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asymptotic behavior of positive solutions of a class of degenerate boundary value

problems for semilinear second-order elliptic differential operators which originates
from the so-called Yamabe problem in Riemannian geometry. Our approach is based

on the super-sub-solution method adapted to the degenerate case.

1. Introduction and Results

Let D be a bounded domain of Euclidean space RN , N ≥ 2, with smooth
boundary ∂D; its closure D = D ∪ ∂D is an N -dimensional, compact smooth
manifold with boundary. This paper is devoted to the study of the existence and
uniqueness of positive solutions of the following semilinear elliptic boundary value
problem:







−∆u = λu− h(x) up in D,

Bu := a(x′)
∂u

∂n
+ (1 − a(x′))u = 0 on ∂D.

(∗)λ

Here:

(1) ∆ = ∂2/∂x2
1 + ∂2/∂x2

2 + . . .+ ∂2/∂x2
N is the usual Laplacian.

(2) λ is a positive parameter.

(3) h(x) is a real-valued function on the closure D.
(4) p > 1.
(5) n = (n1, n2, . . . , nN ) is the unit exterior normal to the boundary ∂D.
(6) a(x′) is a real-valued function on the boundary ∂D.

A function u(x) ∈ C2(D) is called a positive solution of problem (∗)λ if it satisfies
problem (∗)λ and is strictly positive everywhere in D.

It is worth pointing out here that the equation −∆u − λu + h(x) up = 0 origi-
nates from the so-called Yamabe problem which is a basic problem in Riemannian
geometry if we take p = (N + 2)/(N − 2) > 1 for N ≥ 3 (see [7], [8]).
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Our fundamental conditions on the function h(x) are the following:

h(x) ∈ Cθ(D), 0 < θ < 1; (H.1)

h(x) ≥ 0 on D. (H.2)

We remark that Ouyang [9] and Korman-Ouyang [6] studied the case where the
function h(x) may change sign in D.

On the other hand, our boundary condition B is a linear combination of the
Dirichlet and Neumann conditions. It is easy to see that the boundary condition
B is non-degenerate (or coercive) if and only if either a(x′) 6= 0 on ∂D or a(x′) ≡ 0
on ∂D. Ouyang [8] and del Pino [3] studied the Dirichlet and Neumann cases,
while Fraile et al. [4] studied the general non-degenerate case. For further studies
of semilinear elliptic problems, we refer to Alama-Tarantello [1], Amann [2], Gámez
[5] and Pao [10].

In this paper we study problem (∗)λ in the degenerate case; more precisely, our
fundamental condition on the function a(x′) is the following:

0 ≤ a(x′) ≤ 1 on ∂D. (H.3)

Remark that the so-called Lopatinskii-Shapiro complementary condition is violated
at the points x′ ∈ ∂D where a(x′) = 0.

In order to formulate our results, let λ1 be the first eigenvalue of the linearized
eigenvalue problem

{

−∆ϕ = λϕ in D,

Bϕ = 0 on ∂D.
(1.1)

It is known (see [11, Theorem 1]) that the first eigenvalue λ1 is non-negative and
simple and further that its associated eigenfunction ϕ1(x) can be chosen to be
positive everywhere in D. By Green’s formula, it is easy to see that a necessary
condition on the parameter λ for the existence of positive solutions of problem (∗)λ

is that λ > λ1.
Conversely, if h(x) > 0 on D, then Taira–Umezu [14] proved that problem (∗)λ

has a unique positive solution uλ(x) ∈ C2+θ(D) for each λ > λ1. Furthermore, the
solution uλ(x) grows up as λ→ ∞, that is, the maximum norm ‖uλ‖∞ on D tends
to infinity as λ→ ∞.

This paper is concerned with the case where the function h(x) may vanish in D.
More precisely, we assume that

The zero set D(h) = {x ∈ D : h(x) = 0} of the function

h(x) is bounded away from the boundary ∂D, (H.4)

and denote by D0(h) its interior . Following del Pino [3], we introduce a critical
value λ1(D0(h)) in the following way: Let B be the set of all open subsets of D
with smooth boundary. If Ω ∈ B, we denote by λ1(Ω) the first eigenvalue of the
Dirichlet problem

{

−∆ϕ = λϕ in Ω,

ϕ = 0 on ∂Ω.
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By the celebrated Rayleigh theorem, we know that the first eigenvalue λ1(Ω) is
given by the variational formula

