proved that this class of boundary value problems generates analytic semigroups both in the L^p topology and in the topology of uniform convergence. The purpose of this paper is to extend these results to the elliptic integro-differential operator case.

Let D be a bounded, convex domain of Euclidean space \mathbb{R}^N , with C^{∞} boundary ∂D ; its closure $\overline{D} = D \cup \partial D$ is an N-dimensional, compact C^{∞} manifold with boundary.

Let W be a second-order, *elliptic* integro-differential operator with real coefficients such that

$$
Wu(x) = Au(x) + Su(x)
$$

= $\left(\sum_{i,j=1}^{N} a^{ij}(x) \frac{\partial^2 u}{\partial x_i \partial x_j}(x) + \sum_{i=1}^{N} b^i(x) \frac{\partial u}{\partial x_i}(x) + c(x)u(x)\right)$
+ $\int_{\mathbf{R}^N \setminus \{0\}} \left(u(x+z) - u(x) - \sum_{j=1}^{N} z_j \frac{\partial u}{\partial x_j}(x) \right) s(x,z) m(dz).$

Here:

(1) $a^{ij} \in C^{\infty}(\overline{D})$, $a^{ij} = a^{ji}$ and there exists a constant $a_0 > 0$ such that

$$
\sum_{i,j=1}^{N} a^{ij}(x)\xi_i\xi_j \ge a_0|\xi|^2, \quad x \in D, \ \xi \in \mathbf{R}^N.
$$

(2) $b^i \in C^{\infty}(\overline{D}).$

(3) $c \in C^{\infty}(\overline{D})$, and $c \leq 0$ in D but $c \not\equiv 0$ in D.

(4) $s \in C(\overline{D} \times \mathbf{R}^N)$ and $0 \leq s \leq 1$ in $D \times \mathbf{R}^N$, and there exist constants $C_0 > 0$ and $0 < \theta_0 < 1$ such that

$$
|s(x, z) - s(y, z)| \le C_0 |x - y|^{\theta_0}, \quad x, y \in D, \ z \in \mathbf{R}^N,
$$

Typeset by $A_{\mathcal{M}}S$ -T_EX

and

$$
s(x, z) = 0 \quad \text{if } x + z \notin \overline{D}.\tag{0.1}
$$

Condition (0.1) implies that the integral operator S may be considered as an operator acting on functions u defined on the closure \overline{D} (see [G-M, Chapter II, Remark 1.19]).

(5) The measure $m(dz)$ is a Radon measure on $\mathbb{R}^N \setminus \{0\}$ such that

$$
\int_{\{|z| \le 1\}} |z|^2 m(dz) + \int_{\{|z| > 1\}} |z| m(dz) < \infty.
$$
 (0.2)

The operator W is called a second-order *Waldenfels operator*. The differential operator A is called a diffusion operator which describes analytically a strong Markov process with continuous paths in the interior D . The integral operator S is called a second-order Lévy operator which is supposed to correspond to the jump phenomenon in the closure \overline{D} (cf. [B-C-P], [T1]).

Let L be a first-order, boundary condition with real coefficients such that

$$
Lu(x') = \mu(x')\frac{\partial u}{\partial \mathbf{n}}(x') + \gamma(x')u(x').
$$

Here:

(1) $\mu \in C^{\infty}(\partial D)$ and $\mu \geq 0$ on ∂D .

(2) $\gamma \in C^{\infty}(\partial D)$ and $\gamma \leq 0$ on ∂D .

(3) $\mathbf{n} = (n_1, n_2, \dots, n_N)$ is the unit interior normal to the boundary ∂D .

The boundary condition L is called a first-order *Ventcel' boundary condition*. The terms $\mu \partial u/\partial n$ and γu of L are supposed to correspond to the reflection phenomenon and the absorption phenomenon, respectively.

Our fundamental hypothesis is the following:

(H) $\mu(x') - \gamma(x') > 0$ on ∂D .

The intuitive meaning of hypothesis (H) is that either the reflection phenomenon or the absorption phenomenon occurs at each point of the boundary ∂D .

The first purpose of this paper is to prove an existence and uniqueness theorem for the following nonhomogeneous boundary value problem in the framework of Hölder spaces:

$$
\begin{cases} Wu = f & \text{in } D, \\ Lu = \varphi & \text{on } \partial D. \end{cases} (*)
$$

The crucial point is how to define a version of Hölder spaces in which problem $(*)$ is uniquely solvable.

We introduce a subspace of the Hölder space $C^{1+\theta}(\partial D)$, $0 < \theta < 1$, which is associated with the boundary condition L in the following way: We let

$$
C_L^{1+\theta}(\partial D) = \left\{ \varphi = \mu \varphi_1 - \gamma \varphi_2 : \varphi_1 \in C^{1+\theta}(\partial D), \ \varphi_2 \in C^{2+\theta}(\partial D) \right\},\
$$

and define a norm

$$
|\varphi|_{C^{1+\theta}_L(\partial D)} = \inf \left\{ |\varphi_1|_{C^{1+\theta}(\partial D)} + |\varphi_2|_{C^{2+\theta}(\partial D)} : \varphi = \mu \varphi_1 - \gamma \varphi_2 \right\}.
$$

Then it is easy to verify that the space $C_L^{1+\theta}$ $L^{1+\theta}(\partial D)$ is a Banach space with respect to the norm $|\cdot|_{C^{1+\theta}_L(\partial D)}$. We remark that the space $C^{1+\theta}_L$ $L^{1+\theta}(\partial D)$ is an "interpolation" space" between $C^{2+\theta}(\partial D)$ and $C^{1+\theta}(\partial D)$. More precisely, we have

$$
\begin{cases} C_L^{1+\theta}(\partial D) = C^{2+\theta}(\partial D) & \text{if } \mu \equiv 0 \text{ on } \partial D, \\ C_L^{1+\theta}(\partial D) = C^{1+\theta}(\partial D) & \text{if } \mu > 0 \text{ on } \partial D. \end{cases}
$$

Now we can state our existence and uniqueness theorem for problem (∗):

Theorem 1. If hypothesis (H) is satisfied, then the mapping

$$
(W, L): C^{2+\theta}(\overline{D}) \longrightarrow C^{\theta}(\overline{D}) \oplus C_{L}^{1+\theta}(\partial D)
$$

is an algebraic and topological isomorphism for all $0 < \theta < \theta_0$. In particular, for any $f \in C^{\theta}(\overline{D})$ and any $\varphi \in C^{1+\theta}_L$ $L^{1+\theta}(\partial D)$, there exists a unique solution $u \in C^{2+\theta}(\overline{D})$ of problem (∗).

As an application of Theorem 1, we consider the problem of existence of Markov processes in probability theory. To do so, we let

$$
M = \{x' \in \partial D : \mu(x') = 0\}.
$$

Then, in view of condition (H) it follows that the boundary condition $Lu = 0$ on ∂D includes the condition $u = 0$ on M. With this fact in mind, we let

$$
C_0(\overline{D}\setminus M) = \{u \in C(\overline{D}) : u = 0 \text{ on } M\}.
$$

The space $C_0(\overline{D} \setminus M)$ is a closed subspace of $C(\overline{D})$; hence it is a Banach space.

A strongly continuous semigroup $\{T_t\}_{t>0}$ on the space $C_0(\overline{D}\setminus M)$ is called a Feller semigroup on $D \setminus M$ if it is non-negative and contractive on $C_0(D \setminus M)$:

$$
f\in C_0(\overline{D}\setminus M),\, 0\leq f\leq 1\quad\text{on }\overline{D}\setminus M\implies 0\leq T_tf\leq 1\quad\text{on }\overline{D}\setminus M.
$$

It is known (cf. [T1, Chapter 9]) that if T_t is a Feller semigroup on $\overline{D} \setminus M$, then there exists a unique Markov transition function p_t on $\overline{D} \setminus M$ such that

$$
T_t f(x) = \int_{\overline{D}\setminus M} p_t(x, dy) f(y), \quad f \in C_0(\overline{D}\setminus M),
$$

and further p_t is the transition function of some *strong Markov process*.

We define a linear operator W from $C_0(D \setminus M)$ into itself as follows:

(a) The domain of definition $D(W)$ is the set

$$
D(W) = \left\{ u \in C^2(\overline{D}) \cap C_0(\overline{D} \setminus M) : W u \in C_0(\overline{D} \setminus M), Lu = 0 \right\}.
$$

(b) $Wu = Wu, u \in D(W)$.

