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��������� This paper is devoted to the functional analytic approach to the problem

of construction of Feller semigroups with Ventcel’ (Wentzell) boundary conditions.
The problem of construction of Feller semigroups has never before been studied in the

characteristic case. In this paper we consider the characteristic case. Intuitively, our

result may be stated as follows: We can construct a Feller semigroup corresponding

to such a diffusion phenomenon that one of the reflection and viscosity phenomena

occurs at each point of the boundary.

Introduction

Let D be a bounded domain of Euclidean space RN , with C∞ boundary ∂D,
and let C(D) be the space of real-valued, continuous functions on the closure D =
D ∪ ∂D. We equip the space C(D) with the topology of uniform convergence on
the whole D; hence it is a Banach space with the maximum norm

‖f‖ = max
x∈D

|f(x)|.

A strongly continuous semigroup {Tt}t≥0 on the space C(D) is called a Feller
semigroup on D if it is non-negative and contractive on C(D):

f ∈ C(D), 0 ≤ f ≤ 1 on D =⇒ 0 ≤ Ttf ≤ 1 on D.

Let A be a second-order, degenerate elliptic differential operator with real coef-
ficients such that

Au(x) =
N∑

i,j=1

aij(x)
∂2u

∂xi∂xj
(x) +

N∑
i=1

bi(x)
∂u

∂xi
(x) + c(x)u(x),

where:
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(1) aij ∈ C∞(RN ), aij = aji and

N∑
i,j=1

aij(x)ξiξj ≥ 0, x ∈ RN , ξ ∈ RN .

(2) bi ∈ C∞(RN ).
(3) c ∈ C∞(RN ) and c ≤ 0 on D.

The differential operator A is called a diffusion operator which describes analytically
a strong Markov process with continuous paths (diffusion process) in the interior
D.

This paper is devoted to the functional analytic approach to the problem of
construction of Feller semigroups with Ventcel’ boundary conditions, generalizing
some results of Taira [Ta2] to the case when the operator A is characteristic with
respect to the boundary ∂D as in Taira [Ta3], which we formulate precisely.

First we introduce a function b on the boundary ∂D by the formula:

b(x′) =
N∑

i=1


bi(x′) − N∑

j=1

∂aij

∂xj
(x′)


ni, x′ ∈ ∂D ,

where n = (n1, · · · , nN ) is the unit interior normal to ∂D at x′. The function b is
called the Fichera function for the operator A. We divide the boundary ∂D into
the following four disjoint subsets:

Σ3 =


x′ ∈ ∂D;

N∑
i,j=1

aij(x′)ninj > 0


 .

Σ2 =


x′ ∈ ∂D;

N∑
i,j=1

aij(x′)ninj = 0, b(x′) < 0


 .

Σ1 =


x′ ∈ ∂D;

N∑
i,j=1

aij(x′)ninj = 0, b(x′) > 0


 .

Σ0 =


x′ ∈ ∂D;

N∑
i,j=1

aij(x′)ninj = 0, b(x′) = 0


 .

The fundamental hypothesis for A is the following (see Figure 1):

(H) Each set Σi (i = 0, 1, 2, 3) consists of a finite number of connected hypersur-
faces.

Intuitively, hypothesis (H) implies that a Markovian particle moves continuously in
the interior D and may reach the boundary Σ2∪Σ3; so one may impose a boundary
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condition only on the set Σ2 ∪Σ3 (cf. [OR], [SV]).

D

Σ2

Σ3

Σ1

Σ0

Figure 1
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Furthermore we assume that, in a neighborhood of the boundary Σ3, there exists
a real-valued, C∞ function Φ on RN such that

D =
{
x ∈ RN ;Φ(x) > 0

}
,

Σ3 =
{
x ∈ RN ;Φ(x) = 0

}
,

gradΦ(x) �= 0 on Σ3.

Let Λ be a real C∞ vector field on RN such that

ΛΦ = 1 in a neighborhood of Σ3.

Then we assume that, in a neighborhood of Σ3, the operator A can be written in
the following form:

Au = Λ∗(Λu) + Φ2k(Pu) + ΦkΛ(Qu) + Φk−1(Ru) + E(Λu) + Fu,

where:
(1) k is a positive integer.
(2) P is a second-order differential operator acting along the surfaces parallel to

the boundary Σ3.
(3)Q and R are first-order differential operators acting along the surfaces parallel

to the boundary Σ3.
(4) E and F are C∞ functions on RN .
Our fundamental hypothesis for the operator A near the boundary Σ3 is stated

as follows:
(E) The differential operator Λ∗Λ+ P + ΛQ is elliptic near the boundary Σ3.
Let L be a second-order, boundary condition with real coefficients such that in

local coordinates (x1 , x2, · · · , xN−1) on Σ2 ∪Σ3

Lu(x′) =


N−1∑

i,j=1

αij(x′)
∂2u

∂xi∂xj
(x′) +

N−1∑
i=1

βi(x′)
∂u

∂xi
(x′)



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+ γ(x′)u(x′) + µ(x′)
∂u

∂n
(x′) − δ(x′)Au(x′),

where:
(1) The αij are the components of a C∞ symmetric contravariant tensor of type(

2
0

)
on boundary Σ2 ∪Σ3 and

N−1∑
i,j=1

αij(x′)ξiξj ≥ 0, x′ ∈ Σ2 ∪ Σ3, ξ =
N−1∑
j=1

ξj dxj ∈ T ∗
x′(Σ2 ∪Σ3).

