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Abstract The purpose of this paper is to study a class of semilinear degenerate elliptic

boundary value problems at resonance which include as particular cases the Dirichlet

and Robin problems. The approach here is based on the global inversion theorems

between Banach spaces, and is distinguished by the extensive use of the ideas and

techniques characteristic of the recent developments in the theory of partial differential

equations. By making use of the Lyapunov–Schmidt procedure and the global inversion

theorem, we prove existence and uniqueness theorems for our problem. The results here

extend an earlier theorem due to Landesman and Lazer to the degenerate case.
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1 Statement of main results

Let Ω be a bounded domain of Euclidean space RN , N ≥ 2, with smooth boundary

∂Ω; its closure Ω = Ω ∪ ∂Ω is an N-dimensional, compact smooth manifold with

boundary. Let A be a second-order, elliptic differential operator with real coefficients

such that

Au = −
NX

i=1

∂

∂xi

0
@ NX

j=1

aij(x)
∂u

∂xj

1
A + c(x)u. (1.1)

Here:

(1) aij ∈ C∞(Ω) and aij(x) = aji(x) for all x ∈ Ω and 1 ≤ i, j ≤ N , and there exists

a positive constant a0 such that

NX
i,j=1

aij(x)ξiξj ≥ a0|ξ|2 for all (x, ξ) ∈ Ω × RN .
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(2) c ∈ C∞(Ω) and c(x) ≥ 0 in Ω.

Let B be a first-order, boundary condition with real coefficients such that

Bu = a(x′)∂u

∂�
+ b(x′)u. (1.2)

Here:

(3) a ∈ C∞(∂Ω) and a(x′) ≥ 0 on ∂Ω.

(4) b ∈ C∞(∂Ω) and b(x′) ≥ 0 on ∂Ω.

(5) ∂/∂� is the conormal derivative associated with the operator A:

∂

∂�
=

NX
i,j=1

aij(x′)nj
∂

∂xi
,

where n = (n1, n2, . . . , nN ) is the unit exterior normal to the boundary ∂Ω.

Our fundamental hypotheses on the boundary condition B are the following:

(H.1) a(x′) + b(x′) > 0 on ∂Ω.

(H.2) b(x′) �≡ 0 on ∂Ω.

The intuitive meaning of hypotheses (H.1) and (H.2) is that either the reflection phe-

nomenon or the absorption phenomenon does occur at each point of the boundary

∂Ω. More precisely, condition (H.1) implies that the absorption phenomenon occurs

at each point of the set M = {x′ ∈ ∂Ω : a(x′) = 0}, while the reflection phenomenon

occurs at each point of the set ∂Ω \ M = {x′ ∈ ∂Ω : a(x′) > 0}. In other words, a

Markovian particle moves continuously in the space Ω \ M until it dies at the time

when it reaches the set M where the particle is definitely absorbed (see [15]). On the

other hand, condition (H.2) implies that the boundary condition B is not equal to the

purely Neumann condition. We remark that if a(x′) ≡ 0 and b(x′) ≡ 1 on ∂Ω (resp.

a(x′) > 0 on ∂Ω), then the boundary condition B is the Dirichlet condition (resp.

Robin condition).

It is easy to see that B is non-degenerate (or coercive) if and only if either a(x′) > 0

on ∂Ω or a(x′) ≡ 0 and b(x′) > 0 on ∂Ω. In other words, B is a degenerate boundary

condition from an analytical point of view. This is due to the fact that the so-called

Shapiro–Lopatinskii complementary condition is violated at each point of the set M

(cf. [7]). Amann [2] studied the case where the boundary ∂Ω is the disjoint union of the

two closed subsets M and ∂Ω \ M , each of which is an (N − 1) dimensional compact

smooth manifold.

In this paper we consider the following semilinear elliptic boundary value problem

at resonance: Let q(ξ) be a function defined on R. Given a function h(x) in Ω, find a

function u(x) in Ω such that(
−Au + λ1u + q(u) = h in Ω,

Bu = a(x′) ∂u
∂ν + b(x′)u = 0 on ∂Ω.

(1.3)

It should be emphasized that the linear part −A+λ1 I is not invertible and further that

problem (1.3) may have no solution at all. Indeed, this is the case where q(ξ) ≡ 0 on R,

that is, the linear case. The purpose of this paper is to prove existence and uniqueness

theorems for problem (1.3) in the framework of Hölder spaces. We remark that existence

平良和昭
ハイライト表示
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and uniqueness theorems for problem (1.3) were first obtained by Landesman–Lazer

[9] in the framework of Sobolev spaces of L2 type (see also [13, Section 6.4]).

In order to study problem (1.3) in the framework of Hölder spaces, we consider the

linear elliptic boundary value problem(
Au = g in Ω,

Bu = 0 on ∂Ω
(1.4)

in the framework of the Hilbert space L2(Ω). We associate with problem (1.4) a densely

defined, closed linear operator

A : L2(Ω) −→ L2(Ω)

as follows:

(a) D(A) = {u ∈ W 2,2(Ω) : Bu = 0 on ∂Ω}.
(b) Au = Au for all u ∈ D(A).

Here and in the following the Sobolev space W k,p(Ω) for k ∈ N and 1 < p < ∞ is

defined as follows:

W k,p(Ω) = the space of functions u ∈ Lp(Ω) whose derivatives Dαu,

|α| ≤ k, in the sense of distributions are in Lp(Ω),

and its norm ‖ · ‖W k,p(Ω) is given by the formula

‖u‖W k,p(Ω) =

0
@ X

|α|≤k

Z
Ω
|Dαu(x)|p dx

1
A

1/p

.