The next theorem is a generalization of Theorem 4 of [T2] to the integrodifferential operator case:

Theorem 2. If hypothesis (H) is satisfied, then the operator W is closable in the space $C_0(\overline{D}\setminus M)$, and its minimal closed extension \overline{W} is the infinitesimal generator of some Feller semigroup $\{T_t\}_{t>0}$ on $\overline{D} \setminus M$.

Theorem 2 asserts that there exists a Feller semigroup on $D\setminus M$ corresponding to such a diffusion phenomenon that a Markovian particle moves both by jumps and continuously in the state space $\overline{D}\setminus M$ until it "dies" at the time when it reaches the set M where the particle is definitely absorbed (cf. $[K,$ Theorem 5.2, $[S,$ Theorem 2.2], [G-M, Chapter VIII, Theorem 3.3]).

The second purpose of this paper is to study problem (∗) from the point of view of analytic semigroup theory in functional analysis. The forthcoming two theorems generalize Theorems 2 and 3 of [T2] to the integro-differential operator case.

First we state a generation theorem of analytic semigroups in the the L^p topology. To do so, we associate with problem (*) a unbounded linear operator W_p from $L^p(D)$ into itself as follows:

(a) The domain of definition $D(W_p)$ is the set

$$
D(W_p) = \{ u \in H^{2,p}(D) : Lu = 0 \} .
$$

(b) $W_p u = W u, u \in D(W_p)$.

Then we can prove the following:

Theorem 3. Let $1 < p < \infty$. Assume that hypothesis (H) is satisfied. Then we have the following:

(i) For every $\varepsilon > 0$, there exists a constant $r_p(\varepsilon) > 0$ such that the resolvent set of W_p contains the set $\Sigma_p(\varepsilon) = \{\lambda = r^2 e^{i\vartheta} : r \ge r_p(\varepsilon), -\pi + \varepsilon \le \vartheta \le \pi - \varepsilon\}$, and that the resolvent $(W_p - \lambda I)^{-1}$ satisfies the estimate

$$
\left\| (W_p - \lambda I)^{-1} \right\| \le \frac{c_p(\varepsilon)}{|\lambda|}, \quad \lambda \in \Sigma_p(\varepsilon), \tag{0.3}
$$

where $c_p(\varepsilon) > 0$ is a constant depending on ε .

(ii) The operator W_p generates a semigroup e^{zW_p} on the space $L^p(D)$ which is analytic in the sector $\Delta_{\varepsilon} = \{z = t + is : z \neq 0, |\arg z| < \pi/2 - \varepsilon\}$ for any $0 < \varepsilon <$ $\pi/2$.

Secondly we state a generation theorem of analytic semigroups in the topology of uniform convergence. We introduce a linear operator \mathfrak{W} from $C_0(D \setminus M)$ into itself as follows:

(a) The domain of definition $D(\mathfrak{W})$ is the set

$$
D(\mathfrak{W}) = \left\{ u \in C_0(\overline{D} \setminus M) \cap H^{2,p}(D) : Wu \in C_0(\overline{D} \setminus M), Lu = 0 \right\}.
$$

(b) $\mathfrak{W}_u = W_u, u \in D(\mathfrak{W}).$

Here we remark that the domain $D(\mathfrak{W})$ is independent of $N < p < \infty$ (see the proof of Lemma 4.2).

Then Theorem 3 remains valid with $L^p(D)$ and W_p replaced by $C_0(\overline{D}\setminus M)$ and W, respectively:

Theorem 4. If hypothesis (H) is satisfied, then we have the following:

(i) For every $\varepsilon > 0$, there exists a constant $r(\varepsilon) > 0$ such that the resolvent set of $\mathfrak W$ contains the set $\Sigma(\varepsilon) = \{\lambda = r^2 e^{i\vartheta} : r \ge r(\varepsilon), -\pi + \varepsilon \le \vartheta \le \pi - \varepsilon\}$, and that the resolvent $(\mathfrak{W} - \lambda I)^{-1}$ satisfies the estimate

$$
\|(\mathfrak{W} - \lambda I)^{-1}\| \le \frac{c(\varepsilon)}{|\lambda|}, \quad \lambda \in \Sigma(\varepsilon), \tag{0.4}
$$

where $c(\varepsilon) > 0$ is a constant depending on ε .

(ii) The operator $\mathfrak W$ generates a semigroup $e^{z\mathfrak W}$ on the space $C_0(\overline{D}\setminus M)$ which is analytic in the sector $\Delta_{\varepsilon} = \{z = t + is : z \neq 0, |\arg z| < \pi/2 - \varepsilon\}$ for any $0 <$ $\varepsilon < \pi/2$.

Theorems 3 and 4 express a regularizing effect for the parabolic integro-differential operator $\partial/\partial t$ – W with homogeneous boundary condition L (cf. [G-M, Chapter VIII, Theorem 3.1]).

The rest of this paper is organized as follows. In Section 1 we study problem $(*)$ in the framework of Hölder spaces, and prove Theorem 1. The essential point in the proof is to estimate the integral operator S in terms of Hölder norms. We show that the operator (W, L) may be considered as a perturbation of a compact operator to the operator (A, L) in the framework of Hölder spaces. Thus the proof of Theorem 1 is reduced to the differential operator case which is studied in detail in [T2]. Section 2 is devoted to the proof of Theorem 2. The proof is based on a version of the Hille-Yosida theorem in semigroup theory in terms of the maximum principle. In Section 3 we prove Theorem 3. We estimate the integral operator S in terms of L^p norms, and show that S is an A_p -completely continuous operator in the sense of Gohberg and Kreĭn $[G-K]$. Section 4 is devoted to the proof of Theorem 4. Theorem 4 follows from Theorem 3 by using Sobolev's imbedding theorems and a λ -dependent localization argument, just as in [T2].

1 Proof of Theorem 1.

(I) First we prove Theorem 1 in the case where $S \equiv 0$:

Theorem 1.1. If hypothesis (H) is satisfied, then the mapping

$$
(A, L): C^{2+\theta}(\overline{D}) \longrightarrow C^{\theta}(\overline{D}) \oplus C_{L}^{1+\theta}(\partial D)
$$

is an algebraic and topological isomorphism for all $0 < \theta < 1$.

Proof. The proof is divided into four steps.

(i) Let (f, φ) be an arbitrary element of $C^{\theta}(\overline{D}) \oplus C_{L}^{1+\theta}$ $L^{1+\theta}(\partial D)$ with $\varphi = \mu \varphi_1 - \gamma \varphi_2$. First we show that the boundary value problem

$$
\begin{cases}\nAu = f & \text{in } D, \\
Lu = \varphi & \text{on } \partial D\n\end{cases} \tag{**}
$$

can be reduced to the study of an operator on the boundary.

To do so, we consider the following Neumann problem:

$$
\begin{cases}\nAv = f & \text{in } D, \\
\frac{\partial v}{\partial \mathbf{n}} = \varphi_1 & \text{on } \partial D.\n\end{cases} \tag{N}
$$

Recall that the existence and uniqueness theorem for problem (N) is well established in the framework of Hölder spaces (see $[G-T, Theorem 6.31]$). Thus we find that a function $u \in C^{2+\theta}(\overline{D})$ is a solution of problem $(*)$ if and only if the function $w = u - v \in C^{2+\theta}(\overline{D})$ is a solution of the problem:

$$
\begin{cases}\nAw = 0 & \text{in } D, \\
Lw = \varphi - Lv & \text{on } \partial D.\n\end{cases}
$$

Here we remark that

$$
Lv = \mu \frac{\partial v}{\partial \mathbf{n}} + \gamma v = \mu \varphi_1 + \gamma v,
$$

so that

$$
Lw = -\gamma(\varphi_2 + v) \in C^{2+\theta}(\partial D).
$$

However we know that every solution $w \in C^{2+\theta}(\overline{D})$ of the homogeneous equation: $Aw = 0$ in D can be expressed as follows (see [G-T, Theorem 6.14]):

$$
w = P\psi, \quad \psi \in C^{2+\theta}(\partial D).
$$

Thus one can reduce the study of problem (∗∗) to that of the equation

$$
T\psi := L\mathcal{P}\psi = -\gamma(\varphi_2 + v) \quad \text{on } \partial D. \tag{+}
$$

More precisely we have the following:

Proposition 1.2. For functions $f \in C^{\theta}(\overline{D})$ and $\varphi \in C_{L}^{1+\theta}$ $\int_{L}^{1+\theta} (\partial D)$, there exists a solution $u \in C^{2+\theta}(\overline{D})$ of problem $(**)$ if and only if there exists a solution $\psi \in$ $C^{2+\theta}(\partial D)$ of equation (+).

