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1. Introduction and main results

The purpose of this paper is to illustrate how the theory of linear elliptic eigen-
value problems with indefinite weight functions can be used to analyze reaction-
diffusion models in mathematical ecology and population genetics. The two main
components of the models we consider are the “reaction” or growth terms and
the “diffusion” or dispersal terms. More precisely, reaction-diffusion equations
arise in ecological modeling when nonlinear dynamics describing the growth or de-
cline of a population are combined with a diffusion process describing the spatial
dispersal of that population. Solutions to the reaction-diffusion models typically
represent population densities, or in related problems of population genetics, the
distribution of certain alleles within a population. If the population being mod-
eled can disperse through its environment, then the population density need not
be uniform. Assuming that dispersal takes place via random walks or Brownian
motion leads to a diffusion equation for the population density. In many cases,
the behavior of solutions of such reaction-diffusion equations is determined by the
nature of the equilibrium states. Those in turn can often be described via such
methods as bifurcation theory and linealized stability analysis, which immediately
lead to problems in linear spectral theory. Both the modeling and the analysis can
introduce considerations which require the study of elliptic eigenvalue problems
with indefinite weight functions.

Now let Ω be a bounded domain of Euclidean space Rn, n ≥ 3, with boundary
∂Ω of class C2+θ with exponent 0 < θ < 1; its closure Ω = Ω ∪ ∂Ω is an n-
dimensional, compact manifold with boundary. The dynamics of a population
inhabiting a strongly heterogeneous environment are modeled by diffusive logistic
equations of the form

⎧⎪⎪⎨
⎪⎪⎩

∂w

∂t
= dΔw + (m(x) − h(x)w)w in Ω × (0,∞),

w = 0 on ∂Ω × (0,∞),
w|t=0 = u0 in Ω.

(1.1)

Here:

(1) Δ = ∂2/∂x2
1 + ∂2/∂x2

2 + · · · + ∂2/∂x2
n is the usual Laplacian.

(2) d is a positive parameter.
(3) m(x) is a real-valued function on Ω.
(4) h(x) is a nonnegative function on Ω.

This paper is devoted to the study of the existence of positive solutions of
problem (1.1), and is an expanded and revised version of the previous paper Taira
[26].

First, we discuss our motivation and some of the modeling process leading to
problem (1.1). The basic interpretation of the various terms in problem (1.1) is
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that the solution w(x, t;u0) represents the population density of a species inhabit-
ing a region Ω. The members of the population are assumed to move about Ω via
the type of random walks occurring in Brownian motion which is modeled by the
diffusive term dΔ; hence d represents the rate of diffusive dispersal, so large values
of d the population spreads more rapidly than for small values of d. The local rate
of change in the population density is described by the density dependent term
m(x)−h(x)u. In this term, m(x) describes the rate at which the population would
grow or decline at the location x in the absence of crowding or limitations on the
availability of resources. The sign of m(x) will be positive on favorable habitats
for population growth and negative on unfavorable ones. Specifically m(x) may
be considered as a food source or any resource that will be good in some areas
and bad in others. The term −h(x)u describes the effects of crowding on the
growth rate of the population at the location x; these effects are assumed to be
independent of those determining the growth rate. The size of h(x) describes the
strength of the effects of crowding within the population.

On the other hand, in terms of biology, the homogeneous Dirichlet condition
represents that Ω is surrounded by a completely hostile exterior such that any
member of the population which reaches the boundary dies immediately; in other
words, the exterior of the domain is deadly to the population. If the exterior is
hostile but not completely deadly, a mixed or Robin boundary condition results,
and the analysis is similar.

The basic ecological content of our results is that, for a species with a given
rate of diffusion the worst environments are those where favorable and unfavorable
regions are closely intermingled, producing “cancellation” effects, and the best are
those where the favorable regions are relatively large and few in numbers. This
conclusion has significant implications for the design of wildlife refuges. It suggests
that a small number of large preserves will provide better protection for a species
modeled by problem (1.1) than many small ones, and if the preserves are too
small and too closely intermingled with regions where the environment has been
damaged, they may not effectively protect the species from extinction.

To study problem (1.1), we may view it as generating a dynamical system. The
semilinear parabolic initial boundary value problem (1.1) admits a unique classical
solution for sufficiently small times. However, comparison theorems based on the
maximum principle guarantee the existence of global solutions in time, since the
nonlinearity we are dealing with is sublinear. We show that problem (1.1) admits
a unique positive steady state which is a global attractor for nonnegative solutions
provided d is sufficiently small, so that the population persists, and further we
show that the zero solution is a global attractor for nonnegative solutions if d is
sufficiently large, so that the population tends to extinction.

Our models are shown to possess a unique positive steady state, that is, a unique
positive solution of the problem{

dΔu+ (m(x) − h(x)u)u = 0 in Ω,
u = 0 on ∂Ω.

(1.2)
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A solution u ∈ C2(Ω) of problem (1.2) is said to be nontrivial if it does not iden-
tically equal zero on Ω. A nontrivial solution u is called a positive solution if it is
strictly positive everywhere in Ω. The object of the analysis is to determine how
the spatial arrangement of favorable and unfavorable habitats affects the popula-
tion being modeled. As is frequently the case, we find that many of the qualitative
aspects of the analysis depend crucially on the size of the first positive eigenvalue
λ1(m) for the linearized Dirichlet problem with indefinite weight function m(x)
and positive parameter λ = 1/d:

{ −Δφ = λm(x)φ in Ω,
φ = 0 on ∂Ω.

(1.3)

The next theorem asserts the existence of the first positive eigenvalue λ1(m) of
problem (1.3), implying persistence for the population (see Manes–Micheletti [16],
de Figueiredo [7]):

Theorem 1.1. If m(x) is a function in L∞(Ω) such that the set {x ∈ Ω :
m(x) > 0} has positive measure, then the first eigenvalue λ1(m) of problem (1.3)
is positive and simple, and its associated eigenfunction φ1(x) may be chosen to
be strictly positive everywhere in Ω. Moreover, no other eigenvalues have positive
eigenfunctions.

By the celebrated Rayleigh theorem (see Manes–Micheletti [16], de Figueiredo
[7]), we know that the first eigenvalue λ1(m) is given by the variational formula

λ1(m) = inf
{ ∫

Ω
|∇φ|2 dx∫

Ω
m(x)φ2 dx

: φ ∈W 1,2
0 (Ω),

∫
Ω

m(x)φ2 dx > 0
}
. (1.4)

Here W 1,2
0 (Ω) is the closure of smooth functions with compact support in Ω in the

Sobolev space W 1,2(Ω). By formula (1.4), we find that λ1(m) is strictly decreasing
with respect to m(x) in the sense that if m1(x) ≤ m2(x) almost everywhere in Ω,
then the corresponding first eigenvalues λ1(m1) and λ1(m2) satisfy the relation

λ1(m1) ≥ λ1(m2). (1.5)

If the inequality is strict on a set of positive measure, then it follows that λ1(m1) >
λ1(m2).

A biological interpretation of Theorem 1.1 is that if there is a favorable region,
then the models we consider predict persistence for a population, since the exis-
tence of the first positive eigenvalue is equivalent to the existence of a positive
density function describing the distribution of the population of Ω. The size of
λ1(m) is of crucial importance; increasing λ1(m) imposes a more stringent condi-
tion on the diffusion rate d if the population is to persist, since 0 < d < 1/λ1(m)
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(see Theorem 1.2 or Figure 1.2). It is worthwhile to point out here that the first
eigenvalue λ1(m) will tend to be smaller in situations where favorable and unfavor-
able habitats are closely intermingled (producing cancellation effects), and larger
when the favorable region consists of a relatively small number of relatively large
isolated components.

First, we study problem (1.2) with d = 1/λ:

{ −Δu = λ(m(x) − h(x)u)u in Ω,
u = 0 on ∂Ω.

(1.6)

We assume that h(x) is a nonnegative function in C1(Ω), and let

Ω+(h) = {x ∈ Ω : h(x) > 0},

and

Ω0(h) = Ω \ Ω+(h).

Our fundamental hypothesis on the function h(x) is the following (see Figure
1.1):

(Z) The open set Ω0(h) consists of a finite number of connected components
with boundary of class C2+θ, say Ωi

0(h), 1 ≤ i ≤ N , which are bounded away from
∂Ω.

We consider the Dirichlet eigenvalue problem with indefinite weight function
m(x) in each connected component Ωi

0(h)

{ −Δψ = μm(x)ψ in Ωi
0(h),

ψ = 0 on ∂Ωi
0(h),

(1.7)

and let

μ1(Ωi
0(h)) = the first eigenvalue of problem (1.7).

Recall that the first eigenvalue μ1(Ωi
0(h)) is given by the variational formula

μ1(Ωi
0(h))

= inf

{ ∫
Ωi

0(h)
|∇ψ|2 dx∫

Ωi
0(h)

m(x)ψ2 dx
: ψ ∈ W 1,2

0 (Ωi
0(h)),

∫
Ωi

0(h)

m(x)ψ2 dx > 0

}
.
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Ω1
0(h)

Ωi
0(h)

ΩN
0 (h)

∂Ω

Figure 1.1
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If we let

μ1(Ω0(h)) = min
{
μ1(Ω1

0(h)), μ1(Ω2
0(h)), . . . , μ1(ΩN

0 (h))
}
,

then we can state our main result that is a generalization of Cantrell–Cosner [5,
Theorems 2.1 and 2.3], Hess–Kato [13, Theorem 2] and Hess [12, Theorem 27.1]
to the case where h(x) may vanish in Ω:

Theorem 1.2. Assume that h(x) ∈ C1(Ω) satisfies condition (Z). If m(x) is a
function in Cθ(Ω) such that each set {x ∈ Ωi

0(h) : m(x) > 0}, 1 ≤ i ≤ N , has
positive measure, then problem (1.6) has a unique positive solution u(λ) ∈ C2+θ(Ω)
for every λ ∈ (λ1(m), μ1(Ω0(h))). For any λ ≥ μ1(Ω0(h)), there exists no positive
solution of problem (1.6). Moreover, we have

lim
λ→μ1(Ω0(h))

‖u(λ)‖L2(Ω) = +∞, (1.8)

and also

lim
λ→λ1(m)

‖u(λ)‖C2+θ(Ω) = 0. (1.9)

A biological interpretation of Theorem 1.2 is that if the environment has a
completely hostile boundary, then the models we consider predict persistence for
a population if its diffusion rate d = 1/λ is below the critical value 1/λ1(m)
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depending on the coefficient m(x) describing the growth rate and if it is above the
critical value 1/μ1(Ω0(h)) depending on the coefficient h(x) describing the strength
of the crowding effects. Theorem 1.2 also asserts that, in a certain sense, the most
favorable situations will occur if there is a relatively large favorable region (with
good resources and without crowding effects) located some distance away from the
boundary of Ω. The situation may be represented schematically by Figure 1.2.
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Some important remarks are in order.

Remark 1.1. Theorem 1.2 may be proved by using the super-sub-solution method
just as in the proof of Fraile et al. [9, Theorems 3.5 and 4.6], if assertion (1.8) is
replaced by a weaker one

lim
λ→μ1(Ω0(h))

‖u(λ)‖C(Ω) = +∞.

Theorem 1.2 asserts that assertion (1.8) holds true if the dimension n is greater
than 2 (n ≥ 3). It should be emphasized that an estimate of the growth rate
of the total size ‖u(λ)‖L1(Ω) =

∫
Ω
u(λ) dx of the positive steady states u(λ) as

λ ↑ μ1(Ω0(h)) is of crucial importance from the viewpoint of population dynamics.

Remark 1.2. López-Gómez and Sabina de Lis [15] analyze the pointwise growth
to infinity of positive solutions of the logistic Dirichlet problem in the case where
m(x) ≡ 1 in Ω (see [15, Theorems 4.2 and 4.3]). Furthermore, Garćıa-Melián et
al. [10] study the pointwise behavior and the uniqueness of positive solutions of
nonlinear elliptic boundary value problems of general sublinear type, and give the
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exact limiting profile of the positive solutions (see [10, Theorem 3.1, Corollary
3.3 and Theorem 6.4]). Their numerical computations confirm and illuminate the
above bifurcation diagram 1.2.

Remark 1.3. Assume that h(x) > 0 on Ω, and that the function m(x) attains
positive values in Ω. Then, arguing as in the proof of Cantrell–Cosner [5, Theorem
4.1] we can replace assertion (1.9) by an estimate of the decay rate of the total
size of the positive steady states u(λ) as λ ↓ λ1(m):

∫
Ω

u(λ) dx ≤
(

1 − λ1(m)
λ

)
|Ω|2/3

(∫
Ω
(m+)3 dx

)1/3

minx∈Ω h(x)
, λ > λ1(m). (1.10)

Here |Ω| is the volume of Ω and

m+(x) = max {m(x), 0} , x ∈ Ω.

Secondly, we study the asymptotic stability properties for positive solutions
of problem (1.6). To do this, we consider the semilinear initial boundary value
problem (1.1) with d = 1/λ:⎧⎪⎪⎨

⎪⎪⎩
∂w

∂t
=

1
λ
Δw + (m(x) − h(x)w)w in Ω × (0,∞),

w = 0 on ∂Ω × (0,∞),
w|t=0 = u0 in Ω.