Then we have the following fundamental spectral results (i), (ii) and (iii) of the

operator A (see [16, Theorem 5.1]):

(i) The operator A is positive and selfadjoint in L2(Ω).

(ii) The first eigenvalue λ1 of A is positive and algebraically simple, and its correspond-

ing eigenfunction φ1 ∈ C2+α(Ω), with exponent 0 < α < 1, may be chosen to be

strictly positive in Ω. Namely, we have the assertions8><
>:

Aφ1 = λ1φ1 in Ω,

φ1 > 0 in Ω,

Bφ1 = 0 on ∂Ω.

(iii) No other eigenvalues λj , j ≥ 2, have positive eigenfunctions.

Now we impose the following three conditions (B.1), (B.2) and (B.3) on the non-

linear term q(ξ):

(B.1) The function q(ξ) is real-valued and bounded on R.

(B.2) The function q(ξ) is of class C1+α with 0 < α < 1 on R and satisfies the condition

q′(ξ) < λ2 − λ1 for all ξ ∈ R, (1.5)

where λ1 and λ2 are eigenvalues of A.

(B.3) The finite limits q+ = limξ→+∞ q(ξ) and q− = limξ→−∞ q(ξ) exist and q− < q+.
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Example 1.1 A simple example of the nonlinear term q(ξ) is given by the formula

q(ξ) =

8>>>>><
>>>>>:

γ
“
− 1

2ξ + 3
4

”
for ξ > 1,

γ
4 ξ2 for 0 ≤ ξ ≤ 1,

− δ
4ξ2 for −1 ≤ ξ < 0,

δ
“
− 1

2ξ − 3
4

”
for ξ < −1.

Here 0 < γ < 2(λ2 − λ1) and 0 < δ < 2(λ2 − λ1). It is easy to see that this function

q(ξ) satisfies condition (B.3) with q+ := 3γ/4 and q− := −3δ/4.

The next existence theorem is a generalization of Ambrosetti–Prodi [3, Chapter 4,

Theorem 1.8] to the degenerate case (cf. [9, Theorem]):

Theorem 1.1 Assume that the nonlinear term q(ξ) satisfies conditions (B.1), (B.2)

and (B.3). If the function h ∈ Cα(Ω) satisfies the condition

q−
Z

Ω
φ1(x) dx <

Z
Ω

h(x)φ1(x) dx < q+
Z

Ω
φ1(x) dx, (1.6)

then problem (1.3) has a solution u ∈ C2+α(Ω).

Now we consider the case where condition (B.3) is violated. To do this, we introduce

(replacing condition (B.3)) the following condition (B.4) on the nonlinear term q(ξ):

(B.4) The finite limit σ = lim|ξ|→∞ ξ q(ξ) exists and σ > 0.

Example 1.2 A simple example of the nonlinear term q(ξ) is given by the formula

q(ξ) = (λ2 − λ1)
ξ

1 + ξ2
for all ξ ∈ R.

This function q(ξ) satisfies condition (B.4) with σ := λ2 − λ1.

The next existence theorem is a generalization of Ambrosetti–Prodi [3, Chapter 4,

Theorem 1.10] to the degenerate case (cf. [9, Theorem]):

Theorem 1.2 Assume that the nonlinear term q(ξ) satisfies conditions (B.1), (B.2)

and (B.4). If the function h ∈ Cα(Ω) satisfies the orthogonal conditionZ
Ω

h(x)φ1(x) dx = 0, (1.7)

then problem (1.3) has a solution u ∈ C2+α(Ω).

Remark 1.1 By arguing as in the proof of Theorem 1.2 (see Section 5), we can prove

that there exists a positive constant ε such that problem (1.3) has at least two solutions

u1, u2 ∈ C2+α(Ω) if the function h ∈ Cα(Ω) satisfies the condition˛̨̨
˛
Z

Ω
h(x)φ1(x) dx

˛̨̨
˛ < ε.

Finally, the next existence and uniqueness theorem is a generalization of Ambro-

setti–Prodi [3, Chapter 4, Theorem 1.12] to the degenerate case (cf. [9, Theorem]):
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Theorem 1.3 Assume that the nonlinear term q(ξ) satisfies conditions (B.1), (B.2)

and (B.3), and further that q′(ξ) > 0 on R. Then problem (1.3) has a unique solution

u ∈ C2+α(Ω) if and only if the function h ∈ Cα(Ω) satisfies condition (1.6).

The rest of this paper is organized as follows. Section 2 deals with local and global

inversions of mappings between Banach spaces which go back to Hadamard in the finite

dimensional case and to Cacciopoli and Lévy for general Banach spaces. Our proof of

Theorems 1.1, 1.2 and 1.3 is based on the Lyapunov–Schmidt procedure which reduces

an infinite-dimensional problem to a finite-dimensional system. Section 3 is devoted to

the Lyapunov–Schmidt procedure (Proposition 3.1). This section is the heart of the

subject, and is based on the previous work [16] and [17]. More precisely, we make use

of a generalization of the classical Krĕın–Rutman theory ([8]) to the degenerate case

([16]) and also a generalization of the classical variational approach ([5]) to eigenvalue

problems with an indefinite weight to the degenerate case ([17]). By virtue of the global

inversion theorem (Theorem 2.3), we are reduced to the study of a one-dimensional

system (equation (3.5)). In Section 4 we study equation (3.5), and prove Theorem 1.1,

by using the intermediate value theorem. Similarly, Theorem 1.2 and Theorem 1.3 are

proved in Section 5 and Section 6, respectively.