(ii) We study the operator T in question. It is known (cf. $[H, Chapter XX]$) that the operator

$$
T\psi = L\mathcal{P}\psi = \mu \frac{\partial}{\partial \mathbf{n}} (\mathcal{P}\psi) + \gamma \psi
$$

is a first-order, pseudo-differential operator on the boundary ∂D.

The next proposition is an essential step in the proof of Theorem 1.1:

Proposition 1.3. If hypothesis (H) is satisfied, then there exists a parametrix E in the Hörmander class L_1^0 $_{1,1/2}^{0}(\partial D)$ for T which maps $C^{k+\theta}(\partial D)$ continuously into itself for any integer $k \geq 0$.

Proof. By making use of Theorem 22.1.3 of [H, Chapter XXII] just as in [T2, Lemma 4.2, one can construct a parametrix E in the Hörmander class L_1^0 $_{1,1/2}^{0}(\partial D)$ for T :

$$
ET \equiv TE \equiv I \mod L^{-\infty}(\partial D).
$$

The boundedness of $E: C^{k+\theta}(\partial D) \to C^{k+\theta}(\partial D)$ follows from an application of [B, Theorem 1], since $C^{k+\theta}(\partial D) = B^{k+\theta}_{\infty,\infty}(\partial D)$. \Box

(iii) We consider problem $(**)$ in the framework of Sobolev spaces of L^p style, and prove an L^p version of Theorem 1.1.

If k is a positive integer and $1 < p < \infty$, we define the Sobolev space

$$
H^{k,p}(D) =
$$
the space of (equivalence classes of) functions

$$
u \in L^p(D)
$$
 whose derivatives $D^{\alpha}u$, $|\alpha| \le k$, in the
sense of distributions are in $L^p(D)$,

and the Besov space

$$
B^{k-1/p,p}(\partial D) =
$$
the space of the boundary values φ of functions

$$
u \in H^{k,p}(D).
$$

In the space $B^{k-1/p,p}(\partial D)$, we introduce a norm

$$
|\varphi|_{B^{k-1/p,p}(\partial D)} = \inf ||u||_{H^{k,p}(D)},
$$

where the infimum is taken over all functions $u \in H^{k,p}(D)$ which equal φ on the boundary ∂D . The space $B^{k-1/p,p}(\partial D)$ is a Banach space with respect to this norm $|\cdot|_{B^{k-1/p,p}(\partial D)}$ (cf. [B-L]).

We introduce a subspace of $B^{1-1/p,p}(\partial D)$ which is an L^p version of $C^{1+\theta}_L$ $\iota^{1+\theta}_L(\partial D).$ We let

$$
B_L^{1-1/p,p}(\partial D) = \left\{ \varphi = \mu \varphi_1 - \gamma \varphi_2 : \right.
$$

$$
\varphi_1 \in B^{1-1/p,p}(\partial D), \ \varphi_2 \in B^{2-1/p,p}(\partial D) \right\},
$$

and define a norm

$$
|\varphi|_{B^{1-1/p,p}_L(\partial D)} = \inf \left\{ |\varphi_1|_{B^{1-1/p,p}(\partial D)} + |\varphi_2|_{B^{2-1/p,p}(\partial D)} : \varphi = \mu \varphi_1 - \gamma \varphi_2 \right\}.
$$

Then it is easy to verify that the space $B_L^{1-1/p,p}$ $\binom{1-1}{L}$ $\binom{p,p}{Q}$ is a Banach space with respect to the norm $|\cdot|_{B^{1-1/p,p}_L(\partial D)}$.

Then, arguing just as in the proof of $[T2,$ Theorem 1 we can obtain the following L^p version of Theorem 1.1:

Theorem 1.4. If hypothesis (H) is satisfied, then the mapping

$$
(A, L): H^{2,p}(D) \longrightarrow L^p(D) \oplus B^{1-1/p,p}_L(\partial D)
$$

is an algebraic and topological isomorphism.

(iv) Now we remark that

$$
\begin{cases} C^{\theta}(\overline{D}) \subset L^p(D), \\ C_L^{1+\theta}(\partial D) \subset B_L^{1-1/p,p}(\partial D). \end{cases}
$$

Thus we find from Theorem 1.4 that problem $(**)$ has a unique solution $u \in$ $H^{2,p}(D)$ for any $f \in C^{\theta}(\overline{D})$ and any $\varphi \in C^{1+\theta}_L$ $L^{1+\theta}(\partial D)$. Furthermore, by virtue of Proposition 1.2 it follows that the solution u can be written in the form

$$
u = v + P\psi
$$
, $v \in C^{2+\theta}(\overline{D})$, $\psi \in B^{2-1/p,p}(\partial D)$.

However, Proposition 1.3 tells us that

$$
\psi \in C^{2+\theta}(\partial D),
$$

since we have $\psi \equiv E(T\psi) = -E(\gamma(\varphi_2 + v)) \mod C^{\infty}(\partial D)$.

Therefore we obtain that

$$
u = v + P\psi \in C^{2+\theta}(\overline{D}).
$$

The proof of Theorem 1.1 is complete. \Box

(II) Next we study the integral operator S in the framework of Hölder spaces. To do so, we need the following elementary estimates for the measure $m(dz)$:

Claim 1.5. For $\varepsilon > 0$, we let

$$
\sigma(\varepsilon) = \int_{\{|z| \le \varepsilon\}} |z|^2 m(dz),
$$

$$
\delta(\varepsilon) = \int_{\{|z| > \varepsilon\}} |z| m(dz),
$$

$$
\tau(\varepsilon) = \int_{\{|z| > \varepsilon\}} m(dz).
$$

Then we have, as $\varepsilon \downarrow 0$,

$$
\sigma(\varepsilon) \to 0,\tag{1.1}
$$

$$
\delta(\varepsilon) \le \frac{C_1}{\varepsilon} + C_2,\tag{1.2}
$$

$$
\tau(\varepsilon) \le \frac{C_1}{\varepsilon^2} + C_2,\tag{1.3}
$$

where

$$
C_1 = \int_{\{|z| \le 1\}} |z|^2 m(dz), \quad C_2 = \int_{\{|z| > 1\}} |z| m(dz).
$$

Proof. Assertion (1.1) follows immediately from condition (0.2).

The term $\delta(\varepsilon)$ can be estimated as follows:

$$
\delta(\varepsilon) = \int_{\{|z|>1\}} |z| m(dz) + \int_{\{\varepsilon < |z| \le 1\}} |z| m(dz) \n\le \int_{\{|z|>1\}} |z| m(dz) + \frac{1}{\varepsilon} \int_{\{\varepsilon < |z| \le 1\}} |z|^2 m(dz) \n\le \int_{\{|z|>1\}} |z| m(dz) + \frac{1}{\varepsilon} \int_{\{|z| \le 1\}} |z|^2 m(dz).
$$

The term $\tau(\varepsilon)$ is estimated in a similar way. \Box

By virtue of Claim 1.5, we can estimate the term Su in terms of Hölder norms, just as in [G-M, Chapter II, Lemmas 1.2 and 1.5]:

Lemma 1.6. For every $\eta > 0$, there exists a constant $C_{\eta} > 0$ such that we have, for all $u \in C^2(\overline{D}),$

$$
||Su||_{\infty} \leq \eta ||\nabla^2 u||_{\infty} + C_{\eta} (||u||_{\infty} + ||\nabla u||_{\infty}).
$$

Here

$$
||u||_{\infty} = \sup_{x \in D} |u(x)|.
$$

Lemma 1.7. For every $\eta > 0$, there exists a constant $C_{\eta} > 0$ such that we have, for all $u \in C^{2+\theta_0}(\overline{D}),$

$$
||Su||_{C^{\theta_0}(\overline{D})} \leq \eta ||\nabla^2 u||_{C^{\theta_0}(\overline{D})} + C_{\eta} \left(||u||_{C^{\theta_0}(\overline{D})} + ||\nabla u||_{C^{\theta_0}(\overline{D})} \right).
$$

Here

$$
||u||_{C^{\theta_0}(\overline{D})} = ||u||_{\infty} + [u]_{\theta_0}, \quad [u]_{\theta_0} = \sup_{\substack{x,y \in D \\ x \neq y}} \frac{|u(x) - u(y)|}{|x - y|^{\theta_0}}.
$$

(III) *End of Proof of Theorem 1*. First, Theorem 1.1 implies that

$$
ind(A, L) = 0.
$$

On the other hand, Lemma 1.7 tells us that the operator S maps $C^{2+\theta_0}(\overline{D})$ continuously into $C^{\theta_0}(\overline{D})$. Hence it follows from an application of [B-C-P, Théorème XXII] that S is a compact operator from $C^{2+\theta}(\overline{D})$ into $C^{\theta}(\overline{D})$ for all $0 < \theta < \theta_0$. This implies that the operator (W, L) is a perturbation of a compact operator to the operator (A, L) .