Here T ∗
x′(Σ2 ∪Σ3) is the cotangent space of Σ2 ∪Σ3 at x′.

(2) βi ∈ C∞(Σ2 ∪ Σ3).
(3) γ ∈ C∞(Σ2 ∪ Σ3) and γ ≤ 0 on Σ2 ∪Σ3.
(4) µ ∈ C∞(Σ2 ∪Σ3) and µ ≥ 0 on Σ2 ∪Σ3.
(5) δ ∈ C∞(Σ2 ∪Σ3) and δ ≥ 0 on Σ2 ∪Σ3.
(6) n = (n1, · · · , nN ) is the unit interior normal to the boundary Σ2 ∪Σ3.

The boundary condition L is called a second-order Ventcel’ boundary condition.
The terms of L are supposed to correspond to the diffusion along the boundary, the
absorption phenomenon, the reflection phenomenon and the viscosity phenomenon,
respectively.

We say that the boundary condition L is transversal on the boundary Σ2 ∪ Σ3

if it satisfies the condition:

µ+ δ > 0 on Σ2 ∪Σ3.

Intuitively, the transversality condition implies that either reflection or viscosity
phenomenon occurs on the boundary Σ2 ∪Σ3.

It is known (cf. [BCP], [Ta1]) that the infinitesimal generator A of a Feller
semigroup {Tt}t≥0 is described analytically by a diffusion operator A and a Ventcel’
boundary condition L.

In this paper, we consider the following problem:

Problem. Conversely, given analytic data (A,L), can we construct a Feller semi-
group {Tt}t≥0 whose infinitesimal generator A is characterized by (A,L) ?

Our main result asserts that there exists a Feller semigroup on D corresponding
to such a diffusion phenomenon that one of the reflection and viscosity phenomena
occurs at each point of the boundary:

Main Theorem. Assume that the operator A satisfies hypotheses (H) and (E)
and that the boundary condition L is transversal on Σ2 ∪ Σ3. Then there exists a
Feller semigroup {Tt}t≥0 on D whose infinitesimal generator A is characterized as
follows:

(1) The domain D(A) of A is the space

D(A) =
{
u ∈ C(D);Au ∈ C(D), Lu = 0 on Σ2 ∪Σ3

}
.

(2) Au = Au, u ∈ D(A).
Here Au and Lu are taken in the sense of distributions.

We remark that Cattiaux [Ca] has proved a probabilistic version of Main Theo-
rem in the non-characteristic case: ∂D = Σ3.
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The rest of this paper is organized as follows.
Sections 1 and 2 provide a review of basic results about Feller semigroups and

pseudo-differential operators which will be used in the subsequent sections.
In Section 3 we consider the following Dirichlet problem:

(D)
{

(α − A)u = f in D,
u = ϕ on Σ2 ∪ Σ3,

where α ia a positive parameter. The existence and uniqueness theorem for problem
(D) is well established in the framework of Hölder spaces (Theorem 3.2).

The purpose of Section 4 is to give a general existence theorem for Feller semi-
groups in terms of boundary value problems (Theorem 4.9). In other words, we
reduce the problem of construction of Feller semigroups to the problem of unique
solvability for the boundary value problem

(∗)
{

(α − A)u = f in D,
Lu = 0 on Σ2 ∪ Σ3.

In Section 5 we prove an existence theorem for problem (∗) in the framework of
Hölder spaces (Theorem 5.1). The idea of our approach is stated as follows.

First we consider the Dirichlet problem:

{
(α− A)v = f in D,
v = 0 on Σ2 ∪Σ3,

and let
v = G0

αf.

Then it follows that a function u is a solution of the problem (∗) if and only if the
function w = u− v = u−G0

αf is a solution of the problem

{
(α −A)w = 0 in D,
Lw = −Lv = −LG0

αf on Σ2 ∪Σ3.

But every solution w of the homogeneous equation (α − A)w = 0 in D can be
expressed in the form:

w = Hαψ.

Thus, by using the operators G0
α and Hα, one can reduce the study of problem (∗)

to that of the equation:

LHαψ = −LG0
αf on Σ2 ∪Σ3.

If hypothesis (E) is satisfied, then it follows that the operator LHα is a second-order,
pseudo-differential operator on the boundary Σ2∪Σ3. More precisely, the operator
LHα is the sum of a second-order, degenerate elliptic differential operator Qα and a
pseudo-differential operator Πα, where Πα is a elliptic pseudo-differential operator
of order 1/(k + 1) on Σ3, and is a second-order, degenerate elliptic differential
operator on Σ2. This is the essential step in the proof of Main Theorem.
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By using the theory of pseudo-differential operators, we can show that if the
boundary condition L is transversal on Σ2 ∪Σ3, then the operator LHα is bijective
in the framework of Hölder spaces.

Summing up, we find that a unique solution u of problem (∗) can be expressed
as follows:

(∗∗) u = G0
αf −Hα

(
(LHα)−1 (

LG0
αf

))
.

Section 6 is devoted to the proof of Main Theorem (Theorem 6.1). By virtue of
formula (∗∗), we can verify all the conditions of the generation theorem of Feller
semigroups, just as in the proof of [Ta2, Theorem 3.16].