2 Local and global inversion theorems

This section deals with local and global inversions of mappings between Banach spaces

which go back to Hadamard in the finite dimensional case and to Cacciopoli and

Lévy for general Banach spaces (Theorem 2.3). The presentation here is taken from

Ambrosetti–Prodi [3], Dieudonné [6] and Nirenberg [12] (see also [4], [11], [18]).

2.1 Local inversion theorem

Let X and Y be Banach spaces and let F : X → Y be a C1 map. Namely, the map F

is differentiable in X and the Fréchet derivative DF is continuous as a map of X into

the space B(X,Y ) of bounded (continuous) linear operators on X into Y .

A continuous map F : X → Y is said to be locally invertible at a point u∗ of X if

there exist an open neighborhood U of u∗, an open neighborhood V of F (u∗) and a

continuous map G : V → U such that(
G(F (u)) = u for all u ∈ U,

F (G(v)) = v for all v ∈ V .

The map G is called the local inverse of F , and will be denoted by F−1.

The next local inversion theorem provides a criterion for a map to be a local C1-

diffeomorphism in terms of its Fréchet derivative (see [6, Theorem 10.2.5]; [3, Chapter

2, Theorem 1.2]):

Theorem 2.1 Let F be a C1 map of X into Y . Assume that the Fréchet derivative

DF (u∗) : X → Y is continuous and invertible at a point u∗ ∈ X. Then F is locally

invertible at u∗ with C1 inverse F−1. More precisely, there exist an open neighborhood

U of u∗ and an open neighborhood V of F (u∗) such that the inverse F−1 : V → U is

a C1 map and that D(F−1)(v) = (DF (u))−1 for all v = F (u) with u ∈ U .
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The process of linearization provides a key link between the linear and nonlinear

theories of partial differential equations. Our basic tool is the following implicit func-

tion theorem that is one of the most important applications of Theorem 2.1 (see [6,

Theorem 10.2.1]; [12, Theorem 2.7.5]):

Theorem 2.2 Let X, Y , Z be Banach spaces, and let f be a C1-map of an open subset

U×V of X×Y into Z. Assume that the Fréchet partial derivative Dyf(x0, y0) : Y → Z

is an algebraic and topological isomorphism at a point (x0, y0) of U×V . Then there exist

neighborhoods U0 of x0 and W0 of f(x0, y0) and a unique C1 map g : U0 × W0 → V

such that f(x, g(x,w)) = w for all (x, w) ∈ U0 × W0.

2.2 Global inversion theorem

Let M and N be metric spaces and let F : M → N be a continuous map. The map

F : M → N is said to be proper if the preimage F−1(K) is compact in M for any

compact set K in N . We remark that if F is proper, then it maps closed sets in M

into closed sets in N .

A topological space T is said to be simply connected if it is arcwise connected and

if every closed path σ in T is homotopic to a constant. Namely, for any given map

σ ∈ C([0, 1], T ) with σ(0) = σ(1) there exist a map h ∈ C([0, 1]× [0, 1], T ) and a point

v ∈ T such that 8><
>:

h(s, 0) = σ(s) for 0 ≤ s ≤ 1,

h(s, 1) = v for 0 ≤ s ≤ 1,

h(0, t) = h(1, t) for 0 ≤ t ≤ 1.

Now we are in position to state the global inversion theorem (see [3], Chapter 3,

Theorem 1.8):

Theorem 2.3 Let M be an arcwise connected metric space and let N be a simply

connected metric space. Assume that a continuous map F : M → N is proper and

locally invertible on all of M . Then the map F is a homeomorphism of M onto N .

3 Lyapunov–Schmidt procedure

The main idea of this section is to rewrite problem (1.3) in a suitable bifurcation system

(the Lyapunov–Schmidt procedure) and to formulate conditions which imply a priori

estimates for solutions of problem (1.3) (see Proposition 3.1). This section is divided

into two subsections.

3.1 Orthogonal decomposition in Hölder spaces

First, we have the following orthogonal decomposition in the Hilbert space L2(Ω):

L2(Ω) = N (A − λ1I) ⊕ R (A − λ1I)

=
n

u ∈ L2(Ω) : (A − λ1)u = 0, Bu = 0
o

⊕
n
(A − λ1)u : u ∈ W 2,2(Ω), Bu = 0

o
. (3.1)
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Indeed, it suffices to note that the operator A is selfadjoint and that

codim R (A − λ1I) = dim N (A − λ1I) = 1.

Moreover, it follows from an application of the regularity theorem ([15, Theorem 8.2])

that

N (A − λ1I) =
n

u ∈ C2+α
B (Ω) : (A − λ1)u = 0 in Ω

o
= span [φ1] ,

and further that

R(A − λ1I) ∩ Cα(Ω) =
n
(A − λ1)u : u ∈ C2+α

B (Ω)
o

,

where

C2+α
B (Ω) =

n
u ∈ C2+α(Ω) : Bu = 0

o
.

Therefore, by restricting decomposition (3.1) to the subspace Y = Cα(Ω) of L2(Ω)

we obtain the orthogonal decomposition

Y = Cα(Ω)

=
n

u ∈ C2+α
B (Ω) : (A − λ1)u = 0 in Ω

o
⊕

n
(A − λ1)u : u ∈ C2+α

B (Ω)
o

= span [φ1] ⊕ W, (3.2)

where

W = {(A − λ1)u : u ∈ X} , X = C2+α
B (Ω).

If we define the orthogonal projection Q from X onto W by the formula

Qu = u −
„Z

Ω
w(x)φ1(x) dx

«
φ1 for all u ∈ X,

then it is easy to see that

W = Q(X) =

j
w ∈ Y :

Z
Ω

w(x)φ1(x) dx = 0

ff
.