Hence we find that

$$
ind (W, L) = ind (A, L) = 0.
$$

Therefore, in order to show the bijectivity of (W, L) it suffices to prove its *injec*tivity:

$$
\begin{cases} u \in C^{2+\theta}(\overline{D}), Wu = 0 \text{ in } D, Lu = 0 \text{ on } \partial D \\ \implies u = 0 \text{ in } D. \end{cases}
$$

However, this is an immediate consequence of the following maximum principle:

Proposition 1.8. If hypothesis (H) is satisfied, then we have:

$$
\begin{cases} u \in C^2(\overline{D}), Wu \ge 0 \text{ in } D, Lu \ge 0 \text{ on } \partial D \\ \implies u \le 0 \text{ on } \overline{D}. \end{cases}
$$

Proof. If u is a constant m, then we have $0 \leq Wu = mc$ in D. This implies that $u \equiv m$ is non-positive, since $c \leq 0$ and $c \not\equiv 0$ in D.

Now we consider the case where u is not a constant. Assume to the contrary that:

$$
m = \max_{\overline{D}} u > 0.
$$

Then, applying the strong maximum principle (see $[B-C-P, Théor\`{en}e VII]$) to the operator W we obtain that there exists a point x'_0 of ∂D such that

$$
\begin{cases} u(x'_0) = m, \\ u(x) < u(x'_0) \quad \text{for all } x \in D. \end{cases}
$$

Furthermore it follows from an application of the boundary point lemma (see [B-C-P, Théorème VIII) that

$$
\frac{\partial u}{\partial \mathbf{n}}(x_0') < 0.
$$

Hence we have

$$
\mu(x_0')=0,\quad \gamma(x_0')=0,
$$

since $Lu(x_0') \geq 0$. This contradicts hypothesis (H). \Box

The proof of Theorem 1 is now complete. \Box

2 Proof of Theorem 2.

The proof of Theorem 2 is based on the following version of the Hille-Yosida theorem in terms of the maximum principle (see $[B-C-P, Théorème de Hille-Yosida-Ray$):

Theorem 2.1. Let A be a linear operator from the space $C_0(\overline{D} \setminus M)$ into itself, and assume that:

(α) The domain $D(\mathcal{A})$ is dense in the space $C_0(\overline{D} \setminus M)$.

(β) For any $u \in D(\mathcal{A})$ such that sup $u > 0$, there exists a point $x \in \overline{D} \setminus M$ such that $u(x) = \sup u$ and $\mathcal{A}u(x) \leq 0$.

(γ) For all $\alpha > 0$, the range $R(A - \alpha I)$ is dense in the space $C_0(\overline{D} \setminus M)$.

Then the operator A is closable in the space $C_0(\overline{D} \setminus M)$, and its minimal closed extension \overline{A} generates a Feller semigroup $\{T_t\}_{t\geq 0}$ on $\overline{D} \setminus M$.

Proof of Theorem 2. We have only to verify conditions (α) , (β) and (γ) in Theorem 2.1 for the operator W .

 (γ) We obtain from Theorem 1 (and its proof) that the mapping

$$
(W - \alpha, L) : C^{2+\theta}(\overline{D}) \longrightarrow C^{\theta}(\overline{D}) \oplus C_{L}^{1+\theta}(\partial D)
$$

is an algebraic and topological isomorphism for all $\alpha > 0$. This verifies condition (γ), since the range $R(\mathcal{W}-\alpha I)$ contains the space $C^{\theta}(\overline{D}) \cap C_0(\overline{D} \setminus M)$ which is dense in $C_0(D \setminus M)$.

(β) First let x_0 be a point of D such that $u(x_0) = \sup u$. Then it follows from an application of $[B-C-P, Théor\`eme V]$ that

$$
\mathcal{W}u(x_0) = Wu(x_0) \le 0.
$$

Next let x'_0 be a point of $\partial D \setminus M$ such that $u(x'_0) = \sup u$. Assume to the contrary that

$$
\mathcal{W}u(x_0') = Wu(x_0') > 0.
$$

We have only to consider the case where u is not a constant. Then it follows from an application of the boundary point lemma that $(\partial u/\partial \mathbf{n})(x_0') < 0$. Hence we have

 $\mu(x'_0) = 0,$

since $Lu(x_0') = 0$. This contradicts the hypothesis: $x_0' \in \partial D \setminus M$, that is, $\mu(x_0') > 0$.

 (α) The density of the domain $D(W)$ can be proved just as in the proof of [T2, Theorem 8.20], by using [B-C-P, Proposition III.1.6].

The proof of Theorem 2 is complete. \Box

3 Proof of Theorem 3.

The next theorem, which is a generalization of [T2, Theorem 6.1] to the integrodifferential operator case, proves Theorem 3:

Theorem 3.1. If hypothesis (H) is satisfied, then, for every $0 < \varepsilon < \pi/2$, there exists a constant $r_p(\varepsilon) > 0$ such that the resolvent set of W_p contains the set $\Sigma_p(\varepsilon) =$ $\{\lambda = r^2 e^{i\vartheta} : r \geq r_p(\varepsilon), -\pi + \varepsilon \leq \vartheta \leq \pi - \varepsilon\}$, and that the resolvent $(W_p - \lambda I)^{-1}$ satisfies estimate (0.3).

Proof. The proof is divided into three steps.

(i) We show that there exist constants $r_p(\varepsilon)$ and $c_p(\varepsilon)$ such that we have, for all $\lambda = r^2 e^{i\vartheta}$ satisfying $r \ge r_p(\varepsilon)$ and $-\pi + \varepsilon \le \vartheta \le \pi + \varepsilon$,

$$
|u|_{2,p} + |\lambda|^{1/2} |u|_{1,p} + |\lambda| \|u\|_p \le c_p(\varepsilon) \| (W_p - \lambda I)u \|_p.
$$
 (3.1)

Here

$$
||u||_p = ||u||_{L^p(D)}, \quad |u|_{1,p} = ||\nabla u||_{L^p(D)}, \quad |u|_{2,p} = ||\nabla^2 u||_{L^p(D)}.
$$

First we recall (see $[T2, \text{ formula } (6.2)]$) that estimate (3.1) is proved for the differential operator A:

$$
|u|_{2,p} + |\lambda|^{1/2} |u|_{1,p} + |\lambda| \|u\|_p \le c_p'(\varepsilon) \| (A_p - \lambda I)u \|_p.
$$
 (3.2)

Here the operator A_p is a unbounded linear operator from $L^p(D)$ into itself defined by the following:

(a) The domain of definition $D(A_p)$ is the set

$$
D(A_p) = \{ u \in H^{2,p}(D) : Lu = 0 \} .
$$

(b) $A_p u = Au$, $u \in D(A_p)$.