λ1(Ω) = inf

{
∫

Ω

|∇u|2 dx : u ∈ H1
0 (Ω),

∫

Ω

u2 dx = 1

}

,

where H1
0 (Ω) is the closure of the space C∞

0 (Ω) of smooth functions with compact
support in Ω in the Sobolev space H1(Ω). Then we let

λ1(D0(h)) = sup {λ1(Ω) : Ω ∈ B, D0(h) ⊂ Ω} . (1.2)

We understand λ1(D0(h)) = ∞ in the case where the set D0(h) is empty. Re-
mark that if the boundary ∂D0(h) is sufficiently regular, then the value λ1(D0(h))
coincides with the first eigenvalue of the Dirichlet eigenvalue problem

{

−∆ϕ = λϕ in D0(h),

ϕ = 0 on ∂D0(h).

Our first result is the following existence and uniqueness theorem of positive
solutions of problem (∗)λ:

Theorem 1. Assume that conditions (H.1) through (H.4) are satisfied. Then prob-
lem (∗)λ has a unique positive solution uλ(x) ∈ C2+θ(D) for every λ1 < λ <
λ1(D0(h)) and no positive solution for all λ ≥ λ1(D0(h)). Furthermore the solu-
tion uλ(x) grows up as λ ↑ λ1(D0(h)), that is, the maximum norm ‖uλ‖∞ tends to
infinity as λ ↑ λ1(D0(h)).

Theorem 1 is a generalization of del Pino [3, Theorem 2] where the Dirichlet and
Neumann conditions are treated, and it is proved by Taira–Umezu [13, Theorem 3]
under the condition that the boundary ∂D0(h) is sufficiently regular.

Secondly we study the asymptotic behavior of the unique positive solution uλ(x)
as λ ↑ λ1(D0(h)). To do so, we take a relatively compact, open subset Ω′ of D with
smooth boundary ∂Ω′ which satisfies the conditions

Ω′ ⊃ D(h); (1.3a)

The closure Ω′ = Ω′ ∪ ∂Ω′ consists of

a finite number of connected components. (1.3b)

Then we let

Ω = D \ Ω′,

Γ = ∂Ω ∩D,

and introduce a non-negative smooth function ρ(x) defined on the closure Ω such
that

ρ(x) =



















inf{|x− y| : y ∈ Γ} on a tubular neighborhood of the

topological boundary Γ of Ω in D;

1 on a tubular neighborhood of the

boundary ∂D.

(1.4)

Now we can state our second result which is a generalization of del Pino [3,
Theorem 3] to the degenerate case:
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Theorem 2. Assume that conditions (H.1) through (H.4) are satisfied. If Ω′ is
a relatively compact, open subset of D with smooth boundary ∂Ω′ which satisfies
conditions (1.3a) and (1.3b) and if Ω = D \ Ω′, then, for any bounded sub-interval
I of the interval (λ1, λ1(D0(h))) and any α > 2/(p − 1) there exists a constant
C > 0 such that we have

sup
λ∈I

uλ(x) ≤ C ρ(x)−α, x ∈ Ω. (1.5)

Furthermore, if the interior D0(h) is connected and non-empty, then we have, for
any compact subset K of D0(h),

inf
x∈K

uλ(x) −→ ∞ as λ ↑ λ1(D0(h)). (1.6)

Rephrased, Theorem 2 asserts that the more the exponent p increases, the milder
the solution uλ(x) behaves; while the more the set D0(h) enlarges, the wilder the
solution uλ(x) behaves.

If the set D0(h) is equal to the unit open ball in RN , then we can give a precise
description of the growing-up rate of the solution uλ(x) in D0(h) (see Theorem 5.1).
For a similar description, we refer to del Pino [3, Remark 1] where the growing-up
rate in the set D \D(h) is given for a smooth function h(x).

Finally, we discuss the behavior of the solution uλ(x) as λ ↑ λ1(D0(h)) in the
case where the zero set D(h) is non-empty but its interior D0(h) is empty. Then
Theorem 1 tells us that there exists a unique positive solution uλ(x) of problem (∗)λ

for each λ > λ1 and that the maximum norm ‖uλ‖∞ tends to infinity as λ→ ∞.
Our third result generalizes assertion (1.6) of Theorem 2 to the case where the

interior D0(h) is empty:

Theorem 3. Assume that conditions (H.1) through (H.4) are satisfied, and further
that there exists a sequence {Ωj}

∞

j=1 of relatively compact, open subsets of D with

smooth boundary such that the Ωj contain the zero set D(h) and satisfy the condition

lim
j→∞

|Ωj | = 0,

where | · | denotes the Lebesgue measure of a measurable set of RN . Then problem
(∗)λ has a unique positive solution uλ(x) for each λ > λ1 which tends to infinity as
λ→ ∞, uniformly with respect to x ∈ K for any compact subset K of D.