Moreover, by restricting decomposition (3.2) to the subspace X = C2+α
B (Ω) of Y

we obtain the orthogonal decomposition

X = C2+α
B (Ω) = span [φ1] ⊕ (W ∩ X) . (3.3)

In other words, every function u ∈ X can be written uniquely in the form

u = t φ1 + w(t), t =

Z
Ω

u(x)φ1(x) dx, w(t) ∈ X ∩ W.

Then it is easy to verify that(
−Au + λ1u + q(u) = h in Ω,

Bu = 0 in ∂Ω

⇐⇒

8><
>:

u = t φ1 + w(t),

−Aw(t) + λ1w(t) + Q (q(t φ1 + w(t))) = Qh in Ω,R
Ω Q (q(t φ1 + w(t)))φ1(x) dx =

R
Ω h(x)φ1(x) dx.
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Summing up, we are reduced to the infinite-dimensional equation

−Aw(t) + λ1w(t) + Q (q(t φ1 + w(t))) = Qh in Ω (3.4)

and the one-dimensional systemZ
Ω

Q (q(t φ1 + w(t)))φ1(x) dx =

Z
Ω

h(x)φ1(x) dx. (3.5)

3.2 Infinite-dimensional equation

Now we consider the first (infinite-dimensional) equation (3.4), and formulate condi-

tions which imply a priori estimates for solutions of equation (3.4) (Proposition 3.1),

just as in the non-resonant case. To do this, we introduce a nonlinear map

Φ : R × (X ∩ W ) −→ W

as follows:

Φ(t, w) = −Aw + λ1w + Q (q(t φ1 + w)) for all (t, w) ∈ R × (X ∩ W ).

Then it is easy to see that Φ ∈ C1(R × (X ∩ W ),W ).

The next proposition plays an essential role in the Lyapunov–Schmidt procedure:

Proposition 3.1 Assume that the nonlinear term q(ξ) satisfies conditions (B.1) and

(B.2). Then, for each function h ∈ Cα(Ω) there exists a unique function w(t) =

w(t, Qh) ∈ W ∩ X which satisfies the following three conditions:

(i) Φ(t,w(t)) = Qh.

(ii) The function t �→ w(t) is of class C1.

(iii) The functions w(t) are uniformly bounded in the space C1+α(Ω).

Proof (I) In order to prove assertions (i) and (ii), we shall apply the global inversion

theorem (Theorem 2.3) to the map Φ(t, ·) for each t ∈ R. The proof is divided into

three steps.

Step 1: First, we show that the map

Φ(t, ·) : X ∩ W −→ W

is proper for each t ∈ R. The proof is divided into three steps.

Step 1-1: The next lemma proves the boundedness of the inverse (−A + λ1I)−1

on the space W ∩ X:

Lemma 3.1 There exists a positive constant C(λ1) depending on λ1 such that

‖u‖X ≤ C(λ1) ‖(−A + λ1)u‖Y for all u ∈ W ∩ X. (3.6)

Proof Assume, to the contrary, that, for every n ∈ N there is a function un ∈ W ∩ X

such that

‖un‖X > n ‖(−A + λ1)un‖Y . (3.7)

If we let

vn =
un

‖un‖X

∈ X ∩ W,
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then we obtain from inequality (3.7) that

‖vn‖X = 1, (3.8)

‖(−A + λ1)vn‖Y <
1

n
. (3.9)

However, it follows from an application of the Ascoli–Arzelà theorem that the injection

C2+α(Ω) → C2(Ω) is compact. By assertion (3.8), we may assume that the sequence

{vn} itself converges to some function v∗ in C2(Ω) as n → ∞:

vn −→ v∗ in C2(Ω) as n → ∞. (3.10)

We remark that the limit function v∗(x) satisfies the boundary condition

Bv∗ = lim
n→∞Bvn = 0 on ∂Ω. (3.11)

Furthermore, it follows from inequality (3.9) that

(−A + λ1)vn −→ 0 in C(Ω) as n → ∞.

Hence we have, by assertion (3.10),

(−A + λ1)v
∗ = lim

n→∞(−A + λ1)vn = 0 in C(Ω). (3.12)

By combining assertions (3.11) and (3.12), we obtain that

8><
>:

v∗ ∈ C2(Ω),

(−A + λ1)v
∗ = 0 in Ω,

Bv∗ = 0 on ∂Ω.

(3.13)

Hence, it follows from an application of the regularity theorem for problem (3.13) ([15,

Theorem 8.2]) that

v∗ ∈ C2+α(Ω),

so that

v∗ ∈ X = C2+α
B (Ω).

On the other hand, by applying [15, Theorem 1.2] with ϕ := 0 we can find a positive

constant C such that

‖u‖X ≤ C ‖Au‖Y for all u ∈ X = C2+α
B (Ω).

By using this inequality with u := vn−v∗, we obtain from assertions (3.8), (3.9), (3.10)

and (3.12) that

‖vn − v∗‖X ≤ C
‚‚A(vn − v∗)

‚‚
Y

= C
‚‚(A − λ1)(vn − v∗) + λ1(vn − v∗)

‚‚
Y

≤ C ‖(A − λ1)vn‖Y + C
‚‚(A − λ1)v

∗‚‚
Y

+ Cλ1

‚‚vn − v∗
‚‚

Y

≤ C

n
+ Cλ1

‚‚vn − v∗
‚‚

Y
−→ 0 as n → ∞.
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Hence we have, by assertion (3.8),‚‚v∗
‚‚

X
= lim

n→∞ ‖vn‖X = 1. (3.14)

By using assertions (3.13) and (3.14), we can write the function v∗(x) in the form

v∗(x) = t0 φ1(x) for some t0 �= 0.