In order to replace the last term $\|(A_p - \lambda I)u\|_p$ by the term $\|(W_p - \lambda I)u\|_p$, we need the following L^p -estimate for the operator \tilde{S} :

Lemma 3.2. For every $\eta > 0$, there exists a constant $C_{\eta} > 0$ such that we have, for all $u \in H^{2,p}(D)$,

$$
||Su||_p \le \eta |u|_{2,p} + C_{\eta} (||u||_p + |u|_{1,p}). \tag{3.3}
$$

Proof. We decompose the term Su into the following three terms:

 $Su(x)$

$$
= \int_0^1 (1-t) dt \int_{\{|z| \le \varepsilon\}} z \cdot \nabla^2 u(x+tz) z s(x,z) m(dz)
$$

+
$$
\int_{\{|z| > \varepsilon\}} (u(x+z) - u(x)) s(x,z) m(dz) - \int_{\{|z| > \varepsilon\}} z \cdot \nabla u(x) s(x,z) m(dz)
$$

:= $S_1 u(x) + S_2 u(x) - S_3 u(x)$.

First we estimate the L^p norm of the term S_3u . By using estimate (1.2), we obtain that

$$
\left| \int_{\{|z|>\varepsilon\}} z \cdot \nabla u(x) \, s(x,z) \, m(dz) \right| \le \delta(\varepsilon) \, |\nabla u(x)| \le \left(\frac{C_1}{\varepsilon} + C_2 \right) |\nabla u(x)|.
$$

Hence we have the L^p estimate of the term S_3u :

$$
||S_3u||_p \le \left(\frac{C_1}{\varepsilon} + C_2\right) ||\nabla u||_p.
$$

Secondly we have

$$
\left\| \int_{\{|z| > \varepsilon\}} u(\cdot) \, s(\cdot, z) \, m(dz) \right\|_p \le \left(\frac{C_1}{\varepsilon^2} + C_2 \right) \|u\|_p.
$$

Furthermore, by using Hölder's inequality and Fubini's theorem we obtain from condition (0.1) that

$$
\int_{\mathbf{R}^N} \left| \int_{\{|z| > \varepsilon\}} u(x+z) s(x,z) m(dz) \right|^p dx
$$
\n
$$
\leq \int_{\mathbf{R}^N} \left(\int_{\{|z| > \varepsilon\}} |u(x+z)| s(x,z) m(dz) \right)^p dx
$$
\n
$$
\leq \int_{\mathbf{R}^N} \left(\int_{\{|z| > \varepsilon\}} |u(x+z)|^p s(x,z)^p m(dz) \right) \left(\int_{\{|z| > \varepsilon\}} m(dz) \right)^{p/q} dx
$$
\n
$$
= \tau(\varepsilon)^{p/q} \int_{\mathbf{R}^N} \int_{\{|z| > \varepsilon\}} |u(x+z)|^p s(x,z)^p m(dz) dx
$$
\n
$$
= \tau(\varepsilon)^{p/q} \int_{\{|z| > \varepsilon\}} \left(\int_{\mathbf{R}^N} |u(x+z)|^p s(x,z)^p dx \right) m(dz)
$$
\n
$$
\leq \tau(\varepsilon)^{p/q} \left(\int_{D} |u(y)|^p dy \right) \left(\int_{\{|z| > \varepsilon\}} m(dz) \right)
$$
\n
$$
= \tau(\varepsilon)^p \|u\|_p^p.
$$

By estimate (1.3), we have the L^p estimate of the term S_2u :

$$
||S_2u||_p \le \left(\frac{C_1}{\varepsilon^2} + C_2\right) ||u||_p.
$$

$$
\int_{\mathbf{R}^N} \left| \int_0^1 (1-t) dt \int_{\{|z| \le \varepsilon\}} z \cdot \nabla^2 u(x+tz) z s(x, z) m(dz) \right|^p dx
$$

\n
$$
\le \int_{\mathbf{R}^N} \left(\int_0^1 dt \int_{\{|z| \le \varepsilon\}} |z|^2 |\nabla^2 u(x+tz)| s(x, z) m(dz) \right)^p dx
$$

\n
$$
\le \int_{\mathbf{R}^N} \int_0^1 dt \left(\int_{\{|z| \le \varepsilon\}} |z|^2 |\nabla^2 u(x+tz)|^p s(x, z)^p m(dz) \right)
$$

\n
$$
\times \left(\int_{\{|z| \le \varepsilon\}} |z|^2 m(dz) \right)^{p/q} dx
$$

\n
$$
= \sigma(\varepsilon)^{p/q} \int_{\mathbf{R}^N} \int_0^1 dt \left(\int_{\{|z| \le \varepsilon\}} |z|^2 |\nabla^2 u(x+tz)|^p s(x, z)^p m(dz) \right) dx
$$

\n
$$
= \sigma(\varepsilon)^{p/q} \int_0^1 dt \int_{\{|z| \le \varepsilon\}} |z|^2 \left(\int_{\mathbf{R}^N} |\nabla^2 u(x+tz)|^p s(x, z)^p dx \right) m(dz)
$$

\n
$$
\le \sigma(\varepsilon)^{p/q} \left(\int_D |\nabla^2 u(y)|^p dy \right) \left(\int_{\{|z| \le \varepsilon\}} |z|^2 m(dz) \right)
$$

\n
$$
\le \sigma(\varepsilon)^p \left(\int_D |\nabla^2 u(y)|^p dy \right).
$$

Hence we have the L^p estimate of the term S_1u :

$$
||S_1u||_p \le \sigma(\varepsilon) ||\nabla^2 u||_p.
$$

Summing up, we have proved that

$$
||Su||_p \le ||S_1u||_p + ||S_2u||_p + ||S_3u||_p
$$

\n
$$
\le \sigma(\varepsilon) |u|_{2,p} + \left(\frac{C_1}{\varepsilon} + C_2\right) |u|_{1,p} + \left(\frac{C_1}{\varepsilon^2} + C_2\right) ||u||_p.
$$

In view of assertion (1.1), this proves estimate (3.3) if we choose ε sufficiently small. \square

Since we have

$$
(A - \lambda)u = (W - \lambda)u - Su,
$$

it follows from estimate (3.3) that

$$
||(A_p - \lambda)u||_p \le ||(W_p - \lambda)u||_p + \eta |u|_{2,p} + C_\eta (|u|_{1,p} + ||u||_p).
$$

Thus, carrying this estimate into estimate (3.2) we obtain that

$$
|u|_{2,p} + |\lambda|^{1/2} |u|_{1,p} + |\lambda| \|u\|_p
$$

\n
$$
\leq c'_p(\varepsilon) \| (W_p - \lambda)u \|_p + \eta c'_p(\varepsilon) |u|_{2,p} + C_\eta c'_p(\varepsilon) (|u|_{1,p} + \|u\|_p).
$$
 (3.4)

Therefore, the desired estimate (3.1) follows from estimate (3.4) if we take the constant η so small that

$$
\eta c_p'(\varepsilon)<1
$$

and the parameter λ so large that

$$
|\lambda|^{1/2} > C_{\eta} c'_{p}(\varepsilon).
$$

(ii) By estimate (3.1), we find that the operator $W_p - \lambda I$ is injective and its range $R(W_p - \lambda I)$ is closed in $L^p(D)$, for all $\lambda \in \Sigma_p(\varepsilon)$.

We show that the operator $W_p - \lambda I$ is surjective for all $\lambda \in \Sigma_p(\varepsilon)$:

$$
R(W_p - \lambda I) = L^p(D), \quad \lambda \in \Sigma_p(\varepsilon).
$$

To do so, it suffices to show that the operator $W_p - \lambda I$ is a Fredholm operator with

$$
ind (W_p - \lambda I) = 0, \quad \lambda \in \Sigma_p(\varepsilon), \tag{3.5}
$$

since $W_p - \lambda I$ is injective for all $\lambda \in \Sigma_p(\varepsilon)$.

In order to prove assertion (3.5) , we need the following:

Lemma 3.3. The operator S is A_p -completely continuous, that is, the operator $S: D(A_p) \to L^p(D)$ is completely continuous where the domain $D(A_p)$ is endowed with the graph norm of A_p .