Example 1. If the zero set D(h) consists of finitely many points in D, then The-
orem 3 applies.

Example 2. If the zero set D(h) consists of finitely many connected components
of dimension m with 1 ≤ m ≤ N − 1, then Theorem 3 applies.

The rest of this paper is organized as follows.
In Section 2 we prove Theorem 1 by using the super-sub-solution method and

comparison arguments with the Dirichlet and Neumann conditions. Section 3 is
devoted to the proof of Theorem 2. Our approach is based on a modification of the
variational technique of del Pino [3] adapted to the degenerate case. In Section 4
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we prove Theorem 3. The essential step in the proof is how to construct a super-
solution of problem (∗)λ in order to prove the existence of a positive solution, while
we construct a good sub-solution in order to study the behavior of the positive
solution, by making use of the eigenfunction ϕ1(x) of problem (1.1). In Section 5
we consider the growing-up rate of the unique positive solution uλ(x) in the case
where the interior D0(h) is the unit open ball in RN and the function h(x) satisfies
a growth condition near the boundary ∂D0(h) (Theorem 5.1). In order to give
a precise description of the growing-up rate of the solution uλ(x), we transpose
problem (∗)λ into an equivalent fixed point equation (∗∗)λ for the resolvent K, and
then apply the super-sub-solution method (Theorem 5.2).

The research of the second author is partially supported by Grant-in-Aid for
General Scientific Research (No. 10440050), Ministry of Education, Science and
Culture of Japan.

2. Proof of Theorem 1

In this section we prove Theorem 1 by using the super-sub-solution method
and comparison arguments with the Dirichlet and Neumann conditions. By Taira–
Umezu [13], we know that the problem (∗)λ has at most one positive solution for
every λ > λ1.

(I) First, we prove that problem (∗)λ has a positive solution uλ(x) for every
λ1 < λ < λ1(D0(h)), by using the super-sub-solution method.

Let f(x, t) be a real-valued, Hölder continuous function with exponent 0 < θ < 1
on D × [0, r] for any r > 0, and satisfy the following slope condition or one-sided
Lipschitz condition (cf. [2], [10]): For any r > 0, there exists a constant L > 0 such
that

f(x, t) − f(x, s) > −L(t− s), x ∈ D, 0 ≤ s < t ≤ r.

Now we consider the solvability of the semilinear elliptic problem







−∆u = f(x, u) in D,

Bu = a(x′)
∂u

∂n
+ (1 − a(x′))u = 0 on ∂D.

(2.1)

A non-negative function φ(x) ∈ C2(D) is called a sub-solution of problem (2.1)
if it satisfies the conditions

{

−∆φ ≤ f(x, φ) in D,

Bφ ≤ 0 on ∂D.

Similarly, a non-negative function ψ(x) ∈ C2(D) is called a super-solution of prob-
lem (2.1) if it satisfies the conditions

{

−∆ψ ≥ f(x, ψ) in D,

Bψ ≥ 0 in ∂D.

The next theorem, [13, Theorem 1], plays a fundamental role in the construction
of positive solutions of problem (2.1) (cf. [2, Theorem 9.4], [10, Theorems 3.2.1 and
3.2.2] for the non-degenerate case):
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Theorem 2.1. Assume that condition (H.3) is satisfied. If there exist a sub-
solution φ(x) and a super-solution ψ(x) of problem (2.1) such that φ(x) ≤ ψ(x) on
D, then problem (2.1) has a solution u(x) ∈ C2+θ(D) such that φ(x) ≤ u(x) ≤ ψ(x)
on D.

(I-a) We construct a super-solution of problem (∗)λ for each λ1 < λ < λ1(D0(h)),
by using the following existence result for the Neumann problem due to del Pino
[3] (see Ouyang [8] for the case where ∂D0(h) is sufficiently smooth):

Theorem 2.2. Assume that conditions (H.1), (H.2) and (H.4) are satisfied. Then
the homogeneous Neumann problem







−∆v = λ v − h(x) vp in D,

∂v

∂n
= 0 on ∂D

(2.2)

has a unique positive solution vλ(x) ∈ C2+θ(D) for each 0 < λ < λ1(D0(h)).

Let ψλ(x) be a unique positive solution of problem (2.2) for 0 < λ < λ1(D0(h)).
Then it follows that the function ψλ is a super-solution of problem (∗)λ, since we
have

Bψλ = a(x′)
∂ψλ

∂n
+ (1 − a(x′))ψλ = (1 − a(x′))ψλ ≥ 0 on ∂D.