(1.11)

It is known (see Amann [3, Theorem 4.5]) that problem (1.11) admits a unique
classical global solution w(x, t;u0) for each initial value u0 ∈ C2+θ(Ω) satisfying
the conditions {

u0 ≥ 0 in Ω,
u0 = 0 on ∂Ω.

(1.12)

A positive solution w0(x) of problem (1.6) is said to be globally asymptotically
stable if we have

max
x∈Ω

|w(x, t;u0) − w0(x)| −→ 0 as t→ ∞

for each nontrivial u0 ∈ C2+θ(Ω) satisfying conditions (1.12).
The next theorem describes the asymptotic stability properties for positive so-

lutions of problem (1.6) (cf. Cantrell–Cosner [5, Theorems 2.1 and 4.9], Fraile et
al. [9, Theorem 3.7]):
Theorem 1.3. (i) The zero solution of problem (1.6) is globally asymptotically
stable if λ is so small that

0 < λ < λ1(m).
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In this case we can give an estimate of the decay rate of the total size of the
population as t ↓ 0:∫

Ω

w(x, t;u0) dx

≤ exp
[
−
(

1
λ
− 1
λ1(m)

)
λ1(1) t

]
|Ω|1/2

(∫
Ω

u0(x)2 dx
)1/2

, t > 0.
(1.13)

(ii) A positive solution u(λ) of problem (1.6) is globally asymptotically stable
for each λ satisfying the condition

λ1(m) < λ < μ1(Ω0(h)).

(iii) If λ is so large that
λ > μ1(Ω0(h)),

then we have
max
x∈Ω

|w(x, t;u0)| −→ ∞ as t→ ∞

for each nontrivial u0 ∈ C2+θ(Ω) satisfying conditions (1.12).
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A biological interpretation of Theorem 1.3 is that a population will grow expo-
nentially until limited by lack of available resources if the diffusion rate d = 1/λ
is below the critical value 1/μ1(Ω0(h)); this idea is generally credited to Thomas
Malthus. On the other hand, if the diffusion rate d = 1/λ is above the critical
value 1/μ1(Ω0(h)), then the model obeys the logistic equation introduced by P. F.
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Verhulst around 1840. The situation may be represented schematically by Figure
1.3.

The rest of this paper is organized as follows. First, in Section 2, by using
Green’s formula we prove that if there exists a positive solution u(λ) ∈ C2(Ω)
of problem (1.6), then we have λ > λ1(m) (Lemma 2.1). Next, by making use
of the implicit function theorem we prove that there exists a critical value λ∗ ∈
(λ1(m),+∞] such that problem (1.6) has a positive solution u(λ) for all λ ∈
(λ1(m), λ∗) (Lemma 2.5). Moreover, we prove the inequality (Lemma 2.7)

λ∗ ≤ μ1(Ω0(h)). (1.14)

The proof of formula λ∗ = μ1(Ω0(h)), that is, the reverse inequality of inequality
(1.14)

μ1(Ω0(h)) ≤ λ∗. (1.15)

is carried out in Section 3 through Section 5, just as in Taira [25] and also Ouyang
[17].

In Section 3 we study the behavior of the positive solutions u(λ), 0 < λ < λ∗,
in the set Ω+(h). Roughly speaking, we prove that, for each ε > 0 there exists a
constant C(ε, λ) > 0 such that (Lemma 3.2)

(u(λ)(x))p−1−ε ≤ C(ε, λ)
h(x)

for all x ∈ Ω+(h).

This is an essential step in the proof of inequality (1.15) in Section 5 (see estimate
(5.8)). On the other hand, in Section 4, we prove that (Lemma 4.1)

lim
λ→λ∗

‖u(λ)‖L2(Ω) = +∞.

Namely we show that the solution u(λ) blows up at the critical value λ∗. In Section
5, we prove that the critical value λ∗ is an eigenvalue of the Dirichlet problem (1.7)
(Proposition 5.1), which implies the desired reverse inequality (1.15).

In Section 6 we prove Theorem 1.3 by using comparison theorems based on the
maximum principle just as in Fraile et al. [9, Theorem 3.7], Pao [18, Chapter 5,
Theorem 4.4] and Sattinger [22, Theorem 2.6.2].

If the boundary acts as a barrier, so that individuals reaching the boundary
simply return to the interior, a Neumann boundary condition results. The analysis
may be somewhat different, since the operator −Δ will have zero as an eigenvalue.
However, the same general approach can still be used. In the final Section 7 we
study the problem with homogeneous Neumann condition⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∂w

∂t
= dΔw + (m(x) − h(x)w)w in Ω × (0,∞),

∂w

∂n
= 0 on ∂Ω × (0,∞),

w = u0 in Ω,

(1.16)



Diffusive logistic equations 299

where n is the unit exterior normal to ∂Ω.
In the context of population dynamics, the behavior of solutions of problem

(1.16) is similar to that of problem (1.1) with homogeneous Dirichlet condition if∫
Ω
m(x) dx < 0 (Theorem 7.3); so that there is a positive eigenvalue with positive

eigenfunction to act as a bifurcation point for positive steady states (Theorem
7.1). If

∫
Ω
m(x) dx ≥ 0, then there will exist positive steady states for all values

of d (Theorem 7.2). A biological interpretation is that when the environment
has an impassable boundary and is on the average unfavorable (

∫
Ω
m(x) dx < 0),

then high diffusion rates have the same effect (that is, the ultimate extinction
of the population) as they always have when the boundary is deadly; but if the
boundary is impassable and the environment is on the average neutral or favorable
(
∫
Ω
m(x) dx ≥ 0), then the population can persist, no matter what its rate of

diffusion (see Hess [12, Example 28.6]).
In Appendix we prove the decay estimate (1.10) in Remark 1.3.
The author would like to thank Professor Masayasu Mimura for his helpful sug-

gestions on the formulation of Theorem 1.3 from the point of view of mathematical
ecology. This research is partially supported by Grant-in-Aid for General Scien-
tific Research (No. 13440041), Ministry of Education, Culture, Sports, Science and
Technology, Japan.

2. Proof of Theorem 1.2 -(1)-

Step I: First, we begin with the following lower bound on the parameter λ for
the existence of positive solutions of problem (1.6):

Lemma 2.1. Assume that h(x) ≥ 0 in Ω. If there exists a positive solution
u ∈ C2(Ω) of problem (1.6), then we have

λ > λ1(m). (2.1)

Proof. Let u ∈ C2(Ω) be a positive solution of problem (1.6)⎧⎪⎨
⎪⎩

−Δu = λ (m(x) − h(x)u)u in Ω,
u > 0 in Ω,
u = 0 on ∂Ω.

(1.6)

Then, applying Theorem 1.1 to our situation we obtain that

λ = λ1(m(x) − h(x)u). (2.2)
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However, since h(x) ≥ 0 in Ω, it follows that

m(x) − h(x)u ≤ m(x) in Ω.

By assertion (1.5), we have

λ1(m(x) − h(x)u) > λ1(m(x)). (2.3)

Therefore, the desired lower bound (2.1) follows by combining assertions (2.2) and
(2.3). �

Step II: Next we prove that there exists a critical value λ∗ ∈ (λ1(m),+∞] such
that the solution curve (λ, u(λ)) may be parametrized by λ, λ1(m) < λ < λ∗, as
a curve of class C1.

To do this, we let

C2+θ
0 (Ω) = {u ∈ C2+θ(Ω) : u = 0 on ∂Ω},

and associate with problem (1.6) a nonlinear mapping F (λ, u) of R × C2+θ
0 (Ω)

into Cθ(Ω) as follows:

F :R× C2+θ
0 (Ω) −→ Cθ(Ω)

(λ, u) 
−→ −Δu− λm(x)u+ λh(x)u2.

It is clear that a function u ∈ C2+θ(Ω) is a solution of problem (1.6) if and only if
F (λ, u) = 0.

Step II-a: First, the next lemma proves the existence of positive solutions of
problem (1.6) bifurcating at (λ1(m), 0):

Lemma 2.2. There exists an unbounded continuum C of positive solutions of
problem (1.6) emanating from (λ1(m), 0).

Proof. (1) We shall transpose the nonlinear problem (1.6) into an operator equa-
tion for the resolvent K of the Dirichlet problem in an appropriate ordered Banach
space, just as in Amann [2] and Hess–Kato [13].

We let
E := C0(Ω) = {v ∈ C(Ω) : v = 0 on ∂Ω}.

This is an ordered Banach space with the natural ordering given by the positive
cone

PE =
{
v ∈ C0(Ω) : v ≥ 0 in Ω

}
.
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We shall primarily work in the naturally ordered Banach space

X := C1
0 (Ω) =

{
v ∈ C1(Ω) : v = 0 on ∂Ω

}
,

with positive cone
PX =

{
v ∈ C1

0 (Ω) : v ≥ 0 in Ω
}
.

It is easy to verify that the interior Int (PX) of PX is characterized as follows:

Int (PX) =
{
v ∈ C1

0 (Ω) : v > 0 in Ω,
∂v

∂n
< 0 on ∂Ω

}
,

where n is the unit exterior normal to ∂Ω.
If 1 < p <∞, we can introduce a continuous linear operator

K : Lp(Ω) −→W 2,p(Ω) ∩W 1,p
0 (Ω)

as follows (see Gilbarg–Trudinger [11]): For any g ∈ Lp(Ω), the function u = Kg ∈
W 2,p(Ω) ∩W 1,p

0 (Ω) is the unique solution of the Dirichlet problem{ −Δu = g in Ω,
u = 0 on ∂Ω.

Then, by the Ascoli-Arzelà theorem we find that the operator K, considered as

K : C(Ω) −→ C1
0 (Ω),

is compact . Indeed, it follows from an application of Sobolev’s imbedding theorem
that W 2,p(Ω) is continuously imbedded into C2−n/p(Ω) for all n < p <∞. More-
over, by the strong maximum principle it follows that K is strongly positive, that
is, Kg ∈ Int (PX) for all g ∈ PE \ {0}.

Finally, it is easy to verify that a function u is a solution of problem (1.6) if
and only if it satisfies the equation

u = λK
(
m(x)u− h(x)u2

)
in C1

0 (Ω). (2.4)

Indeed, it suffices to note that m(x) ∈ Cθ(Ω), h(x) ∈ C1(Ω) and that K maps
Cθ(Ω) continuously into C2+θ

0 (Ω).
(2) Just as in the proof of Hess–Kato [13, Theorem 2], we extend the function

f(x, s) = m(x)s− h(x)s2

as an odd function in the variable s as follows:

f̃(x, s) =
{
m(x)s− h(x)s2 if s > 0,
m(x)s+ h(x)s2 if s ≤ 0.
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Then we associate with f̃(x, s) the Nemytskii operator F̃ (u) defined by the formula

F̃ (u) = f̃(x, u(x)), x ∈ Ω,

and consider instead of equation (2.4) the following:

u = λKF̃ (u) in C1
0 (Ω). (2.5)

We remark that u is a solution of equation (2.5) if and only if −u is a solution;
hence we may identify positive solutions with negative solutions in what follows.

(3) Now the Crandall–Rabinowitz local bifurcation theorem [6, Theorem 1.7]
may be employed to assert that the simplicity of λ1(m) guarantees the existence of
the continuum of nontrivial solutions of problem (1.6) emanating from (λ1(m), 0),
which can be expressed as the union of two subcontinua intersecting at (λ1(m), 0)
(cf. Deimling [8, Corollary 29.1]).

However, by the compactness and strong positivity of K it follows that these
subcontinua are locally the strictly positive and the strictly negative solutions of
equation (2.5).

Indeed, assume, to the contrary, that there exists a sequence (λj , uj) with λj >
0, uj ∈ X, such that

uj = λjKF̃ (uj),

λj → λ1(m),
uj → 0 in X,

uj �∈ Int (PX).

If we let
vj =

uj

‖uj‖X
,

then it follows that

vj �∈ Int (PX),

‖vj‖X = 1,

vj = λj
KF̃ (uj)
‖uj‖X

.

By the compactness of K, we may choose a subsequence, denoted again by {vj},
which converges to some function v in X. Therefore, passing to the limit we obtain
that

v �∈ Int (PX),

‖v‖X = 1,
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and that

v = λ1(m)K(m(x)v),

or equivalently,
−Δv = λ1(m)m(x)v.

However, we arrive at a contradiction

v ∈ Int (PX),

since λ1(m) is a simple eigenvalue of problem (1.3) having a positive eigenfunction
in Int (PX).

(4) We show that these subcontinua are globally the strictly positive and the
strictly negative solutions of equation (2.5) as in Figure 2.1.
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Assume, to the contrary, that there exists a point (λ0, u0) such that λ0 > 0 and
u0 ∈ ∂PX with u0 > 0. We let

c = max
x∈Ω

0≤s≤‖u0‖
|m(x) − h(x)s| + 1.

Then it follows that

(−Δ+ λ0c)u0 = λ0 (F (u0)) + cu0)

= λ0u0 (m(x) − h(x)u0 + c) > 0 in Ω.

Hence, by the maximum principle we arrive at a contradiction

u0 ∈ Int (PX).
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On the other hand, it is clear that equation (2.5) has no nontrivial solutions for
λ = 0.

(5) Moreover, the Rabinowitz global bifurcation theorem [19, Theorem 1.10]
tells us that the subcontinuum C of positive solutions emanating from (λ1(m), 0)
is either unbounded or contains another bifurcation point (λ0, 0) with λ0 �= λ1(m).