Proof. Let $\{u_i\}$ be an arbitrary bounded sequence in the domain $D(A_p)$; hence there exists a constant $K > 0$ such that

$$
||u_j||_p \le K, \quad ||A_p u_j||_p \le K.
$$

Then we have, by $[T2,$ estimate $(0.1)],$

$$
||u_j||_{2,p} \le C \left(||A_p u_j||_p + ||u_j||_p \right) \le 2CK. \tag{3.6}
$$

Therefore, by Rellich's theorem one may assume that the sequence $\{u_i\}$ itself is a Cauchy sequence in the space $H^{1,p}(D)$. Then, applying estimate (3.3) to the sequence $\{u_j - u_k\}$ and using estimate (3.6), we obtain that

$$
||Su_j - Su_k||_p \le \eta |u_j - u_k|_{2,p} + C_{\eta} (||u_j - u_k||_p + |u_j - u_k|_{1,p})
$$

\n
$$
\le 4\eta CK + C_{\eta} ||u_j - u_k||_{1,p}.
$$

Hence we have

$$
\limsup_{j,k \to \infty} \|Su_j - Su_k\|_p \le 4\eta CK.
$$

This proves that the sequence $\{Su_j\}$ is a Cauchy sequence in the space $L^p(D)$, since η is arbitrary. \Box

In view of Lemma 3.3, assertion (3.5) follows from an application of [G-K, Theorem 2.6]. Indeed we have, by [T2, Theorem 6.1],

$$
ind (W_p - \lambda I) = ind (A_p - \lambda I + S) = ind (A_p - \lambda I) = 0.
$$

(iii) Summing up, we have proved that the operator $W_p - \lambda I$ is bijective for all $\lambda \in \Sigma_p(\varepsilon)$ and its inverse $(W_p - \lambda I)^{-1}$ satisfies estimate (0.3).

The proof of Theorem 3.1 is now complete. \Box

4 Proof of Theorem 4.

The proof is carried out in a chain of auxiliary lemmas.

(I) We begin with a version of estimate (3.1):

Lemma 4.1. Let $N < p < \infty$. If hypothesis (H) is satisfied, then, for every $\varepsilon > 0$, there exists a constant $r_p(\varepsilon) > 0$ such that if $\lambda = r^2 e^{i\vartheta}$ with $r \ge r_p(\varepsilon)$ and $-\pi + \varepsilon \leq \vartheta \leq \pi - \varepsilon$, we have, for all $u \in D(W_p)$,

$$
|\lambda|^{1/2}||u||_{C^1(\overline{D})} + |\lambda|||u||_{C(\overline{D})} \le C_p(\varepsilon)|\lambda|^{N/2p}||(W-\lambda)u||_p,
$$
\n(4.1)

with a constant $C_p(\varepsilon) > 0$.

Proof. First it follows from an application of the Gagliardo-Nirenberg inequality (see [F, Part I, Theorem 10.1] that

$$
||u||_{C(\overline{D})} \leq C|u|_{1,p}^{N/p}||u||_p^{1-N/p}, \quad u \in H^{1,p}(D). \tag{4.2}
$$

Here and in the following the letter C denotes a generic positive constant depending on p and ε , but independent of u and λ .

Combining inequality (4.2) with inequality (3.1) , we obtain that

$$
||u||_{C(\overline{D})} \leq C \left(|\lambda|^{-1/2} ||(W - \lambda)u||_p \right)^{N/p} \left(|\lambda|^{-1} ||(W - \lambda)u||_p \right)^{1 - N/p}
$$

= C|\lambda|^{-1 + N/2p} ||(W - \lambda)u||_p,

so that

$$
|\lambda| \|u\|_{C(\overline{D})} \le C|\lambda|^{N/2p} \|(W - \lambda)u\|_p, \quad u \in D(W_p). \tag{4.3}
$$

Similarly, applying inequality (4.2) to the functions $D_i u \in H^{1,p}(D)$ ($1 \leq i \leq n$) we obtain that

$$
\|\nabla u\|_{C(\overline{D})} \le C|\nabla u|_{1,p}^{N/p} \|\nabla u\|_{p}^{1-N/p}
$$

\n
$$
\le C|u|_{2,p}^{N/p} |u|_{1,p}^{1-N/p}
$$

\n
$$
\le C(\|(W - \lambda)u\|_{p})^{N/p} \left(|\lambda|^{-1/2} \|(W - \lambda)u\|_{p} \right)^{1-N/p}
$$

\n
$$
= C|\lambda|^{-1/2+N/2p} \|(W - \lambda)u\|_{p}.
$$

This proves that

$$
|\lambda|^{1/2} \|u\|_{C^1(\overline{D})} \le C|\lambda|^{N/2p} \|(W - \lambda)u\|_p, \quad u \in D(W_p). \tag{4.4}
$$

Therefore, the desired inequality (4.1) follows from inequalities (4.3) and (4.4).

(II) The next lemma proves estimate (0.4):

Lemma 4.2. Let $N < p < \infty$. If hypothesis (H) is satisfied, then, for every $\varepsilon > 0$, there exists a constant $r(\varepsilon) > 0$ such that if $\lambda = r^2 e^{i\vartheta}$ with $r \ge r(\varepsilon)$ and $-\pi + \varepsilon \leq \vartheta \leq \pi - \varepsilon$, we have, for all $u \in D(\mathfrak{W})$,

$$
|\lambda|^{1/2} \|u\|_{C^1(\overline{D})} + |\lambda| \|u\|_{C(\overline{D})} \le c(\varepsilon) \|(\mathfrak{W} - \lambda I)u\|_{C(\overline{D})},
$$
\n(4.5)

with a constant $c(\varepsilon) > 0$.

Proof. (1) First we show that the domain

$$
D(\mathfrak{W}) = \{ u \in C_0(\overline{D} \setminus M) \cap H^{2,p}(D) : Wu \in C_0(\overline{D} \setminus M), Lu = 0 \}
$$

is independent of $N < p < \infty$.

We let

$$
\mathcal{D}_p = \left\{ u \in H^{2,p}(D) \cap C_0(\overline{D} \setminus M) : W u \in C_0(\overline{D} \setminus M), Lu = 0 \right\}.
$$

Since we have $L^{p_1}(D) \subset L^{p_2}(D)$ for $p_1 > p_2$, it follows that

$$
\mathcal{D}_{p_1} \subset \mathcal{D}_{p_2} \quad \text{if } p_1 > p_2.
$$

Conversely, let v be an arbitrary element of \mathcal{D}_{p_2} :

$$
v \in H^{2,p_2}(D) \cap C_0(\overline{D} \setminus M), \quad Wv \in C_0(\overline{D} \setminus M), \quad Lv = 0.
$$

Then, since we have $v, Wv \in C_0(\overline{D} \setminus M) \subset L^{p_1}(D)$, it follows from an application of Theorem 3.1 with $p = p_1$ that there exists a unique function $u \in H^{2,p_1}(D)$ such that

$$
\begin{cases} (W - \lambda)u = (W - \lambda)v & \text{in } D, \\ Lu = 0 & \text{on } \partial D, \end{cases}
$$

if we choose λ sufficiently large. Hence we have $u - v \in H^{2,p_2}(D)$ and

$$
\begin{cases} (W - \lambda)(u - v) = 0 & \text{in } D, \\ L(u - v) = 0 & \text{on } \partial D. \end{cases}
$$

Therefore, by applying again Theorem 3.1 with $p = p_2$ we obtain that $u - v = 0$, so that $v = u \in H^{2,p_1}(D)$. This proves that $v \in \mathcal{D}_{p_1}$.

(2) We shall make use of a λ -dependent localization argument in order to adjust the term $\|(W - \lambda)u\|_p$ in inequality (4.1) to obtain inequality (4.5), just as in [T2].

(2-a) If x'_0 is a point of ∂D and if χ is a C^{∞} coordinate transformation such that χ maps $B(x'_0, \eta_0) \cap D$ into $B(0, \delta) \cap \mathbb{R}^N_+$ and flattens a part of the boundary ∂D into the plane $x_N = 0$, then we let

$$
G_0 = B(x'_0, \eta_0) \cap D,
$$

\n
$$
G' = B(x'_0, \eta) \cap D, \ 0 < \eta < \eta_0,
$$

\n
$$
G'' = B(x'_0, \eta/2) \cap D, \ 0 < \eta < \eta_0.
$$

Here and in the following $B(x, \eta)$ denotes the ball of radius η about x.