(I-b) Next we construct a sub-solution of problem (∗)λ. Let ϕ1(x) ∈ C∞(D) be
the positive eigenfunction corresponding to the first eigenvalue λ1 of problem (1.1),
normalized as ‖ϕ1‖∞ = 1. If λ > λ1, then we have, for ε > 0,

−∆(εϕ1) − λεϕ1 + h(x) (εϕ1)
p
≤
(

‖h‖∞ε
p−1 − (λ− λ1)

)

εϕ1 in D.

This proves that the function ελϕ1(x) is a sub-solution of problem (∗)λ if ελ is
sufficiently small.

(I-c) By [12, Lemma 2.1], we see that the functions ψλ(x) and ϕ1(x) are compara-
ble. This implies that if ελ is sufficiently small, then it follows that ελϕ1(x) ≤ ψλ(x)
on D. Therefore, by applying Theorem 2.1 we can find a positive solution uλ(x) of
problem (∗)λ for every λ1 < λ < λ1(D0(h)) such that

ελϕ1(x) ≤ uλ(x) ≤ ψλ(x) on D.

(II) Secondly we prove a non-existence result for all λ ≥ λ1(D0(h)). To do so, we
need the following existence and non-existence results for the Dirichlet problem due
to del Pino [3] (see Ouyang [8] for the case where ∂D0(h) is sufficiently smooth):

Theorem 2.3. Assume that conditions (H.1), (H.2) and (H.4) are satisfied. Then
the homogeneous Dirichlet problem

{

−∆w = λw − h(x)wp in D,

w = 0 on ∂D
(2.3)
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has a unique positive solution wλ(x) ∈ C2+θ(D) for each λ1(D) < λ < λ1(D0(h)),
and it has no positive solution for all λ ≥ λ1(D0(h)). Here λ1(D) is the first
eigenvalue of the Dirichlet eigenvalue problem

{

−∆u = λu in D,

u = 0 on ∂D.

Now assume to the contrary that problem (∗)λ has a positive solution uλ(x) for
some λ ≥ λ1(D0(h)). Then it follows that the function uλ(x) is a super-solution of
problem (2.3), since we have

uλ ≥ 0 on ∂D.

On the other hand, if ϕ0(x) is a positive eigenfunction corresponding to the first
eigenvalue λ1(D), then it is easy to verify that the function ελϕ0(x) is a sub-solution
of problem (2.3) for ελ sufficiently small, since we have λ > λ1(D).

Therefore, by applying Theorem 2.1 to the Dirichlet case (a(x′) ≡ 0 on ∂D) we
can find a positive solution wλ(x) ∈ C2+θ(D) of problem (2.3) for λ ≥ λ1(D0(h))
such that

ελϕ0(x) ≤ wλ(x) ≤ uλ(x) on D.

However, this contradicts Theorem 2.3.
(III) Finally, since we have proved the existence and non-existence results for

problem (∗)λ, we can prove just as in [13] that the maximum norm ‖uλ‖∞ tends
to infinity as λ ↑ λ1(D0(h)).

The proof of Theorem 1 is now complete. �

3. Proof of Theorem 2

This section is devoted to the proof of Theorem 2. Our approach is based on a
modification of the variational technique of del Pino [3] adapted to the degenerate
case. The proof is divided into four steps.

(I) We introduce a non-negative smooth function ρ(x) ∈ C∞(Ω) defined by
formula (1.4), and consider a function

v(x) = C ρ(x)−α, α > 2/(p− 1),

where C is a positive constant to be chosen later on. Then we have, by a direct
computation,

−∆v = C
(

αρ−α−1∆ρ− α(α+ 1)ρ−α−2|∇ρ|2
)

.

Since ρ(x) = 1 in a tubular neighborhood of ∂D, by integration by parts it follows
that we have, for all non-negative functions ϕ(x) ∈ C1(Ω) having support away
from Γ = ∂Ω ∩D,

∫

Ω

∇v · ∇ϕ dx = −

∫

Ω

∆v · ϕ dx+

∫

∂Ω

∂v

∂n
ϕ dσ

= C

∫

Ω

(

αρ−α−1∆ρ− α(α+ 1)ρ−α−2|∇ρ|2
)

ϕ dx, (3.1)
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where dσ is the surface element on ∂Ω.
On the other hand we find that any positive solution u(x) of problem (∗)λ satisfies

the formula
∫

Ω

(∇u · ∇ϕ+ (hup − λu)ϕ) dx =

∫

∂Ω

∂u

∂n
ϕ dσ. (3.2)

However, since we have

Bu = a(x′)
∂u

∂n
+ (1 − a(x′))u = 0,

it follows that







u(x′) = 0 if a(x′) = 0,

∂u

∂n
(x′) = −

1 − a(x′)

a(x′)
u(x′) ≤ 0 if a(x′) > 0,

so that
∂u

∂n
≤ 0 on ∂D.