A part of the work was done while the author was a Visiting Professor at the
Moscow Aviation Institute (Moscow, Russia) in July 1993 under the sponsorship
of University of Tsukuba Fund for International Exchange. Thanks are also due to
the Moscow Aviation Institute for its support and hospitality.

1. Theory of Feller Semigroups

This section provides a review of basic results about Feller semigroups, which
forms a functional analytic background for the proof of Main Theorem.

1.1 Feller Semigroups. Let K be a compact metric space and let C(K) be the
space of real-valued, continuous functions on K. The space C(K) is a Banach space
with the maximum norm

‖f‖ = max
x∈K

|f(x)|.

A family {Tt}t≥0 of bounded linear operators acting on C(K) is called a Feller
semigroup on K if it satisfies the following three conditions:

(i) Tt+s = Tt · Ts, t, s ≥ 0; T0 = I.
(ii) The family {Tt} is strongly continuous in t for t ≥ 0:

lim
s↓0

‖Tt+sf − Ttf‖ = 0, f ∈ C(K).

(iii) The family {Tt} is non-negative and contractive on C(K):

f ∈ C(K) , 0 ≤ f ≤ 1 on K =⇒ 0 ≤ Ttf ≤ 1 on K.

1.2 Generation Theorems of Feller Semigroups. If {Tt}t≥0 is a Feller semi-
group on K, we define its infinitesimal generator A by the formula

(1.1) Au = lim
t↓0

Ttu− u

t
,

provided that the limit (1.1) exists in C(K).

The next theorem is a version of the Hille-Yosida theorem adapted to the present
context (cf. [Ta1, Theorem 9.3.1]):
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Theorem 1.1. (i) Let {Tt}t≥0 be a Feller semigroup on K and A its infinitesimal
generator. Then we have the following assertions:

(a) The domain D(A) is everywhere dense in the space C(K).
(b) For each α > 0, the equation (αI − A)u = f has a unique solution u in

D(A) for any f ∈ C(K). Hence, for each α > 0, the Green operator (αI − A)−1 :
C(K) → C(K) can be defined by the formula

u = (αI − A)−1f, f ∈ C(K).

(c) For each α > 0, the operator (αI −A)−1 is non-negative on the space C(K):

f ∈ C(K) , f ≥ 0 on K =⇒ (αI − A)−1f ≥ 0 on K.

(d) For each α > 0, the operator (αI −A)−1 is bounded on the space C(K) with
norm

‖(αI − A)−1‖ ≤ 1
α
.

(ii) Conversely, if A is a linear operator from C(K) into itself satisfying condition
(a) and if there is a constant α0 ≥ 0 such that, for all α > α0, conditions (b) through
(d) are satisfied, then A is the infinitesimal generator of some Feller semigroup
{Tt}t≥0 on K.

We give useful criteria in terms of the maximum principle (cf. [BCP, Théorème
de Hille-Yosida-Ray], [Ta1, Theorem 9.3.3]):

Theorem 1.2. (i) Let B be a linear operator from the space C(K) into itself, and
assume that:

(α) The domain D(B) of B is everywhere dense in the space C(K).
(β) There exists an open and dense subset K0 of K such that if u ∈ D(B) takes

a positive maximum at a point x0 of K0, then we have

Bu(x0) ≤ 0.

Then the operator B is closable in the space C(K).
(ii) Let B be as in part (i), and further assume that:
(β′) If u ∈ D(B) takes a positive maximum at a point x′0 of K, then we have

Bu(x′0) ≤ 0.

(γ) For some α0 ≥ 0, the range R(α0I −B) of α0I −B is everywhere dense in
the space C(K).

Then the minimal closed extension B of B is the infinitesimal generator of some
Feller semigroup on K.

2. Pseudo-Differential Operators

This section provides a review of basic results about pseudo-differential operators
which will be used in the subsequent sections.
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2.1 Function Spaces. If Ω is an open subset of Rn, then we let

L∞(Ω) = the space of equivalence classes of essentially bounded,
Lebesgue measurable functions on Ω.

If m is a non-negative integer, we let

Cm(Ω) = the space of functions of class Cm on Ω,

Cm
0 (Ω) = the space of functions in Cm(Ω) with compact support

in Ω,

and

Cm(Ω) = the space of functions in Cm(Ω) all of whose derivatives

of order ≤ m have continuous extensions to the closure Ω.

If Ω is bounded, then Cm(Ω) is a Banach space with the norm

‖u‖Cm(Ω) = max
x∈Ω

|α|≤m

|∂αu(x)|.

If m is a non-negative integer and 0 < θ < 1, we let

Cm+θ(Ω) = the space of functions in Cm(Ω) all of whose m-th order
derivatives are locally Hölder continuous with exponent θ
on Ω,

and

Cm+θ(Ω) = the space of functions in Cm(Ω) all of whose m-th order
derivatives are Hölder continuous with exponent θ

on Ω.

If Ω is bounded, then Cm+θ(Ω) is a Banach space with the norm

‖u‖Cm+θ(Ω) = ‖u‖Cm(Ω) + max
|α|=m

sup
x,y∈Ω

x�=y

|∂αu(x)− ∂αu(y)|
|x− y|θ .

If M is an n-dimensional, compact C∞ manifold without boundary, then the
space Cm+θ(M) is defined to be locally the space Cm+θ(Rn), upon using local
coordinate systems flattening out M , together with a partition of unity. The norm
of the space Cm+θ(M) will be denoted by ‖ · ‖Cm+θ(M).