Similarly, if x_0 is a point of D and if χ is a C^{∞} coordinate transformation such that χ maps $B(x_0, \eta_0)$ into $B(0, \delta)$, then we let

$$
G_0 = B(x_0, \eta_0),
$$

\n
$$
G' = B(x_0, \eta), \ 0 < \eta < \eta_0,
$$

\n
$$
G'' = B(x_0, \eta/2), \ 0 < \eta < \eta_0.
$$

(2-b) We take a function $\Phi \in C_0^{\infty}(\mathbf{R})$ such that Φ equals 1 near the origin, and define

$$
\varphi(x) = \Phi(|x'|^2) \Phi(x_N), \quad x = (x', x_N).
$$

Here one may assume that the function φ is chosen so that

$$
\begin{cases} \operatorname{supp} \varphi \subset B(0,1), \\ \varphi(x) = 1 \text{ on } B(0,1/2). \end{cases}
$$

We introduce a localizing function

$$
\varphi_0(x,\eta) := \varphi\left(\frac{x-x_0}{\eta}\right) = \Phi\left(\frac{|x'-x'_0|^2}{\eta^2}\right)\Phi\left(\frac{x_N-t}{\eta}\right), \quad x_0 = (x'_0,t).
$$

We remark that

$$
\begin{cases} \operatorname{supp} \varphi_0 \subset B(x_0, \eta), \\ \varphi_0(x, \eta) = 1 \text{ on } B(x_0, \eta/2). \end{cases}
$$

Then it is easy to verify the following (cf. [T2, Claim 7.5]):

Claim 4.3. If $u \in D(\mathfrak{W})$, then we have $\varphi_0 u \in D(W_p)$.

(3) Now let u be an arbitrary element of $D(\mathfrak{W})$. Then, by Claim 4.3 we can apply inequality (4.1) to the function $\varphi_0 u$ to obtain that

$$
|\lambda|^{1/2} \|u\|_{C^1(\overline{G''})} + |\lambda| \|u\|_{C(\overline{G''})} \le |\lambda|^{1/2} \|\varphi_0 u\|_{C^1(\overline{G'})} + |\lambda| \|\varphi_0 u\|_{C(\overline{G'})}
$$

$$
= |\lambda|^{1/2} \|\varphi_0 u\|_{C^1(\overline{D})} + |\lambda| \|\varphi_0 u\|_{C(\overline{D})}
$$

$$
\le C|\lambda|^{N/2p} \|(W-\lambda)(\varphi_0 u)\|_{L^p(D)} . \tag{4.6}
$$

(3-a) We estimate the last term $\|(W - \lambda)(\varphi_0 u)\|_{L^p(D)}$ in terms of the supremum norm of $C(D)$.

First we write the term $(W - \lambda)(\varphi_0 u)$ in the following form:

$$
(W - \lambda)(\varphi_0 u) = \varphi_0 ((W - \lambda)u) + [A, \varphi_0]u + [S, \varphi_0]u,
$$

where $[A, \varphi_0]$ and $[S, \varphi_0]$ are the commutators of A and φ_0 and of S and φ_0 , respectively:

$$
[A, \varphi_0]u = A(\varphi_0 u) - \varphi_0 Au,
$$

$$
[S, \varphi_0]u = S(\varphi_0 u) - \varphi_0 Su.
$$

Now we need the following elementary inequality:

Claim 4.4. We have, for all $v \in C^j(\overline{G'})$ $(j = 0, 1, 2)$,

$$
||v||_{H^{j,p}(G')} \leq |G'|^{1/p} ||v||_{C^j(\overline{G'})},
$$

where $|G'|$ is the measure of G' .

Since we have, for some constant $c > 0$,

$$
|G'| \le |B(x_0, \eta)| \le c\eta^N,
$$

it follows from an application of Claim 4.4 that

$$
\|\varphi_0(W-\lambda)u\|_{L^p(D)} = \|\varphi_0(W-\lambda)u\|_{L^p(G')}
$$

$$
\leq c^{1/p}\eta^{N/p} \|(W-\lambda)u\|_{C(\overline{G'})}
$$

$$
\leq c^{1/p}\eta^{N/p} \|(W-\lambda)u\|_{C(\overline{D})}. \tag{4.7}
$$

On the other hand we can estimate the commutators $[A, \varphi_0]u$ and $[S, \varphi_0]u$ as follows:

Claim 4.5. We have, as $\eta \downarrow 0$,

$$
\| [A, \varphi_0] u \|_{L^p(D)} \le C \left(\eta^{-1 + N/p} \| u \|_{C^1(\overline{D})} + \eta^{-2 + N/p} \| u \|_{C(\overline{D})} \right), \tag{4.8}
$$

$$
\| [S, \varphi_0] u \|_{L^p(D)} \le C \left(\eta^{-1 + N/p} \| u \|_{C^1(\overline{D})} + \eta^{-2 + N/p} \| u \|_{C(\overline{D})} \right). \tag{4.9}
$$

Proof. Estimate (4.8) is proved in [T2, inequality (7.9)].

In order to prove estimate (4.9), we remark that

$$
S(\varphi_0 u)(x)
$$
\n
$$
= \int_{\mathbf{R}^N \setminus \{0\}} (\varphi_0(x+z)u(x+z) - \varphi_0(x)u(x) - z \cdot \nabla(\varphi_0 u)(x)) s(x,z) m(dz)
$$
\n
$$
= \varphi_0(x) \int_{\mathbf{R}^N \setminus \{0\}} (u(x+z) - u(x) - z \cdot \nabla u(x)) s(x,z) m(dz)
$$
\n
$$
+ \left(\int_{\mathbf{R}^N \setminus \{0\}} (u(x+z) - u(x)) z s(x,z) m(dz) \right) \cdot \nabla \varphi_0(x)
$$
\n
$$
+ \int_{\mathbf{R}^N \setminus \{0\}} (\varphi_0(x+z) - \varphi_0(x) - z \cdot \nabla \varphi_0(x)) u(x+z) s(x,z) m(dz)
$$
\n
$$
= \varphi_0(x) S u(x) + \left(\int_{\mathbf{R}^N \setminus \{0\}} (u(x+z) - u(x)) z s(x,z) m(dz) \right) \cdot \nabla \varphi_0(x)
$$
\n
$$
+ \int_{\mathbf{R}^N \setminus \{0\}} (\varphi_0(x+z) - \varphi_0(x) - z \cdot \nabla \varphi_0(x)) u(x+z) s(x,z) m(dz).
$$

Hence we can write the commutator $[S, \varphi_0]u$ in the following form:

$$
[S,\varphi_0]u(x)
$$

$$
= \left(\int_{\mathbf{R}^N \setminus \{0\}} (u(x+z) - u(x)) z s(x, z) m(dz) \right) \cdot \nabla \varphi_0(x)
$$

+
$$
\int_{\mathbf{R}^N \setminus \{0\}} (\varphi_0(x+z) - \varphi_0(x) - z \cdot \nabla \varphi_0(x)) u(x+z) s(x, z) m(dz)
$$

:=
$$
S_0^{(1)} u(x) + S_0^{(2)} u(x).
$$

First, just as in Lemma 1.6 we can estimate the term $S_0^{(1)}u$ as follows:

$$
\begin{aligned} \|S_0^{(1)}u\|_{L^p(D)} &= \|S_0^{(1)}u\|_{L^p(G')}\\ &\le 2\left(\sigma(\eta)\|u\|_{C^1(\overline{D})} + \delta(\eta)\|u\|_{C(\overline{D})}\right) \|\nabla\varphi_0\|_{L^p(G')}\\ &\le 2\left(\sigma(\eta)\|u\|_{C^1(\overline{D})} + \left(\frac{C_1}{\eta} + C_2\right)\|u\|_{C(\overline{D})}\right) \|\nabla\varphi_0\|_{L^p(G')}.\end{aligned}
$$

However it follows from an application of Claim 4.4 that

$$
\|\nabla \varphi_0\|_{L^p(G')} \le C\eta^{N/p} \|\nabla \varphi_0\|_{C(\overline{G'})} \le C'\eta^{-1+N/p},
$$

$$
\|\nabla^2 \varphi_0\|_{L^p(G')} \le C\eta^{N/p} \|\nabla^2 \varphi_0\|_{C(\overline{G'})} \le C'\eta^{-2+N/p},
$$

since we have, as $\eta \downarrow 0$,

$$
|\nabla \varphi_0| = O(\eta^{-1}), \quad |\nabla^2 \varphi_0| = O(\eta^{-2}).
$$

Therefore we obtain that

$$
||S_0^{(1)}u||_{L^p(D)} \le C\left(\eta^{-1+N/p}||u||_{C^1(\overline{D})} + \eta^{-2+N/p}||u||_{C(\overline{D})}\right). \tag{4.10}
$$