Therefore, combining inequalities (3.1) and (3.2) we have, for all non-negative
functions ϕ ∈ C1(Ω) having support away from Γ,

∫

Ω

(∇(u− v) · ∇ϕ+ (hup − λu)ϕ) dx

= C

∫

Ω

(

−αρ−α−1∆ρ+ α(α+ 1)ρ−α−2|∇ρ|2
)

ϕ dx+

∫

∂Ω

∂u

∂n
ϕ dσ

≤ C

∫

Ω

(

−αρ−α−1∆ρ+ α(α+ 1)ρ−α−2|∇ρ|2
)

ϕ dx. (3.3)

If we let

h =
1

2
inf
x∈Ω

h(x),

then we obtain from inequality (3.3) that

∫

Ω

(∇(u− v) · ∇ϕ+ (hup − λu− h vp)ϕ) dx

≤ C|Ω| ‖ϕ‖
∞,Ω ‖ρ‖−αp

∞,Ω

(

α‖ρ‖−α−1+αp

∞,Ω
‖∆ρ‖

∞,Ω

+α(α+ 1)‖ρ‖−α−2+αp

∞,Ω
‖|∇ρ|‖

∞,Ω − hCp−1
)

, (3.4)

where ‖ · ‖
∞,Ω is the maximum norm of C(Ω). Since h > 0 and −α − 2 + αp > 0,

it follows from inequality (3.4) that

∫

Ω

(∇(u− v) · ∇ϕ+ (hup − λu− h vp)ϕ) dx ≤ 0, (3.5)



SEMILINEAR ELLIPTIC BOUNDARY PROBLEMS 9

if we take the constant C (independent of λ) so large that

Cp−1 >
α

h

(

‖ρ‖
∞,Ω‖∆ρ‖∞,Ω + (α+ 1)‖|∇ρ|‖

∞,Ω

)

‖ρ‖−α−2+αp

∞,Ω
. (3.6)

We remark that formula (3.5) remains valid for all non-negative functions ϕ in the
Sobolev space H1(Ω) having support away from Γ.

(II) Let I be a bounded sub-interval of the interval (λ1, λ1(D0(h))), and uλ(x)
a positive solution of problem (∗)λ for λ ∈ I. Then we have the assertion

x ∈ Ω and uλ(x) ≥ C ρ(x)−α =⇒ h(x) uλ(x)p − λuλ(x) ≥ huλ(x)p, (3.7)

if we take a constant C > 0 sufficiently large, independent of λ ∈ I.
Indeed, if we let

λ = sup
λ∈I

λ,

then it follows that

h(x) uλ(x)p − λuλ(x) − huλ(x)p ≥ huλ(x)p − λuλ(x)

= u(x)
(

huλ(x)p−1 − λ
)

≥ u(x)
(

hCp−1 ρ(x)−α(p−1) − λ
)

≥ u(x)
(

hCp−1 ‖ρ‖
−α(p−1)

∞,Ω
− λ
)

> 0,

if we take the constant C > 0 so large that

Cp−1 >
λ

h
‖ρ‖

α(p−1)

∞,Ω
. (3.8)

(III) In order to prove assertion (1.5), assume to the contrary that one can find
a bounded interval I0 ⊂ (λ1, λ1(D0(h))) such that, for any constant C > 0 there
exist a parameter λ0 ∈ I0 and a point x0 ∈ Ω such that the unique positive solution
uλ0

(x) of problem (∗)λ0
satisfies the inequality

uλ0
(x0) > C ρ(x0)

−α.

We choose a large constant C satisfying inequalities (3.6) and (3.8) with I := I0,
and let

u0(x) = uλ0
(x),

v0(x) = C ρ(x)−α,

w0(x) = max {u0(x) − v0(x), 0} .