However, since the sequence {vn} in X∩W converges to the function v∗(x) in C2+α(Ω)

as n → ∞, it follows that

v∗ ∈ X ∩ W.

In view of decomposition (3.3), this implies that

v∗(x) ≡ 0 in Ω,

that is, t0 = 0. This is a contradiction.

The proof of Lemma 3.1 is complete.

Step 1-2: Let {hn} be an arbitrary bounded sequence in W such that

Φ(t, wn) = hn

with wn ∈ X ∩ W , that is,

Φ(t, wn) = (−A + λ1)wn + Q (q(t φ1 + wn)) = hn. (3.15)

Then we show that the sequence {wn} is bounded in X = C2+α
B (Ω).

To do this, we rewrite equation (3.15) in the form

(−A + λ1)wn = hn − Q (q (t φ1 + wn)) . (3.16)

By conditions (B.1) and (B.2), we find that the sequence {q(t φ1 + wn)} is bounded in

the space Y = Cα(Ω). Since the projection Q : Y → Y is bounded, it follows that the

sequence

{Q (q (t φ1 + wn))}
is bounded in the space Y . Therefore, by using inequality (3.6) with u := wn ∈ X ∩W

we obtain from equation (3.16) that the sequence {wn} is bounded in the space X.

Step 1-3: We show that if {wn} is a sequence in X such that the sequence

{hn} = {Φ(t, wn)} (3.17)

converges to some function h in Y as n → ∞, then the sequence {wn} contains a

convergent subsequence in X. This proves that the mapping Φ(t, ·) : X ∩ W → W is

proper for each t ∈ R.

First, we rewrite equation (3.17) as follows:

Awn = λ1wn − hn + Q (q (t φ1 + wn)) . (3.18)

However, in Step 1-2 we have proved that the sequence

{λ1wn − hn + Q (q (t φ1 + wn))} = {Awn}
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is bounded in the space in Y = Cα(Ω). Therefore, by applying [15, Theorem 1.2] with

ϕ := 0 we obtain that the sequence {wn} is bounded in X = C2+α
B (Ω). Namely, we

have, for some positive constant c1,

‖wn‖C2+α(Ω) ≤ c1.

By the Ascoli–Arzelà theorem, we may assume that the sequence {wn} itself converges

to some function w∗ in the space C2(Ω) as n → ∞:

wn −→ w∗ in C2(Ω) as n → ∞. (3.19)

Furthermore, it follows that

λ1wn − hn + Q (q (t φ1 + wn))

−→ λ1w∗ − h + Q
`
q

`
t φ1 + w∗´´

in Y = Cα(Ω) as n → ∞.

Hence, by applying again [15, Theorem 1.2] with ϕ := 0 we obtain from equation (3.18)

that

wn = A−1 (λ1wn − hn + Q (q (t φ1 + wn)))

−→ A−1 `
λ1w∗ − h + Q

`
q

`
t φ1 + w∗´´´

in X = C2+α
B (Ω) as n → ∞. (3.20)

By combining assertions (3.19) and (3.20), we have proved that

w∗ = A−1 `
λ1w∗ − h + Q

`
q

`
t φ1 + w∗´´´ ∈ X,

and further that

wn −→ w∗ in X as n → ∞.

Step 2: Secondly, we prove that the map Φ(t, ·) : X ∩W → W is locally invertible

on all of W ∩ X, for each t ∈ R.

We shall apply the local inversion theorem (Theorem 2.1) to the map Φ(t, ·). To do

this, we have only to show that the Fréchet partial derivative

Φw(t, w)z = −Az + λ1z + Q
`
q′(t φ1 + w)z

´
, z ∈ X ∩ W,

is invertible at each point w ∈ X ∩ W .

The next lemma proves the Fredholm alternative theorem for the Fréchet partial

derivative Φw(t, w):

Lemma 3.2 The index of Φw(t, w) : X → Y is equal to zero:

ind (Φw(t,w)) = dimN(Φw(t,w)) − codim R(Φw(t, w)) = 0.

Proof If we associate with the linear elliptic boundary value problem(
Av = f in Ω,

Bv = 0 on ∂Ω

a continuous linear operator A by the formula

A = A : X −→ Y,
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then it follows from an application of [15, Theorem 9.1] with ϕ := 0 that the operator

A is a Fredholm operator with index zero:

indA = dim N(A) − codim R(A) = 0. (3.21)

Moreover, if we let

m(x) = q′(t φ1(x) + w(x)) for all x ∈ Ω,

then we obtain from condition (B.2) that

m ∈ Cα(Ω),

and further that

Q
`
q′(t φ1 + w)z

´
= Q(m(x)z)

= m(x)z −
„Z

Ω
m(y)z(y)φ1(y) dy

«
φ1(x). (3.22)

By the Ascoli–Arzelà theorem, it follows that the operator Q
`
q′(t φ1 + w)z

´
: X → Y

is compact. Therefore, we find that the operator

Φw(t, w) = −A + λ1I + Q
`
q′(t φ1 + w)·´ : X −→ Y

is a Fredholm operator with index zero, since we have, by assertion (3.21),

ind (Φw(t, w)) = ind (−A) = 0.

The proof of Lemma 3.2 is complete.

By Lemma 3.2, it follows that Φw(t, w) is surjective if and only if it is injective.