Similarly, arguing as in the proof of Lemma 3.2 we can estimate the term $S_0^{(2)}u$ as follows:

$$
||S_0^{(2)}u||_{L^p(D)} \le C||u||_{C(\overline{D})} ||\nabla^2 \varphi_0||_{L^p(G')}
$$

\n
$$
\le C||u||_{C(\overline{D})} \eta^{N/p} ||\nabla^2 \varphi_0||_{C(\overline{G'})}
$$

\n
$$
\le C\eta^{-2+N/p} ||u||_{C(\overline{D})}.
$$
\n(4.11)

Thus, the desired estimate (4.9) follows by combining estimates (4.10) and $(4.11). \square$

Therefore, combining estimates (4.6) , (4.7) , (4.8) and (4.9) we obtain that

$$
|\lambda|^{1/2}||u||_{C^{1}(\overline{G''})} + |\lambda|||u||_{C(\overline{G''})}
$$

\n
$$
\leq C|\lambda|^{N/2p} ||(W - \lambda)(\varphi_0 u)||_{L^p(D)}
$$

\n
$$
= C|\lambda|^{N/2p} ||\varphi_0 ((W - \lambda)u) + [A, \varphi_0]u + [S, \varphi_0]u||_{L^p(D)}
$$

\n
$$
\leq C|\lambda|^{N/2p} \left(\eta^{N/p} ||(W - \lambda)u||_{C(\overline{G'})} + \eta^{-1+N/p} ||u||_{C^{1}(\overline{G'})} + \eta^{-2+N/p} ||u||_{C(\overline{G'})} \right)
$$

\n
$$
\leq C|\lambda|^{N/2p} \left(\eta^{N/p} ||(W - \lambda)u||_{C(\overline{D})} + \eta^{-1+N/p} ||u||_{C^{1}(\overline{D})} + \eta^{-2+N/p} ||u||_{C(\overline{D})} \right).
$$
\n(4.12)

(3-b) We remark that the closure $\overline{D} = D \cup \partial D$ can be covered by a finite number of sets of the forms:

$$
\begin{cases}\nB(x_0, \eta/2), & x_0 \in D, \\
B(x'_0, \eta/2) \cap \overline{D}, & x'_0 \in \partial D.\n\end{cases}
$$

Therefore, taking the supremum of inequality (4.12) over $x \in \overline{D}$ we find that

$$
|\lambda|^{1/2} \|u\|_{C^1(\overline{D})} + |\lambda| \|u\|_{C(\overline{D})}
$$

\n
$$
\leq C |\lambda|^{N/2p} \eta^{N/p} \left(\| (W - \lambda)u \|_{C(\overline{D})} + \eta^{-1} \|u\|_{C^1(\overline{D})} + \eta^{-2} \|u\|_{C(\overline{D})} \right).
$$
 (4.13)

(4) We now choose the localization parameter η . We let

$$
\eta = \frac{\eta_0}{|\lambda|^{1/2}}K,
$$

where K is a positive constant (to be chosen later) satisfying

$$
0 < \eta = \frac{\eta_0}{|\lambda|^{1/2}} K < \eta_0,
$$

that is,

$$
0 < K < |\lambda|^{1/2}.
$$

Then we obtain from inequality (4.13) that

$$
|\lambda|^{1/2} \|u\|_{C^1(\overline{D})} + |\lambda| \|u\|_{C(\overline{D})}
$$

\n
$$
\leq C \eta_0^{N/p} K^{N/p} \| (W - \lambda)u \|_{C(\overline{D})} + \left(C \eta_0^{N/p-1} K^{-1+N/p} \right) |\lambda|^{1/2} \|u\|_{C^1(\overline{D})}
$$

\n
$$
+ \left(C \eta_0^{N/p-2} K^{-2+N/p} \right) |\lambda| \|u\|_{C(\overline{D})}.
$$
\n(4.14)

However, since the exponents $-1 + N/p$ and $-2 + N/p$ are negative, we can choose the constant K so large that

$$
C \,\eta_0^{N/p-1} K^{-1+N/p} < 1,
$$

and

$$
C \,\eta_0^{N/p-2} K^{-2+N/p} < 1.
$$

Then, the desired inequality (4.5) follows from inequality (4.14). The proof of Lemma 4.2 is complete. \Box

(III) The next lemma, together with Lemma 4.2, proves that the resolvent set of \mathfrak{W} contains the set $\Sigma(\varepsilon) = \{ \lambda = r^2 e^{i\vartheta} : r \geq r(\varepsilon), -\pi + \varepsilon \leq \vartheta \leq \pi - \varepsilon \}$:

Lemma 4.6. If $\lambda \in \Sigma(\varepsilon)$, then, for any $f \in C_0(\overline{D} \setminus M)$, there exists a unique function $u \in D(\mathfrak{W})$ such that $(\mathfrak{W} - \lambda I)u = f$.

Proof. Since we have, for all $1 < p < \infty$,

$$
f\in C_0(\overline{D}\setminus M)\subset L^p(D),
$$

it follows from an application of Theorem 3 that if $\lambda \in \Sigma_p(\varepsilon)$, there exists a unique function $u \in H^{2,p}(D)$ such that

$$
(W - \lambda)u = f \quad \text{in } D,\tag{4.15}
$$

and

$$
Lu = \mu \frac{\partial u}{\partial \mathbf{n}} + \gamma u = 0 \quad \text{on } \partial D.
$$
 (4.16)

However, by Sobolev's imbedding theorem it follows that

$$
u \in H^{2,p}(D) \subset C^{2-N/p}(\overline{D}) \subset C^1(\overline{D})
$$
 if $N < p < \infty$.

Hence we have, by formula (4.16) and condition (H) ,

$$
u = 0 \quad \text{on} \quad M = \{x' \in \partial D : \mu(x') = 0\},
$$

so that

 $u \in C_0(\overline{D} \setminus M).$

Further, in view of equation (4.15) we find that

$$
Wu = f + \lambda u \in C_0(\overline{D} \setminus M).
$$

Summing up, we have proved that

$$
\begin{cases}\n u \in D(\mathfrak{W}), \\
 (\mathfrak{W} - \lambda I)u = f.\n\end{cases}
$$

Now the proof of Theorem 4 is complete. \square

References

- [B-L] Bergh, J., Löfström, J., *Interpolation spaces, an introduction*, Springer-Verlag, Berlin, 1976.
- [B-C-P] Bony, J.-M., Courrège, P., Priouret, P., Semi-groupes de Feller sur une variété à bord compacte et problèmes aux limites intégro-différentiels du second ordre donnant lieu au principe du maximum, Ann. Inst. Fourier (Grenoble) 18 (1968), 369–521.
- [B] Bourdaud, G., L^p -estimates for certain non-regular pseudo-differential operators, Comm. in Partial Differential Equations 7 (1982), 1023–1033.
- [F] Friedman, A., Partial differential equations, Holt, Rinehart and Winston, New York, 1969.
- [G-M] Garroni, M. G., Menaldi, J. L., Green functions for second order integro-differential problems, Pitman Research Notes in Mathematics Series No. 275, Longman Scientific & Technical, Harlow, 1992.
- [G-T] Gilbarg, D., Trudinger, N. S., Elliptic partial differential equations of second order, Springer-Verlag, New York Berlin Heidelberg Tokyo, 1983.
- [G-K] Gohberg, I. C., Kreĭn, M. G., The basic propositions on defect numbers, root numbers and indices of linear operators, Uspehi Mat. Nauk. 12 (1957), 43–118 (in Russian); English translation Amer. Math. Soc. Transl. 13 (1960), 185–264.
- [H] Hörmander, L., The analysis of linear partial differential operators III, Springer-Verlag, Berlin Heidelberg New York Tokyo, 1985.
- [K] Komatsu, T., Markov processes associated with certain integro-differential operators, Osaka J. Math. 10 (1973), 271–303.
- [S] Stroock, D. W., *Diffusion processes associated with Lévy generators*, Z. Wahrscheinlichkeitstheorie verw. Gebiete 32 (1975), 209–244.
- [T1] Taira, K., Diffusion processes and partial differential equations, Academic Press, San Diego New York London Tokyo, 1988.
- [T2] Taira, K., Boundary value problems and Markov processes, Lecture Notes in Math. No. 1499, Springer-Verlag, Berlin Heidelberg New York Tokyo, 1991.