However, just as in step (3) we can prove that the subcontinuum C can not
contain a point (λ0, 0) with λ0 �= λ1(m); hence C must be unbounded (cf. Deimling
[8, Theorem 29.2]).

The proof of Lemma 2.2 is now complete. �

Step II-b: Secondly, we prove a uniqueness result for positive solutions of
problem (1.6) which implies that the unbounded continuum C is actually an arc:

Lemma 2.3. Assume that h(x) ≥ 0 in Ω. Then problem (1.6) has at most one
positive solution u(λ) for any λ > λ1(m).

Proof. (1) Our proof is based on the following spectral theorem for Schrödinger
operators (cf. Reed–Simon [21, Chapter XIII]):

Theorem 2.4. Assume that q(x) is a function in L∞(Ω). Then the Dirichlet
eigenvalue problem { −Δψ + q(x)ψ = σψ in Ω,

ψ = 0 on ∂Ω

has an infinite sequence of eigenvalues

σ1 < σ2 ≤ σ3 ≤ . . . .

The first eigenvalue σ1 = σ1(q) is simple and is the only eigenvalue admitting a
positive eigenfunction. Moreover, it is strictly increasing with respect to q(x) in
the sense that if q1(x) ≤ q2(x) in Ω, then the corresponding first eigenvalues σ1(q1)
and σ1(q2) satisfy the relation

σ1(q1) < σ1(q2). (2.6)

(2) Let ui(x), i = 1, 2 be two positive solutions of problem (1.6)⎧⎪⎨
⎪⎩

−Δui = λ
(
m(x)ui − h(x)u2

i

)
in Ω,

ui > 0 in Ω,
ui = 0 on ∂Ω.

(1.6)

Then it follows that the Dirichlet eigenvalue problem{ −Δv + λ (h(x)u1 −m(x)) v = σv in Ω,
v = 0 on ∂Ω
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has a positive solution v = u1 with σ = 0. Hence, applying Theorem 2.4 to our
situation we obtain that

σ1(λ(h(x)u1 −m(x))) = 0. (2.7)

On the other hand, we find that the Dirichlet eigenvalue problem{ −Δw + λ (h(x)(u1 + u2) −m(x))w = σw in Ω,
w = 0 on ∂Ω

(2.8)

has a solution w = u1 − u2 with σ = 0. However, since h(x) ≥ 0 in Ω, we have, by
assertions (2.6) and (2.7),

σ1(λ(h(x)(u1 + u2) −m(x))) > σ1(λ(h(x)u1 −m(x))) = 0.

This implies that problem (2.8) with σ = 0 can not have any solutions other than
w = 0, so that u1(x) = u2(x) in Ω.

The proof of Lemma 2.3 is complete. �

Step II-c: Thirdly, by using the implicit function theorem we show (cf. Hess
[12, Theorem 27.1]) that there exists a critical value λ∗ ∈ (λ1(m),+∞] such that
we can parametrize the bifurcation solution curve (λ, u(λ)) by λ, λ1(m) < λ < λ∗,
as a C1 curve as in Figure 2.2.



........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

.................

...............

0 λ1(m)
•

λ∗
λ

u

Figure 2.2

...................
.......................
..................................

................................................................
............................................

................................
...........................

.......................
.......................
....................
....................
....................
..................
..................
................

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

Lemma 2.5. There exists a constant λ∗ ∈ (λ1(m),+∞] such that we have a
positive solution (λ, u(λ)) of the equation F (λ, u) = 0 for all λ ∈ (λ1(m), λ∗).

Proof. It is known (see Gilbarg–Trudinger [11]) that the Fréchet derivative

Fu(λ, u(λ)) :C2+θ
0 (Ω) −→ Cθ(Ω)
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v 
−→ −Δv − λm(x) v + 2λh(x)u(λ) v (2.9)

is a Fredholm operator with index zero. Hence, to prove the lemma it suffices to
show that Fu(λ, u(λ)) is injective. Indeed, by using the implicit function theorem
we can find a constant λ∗ ∈ (λ1(m),+∞] such that F (λ, u(λ)) = 0 and Fu(λ, u(λ))
is an algebraic and topological isomorphism for all λ ∈ (λ1(m), λ∗).

The next claim proves the injectivity and hence surjectivity of the Fréchet
derivative Fu(λ, u(λ)):

Claim 2.6. The first eigenvalue μ1(λ) of Fu(λ, u(λ)) is positive for λ > λ1(m);
in particular, 0 is not an eigenvalue of Fu(λ, u(λ)).

Proof. Let u(λ) be a positive solution of problem (1.6). In view of formula (2.9),
we remark that μ1(λ) is the first eigenvalue of the Dirichlet problem{ −Δv + (2λh(x)u(λ) − λm(x))v = σv in Ω,

v = 0 on ∂Ω,

so that
μ1(λ) = σ1(2λh(x)u(λ) − λm(x)). (2.10)

However, it follows that the Dirichlet eigenvalue problem{ −Δv + λ (h(x)u(λ) −m(x)) v = σv in Ω,
v = 0 on ∂Ω

has a positive solution v = u(λ) with σ = 0. Hence, applying Theorem 2.4 to our
situation we obtain that

σ1(λ(h(x)u(λ) −m(x))) = 0. (2.11)

Therefore, since h(x) ≥ 0 in Ω, we have, by formulas (2.10) and (2.11),

μ1(λ) = σ1(2λh(x)u(λ) − λm(x)) > σ1(λh(x)u(λ) − λm(x)) = 0.

This proves Claim 2.6. �

The proof of Lemma 2.5 is now complete. �

By Lemma 2.5, we have a positive bifurcation solution curve (λ, u(λ)) of the
equation F (λ, u) = 0 for all λ ∈ (λ1(m), λ∗).

Step III: Finally, it remains to characterize the critical value λ∗ as follows:

λ∗ = μ1(Ω0(h)) = min
{
μ1(Ω1

0(h)), μ1(Ω2
0(h)), . . . , μ1(ΩN

0 (h))
}
. (2.12)
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Step III-a: First, we prove an upper bound on the parameter λ for the exis-
tence of positive solutions of problem (1.6) which implies that

λ∗ ≤ μ1(Ω0(h)). (2.13)

Lemma 2.7. Assume that h(x) satisfies condition (Z) and that each set {x ∈
Ωi

0(h) : m(x) > 0}, 1 ≤ i ≤ l, has positive measure. If there exists a positive
solution u(λ) ∈ C2(Ω) of problem (1.6) for λ > 0, then we have

λ < μ1(Ω0(h)) = min
{
μ1(Ω1

0(h)), μ1(Ω2
0(h)), . . . , μ1(ΩN

0 (h))
}
. (2.14)

Proof. Let ψ1(x) be a positive eigenfunction corresponding to the first eigenvalue
μ1(Ωi

0(h)) of the Dirichlet problem
{ −Δψ = μm(x)ψ in Ωi

0(h),
ψ = 0 on ∂Ωi

0(h).
(1.7)

Then it follows that the coercivity condition holds:∫
Ωi

0(h)

m(x)ψ2
1 dx > 0. (2.15)

Indeed, since the set {x ∈ Ωi
0(h) : m(x) > 0} has positive measure, we obtain that

μ1(Ωi
0(h)) > 0 and further from formula (1.4) that

∫
Ωi

0(h)

m(x)ψ2
1 dx =

∫
Ωi

0(h)
|∇ψ1|2 dx

μ1(Ωi
0(h))

> 0.

On the other hand, it follows that

−Δu(λ) = λm(x)u(λ) − λh(x)u(λ)2 = λm(x)u(λ) in Ωi
0(h),

since h(x) = 0 in Ωi
0(h).

Then we have, by a direct calculation,

n∑
j=1

∂

∂xj

(
u(λ)2

∂

∂xj

(
ψ1

u(λ)

))
= Δψ1 · u(λ) −Δu(λ) · ψ1

= −μ1(Ωi
0(h))m(x)ψ1 · u(λ) + λm(x)u(λ) · ψ1

=
(
λ− μ1(Ωi

0(h))
)
m(x)u(λ) · ψ1 in Ωi

0(h),
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and so

(
λ− μ1(Ωi

0(h))
)
m(x)ψ1 =

1
u(λ)

n∑
j=1

∂

∂xj

(
u(λ)2

∂

∂xj

(
ψ1

u(λ)

))
in Ωi

0(h).

Therefore, by integration by parts it follows that

(
λ− μ1(Ωi

0(h))
) ∫

Ωi
0(h)

m(x)ψ2
1 dx

=
∫

Ωi
0(h)

n∑
j=1

∂

∂xj

(
u(λ)2

∂

∂xj

(
ψ1

u(λ)

))
· ψ1

u(λ)
dx

= −
∫

Ω0(h)

u(λ)2
n∑

j=1

∂

∂xj

(
ψ1

u(λ)

)
∂

∂xj

(
ψ1

u(λ)

)
dx

< 0.

In view of condition (2.15), this proves inequality (2.14).
The proof of Lemma 2.7 is complete. �

Step III-b: In Section 5, we shall prove that the critical value λ∗ is an eigen-
value of the Dirichlet problem (1.7) (Proposition 5.1), which implies the desired
formula (2.12).

3. Proof of Theorem 1.2 -(2)-

In Section 3 through Section 5 we shall prove the reverse inequality of inequality
(2.13)

μ1(Ω0(h)) ≤ λ∗. (3.1)

First, we begin with the following elementary lemma:

Lemma 3.1. If h(x) is a nonnegative function in C1(Ω), then we can construct
a function h∗(x) ∈ C1(Ω) having the following properties:

(a) 0 < h∗(x) ≤ h(x) for all x ∈ Ω+(h).
(b) For each ε > 0, there exists a constant C > 0, depending on supΩ |∇h|, such

that

sup
Ω+(h)

∣∣∣∣∣ ∇h∗
(h∗)1−ε

∣∣∣∣∣ ≤ C

ε2
. (3.2)
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Proof. We let
d(x) = dist (x, ∂Ω+(h)), x ∈ Ω+(h),

and define a function h∗(x) by the formulas

h∗(x) =

⎧⎪⎨
⎪⎩

0 for x ∈ Ω \ Ω+(h),

e−
1

h(x) for x ∈ Ω+(h) and 0 < d(x) < δ,

h(x) for x ∈ Ω+(h) and d(x) > 2δ,

and
0 < h∗(x) ≤ h(x) for x ∈ Ω+(h) and δ ≤ d(x) ≤ 2δ.

Then it is easy to verify that the function h∗(x) enjoys properties (a) and (b).
For example, property (b) may be verified in the following way. Since we have

∇h∗(x) = e−
1

h(x)
∇h(x)
h(x)2

for x ∈ Ω+(h), 0 < d(x) < δ,

it follows that ∣∣∣∣∣ ∇h
∗(x)

h∗(x)1−ε

∣∣∣∣∣ = |∇h(x)| e− ε
h(x)

1
h(x)2

≤ sup
Ω

|∇h| · sup
Ω

(
e−

ε
h

h2

)

≤ sup
Ω

|∇h|
(

4e−2

ε2

)
. �

The next lemma will play an essential role in the proof of inequality (3.1) (see
the proof of Proposition 5.1).

Lemma 3.2. If u(λ) is a positive solution of problem (1.6) with λ1(m) < λ < λ∗,
then we have, for any 0 < ε < 1,

h∗ u(λ)1−ε ∈ L∞(Ω+(h)),

and
sup

Ω+(h)

(
h∗ u(λ)1−ε

) ≤ C(ε, λ), (3.3)

with a constant C(ε, λ) > 0. Moreover, if λ is finite, then so is the constant
C(ε, λ).
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Proof. The proof is divided into seven steps just as in the proof of Taira [25,
Lemma 4.2].

Without loss of generality, we may assume that

sup
x∈Ω

m(x) ≤ 1.

Step 1: Let μ1(λ) and ϕ1(x) be the first eigenvalue and associated eigenfunction
of the Fréchet derivative Fu(λ, u(λ)), that is,

{
(−Δ− λm(x) + 2λh(x)u(λ))ϕ1 = μ1(λ)ϕ1 in Ω,
ϕ1 = 0 on ∂Ω.

We recall that μ1(λ) > 0 and ϕ1(x) > 0 in Ω. Moreover, by Rayleigh’s theorem we
know that the first eigenvalue μ1(λ) can be characterized by the following formula:

μ1(λ)
∫

Ω

ϕ2 dx ≤
∫

Ω

|∇ϕ|2 dx− λ

∫
Ω

m(x)ϕ2 dx

+ 2λ
∫

Ω

h(x)u(λ)ϕ2 dx, ϕ ∈ W 1,2
0 (Ω). (3.4)

Now, we take
ϕ = (h∗)s u(λ)k, s > 0, k > 2,

where the constants s, k will be chosen later on. Then we have

∇ϕ = s(h∗)s−1 u(λ)k ∇h∗ + k(h∗)s u(λ)k−1 ∇u(λ),

and so

|∇ϕ|2 = s2(h∗)2s−2 u(λ)2k |∇h∗|2 + k2(h∗)2s u(λ)2k−2 |∇u(λ)|2
+ 2sk(h∗)2s−1 u(λ)2k−1 ∇h∗ · ∇u(λ).