Then it follows that the function w0(x) belongs to the Sobolev space H1(Ω) having
support away from Γ, since we have, for all x in a tubular neighborhood of Γ in Ω,

u0(x) < v0(x).
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Hence, applying inequality (3.5) to the functions u := u0, v := v0 and ϕ := w0 we
obtain that

∫

Ω

(∇(u0 − v0) · ∇w0 + (hup
0 − λ0u0 − h vp

0)w0) dx ≤ 0,

or equivalently,

∫

supp w0

(∇(u0 − v0) · ∇w0 + (hup
0 − λ0 u0 − h vp

0)w0) dx ≤ 0.

Furthermore, in view of assertion (3.7) this implies that

∫

supp w0

(∇(u0 − v0) · ∇w0 + h (u0
p − v0

p)w0) dx ≤ 0.

Therefore, we conclude that

0 <

∫

supp w0

h (u0
p − v0

p)w0 dx

≤

∫

supp w0

(∇(u0 − v0) · ∇w0 + h (u0
p − v0

p)w0) dx

≤ 0,

since w0 = u0 − v0 on suppw0 and the Lebesgue measure of suppw0 is positive.
This contradiction proves assertion (1.5).

(IV) Finally, it remains to prove assertion (1.6). Let uλ(x) be a positive solution
of problem (∗)λ for any λ1(D) < λ < λ1(D0(h)), and let ϕ0(x) be a positive
eigenfunction corresponding to the first eigenvalue λ1(D) of problem (2.4). Then,
just as in step (II) of the proof of Theorem 1 we find that the function uλ(x) is
a super-solution of problem (2.3) and further that the function ελϕ0(x) is a sub-
solution of problem (2.3) if ελ is sufficiently small.

Therefore, by applying Theorem 2.1 to the Dirichlet case (a(x′) ≡ 0 on ∂D) we
can find a positive solution wλ(x) ∈ C2+θ(D) of problem (2.3) such that

ελϕ0(x) ≤ wλ(x) ≤ uλ(x), x ∈ D. (3.9)

However, we know from part (ii) of [3, Theorem 3] that assertion (1.6) holds for
the function wλ(x), that is,

inf
x∈K

wλ(x) −→ ∞ as λ ↑ λ1(D0(h)).

In view of inequalities (3.9), it follows that assertion (1.6) holds also for the solution
uλ(x) of problem (∗)λ.

Now the proof of Theorem 2 is complete. �
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4. Proof of Theorem 3

In this section we prove Theorem 3. The essential step in the proof is how to
construct a super-solution of problem (∗)λ in order to prove the existence of a posi-
tive solution, while we construct a good sub-solution in order to study the behavior
of the positive solution, by making use of the eigenfunction ϕ1(x) of problem (1.1).

(I) Now take the positive eigenfunction ϕ1(x) corresponding to the first eigen-
value λ1 of problem (1.1) such that ‖ϕ1‖∞ = 1 and let

v(x) =

(

λ− λ1

‖h‖∞

)1/(p−1)

ϕ1(x), λ > λ1.

Then we have
−∆v − λv + h(x)vp ≤ 0 in D.

This implies that v(x) is a sub-solution of problem (∗)λ.
(II) Next we construct a super-solution of problem (∗)λ. Since the function

h(x) satisfies conditions (H.1), (H.2) and (H.4), for each λ > λ1 we can choose a

non-negative function h̃(x) ∈ Cθ(D) such that

1. The zero set D(h̃) of the function h̃(x) is bounded away from ∂D;

2. The interior D0(h̃) of D(h̃) is not empty;

3. The interior D0(h̃) contains the zero set D(h) of the function h(x);

4. h̃(x) ≤ h(x), x ∈ D;

5. λ < λ1(D0(h̃)).

Here we have used the fact that the value λ1(D0(h)) defined by formula (1.2) tends
to infinity as the Lebesgue measure |D0(h)| goes to zero.

Now we consider the following boundary value problem
{

−∆u = λu− h̃(x)up in D,

Bu = 0 on ∂D.
(4.1)

Theorem 1 tells us that problem (4.1) has a unique positive solution w(x) ∈
C2+θ(D). Then it follows that the function Cw(x) is a super-solution of prob-
lem (∗)λ for all C ≥ 1. Indeed, we have

−∆(Cw) − λCw + h(x)(Cw)p = Cwp(Cp−1h(x) − h̃(x)) ≥ 0 in D,

since h(x) ≥ h̃(x) on D and p > 1.
(III) Applying Theorem 2.1 to the sub-solution v(x) and the super-solution

Cw(x) for C sufficiently large, we can find a solution uλ(x) of problem (∗)λ such
that

v(x) =

(

λ− λ1

‖h‖∞

)1/(p−1)

ϕ1(x) ≤ uλ(x) ≤ Cw(x) on D.