2.2 Unique Solvability Theorem for Pseudo-Differential Operators. The
next result will play an essential role in the proof of an existence theorem for
degenerate elliptic boundary value problems in the framework of Hölder spaces in
Section 5 (cf. [Ta2, Theorem 2.1]):
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Theorem 2.1. Let T be a second-order, classical pseudo-differential operator on
an n-dimensional, compact C∞ manifold M without boundary such that

T = P + S,

where:
(a) The operator P is a second-order, degenerate elliptic differential operator on

M with non-positive principal symbol, and P1 ≤ 0 on M .
(b) The operator S is a classical pseudo-differential operator of order 2 − κ,

κ > 0, on M and its distribution kernel s(x, y) is non-negative off the diagonal in
M ×M .

(c) T1 = P1 + S1 ≤ 0 on M .
Then, for each integer k ≥ 1, there exists a constant λ = λ(k) > 0 such that, for

any f ∈ Ck+θ(M) with 0 < θ < 1, one can find a function ϕ ∈ Ck+θ(M) satisfying

(T − λ)ϕ = f on M,

and

‖ϕ‖Ck+θ(M) ≤ Ck+θ‖f‖Ck+θ(M) .

Here Ck+θ > 0 is a constant independent of f .

2.3 Positive Borel Kernels. If Ω is an open subset of Rn, we let

Bloc(Ω) = the space of Borel-measurable functions in Ω
which are bounded on compact subsets of Ω.

Let B be the σ-algebra of all Borel sets in Ω. A positive Borel kernel on Ω is a
mapping

x 
−→ s(x,dy)
of Ω into the space of non-negative measures on B such that, for each X ∈ B, the
function s(·,X) is Borel-measurable on Ω.

Now we assume that a positive Borel kernel s(x,dy) satisfies the following two
conditions:

(NS1) s(x,{x}) = 0 for all x ∈ Ω.
(NS2) For all non-negative functions f in C(Ω) with compact support, the func-

tion
x 
−→

∫
Ω

s(x,dy)|y − x|2f(y), x ∈ Ω,

belongs to the space Bloc(Ω).
Let σ(x, y) be a C∞ function on Ω × Ω such that:
(a) 0 ≤ σ(x, y) ≤ 1 on Ω × Ω.
(b) σ(x, y) = 1 in a neighborhood of the diagonal in Ω × Ω.
(c) For any compact subset K of Ω, there exists a compact subset K ′ of Ω such

that the functions σx(·) = σ(x, ·), x ∈ K, have their support in K ′.
Then we can define a linear operator

S : C2
0 (Ω) −→ Bloc(Ω)

by the formula

Su(x) =
∫

Ω

s(x,dy)

[
u(y) − σ(x, y)

(
u(x) +

n∑
i=1

∂u

∂xi
(x)(yi − xi)

)]
.

The next theorem gives a useful characterization of positive Borel kernels (cf.
[BCP, Théorème I]):
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Theorem 2.2. Let A be a linear operator from C2
0(Ω) into Bloc(Ω). Then the

following two assertions are equivalent:
(i) A : C2

0 (Ω) → Bloc(Ω) is continuous and satisfies the condition

x ∈ Ω, u ∈ C2
0 (Ω), u ≥ 0 in Ω and x �∈ suppu =⇒ Au(x) ≥ 0.

(ii) There exist a second-order differential operator P : C2(Ω) → Bloc(Ω) and
a positive Borel kernel s(x,dy), having properties (NS1) and (NS2), such that the
operator A is written of the form

Au(x) = Pu(x) + Su(x), x ∈ Ω, u ∈ C2
0(Ω).

3. The Dirichlet Problem

In this section we shall study the Dirichlet problem for second-order, degenerate
elliptic differential operators in the framework of Hölder spaces.

We consider the following Dirichlet problem: For given functions f ∈ L∞(D)
and g ∈ L∞ (Σ2 ∪ Σ3), find a function u ∈ L∞(D) such that

(+)
{
Au = f in D,
u = g on Σ2 ∪ Σ3.

Now we give the precise definition of a weak solution of problem (+):

Definition 3.1. A function u ∈ L∞(D) is called a weak solution of problem (+)
if we have, for any function v ∈ C2(D) satisfying v = 0 on Σ1 ∪Σ3,∫∫

D

u ·A∗v dx =
∫∫

D

fv dx−
∫

Σ3

g
∂v

∂ν
dσ +

∫
Σ2

bgv dσ.

Here A∗ is the formal adjoint operator for A, ∂/∂ν =
∑

i,j a
ijnj∂/∂xi is the conor-

mal derivative associated with A, b is the Fichera function for A, and dσ is the
surface element of Σ2 ∪Σ3.

The next theorem states the existence and uniqueness theorem for the Dirichlet
problem in the framework of Hölder spaces (cf. [OR, Theorem 1.8.2], [Ta3, Theorem
2]):

Theorem 3.2. Assume that hypothesis (H) is satisfied and that

c < 0 on D

and

c∗ =
N∑

i,j=1

∂2aij

∂xi∂xj
−

N∑
i=1

∂bi

∂xi
+ c < 0 on D.