Hence we can write inequality (3.4) in the following form:

μ1(λ)
∫

Ω

(h∗)2s u(λ)2k dx ≤ s2
∫

Ω

(h∗)2s−2 u(λ)2k |∇h∗|2 dx

+ 2sk
∫

Ω

(h∗)2s−1 u(λ)2k−1 ∇h∗ · ∇u(λ) dx

+ k2

∫
Ω

(h∗)2s u(λ)2k−2 |∇u(λ)|2 dx

− λ

∫
Ω

m(x)(h∗)2s u(λ)2k dx
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+ 2λ
∫

Ω

h(x)(h∗)2s u(λ)2k+1 dx. (3.5)

Step 2: Next we show that the second term on the right-hand side of inequality
(3.5) can be written as

2sk
∫

Ω

(h∗)2s−1 u(λ)2k−1 ∇h∗ · ∇u(λ) dx

= λk

∫
Ω

m(x)(h∗)2s u(λ)2k dx

− k(2k − 1)
∫

Ω

(h∗)2s u(λ)2k−2 |∇u(λ)|2 dx

− λk

∫
Ω

h(x)(h∗)2s u(λ)2k+1 dx. (3.6)

If we let
ψ(λ) = ku(λ)2k−1 (h∗)2s,

then we obtain that

∇ψ(λ) = 2sku(λ)2k−1 (h∗)2s−1 ∇h∗ + k(2k − 1)u(λ)2k−2 (h∗)2s ∇u(λ).

Recall that the function u(λ) is a solution of problem (1.6). Hence we have, by
Green’s formula,

0 =
∫

Ω

(−Δu(λ) − λm(x)u(λ) + λh(x)u(λ)2
)
ψ(λ) dx

=
∫

Ω

∇u(λ) · ∇ψ(λ) dx− λ

∫
Ω

m(x)u(λ)ψ(λ) dx

+ λ

∫
Ω

h(x)u(λ)2 ψ(λ) dx

=
∫

Ω

∇u(λ) ·
(

2sk u(λ)2k−1 (h∗)2s−1 ∇h∗

+ k(2k − 1)u(λ)2k−2 (h∗)2s ∇u(λ)
)
dx

− λ

∫
Ω

m(x)u(λ)ψ(λ) dx+ λ

∫
Ω

h(x)u(λ)2 ψ(λ) dx.

This proves formula (3.6).
Thus, carrying formula (3.6) into inequality (3.5) we find that

μ1(λ)
∫

Ω

(h∗)2s u(λ)2k dx ≤ s2
∫

Ω

(h∗)2s−2 u(λ)2k |∇h∗|2 dx
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+ λ(k − 1)
∫

Ω

m(x)(h∗)2s u(λ)2k dx

− k(k − 1)
∫

Ω

(h∗)2s u(λ)2k−2 |∇u(λ)|2 dx

+ λ(2 − k)
∫

Ω

h(x)(h∗)2s u(λ)2k+1 dx.

In particular, this proves that

s2
∫

Ω

(h∗)2s−2 u(λ)2k |∇h∗|2 dx+ λ(k − 1)
∫

Ω

m(x)(h∗)2s u(λ)2k dx

= s2
∫

Ω+(h)

(h∗)2s−2 u(λ)2k |∇h∗|2 dx

+ λ(k − 1)
∫

Ω+(h)

m(x)(h∗)2s u(λ)2k dx

≥ k(k − 1)
∫

Ω+(h)

(h∗)2s u(λ)2k−2 |∇u(λ)|2 dx

+ λ(k − 2)
∫

Ω+(h)

h(x)(h∗)2s u(λ)2k+1 dx

≥ k(k − 1)
∫

Ω+(h)

(h∗)2s u(λ)2k−2 |∇u(λ)|2 dx

+ λ(k − 2)
∫

Ω+(h)

(h∗)2s+1 u(λ)2k+1 dx, (3.7)

since k > 2, μ1(λ) > 0 and also we have, by part (a) of Lemma 3.1, 0 < h∗(x) ≤
h(x) for x ∈ Ω+(h).

Step 3: First, we show that the first term on the left-hand side of inequality
(3.7) can be estimated as follows:

s2
∫

Ω

(h∗)2s−2 u(λ)2k |∇h∗|2 dx

= s2
∫

Ω+(h)

(h∗)2s−2 u(λ)2k |∇h∗|2 dx

≤
∫

Ω+(h)

(h∗)1+2s u(λ)2k+1 dx+
∣∣Ω+(h)

∣∣ (C2s2

ε4

)2k+1

. (3.8)

By inequality (3.2), it follows that

∫
Ω

(h∗)2s−2 u(λ)2k |∇h∗|2 dx =
∫

Ω+(h)

(h∗)2(s−ε) u(λ)2k |∇h∗|2
|(h∗)1−ε|2 dx
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≤ C2

ε4

∫
Ω+(h)

(h∗)2(s−ε) u(λ)2k dx.

If we choose the constant s as

s = (1 + 2ε)k + ε, (3.9)

then we obtain from Hölder’s inequality that∫
Ω

(h∗)2s−2 u(λ)2k |∇h∗|2 dx

≤ C2

ε4

(∫
Ω+(h)

(
(h∗)2(s−ε) u(λ)2k

) 2k+1
2k

dx

) 2k
2k+1
(∫

Ω+(h)

dx

) 1
2k+1

=
C2

ε4

(∫
Ω+(h)

(h∗)1+2s u(λ)2k+1 dx

) 2k
2k+1 ∣∣Ω+(h)

∣∣ 1
2k+1 .

Hence it follows from an application of Young’s inequality that

s2
∫

Ω+(h)

(h∗)2s−2 u(λ)2k |∇h∗|2 dx

≤
(∫

Ω+(h)

(h∗)1+2s u(λ)2k+1 dx

) 2k
2k+1
(∣∣Ω+(h)

∣∣ (C2s2

ε4

)2k+1
) 1

2k+1

≤
(

2k
2k + 1

)∫
Ω+(h)

(h∗)1+2s u(λ)2k+1 dx

+
(

1
2k + 1

) ∣∣Ω+(h)
∣∣ (C2s2

ε4

)2k+1

≤
∫

Ω+(h)

(h∗)1+2s u(λ)2k+1 dx+
∣∣Ω+(h)

∣∣(C2s2

ε4

)2k+1

.

This proves inequality (3.8).
Next we show that the second term on the left-hand side of inequality (3.7) can

be estimated as follows:

λ(k − 1)
∫

Ω

m(x)(h∗)2s u(λ)2k dx

= λ(k − 1)
∫

Ω+(h)

m(x)(h∗)2s u(λ)2k dx

≤
∫

Ω+(h)

(h∗)1+2s u(λ)2k+1 dx



314 Kazuaki Taira

+

(
λ(k − 1) sup

Ω+(h)

∣∣(h∗)2ε
∣∣)2k+1 ∣∣Ω+(h)

∣∣ . (3.10)

Since supΩm(x) ≤ 1, it follows from an application of Hölder’s and Young’s in-
equalities that

λ(k − 1)
∫

Ω+(h)

m(x)(h∗)2s u(λ)2k dx

= λ(k − 1)
∫

Ω+(h)

m(x)(h∗)2(s−ε) (h∗)2ε u(λ)2k dx

≤ λ(k − 1) sup
Ω+(h)

∣∣(h∗)2ε
∣∣ ∫

Ω+(h)

(h∗)2(s−ε) u(λ)2k dx

≤ λ(k − 1) sup
Ω+(h)

∣∣(h∗)2ε
∣∣ (∫

Ω+(h)

(h∗)1+2s u(λ)2k+1 dx

) 2k
2k+1 ∣∣Ω+(h)

∣∣ 1
2k+1

=

⎛
⎝(λ(k − 1) sup

Ω+(h)

∣∣(h∗)2ε
∣∣)2k+1 ∣∣Ω+(h)

∣∣
⎞
⎠

1
2k+1

×
(∫

Ω+(h)

(h∗)1+2s u(λ)2k+1 dx

) 2k
2k+1

≤
(

1
2k + 1

)(
λ(k − 1) sup

Ω+(h)

∣∣(h∗)2ε
∣∣)2k+1 ∣∣Ω+(h)

∣∣
+
(

2k
2k + 1

)∫
Ω+(h)

(h∗)1+2s u(λ)2k+1 dx

≤
(
λ(k − 1) sup

Ω+(h)

∣∣(h∗)2ε
∣∣)2k+1 ∣∣Ω+(h)

∣∣
+
∫

Ω+(h)

(h∗)1+2s u(λ)2k+1 dx.

This proves inequality (3.10).
Therefore, combining inequalities (3.7), (3.8) and (3.10) we obtain that

k(k − 1)
∫

Ω+(h)

(h∗)2s u(λ)2k−2 |∇u(λ)|2 dx

+ λ(k − 2)
∫

Ω+(h)

(h∗)1+2s u(λ)2k+1 dx

≤ 2
∫

Ω+(h)

(h∗)1+2s u(λ)2k+1 dx+
(
C2s2

ε4

)2k+1 ∣∣Ω+(h)
∣∣
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+

(
λ(k − 1) sup

Ω+(h)

∣∣(h∗)2ε
∣∣)2k+1 ∣∣Ω+(h)

∣∣ .
In particular, this proves that

λ(k − 2)
∫

Ω+(h)

(h∗)1+2s u(λ)2k+1 dx

≤ 2
∫

Ω+(h)

(h∗)1+2s u(λ)2k+1 dx+
(
C2s2

ε4

)2k+1 ∣∣Ω+(h)
∣∣

+

(
λ(k − 1) sup

Ω+(h)

∣∣(h∗)2ε
∣∣)2k+1 ∣∣Ω+(h)

∣∣ . (3.11)

If we take the constant k so large that the first term on the right-hand side of
inequality (3.11) may be absorbed into the left-hand side, for example, if we take
k so large that

k ≥ 2 +
3
λ
,

then it follows that∫
Ω+(h)

(h∗)1+2s u(λ)2k+1 dx

≤
⎛
⎝(C2s2

ε4

)2k+1

+

(
λ(k − 1) sup

Ω+(h)

∣∣(h∗)2ε
∣∣)2k+1

⎞
⎠∣∣Ω+(h)

∣∣ .
However, by formula (3.9) we find that the constant s is of order k. Thus we can
find a constant C′ > 0 such that

∫
Ω+(h)

(h∗)1+2s u(λ)2k+1 dx ≤
(
C′(1 + λ)

k2

ε4

)2k+1 ∣∣Ω+(h)
∣∣ . (3.12)

Here we remark that the constant C′ > 0 depends on the quantities supΩ+(h) |h∗|
and supΩ+(h) |∇h|.

On the other hand, since we have, by formula (3.9),

1 + 2s = (1 + 2ε)(2k + 1),

we can write the left-hand side of inequality (3.12) as∫
Ω+(h)

(h∗)1+2s u(λ)2k+1 dx =
∫

Ω+(h)

(
(h∗)1+2ε u(λ)

)2k+1
dx.
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Therefore, we obtain from inequality (3.12) that

∫
Ω+(h)

(
(h∗)1+2ε u(λ)

)2k+1
dx ≤

(
C′(1 + λ)

k2

ε4

)2k+1 ∣∣Ω+(h)
∣∣ . (3.13)

Step 4: We let
ω(λ) = (h∗)

s
k u(λ),

where (see formula (3.9))
s

k
= 1 + 2ε+

ε

k
.

Then we have

∇ω(λ)k = s(h∗)s−1 u(λ)k ∇h∗ + k(h∗)s u(λ)k−1 ∇u(λ),

and so

|∇ω(λ)k|2 = s2(h∗)2s−2 u(λ)2k |∇h∗|2 + k2(h∗)2s u(λ)2k−2 |∇u(λ)|2
+ 2sk(h∗)2s−1 u(λ)2k−1 ∇h∗ · ∇u(λ)

≤ 2
(
s2(h∗)2s−2 u(λ)2k |∇h∗|2 + k2(h∗)2s u(λ)2k−2 |∇u(λ)|2) .

Hence it follows that∫
Ω+(h)

|∇ω(λ)k|2 dx ≤ 2s2
∫

Ω+(h)

(h∗)2s−2 u(λ)2k |∇h∗|2 dx

+ 2k2

∫
Ω+(h)

(h∗)2s u(λ)2k−2 |∇u(λ)|2 dx.
(3.14)

On the other hand, we find from inequality (3.7) that∫
Ω+(h)

(h∗)2s u(λ)2k−2 |∇u(λ)|2 dx

≤ s2

k(k − 1)

∫
Ω+(h)

(h∗)2s−2 u(λ)2k |∇h∗|2 dx

+
λ

k

∫
Ω+(h)

m(x)(h∗)2s u(λ)2k dx. (3.15)

Thus, combining inequalities (3.14) and (3.15) we obtain that∫
Ω+(h)

|∇ω(λ)k|2 dx
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≤ 2s2
(

2k − 1
k − 1

)∫
Ω+(h)

(h∗)2s−2 u(λ)2k |∇h∗|2 dx

+ 2kλ
∫

Ω+(h)

m(x)(h∗)2s u(λ)2k dx. (3.16)

However, we recall that the two terms on the right-hand side of inequality (3.16)
can be estimated respectively as follows:∫

Ω+(h)

(h∗)2s−2 u(λ)2k |∇h∗|2 dx ≤ C2

ε4

∫
Ω+(h)

(h∗)2(s−ε) u(λ)2k dx.∫
Ω+(h)

(h∗)2s u(λ)2k dx ≤ sup
Ω+(h)

∣∣(h∗)2ε
∣∣ ∫

Ω+(h)

(h∗)2(s−ε) u(λ)2k dx.