This proves that the solution uλ(x) tends to infinity as λ → ∞, uniformly with
respect to x ∈ K for any compact subset K of D, since we have ϕ1(x) > 0 in D.

The proof of Theorem 3 is now complete. �
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5. Growing-up rate of positive solutions

In this section we study the growing-up rate of the unique positive solution uλ(x)
of problem (∗)λ as λ → λ1(D0(h)) under some further restrictions on the function
h(x), which generalizes assertion (1.6) of Theorem 2 (Theorem 5.1). In order to
give a precise description of the growing-up rate of the solution uλ(x), we transpose
problem (∗)λ into an equivalent fixed point equation (∗∗)λ for the resolvent K, and
then apply the super-sub-solution method (Theorem 5.2).

We assume that the zero set D(h) of the function h(x) is given by the formula

D(h) =
{

x ∈ RN : |x| ≤ 1
}

, (5.1)

and we let
{

D1 := D0(h) =
{

x ∈ RN : |x| < 1
}

,

Dr :=
{

x ∈ RN : |x| < r
}

, r > 1.

Concerning the growth rate of h(x) near ∂D0(h), we assume that there exist con-
stants σ > 1, C1 > 0 and δ0 > 0 such that

sup
x∈Dr

h(x) ≤ C1(r − 1)σ, r ∈ [1, 1 + δ0]. (5.2)

Example 5.1. If h(x) is a function in C1(RN ) given by the formula

h(x) =

{

0 |x| < 1,

(|x| − 1)2 |x| ≥ 1,

then h(x) satisfies conditions (5.1) and (5.2) with σ = 2.

Now let φr(x) be a positive eigenfunction associated with the first eigenvalue
λ1(Dr) of the Dirichlet problem

{

−∆ϕ = µϕ in Dr,

ϕ = 0 on ∂Dr,
(5.3)

where the eigenfunction φr(x) is normalized as ‖φr‖∞,Dr

= 1.

The next theorem gives a precise description of the growing-up rate of the positive
solution uλ(x) in assertion (1.6) of Theorem 2:

Theorem 5.1. Assume that the function h(x) satisfies conditions (5.1) and (5.2)
and that its zero set D(h) is bounded away from the boundary ∂D. If uλ(x) is a
unique positive solution of problem (∗)λ for λ1 < λ < λ1(D0(h)), then, for any
compact subset K of D0(h) there exists a constant C > 0, independent of λ, such
that

uλ(x) ≥ C (λ1(D0(h)) − λ)(1−σ)/(p−1) φ1(x) for all x ∈ K, (5.4)

for λ sufficiently close to λ1(D0(h)).

Proof. The proof is divided into four steps.
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(I) First, we transpose problem (∗)λ into an equivalent fixed point equation for
the resolvent of the linearized boundary value problem. By using [13, Theorem
1.1], for a given constant d > 0 we can associate with the boundary value problem

{

(−∆+ d)u = f in D,

Bu = 0 on ∂D,
(5.5)

a linear operator
Kd : Cθ(D) −→ C2+θ(D)

in the following way: For any function f ∈ Cθ(D), the function u = Kdf ∈ C2+θ(D)
is the unique solution of problem (5.5). Then it is easy to verify that the operator
K is uniquely extended to a strictly positive, compact linear operator K from the
ordered Banach space C(D) into itself ([12, Lemma 2.1]). Furthermore, we find
that problem (∗)λ is equivalent to a nonlinear operator equation

u = Kd((λ+ d)u− hup) in C(D). (∗∗)λ

(II) Secondly, we apply the super-sub-solution method to solve equation (∗∗)λ.
A non-negative function φ(x) ∈ C(D) is said to be a super-solution of equation

(∗∗)λ if it satisfies the condition

φ(x) ≥ Kd((λ+ d)φ− hφp)(x) for x ∈ D.

Similarly, a non-negative function ψ(x) ∈ C(D) is said to be a sub-solution of
equation (∗∗)λ if it satisfies the condition

ψ(x) ≤ Kd((λ+ d)ψ − hψp)(x) for x ∈ D.

The next existence theorem for problem (∗)λ is implicitly proved in the proof of
[13, Theorem 1]:

Theorem 5.2. Let φ(x) and ψ(x) be respectively a sub-solution and a super-
solution of equation (∗∗)λ such that φ(x) ≤ ψ(x) on D. If the function

gd(x, t) = (λ+ d)t− h(x)tp

is monotonically increasing in t, that is, if we have

gd(x, s) < gd(x, t) for all x ∈ D and 0 ≤ s < t ≤ ‖ψ‖∞,

then equation (∗∗)λ has a fixed point u(x) ∈ C(D) such that

φ(x) ≤ u(x) ≤ ψ(x) on D.