Then, for each integer m ≥ 2, one can find a constant λ(m) > 0 such that, for
each λ ≥ λ(m), the Dirichlet problem{

(A− λ)u = f in D,

u = ϕ on Σ2 ∪ Σ3

has a unique solution u in Cm+θ(D) for any f ∈ C2m+2+2θ(D) and any ϕ ∈
C2m+4+2θ (Σ2 ∪Σ3) with 0 < θ < 1.



FELLER SEMIGROUPS WITH BOUNDARY CONDITIONS II 11

4. Feller Semigroups and Boundary Value Problems

The purpose of this section is to give a general existence theorem for Feller
semigroups in terms of boundary value problems (Theorem 4.9), generalizing some
results in [Ta1, Section 9.6].

4.1 Green and Harmonic Operators. First we consider the following Dirichlet
problem:

(D)
{

(α − A)u = f in D,
u = ϕ on Σ2 ∪ Σ3,

where α > 0 is a parameter.
If we take a parameter α so large that

c∗ − α =
N∑

i,j=1

∂2aij

∂xi∂xj
−

N∑
i=1

∂bi

∂xi
+ c− α < 0 on D

and also

α ≥ λ(m),

where λ(m) is the constant stated in Theorem 3.2, then we have the following
existence and uniqueness theorem for problem (D) in the framework of Hölder
spaces:

Theorem 4.1. Assume that hypothesis (H) is satisfied. Then, for each integer
m ≥ 2, one can find a constant α(m) > 0 such that, for each α ≥ α(m), problem
(D) has a unique solution u in Cm+θ(D) for any f ∈ C2m+2+2θ(D) and any ϕ ∈
C2m+4+2θ (Σ2 ∪Σ3) with 0 < θ < 1.

Now, by using Theorem 4.1 with m = 2 and α ≥ α(2), we can introduce linear
operators

G0
α : C6+2θ(D) −→ C2+θ(D)

and

Hα : C8+2θ (Σ2 ∪Σ3) −→ C2+θ(D)

as follows.
(a) For any f ∈ C6+2θ(D), the function G0

αf ∈ C2+θ(D) is the unique solution
of the problem:

(4.1)
{

(α− A)G0
αf = f in D,

G0
αf = 0 on Σ2 ∪Σ3.

(b) For any ϕ ∈ C8+2θ (Σ2 ∪Σ3), the function Hαϕ ∈ C2+θ(D) is the unique
solution of the problem:

(4.2)
{

(α− A)Hαϕ = 0 in D,
Hαϕ = ϕ on Σ2 ∪Σ3.

The operator G0
α is called the Green operator and the operator Hα is called the

harmonic operator, respectively.
Then we have the following results (cf. [Ta1, Theorem 9.6.4]):
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Theorem 4.2. (i) The operator G0
α can be uniquely extended to a non-negative,

bounded linear operator on C(D) into itself, denoted again G0
α, with norm ‖G0

α‖ ≤
1/α.

(ii) The operator Hα can be uniquely extended to a non-negative, bounded linear
operator on C (Σ2 ∪ Σ3) into C(D), denoted again Hα, with norm ‖Hα‖ = 1.

4.2 Existence Theorem for Feller Semigroups. Now we consider the following
boundary value problem (∗) in the framework of the spaces of continuous functions:

(∗)
{

(α − A)u = f in D,
Lu = ϕ on Σ2 ∪ Σ3.

To do this, we introduce three operators associated with problem (∗).
(I) First we introduce a linear operator

A : C(D) −→ C(D)

as follows.
(a) The domain D(A) of A is the space C2(D).
(b) Au =

∑
i,j a

ij∂2u/∂xi∂xj +
∑

i b
i∂u/∂xi + cu, u ∈ D(A).

Then we have the following (cf. [Ta1, Lemma 9.6.5]):

Lemma 4.3. The operator A has its minimal closed extension A in the space
C(D).

The extended operators G0
α : C(D) → C(D) and Hα : C (Σ2 ∪ Σ3) → C(D) still

satisfy formulas (4.1) and (4.2) respectively in the following sense (cf. [Ta1, Lemma
9.6.7 and Corollary 9.6.8]):

Lemma 4.4. (i) For any f ∈ C(D), we have{
G0

αf ∈ D
(
A
)
,(

αI −A
)
G0

αf = f in D.

(ii) For any ϕ ∈ C (Σ2 ∪Σ3), we have{
Hαϕ ∈ D

(
A
)
,(

αI − A
)
Hαϕ = 0 in D.

Here D
(
A
)

is the domain of the closed extension A.

Corollary 4.5. Every function u in D
(
A
)

can be written in the following form:

u = G0
α

((
αI − A

)
u
)
+Hα (u|Σ2∪Σ3) .

(II) Secondly we introduce a linear operator

LG0
α : C(D) −→ C (Σ2 ∪ Σ3)

as follows.
(a) The domain D

(
LG0

α

)
of LG0

α is the space C6+2θ(D).
(b) LG0

αf = L
(
G0

αf
)
, f ∈ D

(
LG0

α

)
.

Then we have the following (cf. [Ta1, Lemma 9.6.9]):
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Lemma 4.6. The operator LG0
α can be uniquely extended to a non-negative, bound-

ed linear operator LG0
α : C(D) → C (Σ2 ∪ Σ3).