Therefore, carrying these inequalities into the right-hand side of inequality
(3.16) we obtain that∫

Ω+(h)

|∇ω(λ)k|2 dx

≤
(

2s2
(

2k − 1
k − 1

)
C2

ε4
+ 2λk sup

Ω+(h)

∣∣(h∗)2ε
∣∣) ∫

Ω+(h)

(h∗)2(s−ε) u(λ)2k dx.

However, by formula (3.9) we find that the constant s is of order k. Thus, if we
take the constant k so large that

2k − 1
k − 1

< 3,

then we can find a constant C′′ > 0 such that∫
Ω+(h)

|∇ω(λ)k|2 dx

≤
(

6s2
C2

ε4
+ 2λk sup

Ω+(h)

∣∣(h∗)2ε
∣∣) ∫

Ω+(h)

(h∗)2(s−ε) u(λ)2k dx

≤ C′′(1 + λ)
k2

ε4

∫
Ω+(h)

(h∗)2(s−ε) u(λ)2k dx. (3.17)

Here we remark that the constant C′′ > 0 depends on the quantities supΩ+(h) |h∗|
and supΩ+(h) |∇h|.

Step 5: We make use of the Sobolev imbedding theorem (cf. Adams–Fournier
[1, Theorem 4.12])

(∫
Ω+(h)

ϕ
2n

n−2 dx

)n−2
2n

≤ C(n)

(∫
Ω+(h)

|∇ϕ|2 dx
) 1

2

, ϕ ∈W 1,2(Ω+(h)). (3.18)
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Here the constant C(n) > 0 depends on the dimension n ≥ 3.
Now, applying inequality (3.18) to the function

ω(λ)k = (h∗)s u(λ)k

and then using inequality (3.17), we obtain that

(∫
Ω+(h)

(
(h∗)

s
k u(λ)

) 2kn
n−2 dx

)n−2
n

=

(∫
Ω+(h)

(
(h∗)s u(λ)k

) 2n
n−2 dx

)n−2
n

≤ C(n)2
∫

Ω+(h)

|∇ω(λ)k|2 dx

≤ C(n)2C′′(1 + λ)
k2

ε4

∫
Ω+(h)

(h∗)2(s−ε) u(λ)2k dx

= C(n)2C′′(1 + λ)
k2

ε4

∫
Ω+(h)

(
(h∗)

s−ε
k u(λ)

)2k

dx,

or equivalently ∥∥∥(h∗)s/k u(λ)
∥∥∥

L2kn/(n−2)(Ω+(h))

≤ C(λ)1/2k

(
k2

ε4

)1/2k ∥∥∥(h∗)(s−ε)/k u(λ)
∥∥∥

L2k(Ω+(h))
, (3.19)

where
C(λ) = C(n)2C′′(1 + λ).

We let

χ =
n

n− 2
> 1,

and, for a sufficiently large positive integer �,

k = χ�.

Then we have

s

k
= 1 + 2ε+

ε

k
= 1 + 2ε+

ε

χ�
,
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2kn
n− 2

= 2χ� n

n− 2
= 2χ�+1,

s− ε

k
= 1 + 2ε.

Thus we can write inequality (3.19) as∥∥∥(h∗)1+2ε+ ε

χ� u(λ)
∥∥∥

L2χ�+1
(Ω+(h))

≤ C(λ)
1

2χ�

(
χ2�

ε4

) 1
2χ� ∥∥(h∗)1+2ε u(λ)

∥∥
L2χ�

(Ω+(h))
. (3.20)

Furthermore, if we let

ε0 = ε, ε1 =
(

1 +
1

2χ�

)
ε0,

then it follows that

1 + 2ε0 +
ε0
χ�

= 1 + 2
(

1 +
1

2χ�

)
ε0 = 1 + 2ε1.

Thus we can rewrite inequality (3.20) in the following form:∥∥(h∗)1+2ε1 u(λ)
∥∥

L2χ�+1
(Ω+(h))

≤ C(λ)
1
2 χ−�
(
χ2�

ε40

) 1
2 χ−� ∥∥(h∗)1+2ε0 u(λ)

∥∥
L2χ�

(Ω+(h))
. (3.21)1

Step 6: By the same procedure as above (replacing χ� by χ�+1), we have the
inequality ∥∥∥(h∗)1+2ε1+

ε1
χ�+1 u(λ)

∥∥∥
L2χ�+2

(Ω+(h))

≤ C(λ)
1
2 χ−(�+1)

(
χ2(�+1)

ε41

) 1
2 χ−(�+1) ∥∥(h∗)1+2ε1 u(λ)

∥∥
L2χ�+1

(Ω+(h))
.

(3.22)

However, we remark that

ε1 =
(

1 +
1

2χ�

)
ε0 > ε0.

Thus, combining inequality (3.22) with inequality (3.21)1 we obtain that∥∥∥(h∗)1+2ε1+
ε1

χ�+1 u(λ)
∥∥∥

L2χ�+2
(Ω+(h))
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≤ C(λ)
1
2 χ−(�+1)

(
χ2(�+1)

ε40

) 1
2 χ−(�+1) ∥∥(h∗)1+2ε1 u(λ)

∥∥
L2χ�+1

(Ω+(h))

≤ C(λ)
1
2 χ−(�+1)

C(λ)
1
2 χ−�
(
χ2(�+1)

ε40

) 1
2 χ−(�+1) (

χ2�

ε40

) 1
2 χ−�

× ∥∥(h∗)1+2ε0 u(λ)
∥∥

L2χ�
(Ω+(h))

≤ C(λ)
1
2 (χ−(�+1)+χ−�) χ((�+1)χ−(�+1)+�χ−�)

(
1
ε0

)2(χ−(�+1)+χ−�)

× ∥∥(h∗)1+2ε0 u(λ)
∥∥

L2χ�
(Ω+(h))

. (3.23)

If we let

ε2 =
(

1 +
1

2χ�+1

)
ε1,

then we can write inequality (3.23) as

∥∥(h∗)1+2ε2 u(λ)
∥∥

L2χ�+2
(Ω+(h))

≤ C(λ)
1
2(χ−�+χ−(�+1)) χ(�χ−�+(�+1)χ−(�+1))

(
1
ε0

)2(χ−�+χ−(�+1))

× ∥∥(h∗)1+2ε0 u(λ)
∥∥

L2χ�
(Ω+(h))

. (3.21)2

Continuing this procedure, we have, after N steps,

∥∥(h∗)1+2εN+1 u(λ)
∥∥

L2χ�+N+1
(Ω+(h))

≤ C(λ)
1
2(

PN
i=0 χ−(�+i)) χ(PN

i=0(�+i)χ−(�+i))
(

1
ε0

)2(PN
i=0 χ−(�+i))

× ∥∥(h∗)1+2ε0 u(λ)
∥∥

L2χ�
(Ω+(h))

. (3.21)N+1

However, we remark that

∞∑
i=0

1
χ�+i

=
1
χ�

∞∑
i=0

1
χi

=
1
χ�

(
χ

χ− 1

)
=
n

2
1
χ�
,

∞∑
i=0

(�+ i)
1

χ�+i
=

1
χ

∞∑
i=0

(�+ i)
1

χ�+i−1
=
n(2�+ n− 2)

4
1
χ�
.

Thus it follows from inequality (3.21)N+1 that

∥∥(h∗)1+2εN+1 u(λ)
∥∥

L2χ�+N+1
(Ω+(h))
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≤ C(λ)
n

4χ� χ
n(2�+n−2)

4χ�

(
1
ε0

) n

χ� ∥∥(h∗)1+2ε0 u(λ)
∥∥

L2χ�
(Ω+(h))

.
(3.24)

Furthermore, we find that

εN+1 =
(

1 +
1

2χ�+N

)
εN

=
(

1 +
1

2χ�+N

)(
1 +

1
2χ�+N−1

)
εN−1

...

=

(
N∏

i=0

(
1 +

1
2χ�+i

))
ε0,

and that the limit (infinite product)

lim
N→∞

εN+1 =

( ∞∏
i=0

(
1 +

1
2χ�+i

))
ε0

exists, since χ > 1.
Therefore, letting N → ∞ in inequality (3.24), we obtain that

sup
Ω+(h)

∣∣(h∗)1+2σε0 u(λ)
∣∣

≤ C(λ)
n

4χ� χ
n(2�+n−2)

4χ�

(
1
ε0

) n

χ� ∥∥(h∗)1+2ε0 u(λ)
∥∥

L2χ�
(Ω+(h))

,
(3.25)

where

σ =
∞∏

i=0

(
1 +

1
2χ�+i

)
> 1.

Step 7: On the other hand, by Hölder’s inequality it follows that∥∥(h∗)1+2ε0 u(λ)
∥∥

L2χ�
(Ω+(h))

≤ ∥∥(h∗)1+2ε0 u(λ)
∥∥

L2k+1(Ω+(h))

× ∣∣Ω+(h)
∣∣ 1
2χ� −

1
2k + 1 . (3.26)

Furthermore, we have, by inequality (3.13) with ε := ε0,

∥∥(h∗)1+2ε0 u(λ)
∥∥

L2k+1(Ω+(h))
≤ C(λ)′

(
k2

ε40

) ∣∣Ω+(h)
∣∣ 1
2k+1 , (3.27)
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where
C(λ)′ = C′ (1 + λ).

Here we recall that the constant C′ depends on the quantities supΩ+(h) |h∗| and
supΩ+(h) |∇h|.

Therefore, combining inequalities (3.26) and (3.27), we get the following in-
equality:

∥∥(h∗)1+2ε0 u(λ)
∥∥

L2χ�
(Ω+(h))

≤ C(λ)′ χ2�

(
1
ε0

)4 ∣∣Ω+(h)
∣∣ 1
2χ� .

Carrying this inequality into the right-hand side of inequality (3.25), we obtain
that

sup
Ω+(h)

∣∣(h∗)1+2σε0 u(λ)
∣∣ ≤ C(λ)

n

4χ� χ
n(2�+n−2)

4χ� C(λ)′ χ2�

(
1
ε0

) n

χ� +4

× ∣∣Ω+(h)
∣∣ 1
2χ� .

Summing up, we have proved that there exists a constant C(λ)′′ > 0 such that,
for each ε0 > 0,

sup
Ω+(h)

∣∣(h∗)1+2σε0 u(λ)
∣∣ ≤ C(λ)′′ ε0−μ, (3.28)

where
μ =

n

χ�
+ 4.

It is easy to see that inequality (3.28) is equivalent to inequality (3.3). Moreover,
we find that if λ is finite, then so is the constant C(λ)′′.

The proof of Lemma 3.2 is now complete. �

4. Proof of Theorem 1.2 -(3)-

The next lemma asserts that the solution u(λ) blows up at the critical value λ∗:

Lemma 4.1. If u(λ) ∈ C2(Ω), λ1(m) < λ < λ∗, is a solution of problem (1.6),
then we have

lim
λ→λ∗

‖u(λ)‖L2(Ω) = +∞. (4.1)

Proof. Assume, to the contrary, that there exists a constant C > 0 such that∫
Ω

u(λ)2 dx ≤ C for all λ ∈ (λ1(m), λ∗). (4.2)
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Then, using Green’s formula we obtain that

0 =
∫

Ω

(−Δu(λ) − λm(x)u(λ) + λh(x)u(λ)2
)
u(λ) dx

=
∫

Ω

|∇u(λ)|2 dx− λ

∫
Ω

m(x)u(λ)2 dx

+ λ

∫
Ω

h(x)u(λ)3 dx.

Thus it follows that∫
Ω

|∇u(λ)|2 dx+ λ

∫
Ω

h(x)u(λ)3 dx = λ

∫
Ω

m(x)u(λ)2 dx.

In particular, this proves that∫
Ω

|∇u(λ)|2 dx ≤ λ‖m+‖L∞(Ω)

∫
Ω

u(λ)2 dx,

so that ∫
Ω

|∇u(λ)|2 dx ≤ λ∗C‖m+‖L∞(Ω), λ1(m) < λ < λ∗. (4.3)

Here
m+(x) = max{m(x), 0}.

On the other hand, applying Sobolev’s inequality (3.18) to the function u(λ)
we obtain that

(∫
Ω

u(λ)
2n

n−2 dx

)n−2
n

≤ C(n)2
∫

Ω

|∇u(λ)|2 dx, u ∈W 1,2(Ω). (4.4)

Thus, combining inequalities (4.4) and (4.3) we obtain that

(∫
Ω

u(λ)
2n

n−2 dx

)n−2
n

≤ λC(n)2
∫

Ω

u(λ)2 dx,

or equivalently
‖u(λ)‖L2n/(n−2)(Ω) ≤ C(λ)

1
2 ‖u(λ)‖L2(Ω) , (4.5)

where
C(λ) = λC(n)2.

Furthermore, if we let
χ =

n

n− 2
> 1 (n ≥ 3),
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then we can write inequality (4.5) in the following form:

‖u(λ)‖L2χ(Ω) ≤ C(λ)
1
2 ‖u(λ)‖L2(Ω) . (4.6)1

Continuing this procedure as in the proof of Lemma 3.2, we have, after N steps,

‖u(λ)‖L2χN+1 (Ω) ≤ C(λ)
1
2(

PN
i=0 χ−i) ‖u(λ)‖L2(Ω)

≤ C(λ)
n
4 ‖u(λ)‖L2(Ω) , λ1(m) < λ < λ∗.