In this case, the function u(x) is a solution of problem (∗)λ in the space C2+θ(D).

(III) We construct a sub-solution of equation (∗∗)λ. To do so, we need the
following elementary results:



14 KENICHIRO UMEZU AND KAZUAKI TAIRA

Lemma 5.1. If r1 > r2 ≥ 1, then the first eigenvalue λ1(Dr) of problem (5.3) and
its associated eigenfunction φr(x) satisfy respectively the conditions

λ1(Dr1
) =

(

r2
r1

)2

λ1(Dr2
), (5.6)

φr1
(x) = φr2

(

r2
r1
x

)

, x ∈ Dr1
. (5.7)

Since the eigenvalue λ1(Dr) depends continuously on r, it follows that, for each
λ < λ1(D0(h)) close to λ1(D0(h)) there exists a constant r > 1 such that

λ = λ1(Dr).

If we let

λ′ = λ1(D2r−1),

then we obtain that its associated eigenfunction φ2r−1(x) satisfies the conditions

{

(−∆+ d)(εφ2r−1) ≤ (λ+ d)εφ2r−1 − h(x)(εφ2r−1)
p in D2r−1,

εφ2r−1 = 0 on ∂D2r−1,
(5.8)

if ε may be chosen to be so small that

0 < ε ≤

(

λ− λ′

supD2r−1
h

)1/(p−1)

. (5.9)

However, by using condition (5.2) and formula (5.6) we can prove that

(

λ− λ′

supD2r−1
h

)1/(p−1)

≥

{

λ1(Dr)(3r − 1)

2σC1(2r − 1)2

}1/(p−1)

(r − 1)(1−σ)/(p−1).

This implies that there exists a constant C̃ > 0, independent of r close to 1, such
that condition (5.9) is valid for

ε = C̃(r − 1)(1−σ)/(p−1).

Now we define a continuous function vr(x) ∈ C(D) as

vr(x) =

{

C̃(r − 1)(1−σ)/(p−1)φ2r−1(x) in D2r−1,

0 on D \D2r−1.

Then, by assertion (5.8) it is easy to see that the function vr(x) is a sub-solution
of equation (∗∗)λ. In fact, we have the following:
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Lemma 5.2. There exists a constant d1 > 0 such that, for all d > d1 the function
vr(x) satisfies the condition

vr(x) ≤ Kd((λ+ d)vr − hvr
p) on D.

(IV) End of Proof of Theorem 5.1 . First, by [5, Theorem 3.2] it follows that
there exists a super-solution wλ(x) ∈ C2(D) of problem (∗)λ for each λ1 < λ <
λ1(D0(h)). Then we remark that the functions Rwλ(x) are super-solutions of equa-
tion (∗∗)λ for all R > 1. Moreover we can choose constants R0 > 1 and d > d1 so
large that

vr(x) ≤ R0wλ(x) on D

and

gd(x, s) < gd(x, t) for all x ∈ D and 0 ≤ s < t < R0‖wλ‖∞.

Hence it follows from an application of Theorem 5.2 that problem (∗)λ has a solution
u(x) ∈ C2+θ(D) such that

vr(x) ≤ u(x) ≤ R0wλ(x) on D.

However, by the uniqueness theorem for problem (∗)λ (Theorem 1) we obtain that
u(x) = uλ(x) in D, so that

vr(x) = C̃(r − 1)(1−σ)/(p−1)φ2r−1(x) ≤ uλ(x), x ∈ D2r−1. (5.10)

Furthermore, we have, by formula (5.6),

r − 1 =
(2r − 1)2

3r − 1

(

λ1(Dr) − λ1(D2r−1)

λ1(Dr)

)

=
r2(2r − 1)

r + 1

(

λ1(D0(h)) − λ

λ1(D0(h))

)

.

Summing up, we can rewrite inequality (5.10) in the form

C(λ1(D0(h)) − λ)(1−σ)/(p−1)φ2r−1(x) ≤ uλ(x), x ∈ D2r−1, (5.11)

where C is a positive constant independent of λ.

On the other hand, by formula (5.7) it follows that, as r ↓ 1

φ2r−1(x) −→ φ1(x) in C(D0(h)). (5.12)

Therefore, the desired assertion (5.4) follows by combining inequality (5.11) and
assertion (5.12).

Now the proof of Theorem 5.1 is complete. �
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