Rephrased, we find that Φw(t, w) is invertible if and only if the linear elliptic boundary

value problem (
−Az + λ1z + Q

`
q′(t φ1 + w)z

´
= 0 in Ω,

Bz = 0 on ∂Ω
(3.23)

has only the trivial solution. However, by using formula (3.22) we can write prob-

lem (3.23) in the operator equation form

−Az + (λ1 + m(x)) z −
„Z

Ω
m(y)z(y)φ1(y) dy

«
φ1 = 0, z ∈ W ∩ X. (3.24)

Hence, we have, by equation (3.24),

0 =

Z
Ω

(−Az(x) + (λ1 + m(x)) z(x)) · z(x) dx

−
„Z

Ω
m(y)z(y)φ1(y) dy

« Z
Ω

φ1(x) · z(x) dx

= −
Z

Ω
Az(x) · z(x) dx + λ1

Z
Ω

z(x)2 dx +

Z
Ω

m(x)z(x)2 dx. (3.25)

On the other hand, by the variational formula it follows thatZ
Ω

Az(x) · z(x) dx ≥ λ2

Z
Ω

z(x)2 dx, (3.26)
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since the function z ∈ W ∩ X is orthogonal to the eigenfunction φ1(x) corresponding

the first eigenvalue λ1.

Therefore, by combining formula (3.25) and inequality (3.26) we obtain thatZ
Ω

(λ1 + m(x)) z(x)2 dx =

Z
Ω

Az(x) · z(x) dx ≥ λ2

Z
Ω

z(x)2 dx,

so that Z
Ω

(λ1 − λ2 + m(x)) z(x)2 dx ≥ 0. (3.27)

However, we have, by inequality (1.5),

m(x) = q′(t φ1(x) + w(x)) < λ2 − λ1 for all x ∈ Ω,

and so Z
Ω

(λ1 − λ2 + m(x)) z(x)2 dx < 0, (3.28)

provided that z(x) �≡ 0 in Ω.

By combining inequalities (3.27) and (3.28), we have proved that z(x) ≡ 0 in Ω,

that is, problem (3.23) has only the trivial solution.

Step 3: Thirdly, by Steps 1 and 2 we can apply the global inversion theorem

(Theorem 2.3) to obtain that, for each t ∈ R, the map

Φ(t, ·) : X ∩ W −→ W

is a topological homeomorphism. Namely, for each h ∈ Cα(Ω) there exists a unique

function w(t) ∈ X∩W such that Φ(t, w(t)) = Qh. This proves the desired assertion (i).

Moreover, since the function

Φ(t, w(t)) = −Aw + λ1w + Q (q(t φ1 + w))

is of class C1 with respect to t, it follows from an application of the implicit function

theorem (Theorem 2.2) that the function t �→ w(t) is of class C1. This proves the

desired assertion (ii).

(II) Finally, we prove assertion (iii). Since we have the formula

Qh = Φ(t, w(t)) = −Aw(t) + λ1w(t) + Q (q(t φ1 + w(t))) ,

it follows that 8><
>:

u = t φ1 + w(t),

(A − λ1)w(t) = Q (q(t φ1 + w(t))) − Qh ∈ W,

w(t) ∈ X ∩ W.

However, we find from inequality (3.6) that the operator

A − λ1I : X ∩ W −→ W

is an algebraic and topological isomorphism. If we let

U(t) = Q (q(t φ1 + w(t))) − Qh,

then we have the formula

w(t) = (A − λ1I)−1 U(t), (3.29)
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and also, for some positive constant c2,

‖U(t)‖C(Ω) ≤ ‖Qh‖C(Ω) + ‖Q (q(t φ1 + w(t))) ‖C(Ω)

≤ ‖Qh‖C(Ω) + sup
R

|q| + c2 ‖φ1‖C(Ω).

For example, we may take

c2 = sup
R

|q| ·
Z

Ω
φ1(x) dx.

This proves that the functions U(t) are uniformly bounded in the space C(Ω). By

applying [15, Theorem 1.1] for p > N/(1 − α), we obtain from formula (3.29) that the

functions w(t) are uniformly bounded in the space C1+α(Ω). Indeed, it suffices to note

that we have, by Sobolev’s imbedding theorem (see [1, Theorem 4.12, Part II]),

W 2,p(Ω) ⊂ C2−N/p(Ω) ⊂ C1+α(Ω),

for p > N/(1 − α).

Summing up, we have proved that, for some positive constant c3,

‖w(t)‖C1+α(Ω) ≤ c3.

Now the proof of Proposition 3.1 is complete. ��

4 Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. Our proof of Theorem 1.1 is based

on the Lyapunov–Schmidt procedure. More precisely, we study the one-dimensional

system (3.5), and show that the behavior of the function

Γ (t) =

Z
Ω

q (t φ1(x) + w(t, x))φ1(x) dx (4.1)

as t → ±∞ is closely related to that of q(ξ) as ξ → ±∞. In fact, we show that

lim
t→±∞ Γ (t) = q±

Z
Ω

φ1(x) dx = lim
ξ→±∞

q(ξ) ·
Z

Ω
φ1(x) dx.

The proof is divided into two steps.

Step 1: First, by Subsection 3.1 we have the equivalent assertions(
−Au + λ1u + q(u) = h in Ω,

Bu = 0 on ∂Ω

⇐⇒

8><
>:

u = t φ1 + w(t),

−Aw(t) + λ1w(t) + Q (q(t φ1 + w(t)) = Qh,R
Ω q (t φ1 + w(t))φ1 dx =

R
Ω hφ1 dx

⇐⇒

8><
>:

u = t φ1 + w(t),

−Aw(t) + λ1w(t) + Q (q(t φ1 + w(t)) = Qh,

Γ (t) =
R
Ω hφ1 dx.
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Therefore, if we can find a point t∗ ∈ R such that

Γ (t∗) =

Z
Ω

h(x)φ1(x) dx,

then it follows that the function u∗(x), defined by the formula

u∗(x) = t∗ φ1(x) + w(t∗),

is a solution of problem (1.3).