(4.6)N+1

Therefore, letting N → ∞ in inequality (4.6)N+1 we obtain that

‖u(λ)‖L∞(Ω) ≤ (λC(n)2)
n
4 χ

n(n−2)
4 ‖u(λ)‖L2(Ω) , λ1(m) < λ < λ∗. (4.7)

By inequalities (4.2) and (4.3), it follows that, for all λ1(m) < λ < λ∗,∫
Ω

u(λ)2 dx ≤ C, (4.8a)∫
Ω

|∇u(λ)|2 dx ≤ λ∗C‖m+‖L∞(Ω). (4.8b)

This proves that the functions u(λ) are bounded in the Sobolev space W1,2(Ω),
for all λ ∈ (λ1(m), λ∗).

However, we remark the following:
(a) Rellich’s theorem tells us that the injection ofW 1,2(Ω) into L2(Ω) is compact

(or completely continuous) if the dimension n is greater than 2 (n ≥ 3).
(b) It is well known (see Yosida [27, Chapter V, Section 2, Theorem 1]) that

the unit ball in the Hilbert space is sequentially weakly compact . Therefore, by
inequalities (4.8a) and (4.8b) we can find a sequence {λn} and a function u(λ∗) ∈
W 1,2(Ω) such that

λn −→ λ∗, (4.9a)

and that

u(λn) −→ u(λ∗) strongly in L2(Ω), (4.9b)

∇u(λn) −→ ∇u(λ∗) weakly in L2(Ω). (4.9c)

On the other hand, by combining inequalities (4.2) and (4.7) we obtain that

sup
Ω

|u(λ)| ≤ C
1
2
(
λ∗C(n)2

)n
4 χ

n(n−2)
4 for all λ ∈ (λ1(m), λ∗).
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Thus we may assume that the finite limit

u(λ∗)(x) = lim
λn→λ∗

u(λn)(x) (4.10)

exists for almost all x of Ω.
Now, since u(λn) is a solution of problem (1.6), it follows that, for all ψ ∈

W 1,2
0 (Ω),∫

Ω

∇u(λn) · ∇ψ dx+ λn

∫
Ω

h(x)u(λn)2 ψ dx− λn

∫
Ω

m(x)u(λn)ψ dx = 0.
(4.11)

However, we have the following two assertions:
(i) By assertion (4.9), it follows that∫

Ω

u(λn)ψ dx −→
∫

Ω

u(λ∗)ψ dx,

and that ∫
Ω

∇u(λn) · ∇ψ dx −→
∫

Ω

∇u(λ∗) · ∇ψ dx.

(ii) By assertion (4.10), it follows from an application of the Lebesgue bounded
convergence theorem that∫

Ω

h(x)u(λn)2 ψ dx −→
∫

Ω

h(x)u(λ∗)2 ψ dx.

By passing to the limit in formula (4.11), we obtain that the function u(λ∗)
satisfies, for all ψ ∈W 1,2

0 (Ω), the equation∫
Ω

∇u(λ∗) · ∇ψ dx+ λ∗
∫

Ω

h(x)u(λ∗)2 ψ dx− λ∗
∫

Ω

m(x)u(λ∗)ψ dx = 0.

This proves that the function u(λ∗) ∈W 1,2(Ω) is a weak solution of problem (1.6).
Thus it follows from an application of the regularity theorem in quasilinear

elliptic theory (see Ladyzhenskaya–Ural’tseva [14, Chapter 4, Theorem 6.5]) that

u(λ∗) ∈ C2+θ(Ω).

Furthermore, we recall that the solution u(λ) is strictly positive in Ω and that
the continuum C of positive solutions of problem (1.6) can not contain a point
(λ0, 0) with λ0 �= λ1(m). Thus, by the maximum principle it follows that

u(λ∗) > 0 in Ω.
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Finally, it is easy to see that the Fréchet derivative Fu(λ∗, u(λ∗)) is an algebraic
and topological isomorphism. Indeed, if μ1(λ∗) is the first eigenvalue of the Fréchet
derivative Fu(λ∗, u(λ∗)), then, arguing as in the proof of Claim 2.6 we obtain that
μ1(λ∗) > 0.

Therefore, by virtue of the implicit function theorem we can extend the bifurca-
tion curve (λ, u(λ)) beyond the point (λ∗, u(λ∗)). This contradicts the definition
of the critical value λ∗.

The proof of Lemma 4.1 is complete. �

5. Proof of Theorem 1.2 -(4)-

The next proposition proves the inequality

μ1(Ω0(h)) ≤ λ∗, (3.1)

which completes the proof of formula (2.12).

Proposition 5.1. The critical value λ∗ is an eigenvalue of the Dirichlet problem
(1.7).

Proof. Step 1: Let u(λ) ∈ C2(Ω), λ1(m) < λ < λ∗, be a solution of the problem
(1.6), and let

ω(λ) =
u(λ)

‖u(λ)‖L2(Ω)
.

Then it follows that

−Δω(λ) − λm(x)ω(λ) + λh(x)u(λ)ω(λ)

=
1

‖u(λ)‖L2(Ω)

(−Δu(λ) − λm(x)u(λ) + λh(x)u(λ)2
)

= 0 in Ω,

and that

ω(λ) = 0 on ∂Ω.

Hence we have, by Green’s formula,∫
Ω

h(x)u(λ)ω(λ)2 dx =
∫

Ω

m(x)ω(λ)2 dx+
1
λ

∫
Ω

Δω(λ) · ω(λ) dx

=
∫

Ω

m(x)ω(λ)2 dx− 1
λ

∫
Ω

|∇ω(λ)|2 dx.
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This proves that

1
λ

∫
Ω

|∇ω(λ)|2 dx ≤ 1
λ

∫
Ω

|∇ω(λ)|2 dx+
∫

Ω

h(x)u(λ)ω(λ)2 dx

=
∫

Ω

m(x)ω(λ)2 dx

≤ ‖m+‖L∞(Ω)

∫
Ω

ω(λ)2 dx

= ‖m+‖L∞(Ω). (5.1)

By inequality (5.1), it follows that, for all λ ∈ (λ1(m), λ∗),∫
Ω

ω(λ)2 dx = 1, (5.2a)∫
Ω

|∇ω(λ)|2 dx ≤ λ‖m+‖L∞(Ω) ≤ λ∗‖m+‖L∞(Ω). (5.2b)

Thus, just as in the proof of Lemma 4.1 we can find a sequence {λn} and a function
ω(λ∗) ∈W 1,2(Ω) such that

λn −→ λ∗, (5.3a)

and that

ω(λn) −→ ω(λ∗) strongly in L2(Ω), (5.3b)

∇ω(λn) −→ ∇ω(λ∗) weakly in L2(Ω). (5.3c)

Furthermore, arguing as in the proof of Lemma 4.1 (see inequality (4.7)) we
can find a constant C(λ∗) > 0 such that

sup
Ω

|ω(λ)| ≤ C(λ∗) ‖ω(λ)‖L2(Ω) = C(λ∗) for all λ ∈ (λ1(m), λ∗). (5.4)

Therefore, we obtain from assertions (5.2), (5.3) and (5.4) that the limit function
ω(λ∗) ∈W 1,2(Ω) satisfies the following conditions:

ω(λ∗) ≥ 0 in Ω. (5.5a)∫
Ω

ω(λ∗)2 dx = 1. (5.5b)∫
Ω

|∇ω(λ∗)|2 dx ≤ λ∗. (5.5c)

sup
Ω

|ω(λ∗)| ≤ C(λ∗). (5.5d)
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On the other hand, we remark that the functions ω(λn) satisfy the equation

Δω(λn) + λnm(x)ω(λn) = 0 in Ω0(h),

since h ≡ 0 in Ω0(h). By passing to the limit, we find that the function ω(λ∗) is
a weak solution of the equation

Δω(λ∗) + λ∗m(x)ω(λ∗) = 0 in Ω0(h).

Hence it follows from an application of the interior regularity theorem in lin-
ear elliptic theory (see Ladyzhenskaya–Ural’tseva [14, Chapter 3, Theorem 12.1],
Gilbarg–Trudinger [11, Corollary 8.11]) that

ω(λ∗) ∈ C2+θ(Ω0(h)).

Summing up, we have proved that

ω(λ∗) ∈ C2+θ(Ω0(h)) ∩W 1,2(Ω) ∩ L∞(Ω). (5.6a)

Δω(λ∗) + λ∗m(x)ω(λ∗) = 0 in Ω0(h). (5.6b)

Step 2: Next, we shall prove that the function ω(λ∗) is an eigenfunction of
problem (1.7), more precisely, we shall show that, in some connected component
Ωk

0(h), 1 ≤ k ≤ N , the function ω(λ∗) satisfies the conditions⎧⎪⎨
⎪⎩

−Δω(λ∗) = λ∗m(x)ω(λ∗) in Ωk
0(h),

ω(λ∗) = 0 on ∂Ωk
0(h),

ω(λ∗) > 0 in Ωk
0(h).

(1.7)

Step 2-a: First, by assertion (4.1) we remark that

lim
λn→λ∗

‖u(λn)‖L2(Ω) = +∞. (5.7)

However, Lemma 3.2 tells us that, for each ε > 0 there exists a constant C(ε, λ∗) >
0 such that

(u(λn)(x))1−ε ≤ C(ε, λ∗)
h∗(x)

for all x ∈ Ω+(h). (5.8)

Hence it follows from assertion (5.7) and inequality (5.8) that

ω(λ∗)(x) = lim
λn→λ∗

ω(λn)(x) = lim
λn→λ∗

u(λn)(x)
‖u(λn)‖L2(Ω)

= 0 (5.9)

for almost every x ∈ Ω+(h).
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Therefore, combining assertions (5.5b) and (5.9) we find that

∫
Ω0(h)

ω(λ∗)2 dx =
∫

Ω

ω(λ∗)2 dx = 1.

This proves that the function ω(λ∗) is positive in some connected component
Ωk

0(h), 1 ≤ k ≤ N , since we have

Ω0(h) =
N⋃

k=1

Ωk
0(h).

Step 2-b: Furthermore, we can prove the following:

Lemma 5.2. The function ω(λ∗) satisfies the Dirichlet boundary condition

ω(λ∗) = 0 on ∂Ω0(h) =
N⋃

k=1

∂Ωk
0(h).

Step 2-c: Assuming Lemma 5.2 for the moment, we shall prove Proposition
5.1.

By assertion (5.6) and Lemma 5.2, we find that the function ω(λ∗) is a positive
eigenfunction of problem (1.7). This implies that λ∗ is the first eigenvalue of
problem (1.7), so that

λ∗ = λ1(Ωk
0(h)) ≥ μ1(Ω0(h)).

The proof of Proposition 5.1 (and hence that of Theorem 1.2) is complete, apart
from the proof of Lemma 5.2. �

Proof of Lemma 5.2.
We show that the function ω(λ∗) satisfies the Dirichlet boundary condition

ω(λ∗) = 0 on ∂Ω0(h),

or equivalently,
ω(λ∗) ∈W 1,2

0 (Ω0(h)).

Step 1: First, we recall that

ω(λ∗) ∈ C2+θ(Ω0(h)) ∩W 1,2(Ω) ∩ L∞(Ω), (5.6a)
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and that

ω(λ∗) = 0 almost everywhere in Ω+(h). (5.9)

For r > 0 sufficiently small, we let

Ωr = {x ∈ Ω0(h) : dist (x, ∂Ω0(h)) > r},

and let n be the unit exterior normal vector to the boundary ∂Ωr. One can
construct a smooth vector function Ψ on Ω such that (see Figure 5.1)

Ψ · n ≥ 1
2

on ∂Ωr, (5.10)

and that

‖Ψ‖C1(Ω) ≤ C, (5.11)

with a constant C > 0. Here and in the following the letter C denotes a generic
positive constant independent of r.

n
Ψ

•................................................
......................

................

...............

.........
.........
.........
.........
.......................
...............

Ω+(h)

Ω∗
r = Ω0(h) \ Ωr

Ωr

Figure 5.1
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Since ω(λ∗) is in the Sobolev space W 1,2
0 (Ω), we have, by Green’s formula,∫

Ω

∇ω(λ∗) ·Ψ dx = −
∫

Ω

ω(λ∗)divΨ dx

= −
∫

Ω0(h)

ω(λ∗)divΨ dx, (5.12)
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and also∫
Ω

∇ω(λ∗) ·Ψ dx =
∫

Ωr

∇ω(λ∗) ·Ψ dx+
∫

Ω\Ωr

∇ω(λ∗) ·Ψ dx

=
∫

Ωr

∇ω(λ∗) ·Ψ dx+
∫

Ω0(h)\Ωr

∇ω(λ∗) ·Ψ dx

=
∫

∂Ωr

ω(λ∗)(Ψ · n) dσ −
∫

Ωr

ω(λ∗)divΨ dx

+
∫

Ω0(h)\Ωr

∇ω(λ∗) ·Ψ dx. (5.13)

Thus, combining formulas (5.12) and (5.13) we obtain that

∫
∂Ωr

ω(λ∗)(Ψ · n) dσ

= −
∫

Ω0(h)\Ωr

ω(λ∗)divΨ dx−
∫

Ω0(h)\Ωr

∇ω(λ∗) ·Ψ dx. (5.14)

However, by using inequalities (5.11) and (5.4) we can estimate the first term on
the right-hand side of formula (5.14) as follows:

∣∣∣∣∣
∫

Ω0(h)\Ωr

ω(λ∗)divΨ dx

∣∣∣∣∣ ≤ C

∫
Ω0(h)\Ωr

dx ≤ Cr.