(III) Finally we introduce a linear operator

LHα : C (Σ2 ∪ Σ3) −→ C (Σ2 ∪ Σ3)

as follows.
(a) The domain D (LHα) of LHα is the space C8+2θ (Σ2 ∪Σ3).
(b) LHαψ = L (Hαψ), ψ ∈ D (LHα).
Then we have the following:

Lemma 4.7. The operator LHα has its minimal closed extension LHα in the space
C (Σ2 ∪Σ3).

Proof. We apply part (i) of Theorem 1.2 to the operator LHα. To do this, it suffices
to show that the operator LHα satisfies condition (β) of the same theorem.

Assume that a function ψ in the domain D (LHα) = C8+2θ (Σ2 ∪Σ3) takes its
positive maximum at some point x′0 of Σ2 ∪ Σ3. Then it follows that the function
Hαψ is in C2+θ(D) and satisfies:{

(A− α)Hαψ = 0 in D,
Hαψ = ψ on Σ2 ∪Σ3.

Hence, applying the weak maximum principle (cf. [Ta2, Theorem A.1]) to our
situation, we find that the function Hαψ takes its positive maximum ψ(x′0) at
x′0 ∈ Σ2 ∪Σ3.

The next claim is the essential step in the proof of Lemma 4.7:

Claim 4.8. The interior normal derivative (∂/∂n) (Hαψ) of the function Hαψ
satisfies the condition

∂

∂n
(Hαψ) < 0 on Σ2 ∪Σ3.

Proof. (i) First let x′0 be a point of Σ3. Since the function Hα ψ takes its positive
maximum ψ(x′0) at x′0 ∈ Σ3, we can apply the boundary point lemma (cf. [Ta2,
Lemma A.3]) to obtain that

∂

∂n
(Hαψ) (x′0) < 0.

(ii) Next, if x′0 is a point of Σ2, then we choose a local coordinate system
(y1, · · · , yN−1, yN ) in a neighborhood of x′0 such that


x′0 = 0,
D = {yN > 0} ,
Σ2 = {yN = 0} ,

and assume that, in terms of this coordinate system, the operator A is written in
the form

A = aNN (y)
∂2

∂y2
N

+ bN (y)
∂

∂yN
+

N−1∑
i,j=1

aij(y)
∂2

∂yi∂yj
+

N−1∑
i=1

bi(y)
∂

∂yi
+ c(y).
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We remark that:

(1) aNN (0) = 0 and bN (0) = b(0) < 0, since x′0 = 0 ∈ Σ2.
(2) aij ∈ C∞ (

RN
)
, aij = aji and

N∑
i,j=1

aij(y)ξiξj ≥ 0 , y ∈ RN , ξ ∈ RN .

Since we have {
(A− α)Hαψ = 0 in D,
Hαψ = ψ on Σ2 ∪Σ3,

and since the function Hαψ takes its positive maximum ψ(0) at x′0 = 0, it follows
that

0 = aNN (0)
∂2

∂y2
N

(Hαψ) (0) + bN (0)
∂

∂yN
(Hαψ) (0)

+
N−1∑
i,j=1

aij(0)
∂2ψ

∂yi∂yj
(0) +

N−1∑
i=1

bi(0)
∂ψ

∂yi
(0) + (c(0) − α)ψ(0)

= b(0)
∂

∂yN
(Hαψ) (0) +

N−1∑
i,j=1

aij(0)
∂2ψ

∂yi∂yj
(0) + (c(0) − α)ψ(0).

This proves that

∂

∂n
(Hαψ) (x′0) =

∂

∂yN
(Hαψ) (0)

= − 1
b(0)


N−1∑

i,j=1

aij(0)
∂2ψ

∂yi∂yj
(0) + (c(0) − α)ψ(0)




≤ − 1
b(x′0)

(c(x′0) − α)ψ(x′0)

< 0.

The proof of Claim 4.8 is complete. �

Hence we have

LHαψ(x′0) =
N−1∑
i,j=1

αij(x′0)
∂2ψ

∂xi∂xj
(x′0) + µ(x′0)

∂

∂n
(Hαψ) (x′0)

+ γ(x′0)ψ(x′0) − αδ(x′0)ψ(x′0)

≤ 0, x′0 ∈ Σ2 ∪Σ3.

This verifies condition (β) of Theorem 1.2. �

Now we can give a general existence theorem for Feller semigroups on Σ2 ∪ Σ3

in terms of boundary value problem (∗) (cf. [Ta1, Theorem 9.6.15]):
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Theorem 4.9. (i) If the operator LHα is the infinitesimal generator of a Feller
semigroup on Σ2 ∪Σ3, then, for each constant λ > 0, the boundary value problem

(∗)0
{

(α − A)u = 0 in D,

(λ− L)u = ϕ on Σ2 ∪Σ3

has a solution u ∈ C2+θ(D) for any ϕ in some dense subset of C (Σ2 ∪Σ3).
(ii) Conversely, if, for some constant λ ≥ 0, problem (∗)0 has a solution u ∈

C8+2θ(D) for any ϕ in some dense subset of C (Σ2 ∪Σ3), then the operator LHα

is the infinitesimal generator of some Feller semigroup on Σ2 ∪Σ3.