Step 2: Under condition (1.6), we have only to show that there exists a point

t∗ ∈ R such that

Γ (t∗) =

Z
Ω

h(x)φ1(x) dx. (4.2)

To do this, let {tn} be an arbitrary sequence such that tn → +∞, and let

wn(t) = wn(t, x) = w(tn, x),

un(t) = un(t, x) = tn φ1(x) + wn(t, x).

By using Proposition 3.1, we may assume that the sequence {wn} itself converges to

some function w∗ in the space C1(Ω) as n → ∞. Then we have, for some positive

constant c,

|un(t, x)| = |tn φ1(x) + wn(t, x)| ≥ |tn|φ1(x) − |wn(t, x)|
≥ |tn|φ1(x) − c for all x ∈ Ω.

This proves that, as n → ∞,

|un(t, x)| −→ +∞ in Ω as n → ∞,

since φ1(x) > 0 in Ω. Hence it follows from an application of Lebesgue’s bounded

convergence theorem that we have, by condition (B.3),

lim
n→∞Γ (tn) = lim

tn→+∞

Z
Ω

q (un(t, x))φ1(x) dx

=

Z
Ω

lim
n→∞ q (un(t, x))φ1(x) dx

= q+
Z

Ω
φ1(x) dx.

This proves that

lim
t→+∞Γ (t) = q+

Z
Ω

φ1(x) dx, (4.3)

since the sequence {tn} is arbitrary.

Similarly, we can prove that

lim
t→−∞Γ (t) = q−

Z
Ω

φ1(x) dx. (4.4)

Therefore, the desired assertion (4.2) follows from an application of the interme-

diate value theorem, since the function Γ (t) is continuous and since condition (1.6) is

satisfied.

The proof of Theorem 1.1 is complete. ��
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5 Proof of Theorem 1.2

In this section we prove Theorem 1.2. To do this, we study the one-dimensional sys-

tem (3.5), and show that the behavior of the function t Γ (t) as t → ±∞ is closely related

to that of ξ q(ξ) as ξ → ±∞, where the function Γ (t) is defined by formula (4.1). In

fact, we show that

lim
t→±∞ t Γ (t) = σ |Ω| = lim

ξ→±∞
ξ q(ξ) · |Ω|,

where |Ω| is the volume of Ω. The proof is divided into two steps.

Step 1: First, under condition (1.7) we have the equivalent assertions(
−Au + λ1u + q(u) = h in Ω,

Bu = 0 on ∂Ω

⇐⇒

8><
>:

u = t φ1 + w(t),

−Aw(t) + λ1w(t) + Q (q(t φ1 + w(t)) = Qh,

Γ (t) = 0.

Therefore, if we can find a point t∗ ∈ R such that

Γ (t∗) = 0,

then it follows that the function u∗(x), defined by the formula

u∗(x) = t∗ φ1(x) + w(t∗),

is a solution of problem (1.3).

Step 2: Secondly, we show that there exists a point t∗ ∈ R such that

Γ (t∗) =

Z
Ω

h(x)φ1(x) dx = 0. (5.1)

To do this, we consider the function

t Γ (t) =

Z
Ω

q (t φ1 + w(t)) (t φ1 + w(t)) dx −
Z

Ω
q (t φ1 + w(t))w(t) dx. (5.2)

Then it suffices to prove that

lim
t→±∞ t Γ (t) = σ |Ω|. (5.3)

Indeed, the desired assertion (5.1) follows from an application of the intermediate value

theorem, since the function Γ (t) is continuous.

Now, let {tn} be an arbitrary sequence such that |tn| → ∞, and let

wn(t) = wn(t, x) = w(tn, x),

un(t) = un(t, x) = tn φ1(x) + wn(t, x).

Then it follows from equation (5.2) that

tn Γ (tn) =

Z
Ω

q (un(t, x))un(t, x) dx −
Z

Ω
q (un(t, x))wn(t, x) dx. (5.4)
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By virtue of assertion (iii) of Proposition 3.1 with w(t) := wn(t, x), we may assume

that the sequence {wn} itself converges to some function w∗ in the space C1(Ω) as

n → ∞. Then we have, for some positive constant c,

|un(t, x)| = |tn φ1(x) + wn(t, x)| ≥ |tn|φ1(x) − |wn(t, x)|
≥ |tn|φ1(x) − c for all x ∈ Ω.

This proves that, as |tn| → ∞,

|un(t, x)| −→ ∞ in Ω as n → ∞,

since φ1(x) > 0 in Ω. Hence it follows from an application of Lebesgue’s bounded

convergence theorem that we have, by condition (B.4),

lim
n→∞

Z
Ω

q (un(t, x))un(t, x) dx = σ |Ω|,

lim
n→∞

Z
Ω

q (un(t, x))wn(t, x) dx = 0.

Therefore, we obtain from formula (5.4) that

lim
n→∞ tn Γ (tn) = σ |Ω|.

This proves the desired assertion (5.3), since the sequence {tn} is arbitrary.

The proof of Theorem 1.2 is complete. ��

6 Proof of Theorem 1.3

This final section is devoted to the proof of Theorem 1.3. The “if” part is an immediate

consequence of Theorem 1.1.