Furthermore, by using the Schwarz inequality and inequality (5.5c), we can esti-
mate the second term on the right-hand side of formula (5.14) as follows:

∣∣∣∣∣
∫

Ω0(h)\Ωr

∇ω(λ∗) ·Ψ dx

∣∣∣∣∣
≤ C

∫
Ω0(h)\Ωr

|∇ω(λ∗)| dx

≤ C

(∫
Ω0(h)\Ωr

|∇ω(λ∗)|2 dx
)1/2(∫

Ω0(h)\Ωr

dx

)1/2

≤ Cr
1
2 .

Hence, by formula (5.14), we have, for all r > 0 sufficiently small,

∫
∂Ωr

ω(λ∗)(Ψ · n) dσ ≤ Cr + Cr
1
2 ≤ Cr

1
2 .
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By inequality (5.10), this proves that, for all r > 0 sufficiently small,∫
∂Ωr

ω(λ∗) dσ ≤ 2
∫

∂Ωr

ω(λ∗)(Ψ · n) dσ ≤ Cr
1
2 . (5.15)

If we let
Ω∗

r = Ω0(h) \ Ωr,

then it follows from inequality (5.15) that∫
Ω∗

r

ω(λ∗) dx =
∫ r

0

(∫
∂Ωr

ω(λ∗) dσ
)
dt ≤ Cr

3
2 .

Therefore, we have, for all r > 0 sufficiently small,

(∫
Ω∗

r

ω(λ∗)2 dx

) 1
2

=

(∫
Ω∗

r

ω(λ∗) · ω(λ∗) dx

) 1
2

≤ C

(∫
Ω∗

r

ω(λ∗) dx

) 1
2

≤ Cr
3
4 . (5.16)

Step 2: Now we construct a sequence {ωr} in the space W 1,2n/(n+1)(Ω0(h))
such that

ωr −→ ω(λ∗) in W 1, 2n
n+1 (Ω0(h)) as r ↓ 0.

We let

Sr = {x ∈ Ω : dist (x, ∂Ω0(h)) < r},
S−

r = Ω0(h) \ Ωr,

and

∂S1
r = {x ∈ Ω+(h) : dist (x, ∂Ω0(h)) = r},

∂S2
r = {x ∈ Ω0(h) : dist (x, ∂Ω0(h)) = r}.

Then it is easy to see that, for all r > 0 sufficiently small there exists a “shrinking”
diffeomorphism

Ψ : Sr −→ S−
r

with the following properties (see Figure 5.2):

Ψ(∂S1
r ) = ∂Ω0(h), Ψ(∂S2

r ) = ∂S2
r . (a)
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sup
Sr

|∇Ψ | ≤ C, sup
S−

r

|∇Ψ−1| ≤ C. (b)

Indeed, in terms of local coordinates (x1, x2, · · · , xn−1, xn) such that

∂S1
r = {xn = −r}, ∂S2

r = {xn = +r},

the diffeomorphism Ψ is given by the formula

Ψ(x1, x2, · · · , xn−1, xn) =
(
x1, x2, · · · , xn−1,

xn + r

2

)
.

Ω+(h)

Ωr

∂Ω0(h)

Sr

∂S1
r

∂S2
r

S−
r = Ω0(h) \ Ωr

Figure 5.2
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We let

ωr(x) =
{
ω(λ∗)(Ψ−1(x)) if x ∈ S−

r ,

ω(λ∗)(x) if x ∈ Ωr.

Then, in view of assertion (5.9), it follows that the functions {ωr} are in the space
W 1,2

0 (Ω0(h)) for all r > 0 sufficiently small. Next, by inequality (5.16) we have,
for all r > 0 sufficiently small,

‖ωr − ω(λ∗)‖L2(Ω0(h)) = ‖ωr − ω(λ∗)‖L2(Ω0(h)\Ωr)

≤ ‖ωr‖L2(Ω0(h)\Ωr) + ‖ω(λ∗)‖L2(Ω0(h)\Ωr)

≤ 2‖ω(λ∗)‖L2(Ω∗
r)

≤ Cr
3
4 . (5.17)
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Furthermore, using Hölder’s inequality we obtain that, for all r > 0 sufficiently
small,

‖ωr − ω(λ∗)‖L2n/(n+1)(Ω0(h)) ≤ |Ω0(h)|
n+1
2n − 1

2 ‖ωr − ω(λ∗)‖L2(Ω∗
r)

≤ Cr
3
4 . (5.18)

Similarly, it follows that, for all r > 0 sufficiently small,

‖∇(ωr − ω(λ∗))‖L2n/(n+1)(Ω0(h))

= ‖∇(ωr − ω(λ∗)‖L2n/(n+1)(Ω0(h)\Ωr)

≤ ‖∇ωr‖L2n/(n+1)(Ω∗
r) + ‖∇ω(λ∗)‖L2n/(n+1)(Ω∗

r)

≤ sup
S−1

r

|∇Ψ−1| ‖∇ω(λ∗)‖L2n/(n+1)(Ω∗
r) + ‖∇ω(λ∗)‖L2n/(n+1)(Ω∗

r)

≤ C‖∇ω(λ∗)‖L2n/(n+1)(Ω∗
r).

However, we find that the last term can be estimated as follows:

‖∇ω(λ∗)‖L2n/(n+1)(Ω∗
r) =

(∫
Ω∗

r

|∇ω(λ∗)| 2n
n+1 dx

)n+1
2n

≤
⎛
⎝|Ω∗

r |1−
n

n+1

(∫
Ω∗

r

|∇ω(λ∗)|2 dx
)n+1

n

⎞
⎠

n+1
2n

≤ |Ω∗
r |

1
2n ‖∇ω(λ∗)‖L2(Ω)

≤ Cr
1
2n .

Hence we obtain that, for all r > 0 sufficiently small,

‖∇(ωr − ω(λ∗))‖L2n/(n+1)(Ω0(h)) ≤ Cr
1
2n . (5.19)

Therefore, combining inequalities (5.18) and (5.19) we have proved that

ω(λ∗) ∈W
1, 2n

n+1
0 (Ω0(h)),

and that

ωr −→ ω(λ∗) in W
1, 2n

n+1
0 (Ω0(h)) as r ↓ 0.

Step 3: Finally, we show that

ω(λ∗) ∈ W 1,2
0 (Ω0(h)), (5.20a)
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and that

ωr −→ ω(λ∗) in W 1,2
0 (Ω0(h)) as r ↓ 0. (5.20b)

We recall that the function

ω(λ∗) ∈W
1, 2n

n+1
0 (Ω0(h)) ∩ L∞(Ω0(h))

satisfies the equation

Δω(λ∗) + λ∗m(x)ω(λ∗) = 0 in Ω0(h).

Thus, by using Lp estimates for elliptic equations (cf. Gilbarg–Trudinger [11, The-
orem 9.14]) we obtain that

ω(λ∗) ∈W 2, 2n
n+1 (Ω0(h)) ∩W 1, 2n

n+1
0 (Ω0(h)). (5.21)

On the other hand, by applying the Sobolev imbedding theorem (cf. Adams–
Fournier [1, Theorem 4.12]) we find that the injection

W 2, 2n
n+1 (Ω0(h)) ⊂W 1, 2n

n−1 (Ω0(h)) (5.22)

is continuous.
Hence it follows from assertions (5.21) and (5.22) that

‖∇ω(λ∗)‖L2n/(n−1)(Ω0(h)) ≤ C.

By virtue of Hölder’s inequality, this proves that, for all r > 0 sufficiently small,

(∫
Ω∗

r

|∇ω(λ∗)|2 dx
) 1

2

≤
(∫

Ω∗
r

|∇ω(λ∗)| 2n
n−1 dx

)n−1
2n
(∫

Ω∗
r

dx

) 1
2n

= ‖∇ω(λ∗)‖L2n/(n−1)(Ω0(h))|Ω∗
r|

1
2n

≤ Cr
1
2n .

Thus we have, for all r > 0 sufficiently small,

‖∇(ωr − ω(λ∗))‖L2(Ω0(h)) = ‖∇(ωr − ω(λ∗))‖L2(Ω∗
r)

≤ C‖∇ω(λ∗)‖L2(Ω∗
r)

≤ Cr
1
2n . (5.23)

Therefore, assertion (5.20) follows by combining inequalities (5.17) and (5.23).
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The proof of Lemma 5.2 and hence that of Proposition 5.1 is complete. �

6. Proof of Theorem 1.3

In this section we prove Theorem 1.3 by using comparison theorems based on
the maximum principle just as in Fraile et al. [9, Theorem 3.7], Pao [18, Chapter
5, Theorem 4.4] and Sattinger [22, Theorem 2.6.2].

Step 1: First, we consider the case where 0 < λ < λ1(m): In this case, we
know from Hess [12, Chapter II, Section 15] that there exist a constant σ1(λ) ≥ 0
and a function ϕ1(x) ∈ C2+θ(Ω) such that

⎧⎪⎨
⎪⎩

(−Δ− λm(x))ϕ1 = σ1(λ)ϕ1 in Ω,
ϕ1 > 0 in Ω,
ϕ1 = 0 on ∂Ω.

Moreover, it is easy to verify that the functions κϕ1(x), κ > 0, are supersolutions
of problem (1.6). Indeed, we have

{
(−Δ− λm(x))(κϕ1) ≥ 0 in Ω,
κϕ1 = 0 on ∂Ω.

Hence, if w(x, t;κϕ1) is a unique classical global solution of problem (1.11) with
initial value κϕ1⎧⎪⎪⎨

⎪⎪⎩
∂w

∂t
=

1
λ
Δw + (m(x) − h(x)w)w in Ω × (0,∞),

w = 0 on ∂Ω × (0,∞),
w|t=0 = κϕ1 in Ω,

(1.11)

then it follows from an application of Pao [18, Chapter 5, Theorem 4.3] and Sat-
tinger [22, Theorem 2.6.1]) that

lim
t→∞ ‖w(·, t;κϕ1)‖C(Ω) = 0, (6.1)

since the zero solution is a unique steady state solution of problem (1.11) for
0 < λ < λ1(m).

Now let u0 be an arbitrary function in C2+θ(Ω) satisfying the conditions

{
u0 ≥ 0 in Ω,
u0 = 0 on ∂Ω.

(1.12)
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Then we can find a constant κ > 0 such that

0 ≤ u0(x) ≤ κϕ1(x) in Ω.

If w(x, t;u0) and w(x, t;κϕ1) are solutions of problem (1.11) with initial values u0

and κϕ1 respectively, then, applying the comparison theorem for problem (1.11)
(see Pao [18, Chapter 5, Theorem 4.3], Sattinger [22, Theorem 2.5.2]) we obtain
that

0 ≤ w(x, t;u0) ≤ w(x, t;κϕ1) in Ω × [0,∞). (6.2)

Therefore, we have, by assertions (6.1) and (6.2),

lim
t→∞ ‖w(·, t;u0)‖C(Ω) = 0.

This proves that the zero solution of problem (1.6) is globally asymptotically stable
for 0 < λ < λ1(m).

It remains to prove the decay estimate (1.13)∫
Ω

w(x, t;u0) dx

≤ exp
[
−
(

1
λ
− 1
λ1(m)

)
λ1(1) t

]
|Ω|1/2

(∫
Ω

u0(x)2 dx
)1/2

, t > 0.
(1.13)

We let
E(t) =

1
2

∫
Ω

w(x, t;u0)2 dx.

Then, by integration by parts it follows that

E′(t) =
∫

Ω

w ·wt dx

=
1
λ

∫
Ω

Δw · w dx+
∫

Ω

m(x)w2 dx−
∫

Ω

h(x)w3 dx

= − 1
λ

∫
Ω

|∇w|2 dx+
∫

Ω

m(x)w2 dx−
∫

Ω

h(x)w3 dx

≤ − 1
λ

∫
Ω

|∇w|2 dx+
1

λ1(m)

∫
Ω

|∇w|2 dx. (6.3)

However, we have ∫
Ω

|∇w|2 dx ≥ λ1(1)
∫

Ω

w2 dx,

and so

−
(

1
λ
− 1
λ1(m)

)∫
Ω

|∇u|2 dx ≤ −
(

1
λ
− 1
λ1(m)

)
λ1(1)

∫
Ω

w2 dx. (6.4)
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Therefore, carrying inequality (6.4) into inequality (6.3) we obtain that

E′(t) ≤ −
(

1
λ
− 1
λ1(m)

)
λ1(1)

∫
Ω

w2 dx

= −2
(

1
λ
− 1
λ1(m)

)
λ1(1)E(t).

This implies that

E(t) ≤ exp
[
−2
(

1
λ
− 1
λ1(m)

)
λ1(1) t

]
E(0)

=
1
2

exp
[
−2
(

1
λ
− 1
λ1(m)

)
λ1(1) t

]∫
Ω

u0(x)2 dx. (6.5)

On the other hand, we have, by Schwarz’s inequality,

∫
Ω

w dx ≤
(∫

Ω

w2 dx

)1/2(∫
Ω

12 dx

)1/2

=
√

2 |Ω|1/2E(t)1/2. (6.6)

The desired inequality (1.13) follows by combining inequalities (6.6) and (6.5).