5. Degenerate Elliptic Boundary Value Problems

Now we can prove an existence theorem for degenerate elliptic boundary value
problems in the framework of Hölder spaces, which will play an important role in
the proof of Main Theorem:

Theorem 5.1. Assume that hypotheses (H) and (E) are satisfied. Then, for each
α ≥ α(20), there exists a constant λ = λ(α) > 0 such that the boundary value
problem

(∗)
{

(α− A)u = f in D,

(λ− L)u = ϕ on Σ2 ∪Σ3

has a solution u in the space C2+θ(D) for any f ∈ C20+2θ(D) and any ϕ ∈
C8+2θ(Σ2 ∪ Σ3) with 0 < θ < 1. Here α(20) is the constant stated in Theorem
4.1 with m = 20.

Proof. We divide the proof into three steps.
(I) First we reduce the study of problem (∗) to that of an operator on the

boundary Σ2 ∪Σ3.
Assume that:

If λ > 0 is sufficiently large, then the operator(5.1)

λI − LHα : C8+2θ (Σ2 ∪Σ3) 
−→ C8+2θ (Σ2 ∪Σ3)
is surjective.

Now let f be an arbitrary function in C20+2θ(D) and ϕ an arbitrary function in
C8+2θ (Σ2 ∪Σ3). Then we have

G0
αf ∈ C10+θ(D),

and

LG0
αf = µ

∂

∂n
(
G0

αf
)

+ δf ∈ C9+θ (Σ2 ∪ Σ3) ⊂ C8+2θ (Σ2 ∪ Σ3) .

Hence, by condition (5.1), one can find a function ψ ∈ C8+2θ (Σ2 ∪ Σ3) such that

(λ− LHα)ψ = ϕ+ LG0
αf on Σ2 ∪Σ3.
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If we let
u = G0

αf +Hαψ ∈ C2+θ(D),

then it follows that

(α − A)u = f in D,

and

(λ− L)u = −LG0
αf + (λ− LHα)ψ = ϕ on Σ2 ∪Σ3.

This proves that the function u = G0
αf +Hαψ is a solution of problem (∗).

Therefore, we are reduced to the study of the operator λI−LHα on the boundary
Σ2 ∪ Σ3.

(II) Next we show that the operator

LHα :C8+2θ(Σ2 ∪Σ3) −→ Cθ(Σ2 ∪Σ3)

ϕ 
−→ L (Hαϕ)

is a second-order, classical pseudo-differential operator on the boundary Σ2 ∪ Σ3,
and satisfies all the conditions of Theorem 2.1.

We let

LHαϕ =


N−1∑

i,j=1

αij ∂2ϕ

∂xi∂xj
+

N−1∑
i=1

βi ∂ϕ

∂xi
+ (γ − αδ)ϕ




+ µ
∂

∂n
(Hαϕ)

∣∣∣∣
Σ2∪Σ3

:= Qαϕ+ µΠαϕ.

But we have the following results:

(1) The operator Qα is a second-order, degenerate elliptic differential operator
on Σ2 ∪ Σ3. Note that

N−1∑
i,j=1

αij(x′)ξiξj ≥ 0 on the cotangent bundle T ∗(Σ2 ∪Σ3),

and

Qα1 = γ − αδ ≤ 0 on Σ2 ∪Σ3.

(2-a) If hypothesis (E) is satisfied, then it follows (cf. [De], [So]) that the operator
Πα is a classical, elliptic pseudo-differential operator of order 1/(k + 1) on the
boundary Σ3, and its symbol is given by the following:

[
p1/(k+1)(x′, ξ′) +

√−1 q1/(k+1)(x′, ξ′)
]
+ terms of order ≤ 0 depending on α,
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where

p1/(k+1)(x′, ξ′) < 0 on the bundle T ∗(Σ3) \ {0} of non-zero
cotangent vectors.

For example, if the operator A is of the form

A = Λ∗Λ+ Φ2k∆′,

where ∆′ is the Laplace-Beltrami operator on Σ3, then we have

p1/(k+1)(x′, ξ′) = −(k + 1)
(

2
k + 1

) 1
k+1

Γ

(
k

k + 1

)
Γ

(
3

2(k + 1)

)

Γ

(
1

k + 1

)
Γ

(
1

2(k + 1)

) |ξ′| 1
k+1 .

Here |ξ′| is the length of ξ′ with respect to the Riemannian metric of the boundary
Σ3 induced by the natural metric of RN .

Furthermore, the next claim asserts that the distribution kernel of Πα is non-
negative off the diagonal in Σ3 ×Σ3:

Claim 5.2. On the boundary Σ3, the operator Πα is written in the form:

Παϕ = Pαϕ+ Sαϕ, ϕ ∈ C2(Σ3),

where Pα is a first-order differential operator and

Sαϕ(x′) =
∫

Σ3

s(x′, dy′)

[
ϕ(y′) − σ(x′, y′)

(
ϕ(x′) +

N−1∑
i=1

∂ϕ

∂xi
(x′) (yi − xi)

)]

with a positive Borel kernel s(x′, dy′).

Proof. By Theorem 2.2, it suffices to show the following:

x′0 ∈ Σ3, ϕ ∈ C2(Σ3), ϕ ≥ 0 on Σ3 and x′0 �∈ suppϕ =⇒ Παϕ(x′0) ≥ 0.

If we let
u = Hαϕ,

then we have {
(α− A)u = 0 in D,

u = ϕ on Σ2 ∪Σ3.

Further, since ϕ ≥ 0 on Σ3, it follows from an application of the weak maximum
principle (cf. [Ta2, Theorem A.1]) that

u ≥ 0 in D.