We have only to prove the “only if” part and the uniqueness result. Roughly speak-

ing, we shall show that the behavior of Γ (t) as t → ±∞ is closely related to that of

q(ξ) as ξ → ±∞. In fact, we show that the function Γ (t) is strictly increasing on R

(see Lemma 6.1). The proof is divided into three steps.

Step 1: First, we recall that

Γ (t) =

Z
Ω

q (t φ1(x) + w(t, x))φ1(x) dx,

and that the function w(t) = w(t, ·) is differentiable with respect to t. By differentiating

the equation

−Aw(t) + λ1w(t) + Q (q (t φ1 + w(t))) = Qh,

we obtain that the derivative w′(t) = wt(t, ·) satisfies the equation

− Aw′(t) + λ1w′(t) +
d

dt
(Q (q (t φ1 + w(t))))

= −Aw′(t) + λ1w′(t) + Q
`
q′ (t φ1 + w(t)) (φ1 + w′(t))

´
= 0. (6.1)
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However, we find that the derivative Γ ′(t) is given by the formula

Γ ′(t) =

Z
Ω

q′ (t φ1(x) + w(t, x)) (φ1(x) + wt(t, x))φ1(x) dx, (6.2)

so that

Q
`
q′ (t φ1 + w(t)) (φ1 + w′(t))

´
= q′ (t φ1 + w(t))

`
φ1 + w′(t)

´
−

„Z
Ω

q′ (t φ1(y) + w(t, y)) (φ1(y) + wt(t, y))φ1(y) dy

«
φ1(x)

= q′ (t φ1 + w(t))
`
φ1 + w′(t)

´ − Γ ′(t)φ1(x).

Hence we can rewrite equation (6.1) in the form

−Aw′(t) + λ1w′(t) + q′ (t φ1 + w(t))
`
φ1 + w′(t)

´ − Γ ′(t)φ1(x) = 0. (6.3)

Step 2: Now we can prove the following lemma:

Lemma 6.1 The function Γ (t) is strictly increasing on R, that is,

Γ ′(t) > 0 on R.

Proof By assertions (4.3) and (4.4), we remark that

q−
Z

Ω
φ1(x) dx < Γ (t) < q+

Z
Ω

φ1(x) dx,

lim
t→+∞Γ (t) = q+

Z
Ω

φ1(x) dx,

lim
t→−∞Γ (t) = q−

Z
Ω

φ1(x) dx.

Hence it suffices to show that

Γ ′(t) �= 0 on R.

Assume, to the contrary, that there exists a point t∗ ∈ R such that

Γ ′(t∗) = 0.

If we let

u∗(x) = t∗ φ1(x) + w(t∗) = t∗ φ1(x) + w(t∗, x) ∈ X,

z∗(x) = φ1(x) + w′(t∗) = φ1(x) + wt(t
∗, x) ∈ X,

then we have, by equation (6.3) with t := t∗,

− Az∗ + λ1z∗ + q′
`
u∗´

z∗

= −Aw′(t∗) + λ1w′(t∗) + q′
`
t∗ φ1 + w(t∗)

´ `
φ1 + w′(t∗)

´
= 0 in Ω. (6.4)

Moreover, we remark thatZ
Ω

z∗(x) · φ1(x) dx =

Z
Ω

`
φ1(x) + wt(t

∗, x)
´
φ1(x) dx =

Z
Ω

φ1(x) · φ1(x) dx = 1,
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since the function wt(t
∗, ·) ∈ W is orthogonal to the eigenfunction φ1. In particular, it

follows that z∗(x) �≡ 0 in Ω.

If we let

m∗(x) = λ1 + q′
`
u∗(x)

´
= λ1 + q′

`
t∗ φ1(x) + w(t∗, x)

´
for all x ∈ Ω,

then it follows from condition (B.2) that m∗ ∈ C(Ω). Therefore, we obtain from equa-

tion (6.4) that the non-trivial function z∗(x) is a solution of the eigenvalue problem

with the weight m∗(x) (
Az∗ = m∗(x) z∗ in Ω,

Bz∗ = 0 on ∂Ω.

This proves that, for some k ≥ 1,

λk(m∗) = 1.

We recall (see [17, Proposition 3.4]) that λk(m∗) is the k-th eigenvalue of the elliptic

boundary value problem with the weight m∗(x):

(
Au = λm∗(x)u in Ω,

Bu = 0 on ∂Ω.

On the other hand, since we have, by inequality (1.5),

m∗(x) = λ1 + q′
`
u∗(x)

´
< λ2 for all x ∈ Ω,

it follows from an application of the comparison property of eigenvalues ([17, Corol-

lary 3.6]) that

λ2(m
∗) > 1.

Hence we have the assertion

λ1(m
∗) = 1.

By applying the Krĕın–Rutman theorem (see [16, Theorem 2.1]), we obtain that the

corresponding eigenfunction z∗(x) does not change sign in Ω.

However, since q′(ξ) > 0 on R and since φ1(x) > 0 in Ω, we have, by formula (6.2)

with t := t∗,

0 = Γ ′(t∗) =

Z
Ω

q′
`
u∗(x)

´ · z∗(x) · φ1(x) dx

(
> 0 if z∗(x) > 0 in Ω,

< 0 if z∗(x) < 0 in Ω.

This contradiction proves Lemma 6.1.

Step 3: Summing up, we have proved that problem (1.3) has a unique solution

u ∈ C2+α(Ω) if and only if the function h ∈ Cα(Ω) satisfies condition (1.6).

Now the proof of Theorem 1.3 is complete. ��
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