Step 2: Secondly, we consider the case where λ1(m) < λ < μ1(Ω0(h)): Let
v ∈ C2+θ(Ω) be a unique solution of the Dirichlet problem

{ −Δv = 1 in Ω,
v = 0 on ∂Ω.

Note that
v > 0 in Ω,

and that
min
x∈K

h(x)v(x) > 0

for any compact set K ⊂ Ω \ Ω0(h).
Then, by applying Fraile et al. [9, Theorem 2.4] to our situation we have the

following:

Claim 6.1. For a positive integer k sufficiently large, we can find a constant
σk(λ) > 0 and a function ϕ ∈ C2+θ(Ω) such that⎧⎪⎨

⎪⎩
(−Δ− λm(x) + λkh(x)v(x))ϕ = σk(λ)ϕ in Ω,
ϕ > 0 in Ω,
ϕ = 0 on ∂Ω.
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If we take a constant κ > 0 so large that

κϕ(x) ≥ kv(x) in Ω, (6.7)

then it follows that the function κϕ(x) is a supersolution of problem (1.6). Indeed,
we have, by assertion (6.7),

(−Δ− λm(x))(κϕ) + λh(x)(κϕ)2

= (−Δ− λm(x) + λkh(x)v(x))(κϕ) + λh(x)(κϕ)2 − λkh(x)v(x)(κϕ)

= κσk(λ)ϕ(x) + λκh(x)(κϕ(x) − kv(x))ϕ(x)
≥ 0 in Ω,

and also

κϕ = 0 on ∂Ω.

On the other hand, we can find a constant μ1(λ) < 0 and a function ϕ1 ∈
C2+θ(Ω) such that ⎧⎪⎨

⎪⎩
(−Δ− λm(x))ϕ1 = μ1(λ)ϕ1 in Ω,
ϕ1 > 0 in Ω,
ϕ1 = 0 on ∂Ω.

Then it follows (cf. Fraile et al. [9, Lemma 3.3]) that εϕ1(x) is a subsolution of
problem (1.6) if ε is so small that

μ1(λ) + λεh(x)ϕ1(x) ≤ 0 in Ω.

Indeed, we have

(−Δ− λm(x))(εϕ1) + λh(x)(εϕ1)2 = ε(μ1(λ) + λεh(x)ϕ1(x))ϕ1(x)
≤ 0 in Ω,

and also

εϕ1 = 0 on ∂Ω.

Now let u0 be an arbitrary nontrivial function in C2+θ(Ω) satisfying conditions
(1.12). Then we can find constants ε > 0 and κ > 0 such that

εϕ1(x) ≤ u0(x) ≤ κϕ(x) in Ω.
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If w(x, t;u0) is a unique classical global solution of problem (1.11), then, applying
Pao [18, Chapter 5, Theorem 4.4] and Sattinger [22, Theorem 2.6.2] we obtain
that

max
x∈Ω

|w(x, t;u0) − u(λ)(x)| −→ 0 as t→ ∞.

This proves that the positive solution u(λ) of problem (1.6) is globally asymptot-
ically stable for each λ ∈ (λ1(m), μ1(Ω0(h)).

Step 3: Finally, we consider the case where λ > μ1(Ω0(h)).
Assume, to the contrary, that there exists a nontrivial initial value u0 ∈ C2+θ(Ω)

satisfying conditions (1.12) such that

sup
t≥0

‖w(·, t;u0)‖C(Ω) <∞. (6.8)

Then, by Redlinger [20, Satz] it follows that

sup
t≥0

‖w(·, t;u0)‖C2(Ω) <∞.

Hence we can find a function v0 ∈ C2+θ(Ω) satisfying conditions (1.12) such that

0 ≤ w(x, t;u0) ≤ v0(x) in Ω × (0,∞). (6.9)

Furthermore, there exist a constant μ0(λ) < 0 and a function ψ ∈ C2+θ(Ω) such
that ⎧⎪⎨

⎪⎩
(−Δ− λm(x) + λh(x)v0(x))ψ = μ0(λ)ψ in Ω,
ψ > 0 in Ω,
ψ = 0 on ∂Ω.

Then we consider the following linear parabolic initial boundary value problem:⎧⎪⎪⎨
⎪⎪⎩

∂z

∂t
=

1
λ
Δz + (m(x) − h(x)v0(x))z in Ω × (0,∞),

z = 0 on ∂Ω × (0,∞),
z|t=0 = u0 in Ω.

(6.10)

If z(x, t;u0) is a unique classical global solution of problem (6.10), then, arguing
as in the proof of Pao [18, Chapter 5, Theorem 3.3] we obtain that

lim inf
t→∞ max

x∈Ω
z(x, t;u0) ≥ ρmax

x∈Ω
ψ(x)

for any ρ > 0. In particular, this implies that

lim
t→∞ ‖z(·, t;u0)‖C(Ω) = ∞. (6.11)
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On the other hand, by condition (6.9) it follows that

(
∂w

∂t
− 1
λ
Δ

)
w − (m(x) − h(x)v0(x))w

= (m(x) − h(x)w)w − (m(x) − h(x)v0(x))w

= h(x)(v0(x) − w(x, t;u0))w(x, t;u0)
≥ 0

=
(
∂z

∂t
− 1
λ
Δ

)
z − (m(x) − h(x)v0(x))z in Ω × (0,∞),

and that

w = 0 = z on ∂Ω × (0,∞),

w|t=0 = u0 = z|t=0 in Ω.

Therefore, applying the comparison theorem for problem (6.10) (see Pao [18, Chap-
ter 5, Theorem 4.3], Sattinger [22, Theorem 2.5.2]) we obtain that

w(x, t;u0) ≥ z(x, t;u0) ≥ 0 in Ω × (0,∞). (6.12)

Hence we have, by assertions (6.11) and (6.12),

lim
t→∞ ‖w(·, t;u0)‖C(Ω) = ∞.

This contradicts hypothesis (6.8).
The proof of Theorem 1.3 is now complete. �

7. The Neumann Case

In this final section we study problem (1.16) with homogeneous Neumann con-
dition. The same general approach to problem (1.1) with homogeneous Dirichlet
condition can still be used, although the analysis may be somewhat different, since
the operator −Δ will have zero as an eigenvalue.

The next theorem (see Brown–Lin [4, Theorem 3.13], Senn–Hess [24, Theorems
2 and 3]) asserts the existence of the first eigenvalue of the linearized Neumann
problem with indefinite weight function m(x) and positive parameter λ = 1/d:

⎧⎨
⎩

−Δφ = λm(x)φ in Ω,
∂φ

∂n
= 0 on ∂Ω.

(7.1)
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Theorem 7.1. Assume that the function m(x) ∈ Cθ(Ω) attains both positive and
negative values in Ω. Then problem (7.1) admits a unique nonnegative eigenvalue
μ1(m) having a positive eigenfunction, and we have{

μ1(m) > 0 if
∫
Ω
m(x) dx < 0,

μ1(m) = 0 if
∫
Ω
m(x) dx ≥ 0.

Next we consider the steady state problem (1.16) with d = 1/λ:⎧⎨
⎩

−Δu = λ(m(x) − h(x)u)u in Ω,
∂u

∂n
= 0 on ∂Ω.

(7.2)

Then we have the following generalization of Hess [12, Theorem 27.1] to the case
where h(x) may vanish in Ω (cf. Fraile et al. [9, Theorem 3.7], Senn [23, Theorem
3.2]):

Theorem 7.2. Assume that h(x) ∈ C1(Ω) satisfies condition (Z) and that each set
{x ∈ Ωi

0(h) : m(x) > 0}, 1 ≤ i ≤ N , has positive measure. Then problem (7.2) has
a unique positive solution u(λ) ∈ C2+θ(Ω) for every λ ∈ (μ1(m), μ1(Ω0(h))). For
any λ ≥ μ1(Ω0(h)), there exists no positive solution of problem (7.2). Moreover,
we have (see Figures 7.1, 7.2 and 7.3)

lim
λ→μ1(Ω0(h))

‖u(λ)‖L2(Ω) = +∞,

and also

lim
λ→μ1(m)

‖u(λ) − c‖C2+θ(Ω) = 0,

where

c = max
{∫

Ω
m(x) dx∫

Ω
h(x) dx

, 0
}
.

Remark 7.1. Assume that h(x) > 0 on Ω, and that the function m(x) attains
both positive and negative values in Ω and

∫
Ω
m(x) dx < 0. Then, arguing as in

the proof of Cantrell–Cosner [5, Theorem 4.1] and using Brown–Lin [4, Theorem
3.13] we can give an estimate of the decay rate of the total size of the positive
steady states u(λ) as λ ↓ μ1(m):

∫
Ω

u(λ) dx ≤
(

1 − μ1(m)
λ

)
|Ω|2/3

(∫
Ω
(m+)3 dx

)1/3

minx∈Ω h(x)
, λ > μ1(m). (7.3)
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Theorem 7.3. (i) Assume that ∫
Ω

m(x) dx < 0.

Then the zero solution of problem (7.2) is globally asymptotically stable if λ is so
small that

0 < λ < μ1(m).

In this case we can give an estimate of the decay rate of the total size of the
population as t ↓ 0:∫

Ω

w(x, t;u0) dx

≤ exp
[
−
(

1
λ
− 1
μ1(m)

)
μ1(1) t

]
|Ω|1/2

(∫
Ω

u0(x)2 dx
)1/2

, t > 0.

(ii) A positive solution u(λ) of problem (7.2) is globally asymptotically stable
for each λ satisfying the condition

μ1(m) < λ < μ1(Ω0(h)).

(iii) If λ is so large that
λ > μ1(Ω0(h)),

then we have
max
x∈Ω

|w(x, t;u0)| −→ ∞ as t→ ∞

for each nontrivial u0 ∈ C2+θ(Ω) satisfying conditions (1.12).

The proofs of Theorems 7.2 and 7.3 are essentially the same as those of Theo-
rems 1.2 and 1.3, respectively.
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Appendix: Proof of Remark 1.3

This appendix is devoted to the proof of Remark 1.3. Namely, we prove that if
h(x) > 0 on Ω and if m(x) attains positive values in Ω, then the decay estimate
(1.10) holds true as λ ↓ λ1(m):∫

Ω

u(λ) dx ≤
(

1 − λ1(m)
λ

)
|Ω|2/3

(∫
Ω
(m+)3 dx

)1/3

minx∈Ω h(x)
, λ > λ1(m). (1.10)
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Our proof here is inspired by the proof of Cantrell–Cosner [5, Theorem 4.1].
Let u(λ) ∈ C2(Ω) be a positive solution of problem (1.6) for λ1(m) < λ <

μ1(Ω0(h)). In the proof of Lemma 4.1, we have proved the formula

1
λ

∫
Ω

|∇u(λ)|2 dx+
∫

Ω

h(x)u(λ)3 dx =
∫

Ω

m(x)u(λ)2 dx. (A.1)

This implies that ∫
Ω

m(x)u(λ)2 dx > 0.

Hence we have, by the variational formula (1.4),

λ1(m)
∫

Ω

m(x)u(λ)2 dx ≤
∫

Ω

|∇u(λ)|2 dx. (A.2)

By formula (A.1) and inequality (A.2), it follows that∫
Ω

h(x)u(λ)3 dx =
∫

Ω

m(x)u(λ)2 dx− 1
λ

∫
Ω

|∇u(λ)|2 dx

≤
∫

Ω

m(x)u(λ)2 dx− λ1(m)
λ

∫
Ω

m(x)u(λ)2 dx

=
(

1 − λ1(m)
λ

)∫
Ω

m(x)u(λ)2 dx. (A.3)

Furthermore, we have, by Hölder’s inequality,∫
Ω

m(x)u(λ)2 dx ≤
∫

Ω

m+(x)u(λ)2 dx

≤
(∫

Ω

m+(x)3 dx
)1/3(∫

Ω

u(λ)3 dx
)2/3

= ‖m+‖L3(Ω) ‖u(λ)‖2
L3(Ω). (A.4)

Therefore, by using inequalities (A.3) and (A.4) we obtain that

min
Ω
h · ‖u(λ)‖3

L3(Ω) ≤
∫

Ω

h(x)u(λ)3 dx

≤
(

1 − λ1(m)
λ

)∫
Ω

m(x)u(λ)2 dx

≤
(

1 − λ1(m)
λ

)
‖m+‖L3(Ω) ‖u(λ)‖2

L3(Ω).

This proves that

‖u(λ)‖L3(Ω) ≤
(

1 − λ1(m)
λ

)
‖m+‖L3(Ω)

(
1

minΩ h

)
, (A.5)
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since h(x) > 0 on Ω.
On the other hand, we have, by Hölder’s inequality,

∫
Ω

u(λ) dx ≤
(∫

Ω

u(λ)3 dx
)1/3(∫

Ω

dx

)2/3

= |Ω|2/3 · ‖u(λ)‖L3(Ω). (A.6)

The desired decay estimate (1.10) follows by combining inequalities (A.6) and
(A.5). �

Similarly, in the Neumann case we can prove the decay estimate (7.3) in Remark
7.1, by making use of the variational formula due to Brown–Lin [4, Theorem 3.13].
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