Hence this implies that

Παϕ(x′0) =
∂u

∂n
(x′0) ≥ 0,

since u(x′0) = ϕ(x′0) = 0. �
(2-b) The next claim asserts that, on the boundary Σ2, the operator Πα is a

second-order, degenerate elliptic differential operator:
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Claim 5.3. On the boundary Σ2, the operator Πα is written in the form:

Παϕ =
∂

∂n
(Hαϕ)

∣∣∣∣
Σ2

= −1
b


N−1∑

i,j=1

aij ∂2ϕ

∂xi∂xj
+

N−1∑
i=1

bi
∂ϕ

∂xi
+ (c− α)ϕ


 ,

where b is the Fichera function for the operator A. Note that

−1
b


N−1∑

i,j=1

aij(x′)ξiξj


 ≥ 0 on the cotangent bundle T ∗(Σ2).

Proof. Let x′0 be an arbitrary point of Σ2. We choose a local coordinate system
(x1, · · · , xN−1, xN ) in a neighborhood of x′0 such that


x′0 = 0,
D = {xN > 0} ,
Σ2 = {xN = 0} ,

and assume that, in terms of this coordinate system, the operator A is written in
the form

A = aNN (x)
∂2

∂x2
N

+ bN (x)
∂

∂xN
+

N−1∑
i,j=1

aij(x)
∂2

∂xi∂xj
+

N−1∑
i=1

bi(x)
∂

∂xi
+ c(x).

We remark that:
(i) aNN (0) = 0 and bN (0) = b(0) < 0, since x′0 = 0 ∈ Σ2.
(ii) aij ∈ C∞(RN ), aij = aji and

N∑
i,j=1

aij(x)ξiξj ≥ 0 , x ∈ RN , ξ ∈ RN .

Since we have {
(A− α)Hαϕ = 0 in D,
Hαϕ = ϕ on Σ2 ∪Σ3,

it follows that

0 = αϕ(0) −
(
aNN (0)

∂2

∂x2
N

(Hαϕ) (0) + bN (0)
∂

∂xN
(Hαϕ) (0)

+
N−1∑
i,j=1

aij(0)
∂2ϕ

∂xi∂xj
(0) +

N−1∑
i=1

bi(0)
∂ϕ

∂xi
(0) + c(0)ϕ(0)




= αϕ(0) −

bN (0)

∂

∂xN
(Hαϕ) (0) +

N−1∑
i,j=1

aij(0)
∂2ϕ

∂xi∂xj
(0)
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+
N−1∑
i=1

bi(0)
∂ϕ

∂xi
(0) + c(0)ϕ(0)

)
.

This proves that

Παϕ(x′0)

=
∂

∂xN
(Hαϕ)(0)

= − 1
bN (0)


N−1∑

i,j=1

aij(0)
∂2ϕ

∂xi∂xj
(0) +

N−1∑
i=1

bi(0)
∂ϕ

∂xi
(0) + (c(0) − α)ϕ(0)




= − 1
b(x′0)


N−1∑

i,j=1

aij(x′0)
∂2ϕ

∂xi∂xj
(x′0) +

N−1∑
i=1

bi(x′0)
∂ϕ

∂xi
(x′0) + (c(x′0) − α)ϕ(x′0)


 .�

(3) By Claim 4.8 with ψ = 1, it follows that the function Πα1 satisfies the
condition:

Πα1(x′0) =
∂

∂n
(Hα1)(x′0) < 0, x′0 ∈ Σ2 ∪Σ3.

Thus we find that

LHα1(x′0) = γ(x′0) + µ(x′0)
∂

∂n
(Hα1)(x′0) − αδ(x′0) ≤ 0, x′0 ∈ Σ2 ∪ Σ3.

Summing up, we have proved that the operator LHα = Qα + µΠα is a second-
order, classical pseudo-differential operator on the boundary Σ2 ∪Σ3, and satisfies
all the conditions of Theorem 2.1.

(III) By applying Theorem 2.1, we obtain that the operator

λI − LHα : C8+2θ (Σ2 ∪ Σ3) 
−→ C8+2θ (Σ2 ∪Σ3)

is surjective for λ > 0 sufficiently large. This verifies condition (5.1).
The proof of Theorem 5.1 is now complete. �

6. Proof of Main Theorem

The next theorem proves our Main Theorem:

Theorem 6.1. Assume that the differential operator A satisfies hypotheses (H)
and (E) and that the boundary condition L is transversal on Σ2 ∪Σ3. We define a
linear operator

A : C(D) −→ C(D)

as follows.
(a) The domain D(A) of A is the space

(6.1) D(A) =
{
u ∈ D(A) ; u|Σ2∪Σ3 ∈ D, Lu = 0 on Σ2 ∪ Σ3

}
,

where D is the common domain of the operators LHα.
(b) Au = Au, u ∈ D(A).
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Then the operator A is the infinitesimal generator of some Feller semigroup on
D, and the Green operator Gα = (αI −A)−1 is given by the following formula:

Gαf = G0
αf −Hα

(
LHα

−1
(
LG0

αf
))

, f ∈ C(D).

Proof. By virtue of Theorems 5.1 and 4.9, one can verify that the operator A,
defined by formula (6.1), satisfies conditions (a) through (d) of Theorem 1.1, just
as in the proof of [Ta2, Theorem 3.16]. Hence it follows from an application of part
(ii) of the same theorem that the operator A is the infinitesimal generator of some
Feller semigroup on D. �
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